1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_X64
6
7#include "src/code-factory.h"
8#include "src/codegen.h"
9#include "src/deoptimizer.h"
10#include "src/full-codegen/full-codegen.h"
11
12namespace v8 {
13namespace internal {
14
15#define __ ACCESS_MASM(masm)
16
17void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
18                                ExitFrameType exit_frame_type) {
19  // ----------- S t a t e -------------
20  //  -- rax                 : number of arguments excluding receiver
21  //  -- rdi                 : target
22  //  -- rdx                 : new.target
23  //  -- rsp[0]              : return address
24  //  -- rsp[8]              : last argument
25  //  -- ...
26  //  -- rsp[8 * argc]       : first argument
27  //  -- rsp[8 * (argc + 1)] : receiver
28  // -----------------------------------
29  __ AssertFunction(rdi);
30
31  // The logic contained here is mirrored for TurboFan inlining in
32  // JSTypedLowering::ReduceJSCall{Function,Construct}. Keep these in sync.
33
34  // Make sure we operate in the context of the called function (for example
35  // ConstructStubs implemented in C++ will be run in the context of the caller
36  // instead of the callee, due to the way that [[Construct]] is defined for
37  // ordinary functions).
38  __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
39
40  // JumpToExternalReference expects rax to contain the number of arguments
41  // including the receiver and the extra arguments.
42  const int num_extra_args = 3;
43  __ addp(rax, Immediate(num_extra_args + 1));
44
45  // Unconditionally insert argc, target and new target as extra arguments. They
46  // will be used by stack frame iterators when constructing the stack trace.
47  __ PopReturnAddressTo(kScratchRegister);
48  __ Integer32ToSmi(rax, rax);
49  __ Push(rax);
50  __ SmiToInteger32(rax, rax);
51  __ Push(rdi);
52  __ Push(rdx);
53  __ PushReturnAddressFrom(kScratchRegister);
54
55  __ JumpToExternalReference(ExternalReference(address, masm->isolate()),
56                             exit_frame_type == BUILTIN_EXIT);
57}
58
59static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
60  __ movp(kScratchRegister,
61          FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
62  __ movp(kScratchRegister,
63          FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
64  __ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
65  __ jmp(kScratchRegister);
66}
67
68static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
69                                           Runtime::FunctionId function_id) {
70  // ----------- S t a t e -------------
71  //  -- rax : argument count (preserved for callee)
72  //  -- rdx : new target (preserved for callee)
73  //  -- rdi : target function (preserved for callee)
74  // -----------------------------------
75  {
76    FrameScope scope(masm, StackFrame::INTERNAL);
77    // Push the number of arguments to the callee.
78    __ Integer32ToSmi(rax, rax);
79    __ Push(rax);
80    // Push a copy of the target function and the new target.
81    __ Push(rdi);
82    __ Push(rdx);
83    // Function is also the parameter to the runtime call.
84    __ Push(rdi);
85
86    __ CallRuntime(function_id, 1);
87    __ movp(rbx, rax);
88
89    // Restore target function and new target.
90    __ Pop(rdx);
91    __ Pop(rdi);
92    __ Pop(rax);
93    __ SmiToInteger32(rax, rax);
94  }
95  __ leap(rbx, FieldOperand(rbx, Code::kHeaderSize));
96  __ jmp(rbx);
97}
98
99void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
100  // Checking whether the queued function is ready for install is optional,
101  // since we come across interrupts and stack checks elsewhere.  However,
102  // not checking may delay installing ready functions, and always checking
103  // would be quite expensive.  A good compromise is to first check against
104  // stack limit as a cue for an interrupt signal.
105  Label ok;
106  __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
107  __ j(above_equal, &ok);
108
109  GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
110
111  __ bind(&ok);
112  GenerateTailCallToSharedCode(masm);
113}
114
115namespace {
116
117void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function,
118                                    bool create_implicit_receiver,
119                                    bool check_derived_construct) {
120  // ----------- S t a t e -------------
121  //  -- rax: number of arguments
122  //  -- rsi: context
123  //  -- rdi: constructor function
124  //  -- rdx: new target
125  // -----------------------------------
126
127  // Enter a construct frame.
128  {
129    FrameScope scope(masm, StackFrame::CONSTRUCT);
130
131    // Preserve the incoming parameters on the stack.
132    __ Integer32ToSmi(rcx, rax);
133    __ Push(rsi);
134    __ Push(rcx);
135
136    if (create_implicit_receiver) {
137      // Allocate the new receiver object.
138      __ Push(rdi);
139      __ Push(rdx);
140      FastNewObjectStub stub(masm->isolate());
141      __ CallStub(&stub);
142      __ movp(rbx, rax);
143      __ Pop(rdx);
144      __ Pop(rdi);
145
146      // ----------- S t a t e -------------
147      //  -- rdi: constructor function
148      //  -- rbx: newly allocated object
149      //  -- rdx: new target
150      // -----------------------------------
151
152      // Retrieve smi-tagged arguments count from the stack.
153      __ SmiToInteger32(rax, Operand(rsp, 0 * kPointerSize));
154    }
155
156    if (create_implicit_receiver) {
157      // Push the allocated receiver to the stack. We need two copies
158      // because we may have to return the original one and the calling
159      // conventions dictate that the called function pops the receiver.
160      __ Push(rbx);
161      __ Push(rbx);
162    } else {
163      __ PushRoot(Heap::kTheHoleValueRootIndex);
164    }
165
166    // Set up pointer to last argument.
167    __ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
168
169    // Copy arguments and receiver to the expression stack.
170    Label loop, entry;
171    __ movp(rcx, rax);
172    __ jmp(&entry);
173    __ bind(&loop);
174    __ Push(Operand(rbx, rcx, times_pointer_size, 0));
175    __ bind(&entry);
176    __ decp(rcx);
177    __ j(greater_equal, &loop);
178
179    // Call the function.
180    ParameterCount actual(rax);
181    __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION,
182                      CheckDebugStepCallWrapper());
183
184    // Store offset of return address for deoptimizer.
185    if (create_implicit_receiver && !is_api_function) {
186      masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
187    }
188
189    // Restore context from the frame.
190    __ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
191
192    if (create_implicit_receiver) {
193      // If the result is an object (in the ECMA sense), we should get rid
194      // of the receiver and use the result; see ECMA-262 section 13.2.2-7
195      // on page 74.
196      Label use_receiver, exit;
197      // If the result is a smi, it is *not* an object in the ECMA sense.
198      __ JumpIfSmi(rax, &use_receiver, Label::kNear);
199
200      // If the type of the result (stored in its map) is less than
201      // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
202      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
203      __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
204      __ j(above_equal, &exit, Label::kNear);
205
206      // Throw away the result of the constructor invocation and use the
207      // on-stack receiver as the result.
208      __ bind(&use_receiver);
209      __ movp(rax, Operand(rsp, 0));
210
211      // Restore the arguments count and leave the construct frame. The
212      // arguments count is stored below the receiver.
213      __ bind(&exit);
214      __ movp(rbx, Operand(rsp, 1 * kPointerSize));
215    } else {
216      __ movp(rbx, Operand(rsp, 0));
217    }
218
219    // Leave construct frame.
220  }
221
222  // ES6 9.2.2. Step 13+
223  // Check that the result is not a Smi, indicating that the constructor result
224  // from a derived class is neither undefined nor an Object.
225  if (check_derived_construct) {
226    Label dont_throw;
227    __ JumpIfNotSmi(rax, &dont_throw);
228    {
229      FrameScope scope(masm, StackFrame::INTERNAL);
230      __ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
231    }
232    __ bind(&dont_throw);
233  }
234
235  // Remove caller arguments from the stack and return.
236  __ PopReturnAddressTo(rcx);
237  SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
238  __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
239  __ PushReturnAddressFrom(rcx);
240  if (create_implicit_receiver) {
241    Counters* counters = masm->isolate()->counters();
242    __ IncrementCounter(counters->constructed_objects(), 1);
243  }
244  __ ret(0);
245}
246
247}  // namespace
248
249void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
250  Generate_JSConstructStubHelper(masm, false, true, false);
251}
252
253void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
254  Generate_JSConstructStubHelper(masm, true, false, false);
255}
256
257void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
258  Generate_JSConstructStubHelper(masm, false, false, false);
259}
260
261void Builtins::Generate_JSBuiltinsConstructStubForDerived(
262    MacroAssembler* masm) {
263  Generate_JSConstructStubHelper(masm, false, false, true);
264}
265
266void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
267  FrameScope scope(masm, StackFrame::INTERNAL);
268  __ Push(rdi);
269  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
270}
271
272enum IsTagged { kRaxIsSmiTagged, kRaxIsUntaggedInt };
273
274// Clobbers rcx, r11, kScratchRegister; preserves all other registers.
275static void Generate_CheckStackOverflow(MacroAssembler* masm,
276                                        IsTagged rax_is_tagged) {
277  // rax   : the number of items to be pushed to the stack
278  //
279  // Check the stack for overflow. We are not trying to catch
280  // interruptions (e.g. debug break and preemption) here, so the "real stack
281  // limit" is checked.
282  Label okay;
283  __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
284  __ movp(rcx, rsp);
285  // Make rcx the space we have left. The stack might already be overflowed
286  // here which will cause rcx to become negative.
287  __ subp(rcx, kScratchRegister);
288  // Make r11 the space we need for the array when it is unrolled onto the
289  // stack.
290  if (rax_is_tagged == kRaxIsSmiTagged) {
291    __ PositiveSmiTimesPowerOfTwoToInteger64(r11, rax, kPointerSizeLog2);
292  } else {
293    DCHECK(rax_is_tagged == kRaxIsUntaggedInt);
294    __ movp(r11, rax);
295    __ shlq(r11, Immediate(kPointerSizeLog2));
296  }
297  // Check if the arguments will overflow the stack.
298  __ cmpp(rcx, r11);
299  __ j(greater, &okay);  // Signed comparison.
300
301  // Out of stack space.
302  __ CallRuntime(Runtime::kThrowStackOverflow);
303
304  __ bind(&okay);
305}
306
307static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
308                                             bool is_construct) {
309  ProfileEntryHookStub::MaybeCallEntryHook(masm);
310
311  // Expects five C++ function parameters.
312  // - Object* new_target
313  // - JSFunction* function
314  // - Object* receiver
315  // - int argc
316  // - Object*** argv
317  // (see Handle::Invoke in execution.cc).
318
319  // Open a C++ scope for the FrameScope.
320  {
321// Platform specific argument handling. After this, the stack contains
322// an internal frame and the pushed function and receiver, and
323// register rax and rbx holds the argument count and argument array,
324// while rdi holds the function pointer, rsi the context, and rdx the
325// new.target.
326
327#ifdef _WIN64
328    // MSVC parameters in:
329    // rcx        : new_target
330    // rdx        : function
331    // r8         : receiver
332    // r9         : argc
333    // [rsp+0x20] : argv
334
335    // Enter an internal frame.
336    FrameScope scope(masm, StackFrame::INTERNAL);
337
338    // Setup the context (we need to use the caller context from the isolate).
339    ExternalReference context_address(Isolate::kContextAddress,
340                                      masm->isolate());
341    __ movp(rsi, masm->ExternalOperand(context_address));
342
343    // Push the function and the receiver onto the stack.
344    __ Push(rdx);
345    __ Push(r8);
346
347    // Load the number of arguments and setup pointer to the arguments.
348    __ movp(rax, r9);
349    // Load the previous frame pointer to access C argument on stack
350    __ movp(kScratchRegister, Operand(rbp, 0));
351    __ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
352    // Load the function pointer into rdi.
353    __ movp(rdi, rdx);
354    // Load the new.target into rdx.
355    __ movp(rdx, rcx);
356#else   // _WIN64
357    // GCC parameters in:
358    // rdi : new_target
359    // rsi : function
360    // rdx : receiver
361    // rcx : argc
362    // r8  : argv
363
364    __ movp(r11, rdi);
365    __ movp(rdi, rsi);
366    // rdi : function
367    // r11 : new_target
368
369    // Clear the context before we push it when entering the internal frame.
370    __ Set(rsi, 0);
371
372    // Enter an internal frame.
373    FrameScope scope(masm, StackFrame::INTERNAL);
374
375    // Setup the context (we need to use the caller context from the isolate).
376    ExternalReference context_address(Isolate::kContextAddress,
377                                      masm->isolate());
378    __ movp(rsi, masm->ExternalOperand(context_address));
379
380    // Push the function and receiver onto the stack.
381    __ Push(rdi);
382    __ Push(rdx);
383
384    // Load the number of arguments and setup pointer to the arguments.
385    __ movp(rax, rcx);
386    __ movp(rbx, r8);
387
388    // Load the new.target into rdx.
389    __ movp(rdx, r11);
390#endif  // _WIN64
391
392    // Current stack contents:
393    // [rsp + 2 * kPointerSize ... ] : Internal frame
394    // [rsp + kPointerSize]          : function
395    // [rsp]                         : receiver
396    // Current register contents:
397    // rax : argc
398    // rbx : argv
399    // rsi : context
400    // rdi : function
401    // rdx : new.target
402
403    // Check if we have enough stack space to push all arguments.
404    // Expects argument count in rax. Clobbers rcx, r11.
405    Generate_CheckStackOverflow(masm, kRaxIsUntaggedInt);
406
407    // Copy arguments to the stack in a loop.
408    // Register rbx points to array of pointers to handle locations.
409    // Push the values of these handles.
410    Label loop, entry;
411    __ Set(rcx, 0);  // Set loop variable to 0.
412    __ jmp(&entry, Label::kNear);
413    __ bind(&loop);
414    __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
415    __ Push(Operand(kScratchRegister, 0));  // dereference handle
416    __ addp(rcx, Immediate(1));
417    __ bind(&entry);
418    __ cmpp(rcx, rax);
419    __ j(not_equal, &loop);
420
421    // Invoke the builtin code.
422    Handle<Code> builtin = is_construct
423                               ? masm->isolate()->builtins()->Construct()
424                               : masm->isolate()->builtins()->Call();
425    __ Call(builtin, RelocInfo::CODE_TARGET);
426
427    // Exit the internal frame. Notice that this also removes the empty
428    // context and the function left on the stack by the code
429    // invocation.
430  }
431
432  // TODO(X64): Is argument correct? Is there a receiver to remove?
433  __ ret(1 * kPointerSize);  // Remove receiver.
434}
435
436void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
437  Generate_JSEntryTrampolineHelper(masm, false);
438}
439
440void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
441  Generate_JSEntryTrampolineHelper(masm, true);
442}
443
444// static
445void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
446  // ----------- S t a t e -------------
447  //  -- rax    : the value to pass to the generator
448  //  -- rbx    : the JSGeneratorObject to resume
449  //  -- rdx    : the resume mode (tagged)
450  //  -- rsp[0] : return address
451  // -----------------------------------
452  __ AssertGeneratorObject(rbx);
453
454  // Store input value into generator object.
455  __ movp(FieldOperand(rbx, JSGeneratorObject::kInputOrDebugPosOffset), rax);
456  __ RecordWriteField(rbx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx,
457                      kDontSaveFPRegs);
458
459  // Store resume mode into generator object.
460  __ movp(FieldOperand(rbx, JSGeneratorObject::kResumeModeOffset), rdx);
461
462  // Load suspended function and context.
463  __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset));
464  __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
465
466  // Flood function if we are stepping.
467  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
468  Label stepping_prepared;
469  ExternalReference last_step_action =
470      ExternalReference::debug_last_step_action_address(masm->isolate());
471  Operand last_step_action_operand = masm->ExternalOperand(last_step_action);
472  STATIC_ASSERT(StepFrame > StepIn);
473  __ cmpb(last_step_action_operand, Immediate(StepIn));
474  __ j(greater_equal, &prepare_step_in_if_stepping);
475
476  // Flood function if we need to continue stepping in the suspended generator.
477  ExternalReference debug_suspended_generator =
478      ExternalReference::debug_suspended_generator_address(masm->isolate());
479  Operand debug_suspended_generator_operand =
480      masm->ExternalOperand(debug_suspended_generator);
481  __ cmpp(rbx, debug_suspended_generator_operand);
482  __ j(equal, &prepare_step_in_suspended_generator);
483  __ bind(&stepping_prepared);
484
485  // Pop return address.
486  __ PopReturnAddressTo(rax);
487
488  // Push receiver.
489  __ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset));
490
491  // ----------- S t a t e -------------
492  //  -- rax    : return address
493  //  -- rbx    : the JSGeneratorObject to resume
494  //  -- rdx    : the resume mode (tagged)
495  //  -- rdi    : generator function
496  //  -- rsi    : generator context
497  //  -- rsp[0] : generator receiver
498  // -----------------------------------
499
500  // Push holes for arguments to generator function. Since the parser forced
501  // context allocation for any variables in generators, the actual argument
502  // values have already been copied into the context and these dummy values
503  // will never be used.
504  __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
505  __ LoadSharedFunctionInfoSpecialField(
506      rcx, rcx, SharedFunctionInfo::kFormalParameterCountOffset);
507  {
508    Label done_loop, loop;
509    __ bind(&loop);
510    __ subl(rcx, Immediate(1));
511    __ j(carry, &done_loop, Label::kNear);
512    __ PushRoot(Heap::kTheHoleValueRootIndex);
513    __ jmp(&loop);
514    __ bind(&done_loop);
515  }
516
517  // Dispatch on the kind of generator object.
518  Label old_generator;
519  __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
520  __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset));
521  __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx);
522  __ j(not_equal, &old_generator);
523
524  // New-style (ignition/turbofan) generator object.
525  {
526    __ PushReturnAddressFrom(rax);
527    __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
528    __ LoadSharedFunctionInfoSpecialField(
529        rax, rax, SharedFunctionInfo::kFormalParameterCountOffset);
530    // We abuse new.target both to indicate that this is a resume call and to
531    // pass in the generator object.  In ordinary calls, new.target is always
532    // undefined because generator functions are non-constructable.
533    __ movp(rdx, rbx);
534    __ jmp(FieldOperand(rdi, JSFunction::kCodeEntryOffset));
535  }
536
537  // Old-style (full-codegen) generator object.
538  __ bind(&old_generator);
539  {
540    // Enter a new JavaScript frame, and initialize its slots as they were when
541    // the generator was suspended.
542    FrameScope scope(masm, StackFrame::MANUAL);
543    __ PushReturnAddressFrom(rax);  // Return address.
544    __ Push(rbp);                   // Caller's frame pointer.
545    __ Move(rbp, rsp);
546    __ Push(rsi);  // Callee's context.
547    __ Push(rdi);  // Callee's JS Function.
548
549    // Restore the operand stack.
550    __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset));
551    __ SmiToInteger32(rax, FieldOperand(rsi, FixedArray::kLengthOffset));
552    {
553      Label done_loop, loop;
554      __ Set(rcx, 0);
555      __ bind(&loop);
556      __ cmpl(rcx, rax);
557      __ j(equal, &done_loop, Label::kNear);
558      __ Push(
559          FieldOperand(rsi, rcx, times_pointer_size, FixedArray::kHeaderSize));
560      __ addl(rcx, Immediate(1));
561      __ jmp(&loop);
562      __ bind(&done_loop);
563    }
564
565    // Reset operand stack so we don't leak.
566    __ LoadRoot(FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset),
567                Heap::kEmptyFixedArrayRootIndex);
568
569    // Restore context.
570    __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset));
571
572    // Resume the generator function at the continuation.
573    __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
574    __ movp(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
575    __ SmiToInteger64(
576        rcx, FieldOperand(rbx, JSGeneratorObject::kContinuationOffset));
577    __ leap(rdx, FieldOperand(rdx, rcx, times_1, Code::kHeaderSize));
578    __ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset),
579            Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
580    __ movp(rax, rbx);  // Continuation expects generator object in rax.
581    __ jmp(rdx);
582  }
583
584  __ bind(&prepare_step_in_if_stepping);
585  {
586    FrameScope scope(masm, StackFrame::INTERNAL);
587    __ Push(rbx);
588    __ Push(rdx);
589    __ Push(rdi);
590    __ CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
591    __ Pop(rdx);
592    __ Pop(rbx);
593    __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
594  }
595  __ jmp(&stepping_prepared);
596
597  __ bind(&prepare_step_in_suspended_generator);
598  {
599    FrameScope scope(masm, StackFrame::INTERNAL);
600    __ Push(rbx);
601    __ Push(rdx);
602    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
603    __ Pop(rdx);
604    __ Pop(rbx);
605    __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
606  }
607  __ jmp(&stepping_prepared);
608}
609
610static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
611                                  Register scratch2) {
612  Register args_count = scratch1;
613  Register return_pc = scratch2;
614
615  // Get the arguments + receiver count.
616  __ movp(args_count,
617          Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
618  __ movl(args_count,
619          FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
620
621  // Leave the frame (also dropping the register file).
622  __ leave();
623
624  // Drop receiver + arguments.
625  __ PopReturnAddressTo(return_pc);
626  __ addp(rsp, args_count);
627  __ PushReturnAddressFrom(return_pc);
628}
629
630// Generate code for entering a JS function with the interpreter.
631// On entry to the function the receiver and arguments have been pushed on the
632// stack left to right.  The actual argument count matches the formal parameter
633// count expected by the function.
634//
635// The live registers are:
636//   o rdi: the JS function object being called
637//   o rdx: the new target
638//   o rsi: our context
639//   o rbp: the caller's frame pointer
640//   o rsp: stack pointer (pointing to return address)
641//
642// The function builds an interpreter frame.  See InterpreterFrameConstants in
643// frames.h for its layout.
644void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
645  ProfileEntryHookStub::MaybeCallEntryHook(masm);
646
647  // Open a frame scope to indicate that there is a frame on the stack.  The
648  // MANUAL indicates that the scope shouldn't actually generate code to set up
649  // the frame (that is done below).
650  FrameScope frame_scope(masm, StackFrame::MANUAL);
651  __ pushq(rbp);  // Caller's frame pointer.
652  __ movp(rbp, rsp);
653  __ Push(rsi);  // Callee's context.
654  __ Push(rdi);  // Callee's JS function.
655  __ Push(rdx);  // Callee's new target.
656
657  // Get the bytecode array from the function object (or from the DebugInfo if
658  // it is present) and load it into kInterpreterBytecodeArrayRegister.
659  __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
660  Label load_debug_bytecode_array, bytecode_array_loaded;
661  DCHECK_EQ(Smi::kZero, DebugInfo::uninitialized());
662  __ cmpp(FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset),
663          Immediate(0));
664  __ j(not_equal, &load_debug_bytecode_array);
665  __ movp(kInterpreterBytecodeArrayRegister,
666          FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset));
667  __ bind(&bytecode_array_loaded);
668
669  // Check whether we should continue to use the interpreter.
670  Label switch_to_different_code_kind;
671  __ Move(rcx, masm->CodeObject());  // Self-reference to this code.
672  __ cmpp(rcx, FieldOperand(rax, SharedFunctionInfo::kCodeOffset));
673  __ j(not_equal, &switch_to_different_code_kind);
674
675  // Increment invocation count for the function.
676  __ movp(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
677  __ movp(rcx, FieldOperand(rcx, LiteralsArray::kFeedbackVectorOffset));
678  __ SmiAddConstant(
679      FieldOperand(rcx,
680                   TypeFeedbackVector::kInvocationCountIndex * kPointerSize +
681                       TypeFeedbackVector::kHeaderSize),
682      Smi::FromInt(1));
683
684  // Check function data field is actually a BytecodeArray object.
685  if (FLAG_debug_code) {
686    __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
687    __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
688                     rax);
689    __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
690  }
691
692  // Load initial bytecode offset.
693  __ movp(kInterpreterBytecodeOffsetRegister,
694          Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
695
696  // Push bytecode array and Smi tagged bytecode offset.
697  __ Push(kInterpreterBytecodeArrayRegister);
698  __ Integer32ToSmi(rcx, kInterpreterBytecodeOffsetRegister);
699  __ Push(rcx);
700
701  // Allocate the local and temporary register file on the stack.
702  {
703    // Load frame size from the BytecodeArray object.
704    __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
705                              BytecodeArray::kFrameSizeOffset));
706
707    // Do a stack check to ensure we don't go over the limit.
708    Label ok;
709    __ movp(rdx, rsp);
710    __ subp(rdx, rcx);
711    __ CompareRoot(rdx, Heap::kRealStackLimitRootIndex);
712    __ j(above_equal, &ok, Label::kNear);
713    __ CallRuntime(Runtime::kThrowStackOverflow);
714    __ bind(&ok);
715
716    // If ok, push undefined as the initial value for all register file entries.
717    Label loop_header;
718    Label loop_check;
719    __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
720    __ j(always, &loop_check);
721    __ bind(&loop_header);
722    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
723    __ Push(rdx);
724    // Continue loop if not done.
725    __ bind(&loop_check);
726    __ subp(rcx, Immediate(kPointerSize));
727    __ j(greater_equal, &loop_header, Label::kNear);
728  }
729
730  // Load accumulator and dispatch table into registers.
731  __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
732  __ Move(
733      kInterpreterDispatchTableRegister,
734      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
735
736  // Dispatch to the first bytecode handler for the function.
737  __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
738                          kInterpreterBytecodeOffsetRegister, times_1, 0));
739  __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx,
740                       times_pointer_size, 0));
741  __ call(rbx);
742  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
743
744  // The return value is in rax.
745  LeaveInterpreterFrame(masm, rbx, rcx);
746  __ ret(0);
747
748  // Load debug copy of the bytecode array.
749  __ bind(&load_debug_bytecode_array);
750  Register debug_info = kInterpreterBytecodeArrayRegister;
751  __ movp(debug_info, FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset));
752  __ movp(kInterpreterBytecodeArrayRegister,
753          FieldOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex));
754  __ jmp(&bytecode_array_loaded);
755
756  // If the shared code is no longer this entry trampoline, then the underlying
757  // function has been switched to a different kind of code and we heal the
758  // closure by switching the code entry field over to the new code as well.
759  __ bind(&switch_to_different_code_kind);
760  __ leave();  // Leave the frame so we can tail call.
761  __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
762  __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset));
763  __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
764  __ movp(FieldOperand(rdi, JSFunction::kCodeEntryOffset), rcx);
765  __ RecordWriteCodeEntryField(rdi, rcx, r15);
766  __ jmp(rcx);
767}
768
769static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
770                                        Register scratch1, Register scratch2,
771                                        Label* stack_overflow) {
772  // Check the stack for overflow. We are not trying to catch
773  // interruptions (e.g. debug break and preemption) here, so the "real stack
774  // limit" is checked.
775  __ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex);
776  __ movp(scratch2, rsp);
777  // Make scratch2 the space we have left. The stack might already be overflowed
778  // here which will cause scratch2 to become negative.
779  __ subp(scratch2, scratch1);
780  // Make scratch1 the space we need for the array when it is unrolled onto the
781  // stack.
782  __ movp(scratch1, num_args);
783  __ shlp(scratch1, Immediate(kPointerSizeLog2));
784  // Check if the arguments will overflow the stack.
785  __ cmpp(scratch2, scratch1);
786  __ j(less_equal, stack_overflow);  // Signed comparison.
787}
788
789static void Generate_InterpreterPushArgs(MacroAssembler* masm,
790                                         Register num_args,
791                                         Register start_address,
792                                         Register scratch) {
793  // Find the address of the last argument.
794  __ Move(scratch, num_args);
795  __ shlp(scratch, Immediate(kPointerSizeLog2));
796  __ negp(scratch);
797  __ addp(scratch, start_address);
798
799  // Push the arguments.
800  Label loop_header, loop_check;
801  __ j(always, &loop_check);
802  __ bind(&loop_header);
803  __ Push(Operand(start_address, 0));
804  __ subp(start_address, Immediate(kPointerSize));
805  __ bind(&loop_check);
806  __ cmpp(start_address, scratch);
807  __ j(greater, &loop_header, Label::kNear);
808}
809
810// static
811void Builtins::Generate_InterpreterPushArgsAndCallImpl(
812    MacroAssembler* masm, TailCallMode tail_call_mode,
813    CallableType function_type) {
814  // ----------- S t a t e -------------
815  //  -- rax : the number of arguments (not including the receiver)
816  //  -- rbx : the address of the first argument to be pushed. Subsequent
817  //           arguments should be consecutive above this, in the same order as
818  //           they are to be pushed onto the stack.
819  //  -- rdi : the target to call (can be any Object).
820  // -----------------------------------
821  Label stack_overflow;
822
823  // Number of values to be pushed.
824  __ Move(rcx, rax);
825  __ addp(rcx, Immediate(1));  // Add one for receiver.
826
827  // Add a stack check before pushing arguments.
828  Generate_StackOverflowCheck(masm, rcx, rdx, r8, &stack_overflow);
829
830  // Pop return address to allow tail-call after pushing arguments.
831  __ PopReturnAddressTo(kScratchRegister);
832
833  // rbx and rdx will be modified.
834  Generate_InterpreterPushArgs(masm, rcx, rbx, rdx);
835
836  // Call the target.
837  __ PushReturnAddressFrom(kScratchRegister);  // Re-push return address.
838
839  if (function_type == CallableType::kJSFunction) {
840    __ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny,
841                                                      tail_call_mode),
842            RelocInfo::CODE_TARGET);
843  } else {
844    DCHECK_EQ(function_type, CallableType::kAny);
845    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
846                                              tail_call_mode),
847            RelocInfo::CODE_TARGET);
848  }
849
850  // Throw stack overflow exception.
851  __ bind(&stack_overflow);
852  {
853    __ TailCallRuntime(Runtime::kThrowStackOverflow);
854    // This should be unreachable.
855    __ int3();
856  }
857}
858
859// static
860void Builtins::Generate_InterpreterPushArgsAndConstructImpl(
861    MacroAssembler* masm, CallableType construct_type) {
862  // ----------- S t a t e -------------
863  //  -- rax : the number of arguments (not including the receiver)
864  //  -- rdx : the new target (either the same as the constructor or
865  //           the JSFunction on which new was invoked initially)
866  //  -- rdi : the constructor to call (can be any Object)
867  //  -- rbx : the allocation site feedback if available, undefined otherwise
868  //  -- rcx : the address of the first argument to be pushed. Subsequent
869  //           arguments should be consecutive above this, in the same order as
870  //           they are to be pushed onto the stack.
871  // -----------------------------------
872  Label stack_overflow;
873
874  // Add a stack check before pushing arguments.
875  Generate_StackOverflowCheck(masm, rax, r8, r9, &stack_overflow);
876
877  // Pop return address to allow tail-call after pushing arguments.
878  __ PopReturnAddressTo(kScratchRegister);
879
880  // Push slot for the receiver to be constructed.
881  __ Push(Immediate(0));
882
883  // rcx and r8 will be modified.
884  Generate_InterpreterPushArgs(masm, rax, rcx, r8);
885
886  // Push return address in preparation for the tail-call.
887  __ PushReturnAddressFrom(kScratchRegister);
888
889  __ AssertUndefinedOrAllocationSite(rbx);
890  if (construct_type == CallableType::kJSFunction) {
891    // Tail call to the function-specific construct stub (still in the caller
892    // context at this point).
893    __ AssertFunction(rdi);
894
895    __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
896    __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
897    __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
898    // Jump to the constructor function (rax, rbx, rdx passed on).
899    __ jmp(rcx);
900  } else {
901    DCHECK_EQ(construct_type, CallableType::kAny);
902    // Call the constructor (rax, rdx, rdi passed on).
903    __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
904  }
905
906  // Throw stack overflow exception.
907  __ bind(&stack_overflow);
908  {
909    __ TailCallRuntime(Runtime::kThrowStackOverflow);
910    // This should be unreachable.
911    __ int3();
912  }
913}
914
915// static
916void Builtins::Generate_InterpreterPushArgsAndConstructArray(
917    MacroAssembler* masm) {
918  // ----------- S t a t e -------------
919  //  -- rax : the number of arguments (not including the receiver)
920  //  -- rdx : the target to call checked to be Array function.
921  //  -- rbx : the allocation site feedback
922  //  -- rcx : the address of the first argument to be pushed. Subsequent
923  //           arguments should be consecutive above this, in the same order as
924  //           they are to be pushed onto the stack.
925  // -----------------------------------
926  Label stack_overflow;
927
928  // Number of values to be pushed.
929  __ Move(r8, rax);
930  __ addp(r8, Immediate(1));  // Add one for receiver.
931
932  // Add a stack check before pushing arguments.
933  Generate_StackOverflowCheck(masm, r8, rdi, r9, &stack_overflow);
934
935  // Pop return address to allow tail-call after pushing arguments.
936  __ PopReturnAddressTo(kScratchRegister);
937
938  // rcx and rdi will be modified.
939  Generate_InterpreterPushArgs(masm, r8, rcx, rdi);
940
941  // Push return address in preparation for the tail-call.
942  __ PushReturnAddressFrom(kScratchRegister);
943
944  // Array constructor expects constructor in rdi. It is same as rdx here.
945  __ Move(rdi, rdx);
946
947  ArrayConstructorStub stub(masm->isolate());
948  __ TailCallStub(&stub);
949
950  // Throw stack overflow exception.
951  __ bind(&stack_overflow);
952  {
953    __ TailCallRuntime(Runtime::kThrowStackOverflow);
954    // This should be unreachable.
955    __ int3();
956  }
957}
958
959static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
960  // Set the return address to the correct point in the interpreter entry
961  // trampoline.
962  Smi* interpreter_entry_return_pc_offset(
963      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
964  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
965  __ Move(rbx, masm->isolate()->builtins()->InterpreterEntryTrampoline());
966  __ addp(rbx, Immediate(interpreter_entry_return_pc_offset->value() +
967                         Code::kHeaderSize - kHeapObjectTag));
968  __ Push(rbx);
969
970  // Initialize dispatch table register.
971  __ Move(
972      kInterpreterDispatchTableRegister,
973      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
974
975  // Get the bytecode array pointer from the frame.
976  __ movp(kInterpreterBytecodeArrayRegister,
977          Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
978
979  if (FLAG_debug_code) {
980    // Check function data field is actually a BytecodeArray object.
981    __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
982    __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
983                     rbx);
984    __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
985  }
986
987  // Get the target bytecode offset from the frame.
988  __ movp(kInterpreterBytecodeOffsetRegister,
989          Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
990  __ SmiToInteger32(kInterpreterBytecodeOffsetRegister,
991                    kInterpreterBytecodeOffsetRegister);
992
993  // Dispatch to the target bytecode.
994  __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister,
995                          kInterpreterBytecodeOffsetRegister, times_1, 0));
996  __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx,
997                       times_pointer_size, 0));
998  __ jmp(rbx);
999}
1000
1001void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1002  // Advance the current bytecode offset stored within the given interpreter
1003  // stack frame. This simulates what all bytecode handlers do upon completion
1004  // of the underlying operation.
1005  __ movp(rbx, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1006  __ movp(rdx, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1007  __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
1008  {
1009    FrameScope scope(masm, StackFrame::INTERNAL);
1010    __ Push(kInterpreterAccumulatorRegister);
1011    __ Push(rbx);  // First argument is the bytecode array.
1012    __ Push(rdx);  // Second argument is the bytecode offset.
1013    __ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
1014    __ Move(rdx, rax);  // Result is the new bytecode offset.
1015    __ Pop(kInterpreterAccumulatorRegister);
1016  }
1017  __ movp(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rdx);
1018
1019  Generate_InterpreterEnterBytecode(masm);
1020}
1021
1022void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
1023  Generate_InterpreterEnterBytecode(masm);
1024}
1025
1026void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
1027  // ----------- S t a t e -------------
1028  //  -- rax : argument count (preserved for callee)
1029  //  -- rdx : new target (preserved for callee)
1030  //  -- rdi : target function (preserved for callee)
1031  // -----------------------------------
1032  // First lookup code, maybe we don't need to compile!
1033  Label gotta_call_runtime;
1034  Label try_shared;
1035  Label loop_top, loop_bottom;
1036
1037  Register closure = rdi;
1038  Register map = r8;
1039  Register index = r9;
1040  __ movp(map, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1041  __ movp(map, FieldOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
1042  __ SmiToInteger32(index, FieldOperand(map, FixedArray::kLengthOffset));
1043  __ cmpl(index, Immediate(2));
1044  __ j(less, &gotta_call_runtime);
1045
1046  // Find literals.
1047  // r14 : native context
1048  // r9  : length / index
1049  // r8  : optimized code map
1050  // rdx : new target
1051  // rdi : closure
1052  Register native_context = r14;
1053  __ movp(native_context, NativeContextOperand());
1054
1055  __ bind(&loop_top);
1056  // Native context match?
1057  Register temp = r11;
1058  __ movp(temp, FieldOperand(map, index, times_pointer_size,
1059                             SharedFunctionInfo::kOffsetToPreviousContext));
1060  __ movp(temp, FieldOperand(temp, WeakCell::kValueOffset));
1061  __ cmpp(temp, native_context);
1062  __ j(not_equal, &loop_bottom);
1063  // OSR id set to none?
1064  __ movp(temp, FieldOperand(map, index, times_pointer_size,
1065                             SharedFunctionInfo::kOffsetToPreviousOsrAstId));
1066  __ SmiToInteger32(temp, temp);
1067  const int bailout_id = BailoutId::None().ToInt();
1068  __ cmpl(temp, Immediate(bailout_id));
1069  __ j(not_equal, &loop_bottom);
1070  // Literals available?
1071  __ movp(temp, FieldOperand(map, index, times_pointer_size,
1072                             SharedFunctionInfo::kOffsetToPreviousLiterals));
1073  __ movp(temp, FieldOperand(temp, WeakCell::kValueOffset));
1074  __ JumpIfSmi(temp, &gotta_call_runtime);
1075
1076  // Save the literals in the closure.
1077  __ movp(FieldOperand(closure, JSFunction::kLiteralsOffset), temp);
1078  __ movp(r15, index);
1079  __ RecordWriteField(closure, JSFunction::kLiteralsOffset, temp, r15,
1080                      kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1081
1082  // Code available?
1083  Register entry = rcx;
1084  __ movp(entry, FieldOperand(map, index, times_pointer_size,
1085                              SharedFunctionInfo::kOffsetToPreviousCachedCode));
1086  __ movp(entry, FieldOperand(entry, WeakCell::kValueOffset));
1087  __ JumpIfSmi(entry, &try_shared);
1088
1089  // Found literals and code. Get them into the closure and return.
1090  __ leap(entry, FieldOperand(entry, Code::kHeaderSize));
1091  __ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
1092  __ RecordWriteCodeEntryField(closure, entry, r15);
1093
1094  // Link the closure into the optimized function list.
1095  // rcx : code entry (entry)
1096  // r14 : native context
1097  // rdx : new target
1098  // rdi : closure
1099  __ movp(rbx,
1100          ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
1101  __ movp(FieldOperand(closure, JSFunction::kNextFunctionLinkOffset), rbx);
1102  __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, rbx, r15,
1103                      kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1104  const int function_list_offset =
1105      Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
1106  __ movp(ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST),
1107          closure);
1108  // Save closure before the write barrier.
1109  __ movp(rbx, closure);
1110  __ RecordWriteContextSlot(native_context, function_list_offset, closure, r15,
1111                            kDontSaveFPRegs);
1112  __ movp(closure, rbx);
1113  __ jmp(entry);
1114
1115  __ bind(&loop_bottom);
1116  __ subl(index, Immediate(SharedFunctionInfo::kEntryLength));
1117  __ cmpl(index, Immediate(1));
1118  __ j(greater, &loop_top);
1119
1120  // We found neither literals nor code.
1121  __ jmp(&gotta_call_runtime);
1122
1123  __ bind(&try_shared);
1124  __ movp(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1125  // Is the shared function marked for tier up?
1126  __ testb(FieldOperand(entry, SharedFunctionInfo::kMarkedForTierUpByteOffset),
1127           Immediate(1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte));
1128  __ j(not_zero, &gotta_call_runtime);
1129  // Is the full code valid?
1130  __ movp(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset));
1131  __ movl(rbx, FieldOperand(entry, Code::kFlagsOffset));
1132  __ andl(rbx, Immediate(Code::KindField::kMask));
1133  __ shrl(rbx, Immediate(Code::KindField::kShift));
1134  __ cmpl(rbx, Immediate(Code::BUILTIN));
1135  __ j(equal, &gotta_call_runtime);
1136  // Yes, install the full code.
1137  __ leap(entry, FieldOperand(entry, Code::kHeaderSize));
1138  __ movp(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
1139  __ RecordWriteCodeEntryField(closure, entry, r15);
1140  __ jmp(entry);
1141
1142  __ bind(&gotta_call_runtime);
1143  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1144}
1145
1146void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
1147  GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
1148}
1149
1150void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
1151  GenerateTailCallToReturnedCode(masm,
1152                                 Runtime::kCompileOptimized_NotConcurrent);
1153}
1154
1155void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
1156  GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
1157}
1158
1159void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
1160  // ----------- S t a t e -------------
1161  //  -- rax : argument count (preserved for callee)
1162  //  -- rdx : new target (preserved for callee)
1163  //  -- rdi : target function (preserved for callee)
1164  // -----------------------------------
1165  Label failed;
1166  {
1167    FrameScope scope(masm, StackFrame::INTERNAL);
1168    // Preserve argument count for later compare.
1169    __ movp(kScratchRegister, rax);
1170    // Push the number of arguments to the callee.
1171    __ Integer32ToSmi(rax, rax);
1172    __ Push(rax);
1173    // Push a copy of the target function and the new target.
1174    __ Push(rdi);
1175    __ Push(rdx);
1176
1177    // The function.
1178    __ Push(rdi);
1179    // Copy arguments from caller (stdlib, foreign, heap).
1180    Label args_done;
1181    for (int j = 0; j < 4; ++j) {
1182      Label over;
1183      if (j < 3) {
1184        __ cmpp(kScratchRegister, Immediate(j));
1185        __ j(not_equal, &over, Label::kNear);
1186      }
1187      for (int i = j - 1; i >= 0; --i) {
1188        __ Push(Operand(
1189            rbp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
1190      }
1191      for (int i = 0; i < 3 - j; ++i) {
1192        __ PushRoot(Heap::kUndefinedValueRootIndex);
1193      }
1194      if (j < 3) {
1195        __ jmp(&args_done, Label::kNear);
1196        __ bind(&over);
1197      }
1198    }
1199    __ bind(&args_done);
1200
1201    // Call runtime, on success unwind frame, and parent frame.
1202    __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
1203    // A smi 0 is returned on failure, an object on success.
1204    __ JumpIfSmi(rax, &failed, Label::kNear);
1205
1206    __ Drop(2);
1207    __ Pop(kScratchRegister);
1208    __ SmiToInteger32(kScratchRegister, kScratchRegister);
1209    scope.GenerateLeaveFrame();
1210
1211    __ PopReturnAddressTo(rbx);
1212    __ incp(kScratchRegister);
1213    __ leap(rsp, Operand(rsp, kScratchRegister, times_pointer_size, 0));
1214    __ PushReturnAddressFrom(rbx);
1215    __ ret(0);
1216
1217    __ bind(&failed);
1218    // Restore target function and new target.
1219    __ Pop(rdx);
1220    __ Pop(rdi);
1221    __ Pop(rax);
1222    __ SmiToInteger32(rax, rax);
1223  }
1224  // On failure, tail call back to regular js.
1225  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1226}
1227
1228static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
1229  // For now, we are relying on the fact that make_code_young doesn't do any
1230  // garbage collection which allows us to save/restore the registers without
1231  // worrying about which of them contain pointers. We also don't build an
1232  // internal frame to make the code faster, since we shouldn't have to do stack
1233  // crawls in MakeCodeYoung. This seems a bit fragile.
1234
1235  // Re-execute the code that was patched back to the young age when
1236  // the stub returns.
1237  __ subp(Operand(rsp, 0), Immediate(5));
1238  __ Pushad();
1239  __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
1240  __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
1241  {  // NOLINT
1242    FrameScope scope(masm, StackFrame::MANUAL);
1243    __ PrepareCallCFunction(2);
1244    __ CallCFunction(
1245        ExternalReference::get_make_code_young_function(masm->isolate()), 2);
1246  }
1247  __ Popad();
1248  __ ret(0);
1249}
1250
1251#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                  \
1252  void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
1253      MacroAssembler* masm) {                                 \
1254    GenerateMakeCodeYoungAgainCommon(masm);                   \
1255  }                                                           \
1256  void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(  \
1257      MacroAssembler* masm) {                                 \
1258    GenerateMakeCodeYoungAgainCommon(masm);                   \
1259  }
1260CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
1261#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
1262
1263void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
1264  // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
1265  // that make_code_young doesn't do any garbage collection which allows us to
1266  // save/restore the registers without worrying about which of them contain
1267  // pointers.
1268  __ Pushad();
1269  __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
1270  __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
1271  __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
1272  {  // NOLINT
1273    FrameScope scope(masm, StackFrame::MANUAL);
1274    __ PrepareCallCFunction(2);
1275    __ CallCFunction(
1276        ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
1277        2);
1278  }
1279  __ Popad();
1280
1281  // Perform prologue operations usually performed by the young code stub.
1282  __ PopReturnAddressTo(kScratchRegister);
1283  __ pushq(rbp);  // Caller's frame pointer.
1284  __ movp(rbp, rsp);
1285  __ Push(rsi);  // Callee's context.
1286  __ Push(rdi);  // Callee's JS Function.
1287  __ PushReturnAddressFrom(kScratchRegister);
1288
1289  // Jump to point after the code-age stub.
1290  __ ret(0);
1291}
1292
1293void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
1294  GenerateMakeCodeYoungAgainCommon(masm);
1295}
1296
1297void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
1298  Generate_MarkCodeAsExecutedOnce(masm);
1299}
1300
1301static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
1302                                             SaveFPRegsMode save_doubles) {
1303  // Enter an internal frame.
1304  {
1305    FrameScope scope(masm, StackFrame::INTERNAL);
1306
1307    // Preserve registers across notification, this is important for compiled
1308    // stubs that tail call the runtime on deopts passing their parameters in
1309    // registers.
1310    __ Pushad();
1311    __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
1312    __ Popad();
1313    // Tear down internal frame.
1314  }
1315
1316  __ DropUnderReturnAddress(1);  // Ignore state offset
1317  __ ret(0);  // Return to IC Miss stub, continuation still on stack.
1318}
1319
1320void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
1321  Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
1322}
1323
1324void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
1325  Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
1326}
1327
1328static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1329                                             Deoptimizer::BailoutType type) {
1330  // Enter an internal frame.
1331  {
1332    FrameScope scope(masm, StackFrame::INTERNAL);
1333
1334    // Pass the deoptimization type to the runtime system.
1335    __ Push(Smi::FromInt(static_cast<int>(type)));
1336
1337    __ CallRuntime(Runtime::kNotifyDeoptimized);
1338    // Tear down internal frame.
1339  }
1340
1341  // Get the full codegen state from the stack and untag it.
1342  __ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
1343
1344  // Switch on the state.
1345  Label not_no_registers, not_tos_rax;
1346  __ cmpp(kScratchRegister,
1347          Immediate(static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS)));
1348  __ j(not_equal, &not_no_registers, Label::kNear);
1349  __ ret(1 * kPointerSize);  // Remove state.
1350
1351  __ bind(&not_no_registers);
1352  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code());
1353  __ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
1354  __ cmpp(kScratchRegister,
1355          Immediate(static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER)));
1356  __ j(not_equal, &not_tos_rax, Label::kNear);
1357  __ ret(2 * kPointerSize);  // Remove state, rax.
1358
1359  __ bind(&not_tos_rax);
1360  __ Abort(kNoCasesLeft);
1361}
1362
1363void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1364  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1365}
1366
1367void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1368  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1369}
1370
1371void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1372  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1373}
1374
1375// static
1376void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1377  // ----------- S t a t e -------------
1378  //  -- rax     : argc
1379  //  -- rsp[0]  : return address
1380  //  -- rsp[8]  : argArray
1381  //  -- rsp[16] : thisArg
1382  //  -- rsp[24] : receiver
1383  // -----------------------------------
1384
1385  // 1. Load receiver into rdi, argArray into rax (if present), remove all
1386  // arguments from the stack (including the receiver), and push thisArg (if
1387  // present) instead.
1388  {
1389    Label no_arg_array, no_this_arg;
1390    StackArgumentsAccessor args(rsp, rax);
1391    __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
1392    __ movp(rbx, rdx);
1393    __ movp(rdi, args.GetReceiverOperand());
1394    __ testp(rax, rax);
1395    __ j(zero, &no_this_arg, Label::kNear);
1396    {
1397      __ movp(rdx, args.GetArgumentOperand(1));
1398      __ cmpp(rax, Immediate(1));
1399      __ j(equal, &no_arg_array, Label::kNear);
1400      __ movp(rbx, args.GetArgumentOperand(2));
1401      __ bind(&no_arg_array);
1402    }
1403    __ bind(&no_this_arg);
1404    __ PopReturnAddressTo(rcx);
1405    __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
1406    __ Push(rdx);
1407    __ PushReturnAddressFrom(rcx);
1408    __ movp(rax, rbx);
1409  }
1410
1411  // ----------- S t a t e -------------
1412  //  -- rax     : argArray
1413  //  -- rdi     : receiver
1414  //  -- rsp[0]  : return address
1415  //  -- rsp[8]  : thisArg
1416  // -----------------------------------
1417
1418  // 2. Make sure the receiver is actually callable.
1419  Label receiver_not_callable;
1420  __ JumpIfSmi(rdi, &receiver_not_callable, Label::kNear);
1421  __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
1422  __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
1423           Immediate(1 << Map::kIsCallable));
1424  __ j(zero, &receiver_not_callable, Label::kNear);
1425
1426  // 3. Tail call with no arguments if argArray is null or undefined.
1427  Label no_arguments;
1428  __ JumpIfRoot(rax, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
1429  __ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &no_arguments,
1430                Label::kNear);
1431
1432  // 4a. Apply the receiver to the given argArray (passing undefined for
1433  // new.target).
1434  __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
1435  __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
1436
1437  // 4b. The argArray is either null or undefined, so we tail call without any
1438  // arguments to the receiver. Since we did not create a frame for
1439  // Function.prototype.apply() yet, we use a normal Call builtin here.
1440  __ bind(&no_arguments);
1441  {
1442    __ Set(rax, 0);
1443    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1444  }
1445
1446  // 4c. The receiver is not callable, throw an appropriate TypeError.
1447  __ bind(&receiver_not_callable);
1448  {
1449    StackArgumentsAccessor args(rsp, 0);
1450    __ movp(args.GetReceiverOperand(), rdi);
1451    __ TailCallRuntime(Runtime::kThrowApplyNonFunction);
1452  }
1453}
1454
1455// static
1456void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1457  // Stack Layout:
1458  // rsp[0]           : Return address
1459  // rsp[8]           : Argument n
1460  // rsp[16]          : Argument n-1
1461  //  ...
1462  // rsp[8 * n]       : Argument 1
1463  // rsp[8 * (n + 1)] : Receiver (callable to call)
1464  //
1465  // rax contains the number of arguments, n, not counting the receiver.
1466  //
1467  // 1. Make sure we have at least one argument.
1468  {
1469    Label done;
1470    __ testp(rax, rax);
1471    __ j(not_zero, &done, Label::kNear);
1472    __ PopReturnAddressTo(rbx);
1473    __ PushRoot(Heap::kUndefinedValueRootIndex);
1474    __ PushReturnAddressFrom(rbx);
1475    __ incp(rax);
1476    __ bind(&done);
1477  }
1478
1479  // 2. Get the callable to call (passed as receiver) from the stack.
1480  {
1481    StackArgumentsAccessor args(rsp, rax);
1482    __ movp(rdi, args.GetReceiverOperand());
1483  }
1484
1485  // 3. Shift arguments and return address one slot down on the stack
1486  //    (overwriting the original receiver).  Adjust argument count to make
1487  //    the original first argument the new receiver.
1488  {
1489    Label loop;
1490    __ movp(rcx, rax);
1491    StackArgumentsAccessor args(rsp, rcx);
1492    __ bind(&loop);
1493    __ movp(rbx, args.GetArgumentOperand(1));
1494    __ movp(args.GetArgumentOperand(0), rbx);
1495    __ decp(rcx);
1496    __ j(not_zero, &loop);              // While non-zero.
1497    __ DropUnderReturnAddress(1, rbx);  // Drop one slot under return address.
1498    __ decp(rax);  // One fewer argument (first argument is new receiver).
1499  }
1500
1501  // 4. Call the callable.
1502  // Since we did not create a frame for Function.prototype.call() yet,
1503  // we use a normal Call builtin here.
1504  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1505}
1506
1507void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1508  // ----------- S t a t e -------------
1509  //  -- rax     : argc
1510  //  -- rsp[0]  : return address
1511  //  -- rsp[8]  : argumentsList
1512  //  -- rsp[16] : thisArgument
1513  //  -- rsp[24] : target
1514  //  -- rsp[32] : receiver
1515  // -----------------------------------
1516
1517  // 1. Load target into rdi (if present), argumentsList into rax (if present),
1518  // remove all arguments from the stack (including the receiver), and push
1519  // thisArgument (if present) instead.
1520  {
1521    Label done;
1522    StackArgumentsAccessor args(rsp, rax);
1523    __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
1524    __ movp(rdx, rdi);
1525    __ movp(rbx, rdi);
1526    __ cmpp(rax, Immediate(1));
1527    __ j(below, &done, Label::kNear);
1528    __ movp(rdi, args.GetArgumentOperand(1));  // target
1529    __ j(equal, &done, Label::kNear);
1530    __ movp(rdx, args.GetArgumentOperand(2));  // thisArgument
1531    __ cmpp(rax, Immediate(3));
1532    __ j(below, &done, Label::kNear);
1533    __ movp(rbx, args.GetArgumentOperand(3));  // argumentsList
1534    __ bind(&done);
1535    __ PopReturnAddressTo(rcx);
1536    __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
1537    __ Push(rdx);
1538    __ PushReturnAddressFrom(rcx);
1539    __ movp(rax, rbx);
1540  }
1541
1542  // ----------- S t a t e -------------
1543  //  -- rax     : argumentsList
1544  //  -- rdi     : target
1545  //  -- rsp[0]  : return address
1546  //  -- rsp[8]  : thisArgument
1547  // -----------------------------------
1548
1549  // 2. Make sure the target is actually callable.
1550  Label target_not_callable;
1551  __ JumpIfSmi(rdi, &target_not_callable, Label::kNear);
1552  __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
1553  __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
1554           Immediate(1 << Map::kIsCallable));
1555  __ j(zero, &target_not_callable, Label::kNear);
1556
1557  // 3a. Apply the target to the given argumentsList (passing undefined for
1558  // new.target).
1559  __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
1560  __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
1561
1562  // 3b. The target is not callable, throw an appropriate TypeError.
1563  __ bind(&target_not_callable);
1564  {
1565    StackArgumentsAccessor args(rsp, 0);
1566    __ movp(args.GetReceiverOperand(), rdi);
1567    __ TailCallRuntime(Runtime::kThrowApplyNonFunction);
1568  }
1569}
1570
1571void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1572  // ----------- S t a t e -------------
1573  //  -- rax     : argc
1574  //  -- rsp[0]  : return address
1575  //  -- rsp[8]  : new.target (optional)
1576  //  -- rsp[16] : argumentsList
1577  //  -- rsp[24] : target
1578  //  -- rsp[32] : receiver
1579  // -----------------------------------
1580
1581  // 1. Load target into rdi (if present), argumentsList into rax (if present),
1582  // new.target into rdx (if present, otherwise use target), remove all
1583  // arguments from the stack (including the receiver), and push thisArgument
1584  // (if present) instead.
1585  {
1586    Label done;
1587    StackArgumentsAccessor args(rsp, rax);
1588    __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
1589    __ movp(rdx, rdi);
1590    __ movp(rbx, rdi);
1591    __ cmpp(rax, Immediate(1));
1592    __ j(below, &done, Label::kNear);
1593    __ movp(rdi, args.GetArgumentOperand(1));  // target
1594    __ movp(rdx, rdi);                         // new.target defaults to target
1595    __ j(equal, &done, Label::kNear);
1596    __ movp(rbx, args.GetArgumentOperand(2));  // argumentsList
1597    __ cmpp(rax, Immediate(3));
1598    __ j(below, &done, Label::kNear);
1599    __ movp(rdx, args.GetArgumentOperand(3));  // new.target
1600    __ bind(&done);
1601    __ PopReturnAddressTo(rcx);
1602    __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
1603    __ PushRoot(Heap::kUndefinedValueRootIndex);
1604    __ PushReturnAddressFrom(rcx);
1605    __ movp(rax, rbx);
1606  }
1607
1608  // ----------- S t a t e -------------
1609  //  -- rax     : argumentsList
1610  //  -- rdx     : new.target
1611  //  -- rdi     : target
1612  //  -- rsp[0]  : return address
1613  //  -- rsp[8]  : receiver (undefined)
1614  // -----------------------------------
1615
1616  // 2. Make sure the target is actually a constructor.
1617  Label target_not_constructor;
1618  __ JumpIfSmi(rdi, &target_not_constructor, Label::kNear);
1619  __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
1620  __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
1621           Immediate(1 << Map::kIsConstructor));
1622  __ j(zero, &target_not_constructor, Label::kNear);
1623
1624  // 3. Make sure the target is actually a constructor.
1625  Label new_target_not_constructor;
1626  __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear);
1627  __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
1628  __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
1629           Immediate(1 << Map::kIsConstructor));
1630  __ j(zero, &new_target_not_constructor, Label::kNear);
1631
1632  // 4a. Construct the target with the given new.target and argumentsList.
1633  __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
1634
1635  // 4b. The target is not a constructor, throw an appropriate TypeError.
1636  __ bind(&target_not_constructor);
1637  {
1638    StackArgumentsAccessor args(rsp, 0);
1639    __ movp(args.GetReceiverOperand(), rdi);
1640    __ TailCallRuntime(Runtime::kThrowCalledNonCallable);
1641  }
1642
1643  // 4c. The new.target is not a constructor, throw an appropriate TypeError.
1644  __ bind(&new_target_not_constructor);
1645  {
1646    StackArgumentsAccessor args(rsp, 0);
1647    __ movp(args.GetReceiverOperand(), rdx);
1648    __ TailCallRuntime(Runtime::kThrowCalledNonCallable);
1649  }
1650}
1651
1652void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
1653  // ----------- S t a t e -------------
1654  //  -- rax    : argc
1655  //  -- rsp[0] : return address
1656  //  -- rsp[8] : last argument
1657  // -----------------------------------
1658  Label generic_array_code;
1659
1660  // Get the InternalArray function.
1661  __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);
1662
1663  if (FLAG_debug_code) {
1664    // Initial map for the builtin InternalArray functions should be maps.
1665    __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
1666    // Will both indicate a NULL and a Smi.
1667    STATIC_ASSERT(kSmiTag == 0);
1668    Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
1669    __ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
1670    __ CmpObjectType(rbx, MAP_TYPE, rcx);
1671    __ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
1672  }
1673
1674  // Run the native code for the InternalArray function called as a normal
1675  // function.
1676  // tail call a stub
1677  InternalArrayConstructorStub stub(masm->isolate());
1678  __ TailCallStub(&stub);
1679}
1680
1681void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
1682  // ----------- S t a t e -------------
1683  //  -- rax    : argc
1684  //  -- rsp[0] : return address
1685  //  -- rsp[8] : last argument
1686  // -----------------------------------
1687  Label generic_array_code;
1688
1689  // Get the Array function.
1690  __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rdi);
1691
1692  if (FLAG_debug_code) {
1693    // Initial map for the builtin Array functions should be maps.
1694    __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
1695    // Will both indicate a NULL and a Smi.
1696    STATIC_ASSERT(kSmiTag == 0);
1697    Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
1698    __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
1699    __ CmpObjectType(rbx, MAP_TYPE, rcx);
1700    __ Check(equal, kUnexpectedInitialMapForArrayFunction);
1701  }
1702
1703  __ movp(rdx, rdi);
1704  // Run the native code for the Array function called as a normal function.
1705  // tail call a stub
1706  __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
1707  ArrayConstructorStub stub(masm->isolate());
1708  __ TailCallStub(&stub);
1709}
1710
1711// static
1712void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
1713  // ----------- S t a t e -------------
1714  //  -- rax                 : number of arguments
1715  //  -- rdi                 : function
1716  //  -- rsi                 : context
1717  //  -- rsp[0]              : return address
1718  //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
1719  //  -- rsp[(argc + 1) * 8] : receiver
1720  // -----------------------------------
1721  Condition const cc = (kind == MathMaxMinKind::kMin) ? below : above;
1722  Heap::RootListIndex const root_index =
1723      (kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
1724                                     : Heap::kMinusInfinityValueRootIndex;
1725  XMMRegister const reg = (kind == MathMaxMinKind::kMin) ? xmm1 : xmm0;
1726
1727  // Load the accumulator with the default return value (either -Infinity or
1728  // +Infinity), with the tagged value in rdx and the double value in xmm0.
1729  __ LoadRoot(rdx, root_index);
1730  __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1731  __ Move(rcx, rax);
1732
1733  Label done_loop, loop;
1734  __ bind(&loop);
1735  {
1736    // Check if all parameters done.
1737    __ testp(rcx, rcx);
1738    __ j(zero, &done_loop);
1739
1740    // Load the next parameter tagged value into rbx.
1741    __ movp(rbx, Operand(rsp, rcx, times_pointer_size, 0));
1742
1743    // Load the double value of the parameter into xmm1, maybe converting the
1744    // parameter to a number first using the ToNumber builtin if necessary.
1745    Label convert, convert_smi, convert_number, done_convert;
1746    __ bind(&convert);
1747    __ JumpIfSmi(rbx, &convert_smi);
1748    __ JumpIfRoot(FieldOperand(rbx, HeapObject::kMapOffset),
1749                  Heap::kHeapNumberMapRootIndex, &convert_number);
1750    {
1751      // Parameter is not a Number, use the ToNumber builtin to convert it.
1752      FrameScope scope(masm, StackFrame::MANUAL);
1753      __ Integer32ToSmi(rax, rax);
1754      __ Integer32ToSmi(rcx, rcx);
1755      __ EnterBuiltinFrame(rsi, rdi, rax);
1756      __ Push(rcx);
1757      __ Push(rdx);
1758      __ movp(rax, rbx);
1759      __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
1760      __ movp(rbx, rax);
1761      __ Pop(rdx);
1762      __ Pop(rcx);
1763      __ LeaveBuiltinFrame(rsi, rdi, rax);
1764      __ SmiToInteger32(rcx, rcx);
1765      __ SmiToInteger32(rax, rax);
1766      {
1767        // Restore the double accumulator value (xmm0).
1768        Label restore_smi, done_restore;
1769        __ JumpIfSmi(rdx, &restore_smi, Label::kNear);
1770        __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1771        __ jmp(&done_restore, Label::kNear);
1772        __ bind(&restore_smi);
1773        __ SmiToDouble(xmm0, rdx);
1774        __ bind(&done_restore);
1775      }
1776    }
1777    __ jmp(&convert);
1778    __ bind(&convert_number);
1779    __ Movsd(xmm1, FieldOperand(rbx, HeapNumber::kValueOffset));
1780    __ jmp(&done_convert, Label::kNear);
1781    __ bind(&convert_smi);
1782    __ SmiToDouble(xmm1, rbx);
1783    __ bind(&done_convert);
1784
1785    // Perform the actual comparison with the accumulator value on the left hand
1786    // side (xmm0) and the next parameter value on the right hand side (xmm1).
1787    Label compare_equal, compare_nan, compare_swap, done_compare;
1788    __ Ucomisd(xmm0, xmm1);
1789    __ j(parity_even, &compare_nan, Label::kNear);
1790    __ j(cc, &done_compare, Label::kNear);
1791    __ j(equal, &compare_equal, Label::kNear);
1792
1793    // Result is on the right hand side.
1794    __ bind(&compare_swap);
1795    __ Movaps(xmm0, xmm1);
1796    __ Move(rdx, rbx);
1797    __ jmp(&done_compare, Label::kNear);
1798
1799    // At least one side is NaN, which means that the result will be NaN too.
1800    __ bind(&compare_nan);
1801    __ LoadRoot(rdx, Heap::kNanValueRootIndex);
1802    __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1803    __ jmp(&done_compare, Label::kNear);
1804
1805    // Left and right hand side are equal, check for -0 vs. +0.
1806    __ bind(&compare_equal);
1807    __ Movmskpd(kScratchRegister, reg);
1808    __ testl(kScratchRegister, Immediate(1));
1809    __ j(not_zero, &compare_swap);
1810
1811    __ bind(&done_compare);
1812    __ decp(rcx);
1813    __ jmp(&loop);
1814  }
1815
1816  __ bind(&done_loop);
1817  __ PopReturnAddressTo(rcx);
1818  __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
1819  __ PushReturnAddressFrom(rcx);
1820  __ movp(rax, rdx);
1821  __ Ret();
1822}
1823
1824// static
1825void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
1826  // ----------- S t a t e -------------
1827  //  -- rax                 : number of arguments
1828  //  -- rdi                 : constructor function
1829  //  -- rsi                 : context
1830  //  -- rsp[0]              : return address
1831  //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
1832  //  -- rsp[(argc + 1) * 8] : receiver
1833  // -----------------------------------
1834
1835  // 1. Load the first argument into rbx.
1836  Label no_arguments;
1837  {
1838    StackArgumentsAccessor args(rsp, rax);
1839    __ testp(rax, rax);
1840    __ j(zero, &no_arguments, Label::kNear);
1841    __ movp(rbx, args.GetArgumentOperand(1));
1842  }
1843
1844  // 2a. Convert the first argument to a number.
1845  {
1846    FrameScope scope(masm, StackFrame::MANUAL);
1847    __ Integer32ToSmi(rax, rax);
1848    __ EnterBuiltinFrame(rsi, rdi, rax);
1849    __ movp(rax, rbx);
1850    __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
1851    __ LeaveBuiltinFrame(rsi, rdi, rbx);  // Argc popped to rbx.
1852    __ SmiToInteger32(rbx, rbx);
1853  }
1854
1855  {
1856    // Drop all arguments including the receiver.
1857    __ PopReturnAddressTo(rcx);
1858    __ leap(rsp, Operand(rsp, rbx, times_pointer_size, kPointerSize));
1859    __ PushReturnAddressFrom(rcx);
1860    __ Ret();
1861  }
1862
1863  // 2b. No arguments, return +0 (already in rax).
1864  __ bind(&no_arguments);
1865  __ ret(1 * kPointerSize);
1866}
1867
1868// static
1869void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
1870  // ----------- S t a t e -------------
1871  //  -- rax                 : number of arguments
1872  //  -- rdi                 : constructor function
1873  //  -- rdx                 : new target
1874  //  -- rsi                 : context
1875  //  -- rsp[0]              : return address
1876  //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
1877  //  -- rsp[(argc + 1) * 8] : receiver
1878  // -----------------------------------
1879
1880  // 1. Make sure we operate in the context of the called function.
1881  __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
1882
1883  // Store argc in r8.
1884  __ Integer32ToSmi(r8, rax);
1885
1886  // 2. Load the first argument into rbx.
1887  {
1888    StackArgumentsAccessor args(rsp, rax);
1889    Label no_arguments, done;
1890    __ testp(rax, rax);
1891    __ j(zero, &no_arguments, Label::kNear);
1892    __ movp(rbx, args.GetArgumentOperand(1));
1893    __ jmp(&done, Label::kNear);
1894    __ bind(&no_arguments);
1895    __ Move(rbx, Smi::kZero);
1896    __ bind(&done);
1897  }
1898
1899  // 3. Make sure rbx is a number.
1900  {
1901    Label done_convert;
1902    __ JumpIfSmi(rbx, &done_convert);
1903    __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
1904                   Heap::kHeapNumberMapRootIndex);
1905    __ j(equal, &done_convert);
1906    {
1907      FrameScope scope(masm, StackFrame::MANUAL);
1908      __ EnterBuiltinFrame(rsi, rdi, r8);
1909      __ Push(rdx);
1910      __ Move(rax, rbx);
1911      __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
1912      __ Move(rbx, rax);
1913      __ Pop(rdx);
1914      __ LeaveBuiltinFrame(rsi, rdi, r8);
1915    }
1916    __ bind(&done_convert);
1917  }
1918
1919  // 4. Check if new target and constructor differ.
1920  Label drop_frame_and_ret, new_object;
1921  __ cmpp(rdx, rdi);
1922  __ j(not_equal, &new_object);
1923
1924  // 5. Allocate a JSValue wrapper for the number.
1925  __ AllocateJSValue(rax, rdi, rbx, rcx, &new_object);
1926  __ jmp(&drop_frame_and_ret, Label::kNear);
1927
1928  // 6. Fallback to the runtime to create new object.
1929  __ bind(&new_object);
1930  {
1931    FrameScope scope(masm, StackFrame::MANUAL);
1932    __ EnterBuiltinFrame(rsi, rdi, r8);
1933    __ Push(rbx);  // the first argument
1934    FastNewObjectStub stub(masm->isolate());
1935    __ CallStub(&stub);
1936    __ Pop(FieldOperand(rax, JSValue::kValueOffset));
1937    __ LeaveBuiltinFrame(rsi, rdi, r8);
1938  }
1939
1940  __ bind(&drop_frame_and_ret);
1941  {
1942    // Drop all arguments including the receiver.
1943    __ PopReturnAddressTo(rcx);
1944    __ SmiToInteger32(r8, r8);
1945    __ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
1946    __ PushReturnAddressFrom(rcx);
1947    __ Ret();
1948  }
1949}
1950
1951// static
1952void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
1953  // ----------- S t a t e -------------
1954  //  -- rax                 : number of arguments
1955  //  -- rdi                 : constructor function
1956  //  -- rsi                 : context
1957  //  -- rsp[0]              : return address
1958  //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
1959  //  -- rsp[(argc + 1) * 8] : receiver
1960  // -----------------------------------
1961
1962  // 1. Load the first argument into rax.
1963  Label no_arguments;
1964  {
1965    StackArgumentsAccessor args(rsp, rax);
1966    __ Integer32ToSmi(r8, rax);  // Store argc in r8.
1967    __ testp(rax, rax);
1968    __ j(zero, &no_arguments, Label::kNear);
1969    __ movp(rax, args.GetArgumentOperand(1));
1970  }
1971
1972  // 2a. At least one argument, return rax if it's a string, otherwise
1973  // dispatch to appropriate conversion.
1974  Label drop_frame_and_ret, to_string, symbol_descriptive_string;
1975  {
1976    __ JumpIfSmi(rax, &to_string, Label::kNear);
1977    STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
1978    __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
1979    __ j(above, &to_string, Label::kNear);
1980    __ j(equal, &symbol_descriptive_string, Label::kNear);
1981    __ jmp(&drop_frame_and_ret, Label::kNear);
1982  }
1983
1984  // 2b. No arguments, return the empty string (and pop the receiver).
1985  __ bind(&no_arguments);
1986  {
1987    __ LoadRoot(rax, Heap::kempty_stringRootIndex);
1988    __ ret(1 * kPointerSize);
1989  }
1990
1991  // 3a. Convert rax to a string.
1992  __ bind(&to_string);
1993  {
1994    FrameScope scope(masm, StackFrame::MANUAL);
1995    __ EnterBuiltinFrame(rsi, rdi, r8);
1996    __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
1997    __ LeaveBuiltinFrame(rsi, rdi, r8);
1998  }
1999  __ jmp(&drop_frame_and_ret, Label::kNear);
2000
2001  // 3b. Convert symbol in rax to a string.
2002  __ bind(&symbol_descriptive_string);
2003  {
2004    __ PopReturnAddressTo(rcx);
2005    __ SmiToInteger32(r8, r8);
2006    __ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
2007    __ Push(rax);
2008    __ PushReturnAddressFrom(rcx);
2009    __ TailCallRuntime(Runtime::kSymbolDescriptiveString);
2010  }
2011
2012  __ bind(&drop_frame_and_ret);
2013  {
2014    // Drop all arguments including the receiver.
2015    __ PopReturnAddressTo(rcx);
2016    __ SmiToInteger32(r8, r8);
2017    __ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
2018    __ PushReturnAddressFrom(rcx);
2019    __ Ret();
2020  }
2021}
2022
2023// static
2024void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
2025  // ----------- S t a t e -------------
2026  //  -- rax                 : number of arguments
2027  //  -- rdi                 : constructor function
2028  //  -- rdx                 : new target
2029  //  -- rsi                 : context
2030  //  -- rsp[0]              : return address
2031  //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
2032  //  -- rsp[(argc + 1) * 8] : receiver
2033  // -----------------------------------
2034
2035  // 1. Make sure we operate in the context of the called function.
2036  __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
2037
2038  // Store argc in r8.
2039  __ Integer32ToSmi(r8, rax);
2040
2041  // 2. Load the first argument into rbx.
2042  {
2043    StackArgumentsAccessor args(rsp, rax);
2044    Label no_arguments, done;
2045    __ testp(rax, rax);
2046    __ j(zero, &no_arguments, Label::kNear);
2047    __ movp(rbx, args.GetArgumentOperand(1));
2048    __ jmp(&done, Label::kNear);
2049    __ bind(&no_arguments);
2050    __ LoadRoot(rbx, Heap::kempty_stringRootIndex);
2051    __ bind(&done);
2052  }
2053
2054  // 3. Make sure rbx is a string.
2055  {
2056    Label convert, done_convert;
2057    __ JumpIfSmi(rbx, &convert, Label::kNear);
2058    __ CmpObjectType(rbx, FIRST_NONSTRING_TYPE, rcx);
2059    __ j(below, &done_convert);
2060    __ bind(&convert);
2061    {
2062      FrameScope scope(masm, StackFrame::MANUAL);
2063      __ EnterBuiltinFrame(rsi, rdi, r8);
2064      __ Push(rdx);
2065      __ Move(rax, rbx);
2066      __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
2067      __ Move(rbx, rax);
2068      __ Pop(rdx);
2069      __ LeaveBuiltinFrame(rsi, rdi, r8);
2070    }
2071    __ bind(&done_convert);
2072  }
2073
2074  // 4. Check if new target and constructor differ.
2075  Label drop_frame_and_ret, new_object;
2076  __ cmpp(rdx, rdi);
2077  __ j(not_equal, &new_object);
2078
2079  // 5. Allocate a JSValue wrapper for the string.
2080  __ AllocateJSValue(rax, rdi, rbx, rcx, &new_object);
2081  __ jmp(&drop_frame_and_ret, Label::kNear);
2082
2083  // 6. Fallback to the runtime to create new object.
2084  __ bind(&new_object);
2085  {
2086    FrameScope scope(masm, StackFrame::MANUAL);
2087    __ EnterBuiltinFrame(rsi, rdi, r8);
2088    __ Push(rbx);  // the first argument
2089    FastNewObjectStub stub(masm->isolate());
2090    __ CallStub(&stub);
2091    __ Pop(FieldOperand(rax, JSValue::kValueOffset));
2092    __ LeaveBuiltinFrame(rsi, rdi, r8);
2093  }
2094
2095  __ bind(&drop_frame_and_ret);
2096  {
2097    // Drop all arguments including the receiver.
2098    __ PopReturnAddressTo(rcx);
2099    __ SmiToInteger32(r8, r8);
2100    __ leap(rsp, Operand(rsp, r8, times_pointer_size, kPointerSize));
2101    __ PushReturnAddressFrom(rcx);
2102    __ Ret();
2103  }
2104}
2105
2106static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
2107  __ pushq(rbp);
2108  __ movp(rbp, rsp);
2109
2110  // Store the arguments adaptor context sentinel.
2111  __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2112
2113  // Push the function on the stack.
2114  __ Push(rdi);
2115
2116  // Preserve the number of arguments on the stack. Must preserve rax,
2117  // rbx and rcx because these registers are used when copying the
2118  // arguments and the receiver.
2119  __ Integer32ToSmi(r8, rax);
2120  __ Push(r8);
2121}
2122
2123static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
2124  // Retrieve the number of arguments from the stack. Number is a Smi.
2125  __ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
2126
2127  // Leave the frame.
2128  __ movp(rsp, rbp);
2129  __ popq(rbp);
2130
2131  // Remove caller arguments from the stack.
2132  __ PopReturnAddressTo(rcx);
2133  SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
2134  __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
2135  __ PushReturnAddressFrom(rcx);
2136}
2137
2138// static
2139void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
2140  // ----------- S t a t e -------------
2141  //  -- rdx    : requested object size (untagged)
2142  //  -- rsp[0] : return address
2143  // -----------------------------------
2144  __ Integer32ToSmi(rdx, rdx);
2145  __ PopReturnAddressTo(rcx);
2146  __ Push(rdx);
2147  __ PushReturnAddressFrom(rcx);
2148  __ Move(rsi, Smi::kZero);
2149  __ TailCallRuntime(Runtime::kAllocateInNewSpace);
2150}
2151
2152// static
2153void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
2154  // ----------- S t a t e -------------
2155  //  -- rdx    : requested object size (untagged)
2156  //  -- rsp[0] : return address
2157  // -----------------------------------
2158  __ Integer32ToSmi(rdx, rdx);
2159  __ PopReturnAddressTo(rcx);
2160  __ Push(rdx);
2161  __ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
2162  __ PushReturnAddressFrom(rcx);
2163  __ Move(rsi, Smi::kZero);
2164  __ TailCallRuntime(Runtime::kAllocateInTargetSpace);
2165}
2166
2167// static
2168void Builtins::Generate_Abort(MacroAssembler* masm) {
2169  // ----------- S t a t e -------------
2170  //  -- rdx    : message_id as Smi
2171  //  -- rsp[0] : return address
2172  // -----------------------------------
2173  __ PopReturnAddressTo(rcx);
2174  __ Push(rdx);
2175  __ PushReturnAddressFrom(rcx);
2176  __ Move(rsi, Smi::kZero);
2177  __ TailCallRuntime(Runtime::kAbort);
2178}
2179
2180void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
2181  // ----------- S t a t e -------------
2182  //  -- rax : actual number of arguments
2183  //  -- rbx : expected number of arguments
2184  //  -- rdx : new target (passed through to callee)
2185  //  -- rdi : function (passed through to callee)
2186  // -----------------------------------
2187
2188  Label invoke, dont_adapt_arguments, stack_overflow;
2189  Counters* counters = masm->isolate()->counters();
2190  __ IncrementCounter(counters->arguments_adaptors(), 1);
2191
2192  Label enough, too_few;
2193  __ cmpp(rax, rbx);
2194  __ j(less, &too_few);
2195  __ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
2196  __ j(equal, &dont_adapt_arguments);
2197
2198  {  // Enough parameters: Actual >= expected.
2199    __ bind(&enough);
2200    EnterArgumentsAdaptorFrame(masm);
2201    // The registers rcx and r8 will be modified. The register rbx is only read.
2202    Generate_StackOverflowCheck(masm, rbx, rcx, r8, &stack_overflow);
2203
2204    // Copy receiver and all expected arguments.
2205    const int offset = StandardFrameConstants::kCallerSPOffset;
2206    __ leap(rax, Operand(rbp, rax, times_pointer_size, offset));
2207    __ Set(r8, -1);  // account for receiver
2208
2209    Label copy;
2210    __ bind(&copy);
2211    __ incp(r8);
2212    __ Push(Operand(rax, 0));
2213    __ subp(rax, Immediate(kPointerSize));
2214    __ cmpp(r8, rbx);
2215    __ j(less, &copy);
2216    __ jmp(&invoke);
2217  }
2218
2219  {  // Too few parameters: Actual < expected.
2220    __ bind(&too_few);
2221
2222    EnterArgumentsAdaptorFrame(masm);
2223    // The registers rcx and r8 will be modified. The register rbx is only read.
2224    Generate_StackOverflowCheck(masm, rbx, rcx, r8, &stack_overflow);
2225
2226    // Copy receiver and all actual arguments.
2227    const int offset = StandardFrameConstants::kCallerSPOffset;
2228    __ leap(rdi, Operand(rbp, rax, times_pointer_size, offset));
2229    __ Set(r8, -1);  // account for receiver
2230
2231    Label copy;
2232    __ bind(&copy);
2233    __ incp(r8);
2234    __ Push(Operand(rdi, 0));
2235    __ subp(rdi, Immediate(kPointerSize));
2236    __ cmpp(r8, rax);
2237    __ j(less, &copy);
2238
2239    // Fill remaining expected arguments with undefined values.
2240    Label fill;
2241    __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
2242    __ bind(&fill);
2243    __ incp(r8);
2244    __ Push(kScratchRegister);
2245    __ cmpp(r8, rbx);
2246    __ j(less, &fill);
2247
2248    // Restore function pointer.
2249    __ movp(rdi, Operand(rbp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
2250  }
2251
2252  // Call the entry point.
2253  __ bind(&invoke);
2254  __ movp(rax, rbx);
2255  // rax : expected number of arguments
2256  // rdx : new target (passed through to callee)
2257  // rdi : function (passed through to callee)
2258  __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
2259  __ call(rcx);
2260
2261  // Store offset of return address for deoptimizer.
2262  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
2263
2264  // Leave frame and return.
2265  LeaveArgumentsAdaptorFrame(masm);
2266  __ ret(0);
2267
2268  // -------------------------------------------
2269  // Dont adapt arguments.
2270  // -------------------------------------------
2271  __ bind(&dont_adapt_arguments);
2272  __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
2273  __ jmp(rcx);
2274
2275  __ bind(&stack_overflow);
2276  {
2277    FrameScope frame(masm, StackFrame::MANUAL);
2278    __ CallRuntime(Runtime::kThrowStackOverflow);
2279    __ int3();
2280  }
2281}
2282
2283// static
2284void Builtins::Generate_Apply(MacroAssembler* masm) {
2285  // ----------- S t a t e -------------
2286  //  -- rax    : argumentsList
2287  //  -- rdi    : target
2288  //  -- rdx    : new.target (checked to be constructor or undefined)
2289  //  -- rsp[0] : return address.
2290  //  -- rsp[8] : thisArgument
2291  // -----------------------------------
2292
2293  // Create the list of arguments from the array-like argumentsList.
2294  {
2295    Label create_arguments, create_array, create_runtime, done_create;
2296    __ JumpIfSmi(rax, &create_runtime);
2297
2298    // Load the map of argumentsList into rcx.
2299    __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
2300
2301    // Load native context into rbx.
2302    __ movp(rbx, NativeContextOperand());
2303
2304    // Check if argumentsList is an (unmodified) arguments object.
2305    __ cmpp(rcx, ContextOperand(rbx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
2306    __ j(equal, &create_arguments);
2307    __ cmpp(rcx, ContextOperand(rbx, Context::STRICT_ARGUMENTS_MAP_INDEX));
2308    __ j(equal, &create_arguments);
2309
2310    // Check if argumentsList is a fast JSArray.
2311    __ CmpInstanceType(rcx, JS_ARRAY_TYPE);
2312    __ j(equal, &create_array);
2313
2314    // Ask the runtime to create the list (actually a FixedArray).
2315    __ bind(&create_runtime);
2316    {
2317      FrameScope scope(masm, StackFrame::INTERNAL);
2318      __ Push(rdi);
2319      __ Push(rdx);
2320      __ Push(rax);
2321      __ CallRuntime(Runtime::kCreateListFromArrayLike);
2322      __ Pop(rdx);
2323      __ Pop(rdi);
2324      __ SmiToInteger32(rbx, FieldOperand(rax, FixedArray::kLengthOffset));
2325    }
2326    __ jmp(&done_create);
2327
2328    // Try to create the list from an arguments object.
2329    __ bind(&create_arguments);
2330    __ movp(rbx, FieldOperand(rax, JSArgumentsObject::kLengthOffset));
2331    __ movp(rcx, FieldOperand(rax, JSObject::kElementsOffset));
2332    __ cmpp(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
2333    __ j(not_equal, &create_runtime);
2334    __ SmiToInteger32(rbx, rbx);
2335    __ movp(rax, rcx);
2336    __ jmp(&done_create);
2337
2338    // Try to create the list from a JSArray object.
2339    __ bind(&create_array);
2340    __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
2341    __ DecodeField<Map::ElementsKindBits>(rcx);
2342    STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2343    STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2344    STATIC_ASSERT(FAST_ELEMENTS == 2);
2345    __ cmpl(rcx, Immediate(FAST_ELEMENTS));
2346    __ j(above, &create_runtime);
2347    __ cmpl(rcx, Immediate(FAST_HOLEY_SMI_ELEMENTS));
2348    __ j(equal, &create_runtime);
2349    __ SmiToInteger32(rbx, FieldOperand(rax, JSArray::kLengthOffset));
2350    __ movp(rax, FieldOperand(rax, JSArray::kElementsOffset));
2351
2352    __ bind(&done_create);
2353  }
2354
2355  // Check for stack overflow.
2356  {
2357    // Check the stack for overflow. We are not trying to catch interruptions
2358    // (i.e. debug break and preemption) here, so check the "real stack limit".
2359    Label done;
2360    __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
2361    __ movp(rcx, rsp);
2362    // Make rcx the space we have left. The stack might already be overflowed
2363    // here which will cause rcx to become negative.
2364    __ subp(rcx, kScratchRegister);
2365    __ sarp(rcx, Immediate(kPointerSizeLog2));
2366    // Check if the arguments will overflow the stack.
2367    __ cmpp(rcx, rbx);
2368    __ j(greater, &done, Label::kNear);  // Signed comparison.
2369    __ TailCallRuntime(Runtime::kThrowStackOverflow);
2370    __ bind(&done);
2371  }
2372
2373  // ----------- S t a t e -------------
2374  //  -- rdi    : target
2375  //  -- rax    : args (a FixedArray built from argumentsList)
2376  //  -- rbx    : len (number of elements to push from args)
2377  //  -- rdx    : new.target (checked to be constructor or undefined)
2378  //  -- rsp[0] : return address.
2379  //  -- rsp[8] : thisArgument
2380  // -----------------------------------
2381
2382  // Push arguments onto the stack (thisArgument is already on the stack).
2383  {
2384    __ PopReturnAddressTo(r8);
2385    __ Set(rcx, 0);
2386    Label done, loop;
2387    __ bind(&loop);
2388    __ cmpl(rcx, rbx);
2389    __ j(equal, &done, Label::kNear);
2390    __ Push(
2391        FieldOperand(rax, rcx, times_pointer_size, FixedArray::kHeaderSize));
2392    __ incl(rcx);
2393    __ jmp(&loop);
2394    __ bind(&done);
2395    __ PushReturnAddressFrom(r8);
2396    __ Move(rax, rcx);
2397  }
2398
2399  // Dispatch to Call or Construct depending on whether new.target is undefined.
2400  {
2401    __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
2402    __ j(equal, masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2403    __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2404  }
2405}
2406
2407namespace {
2408
2409// Drops top JavaScript frame and an arguments adaptor frame below it (if
2410// present) preserving all the arguments prepared for current call.
2411// Does nothing if debugger is currently active.
2412// ES6 14.6.3. PrepareForTailCall
2413//
2414// Stack structure for the function g() tail calling f():
2415//
2416// ------- Caller frame: -------
2417// |  ...
2418// |  g()'s arg M
2419// |  ...
2420// |  g()'s arg 1
2421// |  g()'s receiver arg
2422// |  g()'s caller pc
2423// ------- g()'s frame: -------
2424// |  g()'s caller fp      <- fp
2425// |  g()'s context
2426// |  function pointer: g
2427// |  -------------------------
2428// |  ...
2429// |  ...
2430// |  f()'s arg N
2431// |  ...
2432// |  f()'s arg 1
2433// |  f()'s receiver arg
2434// |  f()'s caller pc      <- sp
2435// ----------------------
2436//
2437void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
2438                        Register scratch1, Register scratch2,
2439                        Register scratch3) {
2440  DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
2441  Comment cmnt(masm, "[ PrepareForTailCall");
2442
2443  // Prepare for tail call only if ES2015 tail call elimination is active.
2444  Label done;
2445  ExternalReference is_tail_call_elimination_enabled =
2446      ExternalReference::is_tail_call_elimination_enabled_address(
2447          masm->isolate());
2448  __ Move(kScratchRegister, is_tail_call_elimination_enabled);
2449  __ cmpb(Operand(kScratchRegister, 0), Immediate(0));
2450  __ j(equal, &done);
2451
2452  // Drop possible interpreter handler/stub frame.
2453  {
2454    Label no_interpreter_frame;
2455    __ Cmp(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset),
2456           Smi::FromInt(StackFrame::STUB));
2457    __ j(not_equal, &no_interpreter_frame, Label::kNear);
2458    __ movp(rbp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2459    __ bind(&no_interpreter_frame);
2460  }
2461
2462  // Check if next frame is an arguments adaptor frame.
2463  Register caller_args_count_reg = scratch1;
2464  Label no_arguments_adaptor, formal_parameter_count_loaded;
2465  __ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2466  __ Cmp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset),
2467         Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2468  __ j(not_equal, &no_arguments_adaptor, Label::kNear);
2469
2470  // Drop current frame and load arguments count from arguments adaptor frame.
2471  __ movp(rbp, scratch2);
2472  __ SmiToInteger32(
2473      caller_args_count_reg,
2474      Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
2475  __ jmp(&formal_parameter_count_loaded, Label::kNear);
2476
2477  __ bind(&no_arguments_adaptor);
2478  // Load caller's formal parameter count
2479  __ movp(scratch1, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
2480  __ movp(scratch1,
2481          FieldOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2482  __ LoadSharedFunctionInfoSpecialField(
2483      caller_args_count_reg, scratch1,
2484      SharedFunctionInfo::kFormalParameterCountOffset);
2485
2486  __ bind(&formal_parameter_count_loaded);
2487
2488  ParameterCount callee_args_count(args_reg);
2489  __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
2490                        scratch3, ReturnAddressState::kOnStack);
2491  __ bind(&done);
2492}
2493}  // namespace
2494
2495// static
2496void Builtins::Generate_CallFunction(MacroAssembler* masm,
2497                                     ConvertReceiverMode mode,
2498                                     TailCallMode tail_call_mode) {
2499  // ----------- S t a t e -------------
2500  //  -- rax : the number of arguments (not including the receiver)
2501  //  -- rdi : the function to call (checked to be a JSFunction)
2502  // -----------------------------------
2503  StackArgumentsAccessor args(rsp, rax);
2504  __ AssertFunction(rdi);
2505
2506  // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
2507  // Check that the function is not a "classConstructor".
2508  Label class_constructor;
2509  __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2510  __ testb(FieldOperand(rdx, SharedFunctionInfo::kFunctionKindByteOffset),
2511           Immediate(SharedFunctionInfo::kClassConstructorBitsWithinByte));
2512  __ j(not_zero, &class_constructor);
2513
2514  // ----------- S t a t e -------------
2515  //  -- rax : the number of arguments (not including the receiver)
2516  //  -- rdx : the shared function info.
2517  //  -- rdi : the function to call (checked to be a JSFunction)
2518  // -----------------------------------
2519
2520  // Enter the context of the function; ToObject has to run in the function
2521  // context, and we also need to take the global proxy from the function
2522  // context in case of conversion.
2523  STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
2524                SharedFunctionInfo::kStrictModeByteOffset);
2525  __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
2526  // We need to convert the receiver for non-native sloppy mode functions.
2527  Label done_convert;
2528  __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
2529           Immediate((1 << SharedFunctionInfo::kNativeBitWithinByte) |
2530                     (1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
2531  __ j(not_zero, &done_convert);
2532  {
2533    // ----------- S t a t e -------------
2534    //  -- rax : the number of arguments (not including the receiver)
2535    //  -- rdx : the shared function info.
2536    //  -- rdi : the function to call (checked to be a JSFunction)
2537    //  -- rsi : the function context.
2538    // -----------------------------------
2539
2540    if (mode == ConvertReceiverMode::kNullOrUndefined) {
2541      // Patch receiver to global proxy.
2542      __ LoadGlobalProxy(rcx);
2543    } else {
2544      Label convert_to_object, convert_receiver;
2545      __ movp(rcx, args.GetReceiverOperand());
2546      __ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
2547      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2548      __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx);
2549      __ j(above_equal, &done_convert);
2550      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
2551        Label convert_global_proxy;
2552        __ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex,
2553                      &convert_global_proxy, Label::kNear);
2554        __ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object,
2555                         Label::kNear);
2556        __ bind(&convert_global_proxy);
2557        {
2558          // Patch receiver to global proxy.
2559          __ LoadGlobalProxy(rcx);
2560        }
2561        __ jmp(&convert_receiver);
2562      }
2563      __ bind(&convert_to_object);
2564      {
2565        // Convert receiver using ToObject.
2566        // TODO(bmeurer): Inline the allocation here to avoid building the frame
2567        // in the fast case? (fall back to AllocateInNewSpace?)
2568        FrameScope scope(masm, StackFrame::INTERNAL);
2569        __ Integer32ToSmi(rax, rax);
2570        __ Push(rax);
2571        __ Push(rdi);
2572        __ movp(rax, rcx);
2573        __ Push(rsi);
2574        __ Call(masm->isolate()->builtins()->ToObject(),
2575                RelocInfo::CODE_TARGET);
2576        __ Pop(rsi);
2577        __ movp(rcx, rax);
2578        __ Pop(rdi);
2579        __ Pop(rax);
2580        __ SmiToInteger32(rax, rax);
2581      }
2582      __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2583      __ bind(&convert_receiver);
2584    }
2585    __ movp(args.GetReceiverOperand(), rcx);
2586  }
2587  __ bind(&done_convert);
2588
2589  // ----------- S t a t e -------------
2590  //  -- rax : the number of arguments (not including the receiver)
2591  //  -- rdx : the shared function info.
2592  //  -- rdi : the function to call (checked to be a JSFunction)
2593  //  -- rsi : the function context.
2594  // -----------------------------------
2595
2596  if (tail_call_mode == TailCallMode::kAllow) {
2597    PrepareForTailCall(masm, rax, rbx, rcx, r8);
2598  }
2599
2600  __ LoadSharedFunctionInfoSpecialField(
2601      rbx, rdx, SharedFunctionInfo::kFormalParameterCountOffset);
2602  ParameterCount actual(rax);
2603  ParameterCount expected(rbx);
2604
2605  __ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION,
2606                        CheckDebugStepCallWrapper());
2607
2608  // The function is a "classConstructor", need to raise an exception.
2609  __ bind(&class_constructor);
2610  {
2611    FrameScope frame(masm, StackFrame::INTERNAL);
2612    __ Push(rdi);
2613    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2614  }
2615}
2616
2617namespace {
2618
2619void Generate_PushBoundArguments(MacroAssembler* masm) {
2620  // ----------- S t a t e -------------
2621  //  -- rax : the number of arguments (not including the receiver)
2622  //  -- rdx : new.target (only in case of [[Construct]])
2623  //  -- rdi : target (checked to be a JSBoundFunction)
2624  // -----------------------------------
2625
2626  // Load [[BoundArguments]] into rcx and length of that into rbx.
2627  Label no_bound_arguments;
2628  __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
2629  __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
2630  __ testl(rbx, rbx);
2631  __ j(zero, &no_bound_arguments);
2632  {
2633    // ----------- S t a t e -------------
2634    //  -- rax : the number of arguments (not including the receiver)
2635    //  -- rdx : new.target (only in case of [[Construct]])
2636    //  -- rdi : target (checked to be a JSBoundFunction)
2637    //  -- rcx : the [[BoundArguments]] (implemented as FixedArray)
2638    //  -- rbx : the number of [[BoundArguments]] (checked to be non-zero)
2639    // -----------------------------------
2640
2641    // Reserve stack space for the [[BoundArguments]].
2642    {
2643      Label done;
2644      __ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0));
2645      __ subp(rsp, kScratchRegister);
2646      // Check the stack for overflow. We are not trying to catch interruptions
2647      // (i.e. debug break and preemption) here, so check the "real stack
2648      // limit".
2649      __ CompareRoot(rsp, Heap::kRealStackLimitRootIndex);
2650      __ j(greater, &done, Label::kNear);  // Signed comparison.
2651      // Restore the stack pointer.
2652      __ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0));
2653      {
2654        FrameScope scope(masm, StackFrame::MANUAL);
2655        __ EnterFrame(StackFrame::INTERNAL);
2656        __ CallRuntime(Runtime::kThrowStackOverflow);
2657      }
2658      __ bind(&done);
2659    }
2660
2661    // Adjust effective number of arguments to include return address.
2662    __ incl(rax);
2663
2664    // Relocate arguments and return address down the stack.
2665    {
2666      Label loop;
2667      __ Set(rcx, 0);
2668      __ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0));
2669      __ bind(&loop);
2670      __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
2671      __ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister);
2672      __ incl(rcx);
2673      __ cmpl(rcx, rax);
2674      __ j(less, &loop);
2675    }
2676
2677    // Copy [[BoundArguments]] to the stack (below the arguments).
2678    {
2679      Label loop;
2680      __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
2681      __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
2682      __ bind(&loop);
2683      __ decl(rbx);
2684      __ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size,
2685                                             FixedArray::kHeaderSize));
2686      __ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister);
2687      __ leal(rax, Operand(rax, 1));
2688      __ j(greater, &loop);
2689    }
2690
2691    // Adjust effective number of arguments (rax contains the number of
2692    // arguments from the call plus return address plus the number of
2693    // [[BoundArguments]]), so we need to subtract one for the return address.
2694    __ decl(rax);
2695  }
2696  __ bind(&no_bound_arguments);
2697}
2698
2699}  // namespace
2700
2701// static
2702void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
2703                                              TailCallMode tail_call_mode) {
2704  // ----------- S t a t e -------------
2705  //  -- rax : the number of arguments (not including the receiver)
2706  //  -- rdi : the function to call (checked to be a JSBoundFunction)
2707  // -----------------------------------
2708  __ AssertBoundFunction(rdi);
2709
2710  if (tail_call_mode == TailCallMode::kAllow) {
2711    PrepareForTailCall(masm, rax, rbx, rcx, r8);
2712  }
2713
2714  // Patch the receiver to [[BoundThis]].
2715  StackArgumentsAccessor args(rsp, rax);
2716  __ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset));
2717  __ movp(args.GetReceiverOperand(), rbx);
2718
2719  // Push the [[BoundArguments]] onto the stack.
2720  Generate_PushBoundArguments(masm);
2721
2722  // Call the [[BoundTargetFunction]] via the Call builtin.
2723  __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
2724  __ Load(rcx,
2725          ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate()));
2726  __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
2727  __ jmp(rcx);
2728}
2729
2730// static
2731void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
2732                             TailCallMode tail_call_mode) {
2733  // ----------- S t a t e -------------
2734  //  -- rax : the number of arguments (not including the receiver)
2735  //  -- rdi : the target to call (can be any Object)
2736  // -----------------------------------
2737  StackArgumentsAccessor args(rsp, rax);
2738
2739  Label non_callable, non_function, non_smi;
2740  __ JumpIfSmi(rdi, &non_callable);
2741  __ bind(&non_smi);
2742  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2743  __ j(equal, masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
2744       RelocInfo::CODE_TARGET);
2745  __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
2746  __ j(equal, masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
2747       RelocInfo::CODE_TARGET);
2748
2749  // Check if target has a [[Call]] internal method.
2750  __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
2751           Immediate(1 << Map::kIsCallable));
2752  __ j(zero, &non_callable);
2753
2754  __ CmpInstanceType(rcx, JS_PROXY_TYPE);
2755  __ j(not_equal, &non_function);
2756
2757  // 0. Prepare for tail call if necessary.
2758  if (tail_call_mode == TailCallMode::kAllow) {
2759    PrepareForTailCall(masm, rax, rbx, rcx, r8);
2760  }
2761
2762  // 1. Runtime fallback for Proxy [[Call]].
2763  __ PopReturnAddressTo(kScratchRegister);
2764  __ Push(rdi);
2765  __ PushReturnAddressFrom(kScratchRegister);
2766  // Increase the arguments size to include the pushed function and the
2767  // existing receiver on the stack.
2768  __ addp(rax, Immediate(2));
2769  // Tail-call to the runtime.
2770  __ JumpToExternalReference(
2771      ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
2772
2773  // 2. Call to something else, which might have a [[Call]] internal method (if
2774  // not we raise an exception).
2775  __ bind(&non_function);
2776  // Overwrite the original receiver with the (original) target.
2777  __ movp(args.GetReceiverOperand(), rdi);
2778  // Let the "call_as_function_delegate" take care of the rest.
2779  __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi);
2780  __ Jump(masm->isolate()->builtins()->CallFunction(
2781              ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
2782          RelocInfo::CODE_TARGET);
2783
2784  // 3. Call to something that is not callable.
2785  __ bind(&non_callable);
2786  {
2787    FrameScope scope(masm, StackFrame::INTERNAL);
2788    __ Push(rdi);
2789    __ CallRuntime(Runtime::kThrowCalledNonCallable);
2790  }
2791}
2792
2793// static
2794void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2795  // ----------- S t a t e -------------
2796  //  -- rax : the number of arguments (not including the receiver)
2797  //  -- rdx : the new target (checked to be a constructor)
2798  //  -- rdi : the constructor to call (checked to be a JSFunction)
2799  // -----------------------------------
2800  __ AssertFunction(rdi);
2801
2802  // Calling convention for function specific ConstructStubs require
2803  // rbx to contain either an AllocationSite or undefined.
2804  __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
2805
2806  // Tail call to the function-specific construct stub (still in the caller
2807  // context at this point).
2808  __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2809  __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
2810  __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
2811  __ jmp(rcx);
2812}
2813
2814// static
2815void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2816  // ----------- S t a t e -------------
2817  //  -- rax : the number of arguments (not including the receiver)
2818  //  -- rdx : the new target (checked to be a constructor)
2819  //  -- rdi : the constructor to call (checked to be a JSBoundFunction)
2820  // -----------------------------------
2821  __ AssertBoundFunction(rdi);
2822
2823  // Push the [[BoundArguments]] onto the stack.
2824  Generate_PushBoundArguments(masm);
2825
2826  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2827  {
2828    Label done;
2829    __ cmpp(rdi, rdx);
2830    __ j(not_equal, &done, Label::kNear);
2831    __ movp(rdx,
2832            FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
2833    __ bind(&done);
2834  }
2835
2836  // Construct the [[BoundTargetFunction]] via the Construct builtin.
2837  __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
2838  __ Load(rcx, ExternalReference(Builtins::kConstruct, masm->isolate()));
2839  __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
2840  __ jmp(rcx);
2841}
2842
2843// static
2844void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
2845  // ----------- S t a t e -------------
2846  //  -- rax : the number of arguments (not including the receiver)
2847  //  -- rdi : the constructor to call (checked to be a JSProxy)
2848  //  -- rdx : the new target (either the same as the constructor or
2849  //           the JSFunction on which new was invoked initially)
2850  // -----------------------------------
2851
2852  // Call into the Runtime for Proxy [[Construct]].
2853  __ PopReturnAddressTo(kScratchRegister);
2854  __ Push(rdi);
2855  __ Push(rdx);
2856  __ PushReturnAddressFrom(kScratchRegister);
2857  // Include the pushed new_target, constructor and the receiver.
2858  __ addp(rax, Immediate(3));
2859  __ JumpToExternalReference(
2860      ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
2861}
2862
2863// static
2864void Builtins::Generate_Construct(MacroAssembler* masm) {
2865  // ----------- S t a t e -------------
2866  //  -- rax : the number of arguments (not including the receiver)
2867  //  -- rdx : the new target (either the same as the constructor or
2868  //           the JSFunction on which new was invoked initially)
2869  //  -- rdi : the constructor to call (can be any Object)
2870  // -----------------------------------
2871  StackArgumentsAccessor args(rsp, rax);
2872
2873  // Check if target is a Smi.
2874  Label non_constructor;
2875  __ JumpIfSmi(rdi, &non_constructor, Label::kNear);
2876
2877  // Dispatch based on instance type.
2878  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2879  __ j(equal, masm->isolate()->builtins()->ConstructFunction(),
2880       RelocInfo::CODE_TARGET);
2881
2882  // Check if target has a [[Construct]] internal method.
2883  __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
2884           Immediate(1 << Map::kIsConstructor));
2885  __ j(zero, &non_constructor, Label::kNear);
2886
2887  // Only dispatch to bound functions after checking whether they are
2888  // constructors.
2889  __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
2890  __ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(),
2891       RelocInfo::CODE_TARGET);
2892
2893  // Only dispatch to proxies after checking whether they are constructors.
2894  __ CmpInstanceType(rcx, JS_PROXY_TYPE);
2895  __ j(equal, masm->isolate()->builtins()->ConstructProxy(),
2896       RelocInfo::CODE_TARGET);
2897
2898  // Called Construct on an exotic Object with a [[Construct]] internal method.
2899  {
2900    // Overwrite the original receiver with the (original) target.
2901    __ movp(args.GetReceiverOperand(), rdi);
2902    // Let the "call_as_constructor_delegate" take care of the rest.
2903    __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi);
2904    __ Jump(masm->isolate()->builtins()->CallFunction(),
2905            RelocInfo::CODE_TARGET);
2906  }
2907
2908  // Called Construct on an Object that doesn't have a [[Construct]] internal
2909  // method.
2910  __ bind(&non_constructor);
2911  __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
2912          RelocInfo::CODE_TARGET);
2913}
2914
2915static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
2916                                    Register function_template_info,
2917                                    Register scratch0, Register scratch1,
2918                                    Register scratch2,
2919                                    Label* receiver_check_failed) {
2920  Register signature = scratch0;
2921  Register map = scratch1;
2922  Register constructor = scratch2;
2923
2924  // If there is no signature, return the holder.
2925  __ movp(signature, FieldOperand(function_template_info,
2926                                  FunctionTemplateInfo::kSignatureOffset));
2927  __ CompareRoot(signature, Heap::kUndefinedValueRootIndex);
2928  Label receiver_check_passed;
2929  __ j(equal, &receiver_check_passed, Label::kNear);
2930
2931  // Walk the prototype chain.
2932  __ movp(map, FieldOperand(receiver, HeapObject::kMapOffset));
2933  Label prototype_loop_start;
2934  __ bind(&prototype_loop_start);
2935
2936  // Get the constructor, if any.
2937  __ GetMapConstructor(constructor, map, kScratchRegister);
2938  __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
2939  Label next_prototype;
2940  __ j(not_equal, &next_prototype, Label::kNear);
2941
2942  // Get the constructor's signature.
2943  Register type = constructor;
2944  __ movp(type,
2945          FieldOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
2946  __ movp(type, FieldOperand(type, SharedFunctionInfo::kFunctionDataOffset));
2947
2948  // Loop through the chain of inheriting function templates.
2949  Label function_template_loop;
2950  __ bind(&function_template_loop);
2951
2952  // If the signatures match, we have a compatible receiver.
2953  __ cmpp(signature, type);
2954  __ j(equal, &receiver_check_passed, Label::kNear);
2955
2956  // If the current type is not a FunctionTemplateInfo, load the next prototype
2957  // in the chain.
2958  __ JumpIfSmi(type, &next_prototype, Label::kNear);
2959  __ CmpObjectType(type, FUNCTION_TEMPLATE_INFO_TYPE, kScratchRegister);
2960  __ j(not_equal, &next_prototype, Label::kNear);
2961
2962  // Otherwise load the parent function template and iterate.
2963  __ movp(type,
2964          FieldOperand(type, FunctionTemplateInfo::kParentTemplateOffset));
2965  __ jmp(&function_template_loop, Label::kNear);
2966
2967  // Load the next prototype.
2968  __ bind(&next_prototype);
2969  __ testq(FieldOperand(map, Map::kBitField3Offset),
2970           Immediate(Map::HasHiddenPrototype::kMask));
2971  __ j(zero, receiver_check_failed);
2972  __ movp(receiver, FieldOperand(map, Map::kPrototypeOffset));
2973  __ movp(map, FieldOperand(receiver, HeapObject::kMapOffset));
2974  // Iterate.
2975  __ jmp(&prototype_loop_start, Label::kNear);
2976
2977  __ bind(&receiver_check_passed);
2978}
2979
2980void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
2981  // ----------- S t a t e -------------
2982  //  -- rax                : number of arguments (not including the receiver)
2983  //  -- rdi                : callee
2984  //  -- rsi                : context
2985  //  -- rsp[0]             : return address
2986  //  -- rsp[8]             : last argument
2987  //  -- ...
2988  //  -- rsp[rax * 8]       : first argument
2989  //  -- rsp[(rax + 1) * 8] : receiver
2990  // -----------------------------------
2991
2992  StackArgumentsAccessor args(rsp, rax);
2993
2994  // Load the FunctionTemplateInfo.
2995  __ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2996  __ movp(rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset));
2997
2998  // Do the compatible receiver check.
2999  Label receiver_check_failed;
3000  __ movp(rcx, args.GetReceiverOperand());
3001  CompatibleReceiverCheck(masm, rcx, rbx, rdx, r8, r9, &receiver_check_failed);
3002
3003  // Get the callback offset from the FunctionTemplateInfo, and jump to the
3004  // beginning of the code.
3005  __ movp(rdx, FieldOperand(rbx, FunctionTemplateInfo::kCallCodeOffset));
3006  __ movp(rdx, FieldOperand(rdx, CallHandlerInfo::kFastHandlerOffset));
3007  __ addp(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
3008  __ jmp(rdx);
3009
3010  // Compatible receiver check failed: pop return address, arguments and
3011  // receiver and throw an Illegal Invocation exception.
3012  __ bind(&receiver_check_failed);
3013  __ PopReturnAddressTo(rbx);
3014  __ leap(rax, Operand(rax, times_pointer_size, 1 * kPointerSize));
3015  __ addp(rsp, rax);
3016  __ PushReturnAddressFrom(rbx);
3017  {
3018    FrameScope scope(masm, StackFrame::INTERNAL);
3019    __ TailCallRuntime(Runtime::kThrowIllegalInvocation);
3020  }
3021}
3022
3023static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
3024                                              bool has_handler_frame) {
3025  // Lookup the function in the JavaScript frame.
3026  if (has_handler_frame) {
3027    __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3028    __ movp(rax, Operand(rax, JavaScriptFrameConstants::kFunctionOffset));
3029  } else {
3030    __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3031  }
3032
3033  {
3034    FrameScope scope(masm, StackFrame::INTERNAL);
3035    // Pass function as argument.
3036    __ Push(rax);
3037    __ CallRuntime(Runtime::kCompileForOnStackReplacement);
3038  }
3039
3040  Label skip;
3041  // If the code object is null, just return to the caller.
3042  __ cmpp(rax, Immediate(0));
3043  __ j(not_equal, &skip, Label::kNear);
3044  __ ret(0);
3045
3046  __ bind(&skip);
3047
3048  // Drop any potential handler frame that is be sitting on top of the actual
3049  // JavaScript frame. This is the case then OSR is triggered from bytecode.
3050  if (has_handler_frame) {
3051    __ leave();
3052  }
3053
3054  // Load deoptimization data from the code object.
3055  __ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
3056
3057  // Load the OSR entrypoint offset from the deoptimization data.
3058  __ SmiToInteger32(
3059      rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
3060                            DeoptimizationInputData::kOsrPcOffsetIndex) -
3061                            kHeapObjectTag));
3062
3063  // Compute the target address = code_obj + header_size + osr_offset
3064  __ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
3065
3066  // Overwrite the return address on the stack.
3067  __ movq(StackOperandForReturnAddress(0), rax);
3068
3069  // And "return" to the OSR entry point of the function.
3070  __ ret(0);
3071}
3072
3073void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
3074  Generate_OnStackReplacementHelper(masm, false);
3075}
3076
3077void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
3078  Generate_OnStackReplacementHelper(masm, true);
3079}
3080
3081#undef __
3082
3083}  // namespace internal
3084}  // namespace v8
3085
3086#endif  // V8_TARGET_ARCH_X64
3087