1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2011 the V8 project authors. All rights reserved.
34
35// A light-weight IA32 Assembler.
36
37#ifndef V8_IA32_ASSEMBLER_IA32_H_
38#define V8_IA32_ASSEMBLER_IA32_H_
39
40#include <deque>
41
42#include "src/assembler.h"
43#include "src/isolate.h"
44#include "src/utils.h"
45
46namespace v8 {
47namespace internal {
48
49#define GENERAL_REGISTERS(V) \
50  V(eax)                     \
51  V(ecx)                     \
52  V(edx)                     \
53  V(ebx)                     \
54  V(esp)                     \
55  V(ebp)                     \
56  V(esi)                     \
57  V(edi)
58
59#define ALLOCATABLE_GENERAL_REGISTERS(V) \
60  V(eax)                                 \
61  V(ecx)                                 \
62  V(edx)                                 \
63  V(ebx)                                 \
64  V(esi)                                 \
65  V(edi)
66
67#define DOUBLE_REGISTERS(V) \
68  V(xmm0)                   \
69  V(xmm1)                   \
70  V(xmm2)                   \
71  V(xmm3)                   \
72  V(xmm4)                   \
73  V(xmm5)                   \
74  V(xmm6)                   \
75  V(xmm7)
76
77#define FLOAT_REGISTERS DOUBLE_REGISTERS
78#define SIMD128_REGISTERS DOUBLE_REGISTERS
79
80#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
81  V(xmm1)                               \
82  V(xmm2)                               \
83  V(xmm3)                               \
84  V(xmm4)                               \
85  V(xmm5)                               \
86  V(xmm6)                               \
87  V(xmm7)
88
89// CPU Registers.
90//
91// 1) We would prefer to use an enum, but enum values are assignment-
92// compatible with int, which has caused code-generation bugs.
93//
94// 2) We would prefer to use a class instead of a struct but we don't like
95// the register initialization to depend on the particular initialization
96// order (which appears to be different on OS X, Linux, and Windows for the
97// installed versions of C++ we tried). Using a struct permits C-style
98// "initialization". Also, the Register objects cannot be const as this
99// forces initialization stubs in MSVC, making us dependent on initialization
100// order.
101//
102// 3) By not using an enum, we are possibly preventing the compiler from
103// doing certain constant folds, which may significantly reduce the
104// code generated for some assembly instructions (because they boil down
105// to a few constants). If this is a problem, we could change the code
106// such that we use an enum in optimized mode, and the struct in debug
107// mode. This way we get the compile-time error checking in debug mode
108// and best performance in optimized code.
109//
110struct Register {
111  enum Code {
112#define REGISTER_CODE(R) kCode_##R,
113    GENERAL_REGISTERS(REGISTER_CODE)
114#undef REGISTER_CODE
115        kAfterLast,
116    kCode_no_reg = -1
117  };
118
119  static const int kNumRegisters = Code::kAfterLast;
120
121  static Register from_code(int code) {
122    DCHECK(code >= 0);
123    DCHECK(code < kNumRegisters);
124    Register r = {code};
125    return r;
126  }
127  bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
128  bool is(Register reg) const { return reg_code == reg.reg_code; }
129  int code() const {
130    DCHECK(is_valid());
131    return reg_code;
132  }
133  int bit() const {
134    DCHECK(is_valid());
135    return 1 << reg_code;
136  }
137
138  bool is_byte_register() const { return reg_code <= 3; }
139
140  // Unfortunately we can't make this private in a struct.
141  int reg_code;
142};
143
144
145#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
146GENERAL_REGISTERS(DECLARE_REGISTER)
147#undef DECLARE_REGISTER
148const Register no_reg = {Register::kCode_no_reg};
149
150static const bool kSimpleFPAliasing = true;
151
152struct XMMRegister {
153  enum Code {
154#define REGISTER_CODE(R) kCode_##R,
155    DOUBLE_REGISTERS(REGISTER_CODE)
156#undef REGISTER_CODE
157        kAfterLast,
158    kCode_no_reg = -1
159  };
160
161  static const int kMaxNumRegisters = Code::kAfterLast;
162
163  static XMMRegister from_code(int code) {
164    XMMRegister result = {code};
165    return result;
166  }
167
168  bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
169
170  int code() const {
171    DCHECK(is_valid());
172    return reg_code;
173  }
174
175  bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
176
177  int reg_code;
178};
179
180typedef XMMRegister FloatRegister;
181
182typedef XMMRegister DoubleRegister;
183
184typedef XMMRegister Simd128Register;
185
186#define DECLARE_REGISTER(R) \
187  const DoubleRegister R = {DoubleRegister::kCode_##R};
188DOUBLE_REGISTERS(DECLARE_REGISTER)
189#undef DECLARE_REGISTER
190const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
191
192enum Condition {
193  // any value < 0 is considered no_condition
194  no_condition  = -1,
195
196  overflow      =  0,
197  no_overflow   =  1,
198  below         =  2,
199  above_equal   =  3,
200  equal         =  4,
201  not_equal     =  5,
202  below_equal   =  6,
203  above         =  7,
204  negative      =  8,
205  positive      =  9,
206  parity_even   = 10,
207  parity_odd    = 11,
208  less          = 12,
209  greater_equal = 13,
210  less_equal    = 14,
211  greater       = 15,
212
213  // aliases
214  carry         = below,
215  not_carry     = above_equal,
216  zero          = equal,
217  not_zero      = not_equal,
218  sign          = negative,
219  not_sign      = positive
220};
221
222
223// Returns the equivalent of !cc.
224// Negation of the default no_condition (-1) results in a non-default
225// no_condition value (-2). As long as tests for no_condition check
226// for condition < 0, this will work as expected.
227inline Condition NegateCondition(Condition cc) {
228  return static_cast<Condition>(cc ^ 1);
229}
230
231
232// Commute a condition such that {a cond b == b cond' a}.
233inline Condition CommuteCondition(Condition cc) {
234  switch (cc) {
235    case below:
236      return above;
237    case above:
238      return below;
239    case above_equal:
240      return below_equal;
241    case below_equal:
242      return above_equal;
243    case less:
244      return greater;
245    case greater:
246      return less;
247    case greater_equal:
248      return less_equal;
249    case less_equal:
250      return greater_equal;
251    default:
252      return cc;
253  }
254}
255
256
257enum RoundingMode {
258  kRoundToNearest = 0x0,
259  kRoundDown = 0x1,
260  kRoundUp = 0x2,
261  kRoundToZero = 0x3
262};
263
264
265// -----------------------------------------------------------------------------
266// Machine instruction Immediates
267
268class Immediate BASE_EMBEDDED {
269 public:
270  inline explicit Immediate(int x);
271  inline explicit Immediate(const ExternalReference& ext);
272  inline explicit Immediate(Handle<Object> handle);
273  inline explicit Immediate(Smi* value);
274  inline explicit Immediate(Address addr);
275  inline explicit Immediate(Address x, RelocInfo::Mode rmode);
276
277  static Immediate CodeRelativeOffset(Label* label) {
278    return Immediate(label);
279  }
280
281  bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
282  bool is_int8() const {
283    return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
284  }
285  bool is_uint8() const {
286    return v8::internal::is_uint8(x_) && RelocInfo::IsNone(rmode_);
287  }
288  bool is_int16() const {
289    return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
290  }
291  bool is_uint16() const {
292    return v8::internal::is_uint16(x_) && RelocInfo::IsNone(rmode_);
293  }
294
295 private:
296  inline explicit Immediate(Label* value);
297
298  int x_;
299  RelocInfo::Mode rmode_;
300
301  friend class Operand;
302  friend class Assembler;
303  friend class MacroAssembler;
304};
305
306
307// -----------------------------------------------------------------------------
308// Machine instruction Operands
309
310enum ScaleFactor {
311  times_1 = 0,
312  times_2 = 1,
313  times_4 = 2,
314  times_8 = 3,
315  times_int_size = times_4,
316  times_half_pointer_size = times_2,
317  times_pointer_size = times_4,
318  times_twice_pointer_size = times_8
319};
320
321
322class Operand BASE_EMBEDDED {
323 public:
324  // reg
325  INLINE(explicit Operand(Register reg));
326
327  // XMM reg
328  INLINE(explicit Operand(XMMRegister xmm_reg));
329
330  // [disp/r]
331  INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
332
333  // [disp/r]
334  INLINE(explicit Operand(Immediate imm));
335
336  // [base + disp/r]
337  explicit Operand(Register base, int32_t disp,
338                   RelocInfo::Mode rmode = RelocInfo::NONE32);
339
340  // [base + index*scale + disp/r]
341  explicit Operand(Register base,
342                   Register index,
343                   ScaleFactor scale,
344                   int32_t disp,
345                   RelocInfo::Mode rmode = RelocInfo::NONE32);
346
347  // [index*scale + disp/r]
348  explicit Operand(Register index,
349                   ScaleFactor scale,
350                   int32_t disp,
351                   RelocInfo::Mode rmode = RelocInfo::NONE32);
352
353  static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
354    return Operand(index, scale, reinterpret_cast<int32_t>(table),
355                   RelocInfo::INTERNAL_REFERENCE);
356  }
357
358  static Operand StaticVariable(const ExternalReference& ext) {
359    return Operand(reinterpret_cast<int32_t>(ext.address()),
360                   RelocInfo::EXTERNAL_REFERENCE);
361  }
362
363  static Operand StaticArray(Register index,
364                             ScaleFactor scale,
365                             const ExternalReference& arr) {
366    return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
367                   RelocInfo::EXTERNAL_REFERENCE);
368  }
369
370  static Operand ForCell(Handle<Cell> cell) {
371    AllowDeferredHandleDereference embedding_raw_address;
372    return Operand(reinterpret_cast<int32_t>(cell.location()),
373                   RelocInfo::CELL);
374  }
375
376  static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
377    return Operand(base, imm.x_, imm.rmode_);
378  }
379
380  // Returns true if this Operand is a wrapper for the specified register.
381  bool is_reg(Register reg) const;
382
383  // Returns true if this Operand is a wrapper for one register.
384  bool is_reg_only() const;
385
386  // Asserts that this Operand is a wrapper for one register and returns the
387  // register.
388  Register reg() const;
389
390 private:
391  // Set the ModRM byte without an encoded 'reg' register. The
392  // register is encoded later as part of the emit_operand operation.
393  inline void set_modrm(int mod, Register rm);
394
395  inline void set_sib(ScaleFactor scale, Register index, Register base);
396  inline void set_disp8(int8_t disp);
397  inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
398
399  byte buf_[6];
400  // The number of bytes in buf_.
401  unsigned int len_;
402  // Only valid if len_ > 4.
403  RelocInfo::Mode rmode_;
404
405  friend class Assembler;
406  friend class MacroAssembler;
407};
408
409
410// -----------------------------------------------------------------------------
411// A Displacement describes the 32bit immediate field of an instruction which
412// may be used together with a Label in order to refer to a yet unknown code
413// position. Displacements stored in the instruction stream are used to describe
414// the instruction and to chain a list of instructions using the same Label.
415// A Displacement contains 2 different fields:
416//
417// next field: position of next displacement in the chain (0 = end of list)
418// type field: instruction type
419//
420// A next value of null (0) indicates the end of a chain (note that there can
421// be no displacement at position zero, because there is always at least one
422// instruction byte before the displacement).
423//
424// Displacement _data field layout
425//
426// |31.....2|1......0|
427// [  next  |  type  |
428
429class Displacement BASE_EMBEDDED {
430 public:
431  enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
432
433  int data() const { return data_; }
434  Type type() const { return TypeField::decode(data_); }
435  void next(Label* L) const {
436    int n = NextField::decode(data_);
437    n > 0 ? L->link_to(n) : L->Unuse();
438  }
439  void link_to(Label* L) { init(L, type()); }
440
441  explicit Displacement(int data) { data_ = data; }
442
443  Displacement(Label* L, Type type) { init(L, type); }
444
445  void print() {
446    PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
447                       NextField::decode(data_));
448  }
449
450 private:
451  int data_;
452
453  class TypeField: public BitField<Type, 0, 2> {};
454  class NextField: public BitField<int,  2, 32-2> {};
455
456  void init(Label* L, Type type);
457};
458
459
460class Assembler : public AssemblerBase {
461 private:
462  // We check before assembling an instruction that there is sufficient
463  // space to write an instruction and its relocation information.
464  // The relocation writer's position must be kGap bytes above the end of
465  // the generated instructions. This leaves enough space for the
466  // longest possible ia32 instruction, 15 bytes, and the longest possible
467  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
468  // (There is a 15 byte limit on ia32 instruction length that rules out some
469  // otherwise valid instructions.)
470  // This allows for a single, fast space check per instruction.
471  static const int kGap = 32;
472
473 public:
474  // Create an assembler. Instructions and relocation information are emitted
475  // into a buffer, with the instructions starting from the beginning and the
476  // relocation information starting from the end of the buffer. See CodeDesc
477  // for a detailed comment on the layout (globals.h).
478  //
479  // If the provided buffer is NULL, the assembler allocates and grows its own
480  // buffer, and buffer_size determines the initial buffer size. The buffer is
481  // owned by the assembler and deallocated upon destruction of the assembler.
482  //
483  // If the provided buffer is not NULL, the assembler uses the provided buffer
484  // for code generation and assumes its size to be buffer_size. If the buffer
485  // is too small, a fatal error occurs. No deallocation of the buffer is done
486  // upon destruction of the assembler.
487  // TODO(vitalyr): the assembler does not need an isolate.
488  Assembler(Isolate* isolate, void* buffer, int buffer_size);
489  virtual ~Assembler() { }
490
491  // GetCode emits any pending (non-emitted) code and fills the descriptor
492  // desc. GetCode() is idempotent; it returns the same result if no other
493  // Assembler functions are invoked in between GetCode() calls.
494  void GetCode(CodeDesc* desc);
495
496  // Read/Modify the code target in the branch/call instruction at pc.
497  inline static Address target_address_at(Address pc, Address constant_pool);
498  inline static void set_target_address_at(
499      Isolate* isolate, Address pc, Address constant_pool, Address target,
500      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
501  static inline Address target_address_at(Address pc, Code* code) {
502    Address constant_pool = code ? code->constant_pool() : NULL;
503    return target_address_at(pc, constant_pool);
504  }
505  static inline void set_target_address_at(
506      Isolate* isolate, Address pc, Code* code, Address target,
507      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
508    Address constant_pool = code ? code->constant_pool() : NULL;
509    set_target_address_at(isolate, pc, constant_pool, target);
510  }
511
512  // Return the code target address at a call site from the return address
513  // of that call in the instruction stream.
514  inline static Address target_address_from_return_address(Address pc);
515
516  // This sets the branch destination (which is in the instruction on x86).
517  // This is for calls and branches within generated code.
518  inline static void deserialization_set_special_target_at(
519      Isolate* isolate, Address instruction_payload, Code* code,
520      Address target) {
521    set_target_address_at(isolate, instruction_payload, code, target);
522  }
523
524  // This sets the internal reference at the pc.
525  inline static void deserialization_set_target_internal_reference_at(
526      Isolate* isolate, Address pc, Address target,
527      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
528
529  static const int kSpecialTargetSize = kPointerSize;
530
531  // Distance between the address of the code target in the call instruction
532  // and the return address
533  static const int kCallTargetAddressOffset = kPointerSize;
534
535  static const int kCallInstructionLength = 5;
536
537  // The debug break slot must be able to contain a call instruction.
538  static const int kDebugBreakSlotLength = kCallInstructionLength;
539
540  // Distance between start of patched debug break slot and the emitted address
541  // to jump to.
542  static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.
543
544  // One byte opcode for test al, 0xXX.
545  static const byte kTestAlByte = 0xA8;
546  // One byte opcode for nop.
547  static const byte kNopByte = 0x90;
548
549  // One byte opcode for a short unconditional jump.
550  static const byte kJmpShortOpcode = 0xEB;
551  // One byte prefix for a short conditional jump.
552  static const byte kJccShortPrefix = 0x70;
553  static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
554  static const byte kJcShortOpcode = kJccShortPrefix | carry;
555  static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
556  static const byte kJzShortOpcode = kJccShortPrefix | zero;
557
558
559  // ---------------------------------------------------------------------------
560  // Code generation
561  //
562  // - function names correspond one-to-one to ia32 instruction mnemonics
563  // - unless specified otherwise, instructions operate on 32bit operands
564  // - instructions on 8bit (byte) operands/registers have a trailing '_b'
565  // - instructions on 16bit (word) operands/registers have a trailing '_w'
566  // - naming conflicts with C++ keywords are resolved via a trailing '_'
567
568  // NOTE ON INTERFACE: Currently, the interface is not very consistent
569  // in the sense that some operations (e.g. mov()) can be called in more
570  // the one way to generate the same instruction: The Register argument
571  // can in some cases be replaced with an Operand(Register) argument.
572  // This should be cleaned up and made more orthogonal. The questions
573  // is: should we always use Operands instead of Registers where an
574  // Operand is possible, or should we have a Register (overloaded) form
575  // instead? We must be careful to make sure that the selected instruction
576  // is obvious from the parameters to avoid hard-to-find code generation
577  // bugs.
578
579  // Insert the smallest number of nop instructions
580  // possible to align the pc offset to a multiple
581  // of m. m must be a power of 2.
582  void Align(int m);
583  // Insert the smallest number of zero bytes possible to align the pc offset
584  // to a mulitple of m. m must be a power of 2 (>= 2).
585  void DataAlign(int m);
586  void Nop(int bytes = 1);
587  // Aligns code to something that's optimal for a jump target for the platform.
588  void CodeTargetAlign();
589
590  // Stack
591  void pushad();
592  void popad();
593
594  void pushfd();
595  void popfd();
596
597  void push(const Immediate& x);
598  void push_imm32(int32_t imm32);
599  void push(Register src);
600  void push(const Operand& src);
601
602  void pop(Register dst);
603  void pop(const Operand& dst);
604
605  void enter(const Immediate& size);
606  void leave();
607
608  // Moves
609  void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
610  void mov_b(Register dst, const Operand& src);
611  void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
612  void mov_b(const Operand& dst, int8_t src) { mov_b(dst, Immediate(src)); }
613  void mov_b(const Operand& dst, const Immediate& src);
614  void mov_b(const Operand& dst, Register src);
615
616  void mov_w(Register dst, const Operand& src);
617  void mov_w(const Operand& dst, int16_t src) { mov_w(dst, Immediate(src)); }
618  void mov_w(const Operand& dst, const Immediate& src);
619  void mov_w(const Operand& dst, Register src);
620
621  void mov(Register dst, int32_t imm32);
622  void mov(Register dst, const Immediate& x);
623  void mov(Register dst, Handle<Object> handle);
624  void mov(Register dst, const Operand& src);
625  void mov(Register dst, Register src);
626  void mov(const Operand& dst, const Immediate& x);
627  void mov(const Operand& dst, Handle<Object> handle);
628  void mov(const Operand& dst, Register src);
629
630  void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
631  void movsx_b(Register dst, const Operand& src);
632
633  void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
634  void movsx_w(Register dst, const Operand& src);
635
636  void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
637  void movzx_b(Register dst, const Operand& src);
638
639  void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
640  void movzx_w(Register dst, const Operand& src);
641
642  // Conditional moves
643  void cmov(Condition cc, Register dst, Register src) {
644    cmov(cc, dst, Operand(src));
645  }
646  void cmov(Condition cc, Register dst, const Operand& src);
647
648  // Flag management.
649  void cld();
650
651  // Repetitive string instructions.
652  void rep_movs();
653  void rep_stos();
654  void stos();
655
656  // Exchange
657  void xchg(Register dst, Register src);
658  void xchg(Register dst, const Operand& src);
659  void xchg_b(Register reg, const Operand& op);
660  void xchg_w(Register reg, const Operand& op);
661
662  // Lock prefix
663  void lock();
664
665  // CompareExchange
666  void cmpxchg(const Operand& dst, Register src);
667  void cmpxchg_b(const Operand& dst, Register src);
668  void cmpxchg_w(const Operand& dst, Register src);
669
670  // Arithmetics
671  void adc(Register dst, int32_t imm32);
672  void adc(Register dst, const Operand& src);
673
674  void add(Register dst, Register src) { add(dst, Operand(src)); }
675  void add(Register dst, const Operand& src);
676  void add(const Operand& dst, Register src);
677  void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
678  void add(const Operand& dst, const Immediate& x);
679
680  void and_(Register dst, int32_t imm32);
681  void and_(Register dst, const Immediate& x);
682  void and_(Register dst, Register src) { and_(dst, Operand(src)); }
683  void and_(Register dst, const Operand& src);
684  void and_(const Operand& dst, Register src);
685  void and_(const Operand& dst, const Immediate& x);
686
687  void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
688  void cmpb(const Operand& op, Immediate imm8);
689  void cmpb(Register reg, const Operand& op);
690  void cmpb(const Operand& op, Register reg);
691  void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
692  void cmpb_al(const Operand& op);
693  void cmpw_ax(const Operand& op);
694  void cmpw(const Operand& dst, Immediate src);
695  void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
696  void cmpw(Register dst, const Operand& src);
697  void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
698  void cmpw(const Operand& dst, Register src);
699  void cmp(Register reg, int32_t imm32);
700  void cmp(Register reg, Handle<Object> handle);
701  void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
702  void cmp(Register reg, const Operand& op);
703  void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
704  void cmp(const Operand& op, Register reg);
705  void cmp(const Operand& op, const Immediate& imm);
706  void cmp(const Operand& op, Handle<Object> handle);
707
708  void dec_b(Register dst);
709  void dec_b(const Operand& dst);
710
711  void dec(Register dst);
712  void dec(const Operand& dst);
713
714  void cdq();
715
716  void idiv(Register src) { idiv(Operand(src)); }
717  void idiv(const Operand& src);
718  void div(Register src) { div(Operand(src)); }
719  void div(const Operand& src);
720
721  // Signed multiply instructions.
722  void imul(Register src);                               // edx:eax = eax * src.
723  void imul(Register dst, Register src) { imul(dst, Operand(src)); }
724  void imul(Register dst, const Operand& src);           // dst = dst * src.
725  void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
726  void imul(Register dst, const Operand& src, int32_t imm32);
727
728  void inc(Register dst);
729  void inc(const Operand& dst);
730
731  void lea(Register dst, const Operand& src);
732
733  // Unsigned multiply instruction.
734  void mul(Register src);                                // edx:eax = eax * reg.
735
736  void neg(Register dst);
737  void neg(const Operand& dst);
738
739  void not_(Register dst);
740  void not_(const Operand& dst);
741
742  void or_(Register dst, int32_t imm32);
743  void or_(Register dst, Register src) { or_(dst, Operand(src)); }
744  void or_(Register dst, const Operand& src);
745  void or_(const Operand& dst, Register src);
746  void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
747  void or_(const Operand& dst, const Immediate& x);
748
749  void rcl(Register dst, uint8_t imm8);
750  void rcr(Register dst, uint8_t imm8);
751
752  void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
753  void ror(const Operand& dst, uint8_t imm8);
754  void ror_cl(Register dst) { ror_cl(Operand(dst)); }
755  void ror_cl(const Operand& dst);
756
757  void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
758  void sar(const Operand& dst, uint8_t imm8);
759  void sar_cl(Register dst) { sar_cl(Operand(dst)); }
760  void sar_cl(const Operand& dst);
761
762  void sbb(Register dst, const Operand& src);
763
764  void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
765  void shl(const Operand& dst, uint8_t imm8);
766  void shl_cl(Register dst) { shl_cl(Operand(dst)); }
767  void shl_cl(const Operand& dst);
768  void shld(Register dst, Register src, uint8_t shift);
769  void shld_cl(Register dst, Register src);
770
771  void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
772  void shr(const Operand& dst, uint8_t imm8);
773  void shr_cl(Register dst) { shr_cl(Operand(dst)); }
774  void shr_cl(const Operand& dst);
775  void shrd(Register dst, Register src, uint8_t shift);
776  void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
777  void shrd_cl(const Operand& dst, Register src);
778
779  void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
780  void sub(const Operand& dst, const Immediate& x);
781  void sub(Register dst, Register src) { sub(dst, Operand(src)); }
782  void sub(Register dst, const Operand& src);
783  void sub(const Operand& dst, Register src);
784
785  void test(Register reg, const Immediate& imm);
786  void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
787  void test(Register reg, const Operand& op);
788  void test(const Operand& op, const Immediate& imm);
789  void test(const Operand& op, Register reg) { test(reg, op); }
790  void test_b(Register reg, const Operand& op);
791  void test_b(Register reg, Immediate imm8);
792  void test_b(const Operand& op, Immediate imm8);
793  void test_b(const Operand& op, Register reg) { test_b(reg, op); }
794  void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
795  void test_w(Register reg, const Operand& op);
796  void test_w(Register reg, Immediate imm16);
797  void test_w(const Operand& op, Immediate imm16);
798  void test_w(const Operand& op, Register reg) { test_w(reg, op); }
799  void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
800
801  void xor_(Register dst, int32_t imm32);
802  void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
803  void xor_(Register dst, const Operand& src);
804  void xor_(const Operand& dst, Register src);
805  void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
806  void xor_(const Operand& dst, const Immediate& x);
807
808  // Bit operations.
809  void bt(const Operand& dst, Register src);
810  void bts(Register dst, Register src) { bts(Operand(dst), src); }
811  void bts(const Operand& dst, Register src);
812  void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
813  void bsr(Register dst, const Operand& src);
814  void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
815  void bsf(Register dst, const Operand& src);
816
817  // Miscellaneous
818  void hlt();
819  void int3();
820  void nop();
821  void ret(int imm16);
822  void ud2();
823
824  // Label operations & relative jumps (PPUM Appendix D)
825  //
826  // Takes a branch opcode (cc) and a label (L) and generates
827  // either a backward branch or a forward branch and links it
828  // to the label fixup chain. Usage:
829  //
830  // Label L;    // unbound label
831  // j(cc, &L);  // forward branch to unbound label
832  // bind(&L);   // bind label to the current pc
833  // j(cc, &L);  // backward branch to bound label
834  // bind(&L);   // illegal: a label may be bound only once
835  //
836  // Note: The same Label can be used for forward and backward branches
837  // but it may be bound only once.
838
839  void bind(Label* L);  // binds an unbound label L to the current code position
840
841  // Calls
842  void call(Label* L);
843  void call(byte* entry, RelocInfo::Mode rmode);
844  int CallSize(const Operand& adr);
845  void call(Register reg) { call(Operand(reg)); }
846  void call(const Operand& adr);
847  int CallSize(Handle<Code> code, RelocInfo::Mode mode);
848  void call(Handle<Code> code,
849            RelocInfo::Mode rmode,
850            TypeFeedbackId id = TypeFeedbackId::None());
851
852  // Jumps
853  // unconditional jump to L
854  void jmp(Label* L, Label::Distance distance = Label::kFar);
855  void jmp(byte* entry, RelocInfo::Mode rmode);
856  void jmp(Register reg) { jmp(Operand(reg)); }
857  void jmp(const Operand& adr);
858  void jmp(Handle<Code> code, RelocInfo::Mode rmode);
859
860  // Conditional jumps
861  void j(Condition cc,
862         Label* L,
863         Label::Distance distance = Label::kFar);
864  void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
865  void j(Condition cc, Handle<Code> code,
866         RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
867
868  // Floating-point operations
869  void fld(int i);
870  void fstp(int i);
871
872  void fld1();
873  void fldz();
874  void fldpi();
875  void fldln2();
876
877  void fld_s(const Operand& adr);
878  void fld_d(const Operand& adr);
879
880  void fstp_s(const Operand& adr);
881  void fst_s(const Operand& adr);
882  void fstp_d(const Operand& adr);
883  void fst_d(const Operand& adr);
884
885  void fild_s(const Operand& adr);
886  void fild_d(const Operand& adr);
887
888  void fist_s(const Operand& adr);
889
890  void fistp_s(const Operand& adr);
891  void fistp_d(const Operand& adr);
892
893  // The fisttp instructions require SSE3.
894  void fisttp_s(const Operand& adr);
895  void fisttp_d(const Operand& adr);
896
897  void fabs();
898  void fchs();
899  void fcos();
900  void fsin();
901  void fptan();
902  void fyl2x();
903  void f2xm1();
904  void fscale();
905  void fninit();
906
907  void fadd(int i);
908  void fadd_i(int i);
909  void fsub(int i);
910  void fsub_i(int i);
911  void fmul(int i);
912  void fmul_i(int i);
913  void fdiv(int i);
914  void fdiv_i(int i);
915
916  void fisub_s(const Operand& adr);
917
918  void faddp(int i = 1);
919  void fsubp(int i = 1);
920  void fsubrp(int i = 1);
921  void fmulp(int i = 1);
922  void fdivp(int i = 1);
923  void fprem();
924  void fprem1();
925
926  void fxch(int i = 1);
927  void fincstp();
928  void ffree(int i = 0);
929
930  void ftst();
931  void fucomp(int i);
932  void fucompp();
933  void fucomi(int i);
934  void fucomip();
935  void fcompp();
936  void fnstsw_ax();
937  void fwait();
938  void fnclex();
939
940  void frndint();
941
942  void sahf();
943  void setcc(Condition cc, Register reg);
944
945  void cpuid();
946
947  // SSE instructions
948  void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
949  void addss(XMMRegister dst, const Operand& src);
950  void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
951  void subss(XMMRegister dst, const Operand& src);
952  void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
953  void mulss(XMMRegister dst, const Operand& src);
954  void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
955  void divss(XMMRegister dst, const Operand& src);
956  void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
957  void sqrtss(XMMRegister dst, const Operand& src);
958
959  void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
960  void ucomiss(XMMRegister dst, const Operand& src);
961  void movaps(XMMRegister dst, XMMRegister src);
962  void movups(XMMRegister dst, XMMRegister src);
963  void movups(XMMRegister dst, const Operand& src);
964  void movups(const Operand& dst, XMMRegister src);
965  void shufps(XMMRegister dst, XMMRegister src, byte imm8);
966
967  void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
968  void maxss(XMMRegister dst, const Operand& src);
969  void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
970  void minss(XMMRegister dst, const Operand& src);
971
972  void andps(XMMRegister dst, const Operand& src);
973  void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
974  void xorps(XMMRegister dst, const Operand& src);
975  void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
976  void orps(XMMRegister dst, const Operand& src);
977  void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
978
979  void addps(XMMRegister dst, const Operand& src);
980  void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
981  void subps(XMMRegister dst, const Operand& src);
982  void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
983  void mulps(XMMRegister dst, const Operand& src);
984  void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
985  void divps(XMMRegister dst, const Operand& src);
986  void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
987
988  // SSE2 instructions
989  void cvttss2si(Register dst, const Operand& src);
990  void cvttss2si(Register dst, XMMRegister src) {
991    cvttss2si(dst, Operand(src));
992  }
993  void cvttsd2si(Register dst, const Operand& src);
994  void cvttsd2si(Register dst, XMMRegister src) {
995    cvttsd2si(dst, Operand(src));
996  }
997  void cvtsd2si(Register dst, XMMRegister src);
998
999  void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
1000  void cvtsi2ss(XMMRegister dst, const Operand& src);
1001  void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
1002  void cvtsi2sd(XMMRegister dst, const Operand& src);
1003  void cvtss2sd(XMMRegister dst, const Operand& src);
1004  void cvtss2sd(XMMRegister dst, XMMRegister src) {
1005    cvtss2sd(dst, Operand(src));
1006  }
1007  void cvtsd2ss(XMMRegister dst, const Operand& src);
1008  void cvtsd2ss(XMMRegister dst, XMMRegister src) {
1009    cvtsd2ss(dst, Operand(src));
1010  }
1011  void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
1012  void addsd(XMMRegister dst, const Operand& src);
1013  void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
1014  void subsd(XMMRegister dst, const Operand& src);
1015  void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
1016  void mulsd(XMMRegister dst, const Operand& src);
1017  void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
1018  void divsd(XMMRegister dst, const Operand& src);
1019  void xorpd(XMMRegister dst, XMMRegister src);
1020  void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
1021  void sqrtsd(XMMRegister dst, const Operand& src);
1022
1023  void andpd(XMMRegister dst, XMMRegister src);
1024  void orpd(XMMRegister dst, XMMRegister src);
1025
1026  void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
1027  void ucomisd(XMMRegister dst, const Operand& src);
1028
1029  void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
1030  void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1031
1032  void movmskpd(Register dst, XMMRegister src);
1033  void movmskps(Register dst, XMMRegister src);
1034
1035  void cmpltsd(XMMRegister dst, XMMRegister src);
1036  void pcmpeqd(XMMRegister dst, XMMRegister src);
1037
1038  void punpckldq(XMMRegister dst, XMMRegister src);
1039  void punpckhdq(XMMRegister dst, XMMRegister src);
1040
1041  void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
1042  void maxsd(XMMRegister dst, const Operand& src);
1043  void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
1044  void minsd(XMMRegister dst, const Operand& src);
1045
1046  void movdqa(XMMRegister dst, const Operand& src);
1047  void movdqa(const Operand& dst, XMMRegister src);
1048  void movdqu(XMMRegister dst, const Operand& src);
1049  void movdqu(const Operand& dst, XMMRegister src);
1050  void movdq(bool aligned, XMMRegister dst, const Operand& src) {
1051    if (aligned) {
1052      movdqa(dst, src);
1053    } else {
1054      movdqu(dst, src);
1055    }
1056  }
1057
1058  void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1059  void movd(XMMRegister dst, const Operand& src);
1060  void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1061  void movd(const Operand& dst, XMMRegister src);
1062  void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1063  void movsd(XMMRegister dst, const Operand& src);
1064  void movsd(const Operand& dst, XMMRegister src);
1065
1066
1067  void movss(XMMRegister dst, const Operand& src);
1068  void movss(const Operand& dst, XMMRegister src);
1069  void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1070  void extractps(Register dst, XMMRegister src, byte imm8);
1071
1072  void pand(XMMRegister dst, XMMRegister src);
1073  void pxor(XMMRegister dst, XMMRegister src);
1074  void por(XMMRegister dst, XMMRegister src);
1075  void ptest(XMMRegister dst, XMMRegister src);
1076
1077  void pslld(XMMRegister reg, int8_t shift);
1078  void psrld(XMMRegister reg, int8_t shift);
1079  void psllq(XMMRegister reg, int8_t shift);
1080  void psllq(XMMRegister dst, XMMRegister src);
1081  void psrlq(XMMRegister reg, int8_t shift);
1082  void psrlq(XMMRegister dst, XMMRegister src);
1083  void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
1084  void pextrd(Register dst, XMMRegister src, int8_t offset) {
1085    pextrd(Operand(dst), src, offset);
1086  }
1087  void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
1088  void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1089    pinsrd(dst, Operand(src), offset);
1090  }
1091  void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1092
1093  // AVX instructions
1094  void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1095    vfmadd132sd(dst, src1, Operand(src2));
1096  }
1097  void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1098    vfmadd213sd(dst, src1, Operand(src2));
1099  }
1100  void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1101    vfmadd231sd(dst, src1, Operand(src2));
1102  }
1103  void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1104    vfmasd(0x99, dst, src1, src2);
1105  }
1106  void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1107    vfmasd(0xa9, dst, src1, src2);
1108  }
1109  void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1110    vfmasd(0xb9, dst, src1, src2);
1111  }
1112  void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1113    vfmsub132sd(dst, src1, Operand(src2));
1114  }
1115  void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1116    vfmsub213sd(dst, src1, Operand(src2));
1117  }
1118  void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1119    vfmsub231sd(dst, src1, Operand(src2));
1120  }
1121  void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1122    vfmasd(0x9b, dst, src1, src2);
1123  }
1124  void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1125    vfmasd(0xab, dst, src1, src2);
1126  }
1127  void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1128    vfmasd(0xbb, dst, src1, src2);
1129  }
1130  void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1131    vfnmadd132sd(dst, src1, Operand(src2));
1132  }
1133  void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1134    vfnmadd213sd(dst, src1, Operand(src2));
1135  }
1136  void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1137    vfnmadd231sd(dst, src1, Operand(src2));
1138  }
1139  void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1140    vfmasd(0x9d, dst, src1, src2);
1141  }
1142  void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1143    vfmasd(0xad, dst, src1, src2);
1144  }
1145  void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1146    vfmasd(0xbd, dst, src1, src2);
1147  }
1148  void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1149    vfnmsub132sd(dst, src1, Operand(src2));
1150  }
1151  void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1152    vfnmsub213sd(dst, src1, Operand(src2));
1153  }
1154  void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1155    vfnmsub231sd(dst, src1, Operand(src2));
1156  }
1157  void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1158    vfmasd(0x9f, dst, src1, src2);
1159  }
1160  void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1161    vfmasd(0xaf, dst, src1, src2);
1162  }
1163  void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1164    vfmasd(0xbf, dst, src1, src2);
1165  }
1166  void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1167
1168  void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1169    vfmadd132ss(dst, src1, Operand(src2));
1170  }
1171  void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1172    vfmadd213ss(dst, src1, Operand(src2));
1173  }
1174  void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1175    vfmadd231ss(dst, src1, Operand(src2));
1176  }
1177  void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1178    vfmass(0x99, dst, src1, src2);
1179  }
1180  void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1181    vfmass(0xa9, dst, src1, src2);
1182  }
1183  void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1184    vfmass(0xb9, dst, src1, src2);
1185  }
1186  void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1187    vfmsub132ss(dst, src1, Operand(src2));
1188  }
1189  void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1190    vfmsub213ss(dst, src1, Operand(src2));
1191  }
1192  void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1193    vfmsub231ss(dst, src1, Operand(src2));
1194  }
1195  void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1196    vfmass(0x9b, dst, src1, src2);
1197  }
1198  void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1199    vfmass(0xab, dst, src1, src2);
1200  }
1201  void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1202    vfmass(0xbb, dst, src1, src2);
1203  }
1204  void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1205    vfnmadd132ss(dst, src1, Operand(src2));
1206  }
1207  void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1208    vfnmadd213ss(dst, src1, Operand(src2));
1209  }
1210  void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1211    vfnmadd231ss(dst, src1, Operand(src2));
1212  }
1213  void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1214    vfmass(0x9d, dst, src1, src2);
1215  }
1216  void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1217    vfmass(0xad, dst, src1, src2);
1218  }
1219  void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1220    vfmass(0xbd, dst, src1, src2);
1221  }
1222  void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1223    vfnmsub132ss(dst, src1, Operand(src2));
1224  }
1225  void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1226    vfnmsub213ss(dst, src1, Operand(src2));
1227  }
1228  void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1229    vfnmsub231ss(dst, src1, Operand(src2));
1230  }
1231  void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1232    vfmass(0x9f, dst, src1, src2);
1233  }
1234  void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1235    vfmass(0xaf, dst, src1, src2);
1236  }
1237  void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1238    vfmass(0xbf, dst, src1, src2);
1239  }
1240  void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1241
1242  void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1243    vaddsd(dst, src1, Operand(src2));
1244  }
1245  void vaddsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1246    vsd(0x58, dst, src1, src2);
1247  }
1248  void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1249    vsubsd(dst, src1, Operand(src2));
1250  }
1251  void vsubsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1252    vsd(0x5c, dst, src1, src2);
1253  }
1254  void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1255    vmulsd(dst, src1, Operand(src2));
1256  }
1257  void vmulsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1258    vsd(0x59, dst, src1, src2);
1259  }
1260  void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1261    vdivsd(dst, src1, Operand(src2));
1262  }
1263  void vdivsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1264    vsd(0x5e, dst, src1, src2);
1265  }
1266  void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1267    vmaxsd(dst, src1, Operand(src2));
1268  }
1269  void vmaxsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1270    vsd(0x5f, dst, src1, src2);
1271  }
1272  void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1273    vminsd(dst, src1, Operand(src2));
1274  }
1275  void vminsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1276    vsd(0x5d, dst, src1, src2);
1277  }
1278  void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1279
1280  void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1281    vaddss(dst, src1, Operand(src2));
1282  }
1283  void vaddss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1284    vss(0x58, dst, src1, src2);
1285  }
1286  void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1287    vsubss(dst, src1, Operand(src2));
1288  }
1289  void vsubss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1290    vss(0x5c, dst, src1, src2);
1291  }
1292  void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1293    vmulss(dst, src1, Operand(src2));
1294  }
1295  void vmulss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1296    vss(0x59, dst, src1, src2);
1297  }
1298  void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1299    vdivss(dst, src1, Operand(src2));
1300  }
1301  void vdivss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1302    vss(0x5e, dst, src1, src2);
1303  }
1304  void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1305    vmaxss(dst, src1, Operand(src2));
1306  }
1307  void vmaxss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1308    vss(0x5f, dst, src1, src2);
1309  }
1310  void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1311    vminss(dst, src1, Operand(src2));
1312  }
1313  void vminss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1314    vss(0x5d, dst, src1, src2);
1315  }
1316  void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1317
1318  // BMI instruction
1319  void andn(Register dst, Register src1, Register src2) {
1320    andn(dst, src1, Operand(src2));
1321  }
1322  void andn(Register dst, Register src1, const Operand& src2) {
1323    bmi1(0xf2, dst, src1, src2);
1324  }
1325  void bextr(Register dst, Register src1, Register src2) {
1326    bextr(dst, Operand(src1), src2);
1327  }
1328  void bextr(Register dst, const Operand& src1, Register src2) {
1329    bmi1(0xf7, dst, src2, src1);
1330  }
1331  void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
1332  void blsi(Register dst, const Operand& src) {
1333    Register ireg = {3};
1334    bmi1(0xf3, ireg, dst, src);
1335  }
1336  void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
1337  void blsmsk(Register dst, const Operand& src) {
1338    Register ireg = {2};
1339    bmi1(0xf3, ireg, dst, src);
1340  }
1341  void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
1342  void blsr(Register dst, const Operand& src) {
1343    Register ireg = {1};
1344    bmi1(0xf3, ireg, dst, src);
1345  }
1346  void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
1347  void tzcnt(Register dst, const Operand& src);
1348
1349  void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
1350  void lzcnt(Register dst, const Operand& src);
1351
1352  void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
1353  void popcnt(Register dst, const Operand& src);
1354
1355  void bzhi(Register dst, Register src1, Register src2) {
1356    bzhi(dst, Operand(src1), src2);
1357  }
1358  void bzhi(Register dst, const Operand& src1, Register src2) {
1359    bmi2(kNone, 0xf5, dst, src2, src1);
1360  }
1361  void mulx(Register dst1, Register dst2, Register src) {
1362    mulx(dst1, dst2, Operand(src));
1363  }
1364  void mulx(Register dst1, Register dst2, const Operand& src) {
1365    bmi2(kF2, 0xf6, dst1, dst2, src);
1366  }
1367  void pdep(Register dst, Register src1, Register src2) {
1368    pdep(dst, src1, Operand(src2));
1369  }
1370  void pdep(Register dst, Register src1, const Operand& src2) {
1371    bmi2(kF2, 0xf5, dst, src1, src2);
1372  }
1373  void pext(Register dst, Register src1, Register src2) {
1374    pext(dst, src1, Operand(src2));
1375  }
1376  void pext(Register dst, Register src1, const Operand& src2) {
1377    bmi2(kF3, 0xf5, dst, src1, src2);
1378  }
1379  void sarx(Register dst, Register src1, Register src2) {
1380    sarx(dst, Operand(src1), src2);
1381  }
1382  void sarx(Register dst, const Operand& src1, Register src2) {
1383    bmi2(kF3, 0xf7, dst, src2, src1);
1384  }
1385  void shlx(Register dst, Register src1, Register src2) {
1386    shlx(dst, Operand(src1), src2);
1387  }
1388  void shlx(Register dst, const Operand& src1, Register src2) {
1389    bmi2(k66, 0xf7, dst, src2, src1);
1390  }
1391  void shrx(Register dst, Register src1, Register src2) {
1392    shrx(dst, Operand(src1), src2);
1393  }
1394  void shrx(Register dst, const Operand& src1, Register src2) {
1395    bmi2(kF2, 0xf7, dst, src2, src1);
1396  }
1397  void rorx(Register dst, Register src, byte imm8) {
1398    rorx(dst, Operand(src), imm8);
1399  }
1400  void rorx(Register dst, const Operand& src, byte imm8);
1401
1402#define PACKED_OP_LIST(V) \
1403  V(and, 0x54)            \
1404  V(xor, 0x57)
1405
1406#define AVX_PACKED_OP_DECLARE(name, opcode)                                  \
1407  void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1408    vps(opcode, dst, src1, Operand(src2));                                   \
1409  }                                                                          \
1410  void v##name##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1411    vps(opcode, dst, src1, src2);                                            \
1412  }                                                                          \
1413  void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1414    vpd(opcode, dst, src1, Operand(src2));                                   \
1415  }                                                                          \
1416  void v##name##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1417    vpd(opcode, dst, src1, src2);                                            \
1418  }
1419
1420  PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
1421  void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1422  void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1423  void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1424  void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1425
1426  // Prefetch src position into cache level.
1427  // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1428  // non-temporal
1429  void prefetch(const Operand& src, int level);
1430  // TODO(lrn): Need SFENCE for movnt?
1431
1432  // Check the code size generated from label to here.
1433  int SizeOfCodeGeneratedSince(Label* label) {
1434    return pc_offset() - label->pos();
1435  }
1436
1437  // Mark generator continuation.
1438  void RecordGeneratorContinuation();
1439
1440  // Mark address of a debug break slot.
1441  void RecordDebugBreakSlot(RelocInfo::Mode mode);
1442
1443  // Record a comment relocation entry that can be used by a disassembler.
1444  // Use --code-comments to enable.
1445  void RecordComment(const char* msg);
1446
1447  // Record a deoptimization reason that can be used by a log or cpu profiler.
1448  // Use --trace-deopt to enable.
1449  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1450                         int id);
1451
1452  // Writes a single byte or word of data in the code stream.  Used for
1453  // inline tables, e.g., jump-tables.
1454  void db(uint8_t data);
1455  void dd(uint32_t data);
1456  void dq(uint64_t data);
1457  void dp(uintptr_t data) { dd(data); }
1458  void dd(Label* label);
1459
1460  // Check if there is less than kGap bytes available in the buffer.
1461  // If this is the case, we need to grow the buffer before emitting
1462  // an instruction or relocation information.
1463  inline bool buffer_overflow() const {
1464    return pc_ >= reloc_info_writer.pos() - kGap;
1465  }
1466
1467  // Get the number of bytes available in the buffer.
1468  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1469
1470  static bool IsNop(Address addr);
1471
1472  int relocation_writer_size() {
1473    return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1474  }
1475
1476  // Avoid overflows for displacements etc.
1477  static const int kMaximalBufferSize = 512*MB;
1478
1479  byte byte_at(int pos) { return buffer_[pos]; }
1480  void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1481
1482  void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1483                                          ConstantPoolEntry::Access access,
1484                                          ConstantPoolEntry::Type type) {
1485    // No embedded constant pool support.
1486    UNREACHABLE();
1487  }
1488
1489 protected:
1490  void emit_sse_operand(XMMRegister reg, const Operand& adr);
1491  void emit_sse_operand(XMMRegister dst, XMMRegister src);
1492  void emit_sse_operand(Register dst, XMMRegister src);
1493  void emit_sse_operand(XMMRegister dst, Register src);
1494
1495  byte* addr_at(int pos) { return buffer_ + pos; }
1496
1497
1498 private:
1499  uint32_t long_at(int pos)  {
1500    return *reinterpret_cast<uint32_t*>(addr_at(pos));
1501  }
1502  void long_at_put(int pos, uint32_t x)  {
1503    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1504  }
1505
1506  // code emission
1507  void GrowBuffer();
1508  inline void emit(uint32_t x);
1509  inline void emit(Handle<Object> handle);
1510  inline void emit(uint32_t x,
1511                   RelocInfo::Mode rmode,
1512                   TypeFeedbackId id = TypeFeedbackId::None());
1513  inline void emit(Handle<Code> code,
1514                   RelocInfo::Mode rmode,
1515                   TypeFeedbackId id = TypeFeedbackId::None());
1516  inline void emit(const Immediate& x);
1517  inline void emit_b(Immediate x);
1518  inline void emit_w(const Immediate& x);
1519  inline void emit_q(uint64_t x);
1520
1521  // Emit the code-object-relative offset of the label's position
1522  inline void emit_code_relative_offset(Label* label);
1523
1524  // instruction generation
1525  void emit_arith_b(int op1, int op2, Register dst, int imm8);
1526
1527  // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1528  // with a given destination expression and an immediate operand.  It attempts
1529  // to use the shortest encoding possible.
1530  // sel specifies the /n in the modrm byte (see the Intel PRM).
1531  void emit_arith(int sel, Operand dst, const Immediate& x);
1532
1533  void emit_operand(Register reg, const Operand& adr);
1534
1535  void emit_label(Label* label);
1536
1537  void emit_farith(int b1, int b2, int i);
1538
1539  // Emit vex prefix
1540  enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
1541  enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
1542  enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
1543  enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
1544  inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
1545                              LeadingOpcode m, VexW w);
1546  inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
1547                              LeadingOpcode m, VexW w);
1548
1549  // labels
1550  void print(Label* L);
1551  void bind_to(Label* L, int pos);
1552
1553  // displacements
1554  inline Displacement disp_at(Label* L);
1555  inline void disp_at_put(Label* L, Displacement disp);
1556  inline void emit_disp(Label* L, Displacement::Type type);
1557  inline void emit_near_disp(Label* L);
1558
1559  // Most BMI instructions are similiar.
1560  void bmi1(byte op, Register reg, Register vreg, const Operand& rm);
1561  void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
1562            const Operand& rm);
1563
1564  // record reloc info for current pc_
1565  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1566
1567  friend class CodePatcher;
1568  friend class EnsureSpace;
1569
1570  // Internal reference positions, required for (potential) patching in
1571  // GrowBuffer(); contains only those internal references whose labels
1572  // are already bound.
1573  std::deque<int> internal_reference_positions_;
1574
1575  // code generation
1576  RelocInfoWriter reloc_info_writer;
1577};
1578
1579
1580// Helper class that ensures that there is enough space for generating
1581// instructions and relocation information.  The constructor makes
1582// sure that there is enough space and (in debug mode) the destructor
1583// checks that we did not generate too much.
1584class EnsureSpace BASE_EMBEDDED {
1585 public:
1586  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1587    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1588#ifdef DEBUG
1589    space_before_ = assembler_->available_space();
1590#endif
1591  }
1592
1593#ifdef DEBUG
1594  ~EnsureSpace() {
1595    int bytes_generated = space_before_ - assembler_->available_space();
1596    DCHECK(bytes_generated < assembler_->kGap);
1597  }
1598#endif
1599
1600 private:
1601  Assembler* assembler_;
1602#ifdef DEBUG
1603  int space_before_;
1604#endif
1605};
1606
1607}  // namespace internal
1608}  // namespace v8
1609
1610#endif  // V8_IA32_ASSEMBLER_IA32_H_
1611