1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_X87
6
7#include "src/codegen.h"
8#include "src/ic/ic.h"
9#include "src/ic/ic-compiler.h"
10#include "src/ic/stub-cache.h"
11
12namespace v8 {
13namespace internal {
14
15// ----------------------------------------------------------------------------
16// Static IC stub generators.
17//
18
19#define __ ACCESS_MASM(masm)
20
21// Helper function used to load a property from a dictionary backing
22// storage. This function may fail to load a property even though it is
23// in the dictionary, so code at miss_label must always call a backup
24// property load that is complete. This function is safe to call if
25// name is not internalized, and will jump to the miss_label in that
26// case. The generated code assumes that the receiver has slow
27// properties, is not a global object and does not have interceptors.
28static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label,
29                                   Register elements, Register name,
30                                   Register r0, Register r1, Register result) {
31  // Register use:
32  //
33  // elements - holds the property dictionary on entry and is unchanged.
34  //
35  // name - holds the name of the property on entry and is unchanged.
36  //
37  // Scratch registers:
38  //
39  // r0   - used for the index into the property dictionary
40  //
41  // r1   - used to hold the capacity of the property dictionary.
42  //
43  // result - holds the result on exit.
44
45  Label done;
46
47  // Probe the dictionary.
48  NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
49                                                   elements, name, r0, r1);
50
51  // If probing finds an entry in the dictionary, r0 contains the
52  // index into the dictionary. Check that the value is a normal
53  // property.
54  __ bind(&done);
55  const int kElementsStartOffset =
56      NameDictionary::kHeaderSize +
57      NameDictionary::kElementsStartIndex * kPointerSize;
58  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
59  __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
60          Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
61  __ j(not_zero, miss_label);
62
63  // Get the value at the masked, scaled index.
64  const int kValueOffset = kElementsStartOffset + kPointerSize;
65  __ mov(result, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
66}
67
68
69// Helper function used to store a property to a dictionary backing
70// storage. This function may fail to store a property eventhough it
71// is in the dictionary, so code at miss_label must always call a
72// backup property store that is complete. This function is safe to
73// call if name is not internalized, and will jump to the miss_label in
74// that case. The generated code assumes that the receiver has slow
75// properties, is not a global object and does not have interceptors.
76static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss_label,
77                                    Register elements, Register name,
78                                    Register value, Register r0, Register r1) {
79  // Register use:
80  //
81  // elements - holds the property dictionary on entry and is clobbered.
82  //
83  // name - holds the name of the property on entry and is unchanged.
84  //
85  // value - holds the value to store and is unchanged.
86  //
87  // r0 - used for index into the property dictionary and is clobbered.
88  //
89  // r1 - used to hold the capacity of the property dictionary and is clobbered.
90  Label done;
91
92
93  // Probe the dictionary.
94  NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
95                                                   elements, name, r0, r1);
96
97  // If probing finds an entry in the dictionary, r0 contains the
98  // index into the dictionary. Check that the value is a normal
99  // property that is not read only.
100  __ bind(&done);
101  const int kElementsStartOffset =
102      NameDictionary::kHeaderSize +
103      NameDictionary::kElementsStartIndex * kPointerSize;
104  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
105  const int kTypeAndReadOnlyMask =
106      (PropertyDetails::TypeField::kMask |
107       PropertyDetails::AttributesField::encode(READ_ONLY))
108      << kSmiTagSize;
109  __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
110          Immediate(kTypeAndReadOnlyMask));
111  __ j(not_zero, miss_label);
112
113  // Store the value at the masked, scaled index.
114  const int kValueOffset = kElementsStartOffset + kPointerSize;
115  __ lea(r0, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
116  __ mov(Operand(r0, 0), value);
117
118  // Update write barrier. Make sure not to clobber the value.
119  __ mov(r1, value);
120  __ RecordWrite(elements, r0, r1, kDontSaveFPRegs);
121}
122
123static void KeyedStoreGenerateMegamorphicHelper(
124    MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
125    KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length) {
126  Label transition_smi_elements;
127  Label finish_object_store, non_double_value, transition_double_elements;
128  Label fast_double_without_map_check;
129  Register receiver = StoreDescriptor::ReceiverRegister();
130  Register key = StoreDescriptor::NameRegister();
131  Register value = StoreDescriptor::ValueRegister();
132  DCHECK(receiver.is(edx));
133  DCHECK(key.is(ecx));
134  DCHECK(value.is(eax));
135  // key is a smi.
136  // ebx: FixedArray receiver->elements
137  // edi: receiver map
138  // Fast case: Do the store, could either Object or double.
139  __ bind(fast_object);
140  if (check_map == kCheckMap) {
141    __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
142    __ cmp(edi, masm->isolate()->factory()->fixed_array_map());
143    __ j(not_equal, fast_double);
144  }
145
146  // HOLECHECK: guards "A[i] = V"
147  // We have to go to the runtime if the current value is the hole because
148  // there may be a callback on the element
149  Label holecheck_passed1;
150  __ cmp(FixedArrayElementOperand(ebx, key),
151         masm->isolate()->factory()->the_hole_value());
152  __ j(not_equal, &holecheck_passed1);
153  __ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
154  __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
155
156  __ bind(&holecheck_passed1);
157
158  // Smi stores don't require further checks.
159  Label non_smi_value;
160  __ JumpIfNotSmi(value, &non_smi_value);
161  if (increment_length == kIncrementLength) {
162    // Add 1 to receiver->length.
163    __ add(FieldOperand(receiver, JSArray::kLengthOffset),
164           Immediate(Smi::FromInt(1)));
165  }
166  // It's irrelevant whether array is smi-only or not when writing a smi.
167  __ mov(FixedArrayElementOperand(ebx, key), value);
168  __ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
169
170  __ bind(&non_smi_value);
171  // Escape to elements kind transition case.
172  __ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
173  __ CheckFastObjectElements(edi, &transition_smi_elements);
174
175  // Fast elements array, store the value to the elements backing store.
176  __ bind(&finish_object_store);
177  if (increment_length == kIncrementLength) {
178    // Add 1 to receiver->length.
179    __ add(FieldOperand(receiver, JSArray::kLengthOffset),
180           Immediate(Smi::FromInt(1)));
181  }
182  __ mov(FixedArrayElementOperand(ebx, key), value);
183  // Update write barrier for the elements array address.
184  __ mov(edx, value);  // Preserve the value which is returned.
185  __ RecordWriteArray(ebx, edx, key, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
186                      OMIT_SMI_CHECK);
187  __ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
188
189  __ bind(fast_double);
190  if (check_map == kCheckMap) {
191    // Check for fast double array case. If this fails, call through to the
192    // runtime.
193    __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
194    __ j(not_equal, slow);
195    // If the value is a number, store it as a double in the FastDoubleElements
196    // array.
197  }
198
199  // HOLECHECK: guards "A[i] double hole?"
200  // We have to see if the double version of the hole is present. If so
201  // go to the runtime.
202  uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
203  __ cmp(FieldOperand(ebx, key, times_4, offset), Immediate(kHoleNanUpper32));
204  __ j(not_equal, &fast_double_without_map_check);
205  __ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
206  __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
207
208  __ bind(&fast_double_without_map_check);
209  __ StoreNumberToDoubleElements(value, ebx, key, edi,
210                                 &transition_double_elements, false);
211  if (increment_length == kIncrementLength) {
212    // Add 1 to receiver->length.
213    __ add(FieldOperand(receiver, JSArray::kLengthOffset),
214           Immediate(Smi::FromInt(1)));
215  }
216  __ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
217
218  __ bind(&transition_smi_elements);
219  __ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
220
221  // Transition the array appropriately depending on the value type.
222  __ CheckMap(value, masm->isolate()->factory()->heap_number_map(),
223              &non_double_value, DONT_DO_SMI_CHECK);
224
225  // Value is a double. Transition FAST_SMI_ELEMENTS -> FAST_DOUBLE_ELEMENTS
226  // and complete the store.
227  __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
228                                         FAST_DOUBLE_ELEMENTS, ebx, edi, slow);
229  AllocationSiteMode mode =
230      AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
231  ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
232                                                   ebx, mode, slow);
233  __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
234  __ jmp(&fast_double_without_map_check);
235
236  __ bind(&non_double_value);
237  // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
238  __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, ebx,
239                                         edi, slow);
240  mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
241  ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
242      masm, receiver, key, value, ebx, mode, slow);
243  __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
244  __ jmp(&finish_object_store);
245
246  __ bind(&transition_double_elements);
247  // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
248  // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
249  // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
250  __ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
251  __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
252                                         ebx, edi, slow);
253  mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
254  ElementsTransitionGenerator::GenerateDoubleToObject(masm, receiver, key,
255                                                      value, ebx, mode, slow);
256  __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
257  __ jmp(&finish_object_store);
258}
259
260
261void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
262                                       LanguageMode language_mode) {
263  typedef StoreWithVectorDescriptor Descriptor;
264  // Return address is on the stack.
265  Label slow, fast_object, fast_object_grow;
266  Label fast_double, fast_double_grow;
267  Label array, extra, check_if_double_array, maybe_name_key, miss;
268  Register receiver = Descriptor::ReceiverRegister();
269  Register key = Descriptor::NameRegister();
270  DCHECK(receiver.is(edx));
271  DCHECK(key.is(ecx));
272
273  // Check that the object isn't a smi.
274  __ JumpIfSmi(receiver, &slow);
275  // Get the map from the receiver.
276  __ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
277  // Check that the receiver does not require access checks.
278  // The generic stub does not perform map checks.
279  __ test_b(FieldOperand(edi, Map::kBitFieldOffset),
280            Immediate(1 << Map::kIsAccessCheckNeeded));
281  __ j(not_zero, &slow);
282
283  __ LoadParameterFromStack<Descriptor>(Descriptor::ValueRegister(),
284                                        Descriptor::kValue);
285
286  // Check that the key is a smi.
287  __ JumpIfNotSmi(key, &maybe_name_key);
288  __ CmpInstanceType(edi, JS_ARRAY_TYPE);
289  __ j(equal, &array);
290  // Check that the object is some kind of JS object EXCEPT JS Value type. In
291  // the case that the object is a value-wrapper object, we enter the runtime
292  // system to make sure that indexing into string objects works as intended.
293  STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
294  __ CmpInstanceType(edi, JS_OBJECT_TYPE);
295  __ j(below, &slow);
296
297  // Object case: Check key against length in the elements array.
298  // Key is a smi.
299  // edi: receiver map
300  __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
301  // Check array bounds. Both the key and the length of FixedArray are smis.
302  __ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
303  __ j(below, &fast_object);
304
305  // Slow case: call runtime.
306  __ bind(&slow);
307  PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
308  // Never returns to here.
309
310  __ bind(&maybe_name_key);
311  __ mov(ebx, FieldOperand(key, HeapObject::kMapOffset));
312  __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
313  __ JumpIfNotUniqueNameInstanceType(ebx, &slow);
314
315  masm->isolate()->store_stub_cache()->GenerateProbe(masm, receiver, key, edi,
316                                                     no_reg);
317
318  // Cache miss.
319  __ jmp(&miss);
320
321  // Extra capacity case: Check if there is extra capacity to
322  // perform the store and update the length. Used for adding one
323  // element to the array by writing to array[array.length].
324  __ bind(&extra);
325  // receiver is a JSArray.
326  // key is a smi.
327  // ebx: receiver->elements, a FixedArray
328  // edi: receiver map
329  // flags: compare (key, receiver.length())
330  // do not leave holes in the array:
331  __ j(not_equal, &slow);
332  __ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
333  __ j(above_equal, &slow);
334  __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
335  __ cmp(edi, masm->isolate()->factory()->fixed_array_map());
336  __ j(not_equal, &check_if_double_array);
337  __ jmp(&fast_object_grow);
338
339  __ bind(&check_if_double_array);
340  __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
341  __ j(not_equal, &slow);
342  __ jmp(&fast_double_grow);
343
344  // Array case: Get the length and the elements array from the JS
345  // array. Check that the array is in fast mode (and writable); if it
346  // is the length is always a smi.
347  __ bind(&array);
348  // receiver is a JSArray.
349  // key is a smi.
350  // edi: receiver map
351  __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
352
353  // Check the key against the length in the array and fall through to the
354  // common store code.
355  __ cmp(key, FieldOperand(receiver, JSArray::kLengthOffset));  // Compare smis.
356  __ j(above_equal, &extra);
357
358  KeyedStoreGenerateMegamorphicHelper(masm, &fast_object, &fast_double, &slow,
359                                      kCheckMap, kDontIncrementLength);
360  KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
361                                      &fast_double_grow, &slow, kDontCheckMap,
362                                      kIncrementLength);
363
364  __ bind(&miss);
365  GenerateMiss(masm);
366}
367
368void LoadIC::GenerateNormal(MacroAssembler* masm) {
369  Register dictionary = eax;
370  DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
371  DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
372
373  Label slow;
374
375  __ mov(dictionary, FieldOperand(LoadDescriptor::ReceiverRegister(),
376                                  JSObject::kPropertiesOffset));
377  GenerateDictionaryLoad(masm, &slow, dictionary,
378                         LoadDescriptor::NameRegister(), edi, ebx, eax);
379  __ ret(0);
380
381  // Dictionary load failed, go slow (but don't miss).
382  __ bind(&slow);
383  GenerateRuntimeGetProperty(masm);
384}
385
386
387static void LoadIC_PushArgs(MacroAssembler* masm) {
388  Register receiver = LoadDescriptor::ReceiverRegister();
389  Register name = LoadDescriptor::NameRegister();
390
391  Register slot = LoadDescriptor::SlotRegister();
392  Register vector = LoadWithVectorDescriptor::VectorRegister();
393  DCHECK(!edi.is(receiver) && !edi.is(name) && !edi.is(slot) &&
394         !edi.is(vector));
395
396  __ pop(edi);
397  __ push(receiver);
398  __ push(name);
399  __ push(slot);
400  __ push(vector);
401  __ push(edi);
402}
403
404
405void LoadIC::GenerateMiss(MacroAssembler* masm) {
406  // Return address is on the stack.
407  __ IncrementCounter(masm->isolate()->counters()->ic_load_miss(), 1);
408  LoadIC_PushArgs(masm);
409
410  // Perform tail call to the entry.
411  __ TailCallRuntime(Runtime::kLoadIC_Miss);
412}
413
414void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
415  // Return address is on the stack.
416  Register receiver = LoadDescriptor::ReceiverRegister();
417  Register name = LoadDescriptor::NameRegister();
418  DCHECK(!ebx.is(receiver) && !ebx.is(name));
419
420  __ pop(ebx);
421  __ push(receiver);
422  __ push(name);
423  __ push(ebx);
424
425  // Do tail-call to runtime routine.
426  __ TailCallRuntime(Runtime::kGetProperty);
427}
428
429
430void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
431  // Return address is on the stack.
432  __ IncrementCounter(masm->isolate()->counters()->ic_keyed_load_miss(), 1);
433
434  LoadIC_PushArgs(masm);
435
436  // Perform tail call to the entry.
437  __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
438}
439
440void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
441  // Return address is on the stack.
442  Register receiver = LoadDescriptor::ReceiverRegister();
443  Register name = LoadDescriptor::NameRegister();
444  DCHECK(!ebx.is(receiver) && !ebx.is(name));
445
446  __ pop(ebx);
447  __ push(receiver);
448  __ push(name);
449  __ push(ebx);
450
451  // Do tail-call to runtime routine.
452  __ TailCallRuntime(Runtime::kKeyedGetProperty);
453}
454
455static void StoreIC_PushArgs(MacroAssembler* masm) {
456  Register receiver = StoreWithVectorDescriptor::ReceiverRegister();
457  Register name = StoreWithVectorDescriptor::NameRegister();
458
459  STATIC_ASSERT(StoreWithVectorDescriptor::kStackArgumentsCount == 3);
460  // Current stack layout:
461  // - esp[12]   -- value
462  // - esp[8]    -- slot
463  // - esp[4]    -- vector
464  // - esp[0]    -- return address
465
466  Register return_address = StoreWithVectorDescriptor::SlotRegister();
467  __ pop(return_address);
468  __ push(receiver);
469  __ push(name);
470  __ push(return_address);
471}
472
473
474void StoreIC::GenerateMiss(MacroAssembler* masm) {
475  // Return address is on the stack.
476  StoreIC_PushArgs(masm);
477
478  // Perform tail call to the entry.
479  __ TailCallRuntime(Runtime::kStoreIC_Miss);
480}
481
482
483void StoreIC::GenerateNormal(MacroAssembler* masm) {
484  typedef StoreWithVectorDescriptor Descriptor;
485  Label restore_miss;
486  Register receiver = Descriptor::ReceiverRegister();
487  Register name = Descriptor::NameRegister();
488  Register value = Descriptor::ValueRegister();
489  // Since the slot and vector values are passed on the stack we can use
490  // respective registers as scratch registers.
491  Register scratch1 = Descriptor::VectorRegister();
492  Register scratch2 = Descriptor::SlotRegister();
493
494  __ LoadParameterFromStack<Descriptor>(value, Descriptor::kValue);
495
496  // A lot of registers are needed for storing to slow case objects.
497  // Push and restore receiver but rely on GenerateDictionaryStore preserving
498  // the value and name.
499  __ push(receiver);
500
501  Register dictionary = receiver;
502  __ mov(dictionary, FieldOperand(receiver, JSObject::kPropertiesOffset));
503  GenerateDictionaryStore(masm, &restore_miss, dictionary, name, value,
504                          scratch1, scratch2);
505  __ Drop(1);
506  Counters* counters = masm->isolate()->counters();
507  __ IncrementCounter(counters->ic_store_normal_hit(), 1);
508  __ ret(Descriptor::kStackArgumentsCount * kPointerSize);
509
510  __ bind(&restore_miss);
511  __ pop(receiver);
512  __ IncrementCounter(counters->ic_store_normal_miss(), 1);
513  GenerateMiss(masm);
514}
515
516
517void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
518  // Return address is on the stack.
519  StoreIC_PushArgs(masm);
520
521  // Do tail-call to runtime routine.
522  __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
523}
524
525void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
526  // Return address is on the stack.
527  StoreIC_PushArgs(masm);
528
529  // Do tail-call to runtime routine.
530  __ TailCallRuntime(Runtime::kKeyedStoreIC_Slow);
531}
532
533#undef __
534
535
536Condition CompareIC::ComputeCondition(Token::Value op) {
537  switch (op) {
538    case Token::EQ_STRICT:
539    case Token::EQ:
540      return equal;
541    case Token::LT:
542      return less;
543    case Token::GT:
544      return greater;
545    case Token::LTE:
546      return less_equal;
547    case Token::GTE:
548      return greater_equal;
549    default:
550      UNREACHABLE();
551      return no_condition;
552  }
553}
554
555
556bool CompareIC::HasInlinedSmiCode(Address address) {
557  // The address of the instruction following the call.
558  Address test_instruction_address =
559      address + Assembler::kCallTargetAddressOffset;
560
561  // If the instruction following the call is not a test al, nothing
562  // was inlined.
563  return *test_instruction_address == Assembler::kTestAlByte;
564}
565
566
567void PatchInlinedSmiCode(Isolate* isolate, Address address,
568                         InlinedSmiCheck check) {
569  // The address of the instruction following the call.
570  Address test_instruction_address =
571      address + Assembler::kCallTargetAddressOffset;
572
573  // If the instruction following the call is not a test al, nothing
574  // was inlined.
575  if (*test_instruction_address != Assembler::kTestAlByte) {
576    DCHECK(*test_instruction_address == Assembler::kNopByte);
577    return;
578  }
579
580  Address delta_address = test_instruction_address + 1;
581  // The delta to the start of the map check instruction and the
582  // condition code uses at the patched jump.
583  uint8_t delta = *reinterpret_cast<uint8_t*>(delta_address);
584  if (FLAG_trace_ic) {
585    PrintF("[  patching ic at %p, test=%p, delta=%d\n",
586           static_cast<void*>(address),
587           static_cast<void*>(test_instruction_address), delta);
588  }
589
590  // Patch with a short conditional jump. Enabling means switching from a short
591  // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
592  // reverse operation of that.
593  Address jmp_address = test_instruction_address - delta;
594  DCHECK((check == ENABLE_INLINED_SMI_CHECK)
595             ? (*jmp_address == Assembler::kJncShortOpcode ||
596                *jmp_address == Assembler::kJcShortOpcode)
597             : (*jmp_address == Assembler::kJnzShortOpcode ||
598                *jmp_address == Assembler::kJzShortOpcode));
599  Condition cc =
600      (check == ENABLE_INLINED_SMI_CHECK)
601          ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
602          : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
603  *jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
604}
605}  // namespace internal
606}  // namespace v8
607
608#endif  // V8_TARGET_ARCH_X87
609