1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
6#define V8_S390_MACRO_ASSEMBLER_S390_H_
7
8#include "src/assembler.h"
9#include "src/bailout-reason.h"
10#include "src/frames.h"
11#include "src/globals.h"
12
13namespace v8 {
14namespace internal {
15
16// Give alias names to registers for calling conventions.
17const Register kReturnRegister0 = {Register::kCode_r2};
18const Register kReturnRegister1 = {Register::kCode_r3};
19const Register kReturnRegister2 = {Register::kCode_r4};
20const Register kJSFunctionRegister = {Register::kCode_r3};
21const Register kContextRegister = {Register::kCode_r13};
22const Register kAllocateSizeRegister = {Register::kCode_r3};
23const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
24const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6};
25const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7};
26const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
27const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
28const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
29const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
30const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
31
32// ----------------------------------------------------------------------------
33// Static helper functions
34
35// Generate a MemOperand for loading a field from an object.
36inline MemOperand FieldMemOperand(Register object, int offset) {
37  return MemOperand(object, offset - kHeapObjectTag);
38}
39
40// Generate a MemOperand for loading a field from an object.
41inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
42  return MemOperand(object, index, offset - kHeapObjectTag);
43}
44
45// Generate a MemOperand for loading a field from Root register
46inline MemOperand RootMemOperand(Heap::RootListIndex index) {
47  return MemOperand(kRootRegister, index << kPointerSizeLog2);
48}
49
50// Flags used for AllocateHeapNumber
51enum TaggingMode {
52  // Tag the result.
53  TAG_RESULT,
54  // Don't tag
55  DONT_TAG_RESULT
56};
57
58enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
59enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
60enum PointersToHereCheck {
61  kPointersToHereMaybeInteresting,
62  kPointersToHereAreAlwaysInteresting
63};
64enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
65
66Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
67                                   Register reg3 = no_reg,
68                                   Register reg4 = no_reg,
69                                   Register reg5 = no_reg,
70                                   Register reg6 = no_reg);
71
72#ifdef DEBUG
73bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
74                Register reg4 = no_reg, Register reg5 = no_reg,
75                Register reg6 = no_reg, Register reg7 = no_reg,
76                Register reg8 = no_reg, Register reg9 = no_reg,
77                Register reg10 = no_reg);
78#endif
79
80// These exist to provide portability between 32 and 64bit
81#if V8_TARGET_ARCH_S390X
82#define Div divd
83
84// The length of the arithmetic operation is the length
85// of the register.
86
87// Length:
88// H = halfword
89// W = word
90
91// arithmetics and bitwise
92#define AddMI agsi
93#define AddRR agr
94#define SubRR sgr
95#define AndRR ngr
96#define OrRR ogr
97#define XorRR xgr
98#define LoadComplementRR lcgr
99#define LoadNegativeRR lngr
100
101// Distinct Operands
102#define AddP_RRR agrk
103#define AddPImm_RRI aghik
104#define AddLogicalP_RRR algrk
105#define SubP_RRR sgrk
106#define SubLogicalP_RRR slgrk
107#define AndP_RRR ngrk
108#define OrP_RRR ogrk
109#define XorP_RRR xgrk
110
111// Load / Store
112#define LoadRR lgr
113#define LoadAndTestRR ltgr
114#define LoadImmP lghi
115
116// Compare
117#define CmpPH cghi
118#define CmpLogicalPW clgfi
119
120// Shifts
121#define ShiftLeftP sllg
122#define ShiftRightP srlg
123#define ShiftLeftArithP slag
124#define ShiftRightArithP srag
125#else
126
127// arithmetics and bitwise
128// Reg2Reg
129#define AddMI asi
130#define AddRR ar
131#define SubRR sr
132#define AndRR nr
133#define OrRR or_z
134#define XorRR xr
135#define LoadComplementRR lcr
136#define LoadNegativeRR lnr
137
138// Distinct Operands
139#define AddP_RRR ark
140#define AddPImm_RRI ahik
141#define AddLogicalP_RRR alrk
142#define SubP_RRR srk
143#define SubLogicalP_RRR slrk
144#define AndP_RRR nrk
145#define OrP_RRR ork
146#define XorP_RRR xrk
147
148// Load / Store
149#define LoadRR lr
150#define LoadAndTestRR ltr
151#define LoadImmP lhi
152
153// Compare
154#define CmpPH chi
155#define CmpLogicalPW clfi
156
157// Shifts
158#define ShiftLeftP ShiftLeft
159#define ShiftRightP ShiftRight
160#define ShiftLeftArithP ShiftLeftArith
161#define ShiftRightArithP ShiftRightArith
162
163#endif
164
165// MacroAssembler implements a collection of frequently used macros.
166class MacroAssembler : public Assembler {
167 public:
168  MacroAssembler(Isolate* isolate, void* buffer, int size,
169                 CodeObjectRequired create_code_object);
170
171  // Returns the size of a call in instructions.
172  static int CallSize(Register target);
173  int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
174  static int CallSizeNotPredictableCodeSize(Address target,
175                                            RelocInfo::Mode rmode,
176                                            Condition cond = al);
177
178  // Jump, Call, and Ret pseudo instructions implementing inter-working.
179  void Jump(Register target);
180  void JumpToJSEntry(Register target);
181  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
182            CRegister cr = cr7);
183  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
184  void Call(Register target);
185  void CallJSEntry(Register target);
186  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
187  int CallSize(Handle<Code> code,
188               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
189               TypeFeedbackId ast_id = TypeFeedbackId::None(),
190               Condition cond = al);
191  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
192            TypeFeedbackId ast_id = TypeFeedbackId::None(),
193            Condition cond = al);
194  void Ret() { b(r14); }
195  void Ret(Condition cond) { b(cond, r14); }
196
197  // Emit code that loads |parameter_index|'th parameter from the stack to
198  // the register according to the CallInterfaceDescriptor definition.
199  // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
200  // below the caller's sp.
201  template <class Descriptor>
202  void LoadParameterFromStack(
203      Register reg, typename Descriptor::ParameterIndices parameter_index,
204      int sp_to_ra_offset_in_words = 0) {
205    DCHECK(Descriptor::kPassLastArgsOnStack);
206    UNIMPLEMENTED();
207  }
208
209  // Emit code to discard a non-negative number of pointer-sized elements
210  // from the stack, clobbering only the sp register.
211  void Drop(int count);
212  void Drop(Register count, Register scratch = r0);
213
214  void Ret(int drop) {
215    Drop(drop);
216    Ret();
217  }
218
219  void Call(Label* target);
220
221  // Register move. May do nothing if the registers are identical.
222  void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
223  void Move(Register dst, Handle<Object> value);
224  void Move(Register dst, Register src, Condition cond = al);
225  void Move(DoubleRegister dst, DoubleRegister src);
226
227  void MultiPush(RegList regs, Register location = sp);
228  void MultiPop(RegList regs, Register location = sp);
229
230  void MultiPushDoubles(RegList dregs, Register location = sp);
231  void MultiPopDoubles(RegList dregs, Register location = sp);
232
233  // Load an object from the root table.
234  void LoadRoot(Register destination, Heap::RootListIndex index,
235                Condition cond = al);
236  // Store an object to the root table.
237  void StoreRoot(Register source, Heap::RootListIndex index,
238                 Condition cond = al);
239
240  //--------------------------------------------------------------------------
241  // S390 Macro Assemblers for Instructions
242  //--------------------------------------------------------------------------
243
244  // Arithmetic Operations
245
246  // Add (Register - Immediate)
247  void Add32(Register dst, const Operand& imm);
248  void AddP(Register dst, const Operand& imm);
249  void Add32(Register dst, Register src, const Operand& imm);
250  void AddP(Register dst, Register src, const Operand& imm);
251
252  // Add (Register - Register)
253  void Add32(Register dst, Register src);
254  void AddP(Register dst, Register src);
255  void AddP_ExtendSrc(Register dst, Register src);
256  void Add32(Register dst, Register src1, Register src2);
257  void AddP(Register dst, Register src1, Register src2);
258  void AddP_ExtendSrc(Register dst, Register src1, Register src2);
259
260  // Add (Register - Mem)
261  void Add32(Register dst, const MemOperand& opnd);
262  void AddP(Register dst, const MemOperand& opnd);
263  void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
264
265  // Add (Mem - Immediate)
266  void Add32(const MemOperand& opnd, const Operand& imm);
267  void AddP(const MemOperand& opnd, const Operand& imm);
268
269  // Add Logical (Register - Register)
270  void AddLogical32(Register dst, Register src1, Register src2);
271
272  // Add Logical With Carry (Register - Register)
273  void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
274
275  // Add Logical (Register - Immediate)
276  void AddLogical(Register dst, const Operand& imm);
277  void AddLogicalP(Register dst, const Operand& imm);
278
279  // Add Logical (Register - Mem)
280  void AddLogical(Register dst, const MemOperand& opnd);
281  void AddLogicalP(Register dst, const MemOperand& opnd);
282
283  // Subtract (Register - Immediate)
284  void Sub32(Register dst, const Operand& imm);
285  void SubP(Register dst, const Operand& imm);
286  void Sub32(Register dst, Register src, const Operand& imm);
287  void SubP(Register dst, Register src, const Operand& imm);
288
289  // Subtract (Register - Register)
290  void Sub32(Register dst, Register src);
291  void SubP(Register dst, Register src);
292  void SubP_ExtendSrc(Register dst, Register src);
293  void Sub32(Register dst, Register src1, Register src2);
294  void SubP(Register dst, Register src1, Register src2);
295  void SubP_ExtendSrc(Register dst, Register src1, Register src2);
296
297  // Subtract (Register - Mem)
298  void Sub32(Register dst, const MemOperand& opnd);
299  void SubP(Register dst, const MemOperand& opnd);
300  void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
301
302  // Subtract Logical (Register - Mem)
303  void SubLogical(Register dst, const MemOperand& opnd);
304  void SubLogicalP(Register dst, const MemOperand& opnd);
305  void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
306  // Subtract Logical 32-bit
307  void SubLogical32(Register dst, Register src1, Register src2);
308  // Subtract Logical With Borrow 32-bit
309  void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
310
311  // Multiply
312  void MulP(Register dst, const Operand& opnd);
313  void MulP(Register dst, Register src);
314  void MulP(Register dst, const MemOperand& opnd);
315  void Mul(Register dst, Register src1, Register src2);
316  void Mul32(Register dst, const MemOperand& src1);
317  void Mul32(Register dst, Register src1);
318  void Mul32(Register dst, const Operand& src1);
319  void Mul64(Register dst, const MemOperand& src1);
320  void Mul64(Register dst, Register src1);
321  void Mul64(Register dst, const Operand& src1);
322
323  // Divide
324  void DivP(Register dividend, Register divider);
325
326  // Compare
327  void Cmp32(Register src1, Register src2);
328  void CmpP(Register src1, Register src2);
329  void Cmp32(Register dst, const Operand& opnd);
330  void CmpP(Register dst, const Operand& opnd);
331  void Cmp32(Register dst, const MemOperand& opnd);
332  void CmpP(Register dst, const MemOperand& opnd);
333
334  // Compare Logical
335  void CmpLogical32(Register src1, Register src2);
336  void CmpLogicalP(Register src1, Register src2);
337  void CmpLogical32(Register src1, const Operand& opnd);
338  void CmpLogicalP(Register src1, const Operand& opnd);
339  void CmpLogical32(Register dst, const MemOperand& opnd);
340  void CmpLogicalP(Register dst, const MemOperand& opnd);
341
342  // Compare Logical Byte (CLI/CLIY)
343  void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
344
345  // Load 32bit
346  void Load(Register dst, const MemOperand& opnd);
347  void Load(Register dst, const Operand& opnd);
348  void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
349  void LoadW(Register dst, Register src);
350  void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
351  void LoadlW(Register dst, Register src);
352  void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
353  void LoadLogicalHalfWordP(Register dst, Register src);
354  void LoadB(Register dst, const MemOperand& opnd);
355  void LoadB(Register dst, Register src);
356  void LoadlB(Register dst, const MemOperand& opnd);
357
358  void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
359  void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
360
361  // Load And Test
362  void LoadAndTest32(Register dst, Register src);
363  void LoadAndTestP_ExtendSrc(Register dst, Register src);
364  void LoadAndTestP(Register dst, Register src);
365
366  void LoadAndTest32(Register dst, const MemOperand& opnd);
367  void LoadAndTestP(Register dst, const MemOperand& opnd);
368
369  // Load Floating Point
370  void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
371  void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
372  void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
373
374  // Load On Condition
375  void LoadOnConditionP(Condition cond, Register dst, Register src);
376
377  // Store Floating Point
378  void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
379  void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
380  void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
381                            DoubleRegister scratch);
382
383  void Branch(Condition c, const Operand& opnd);
384  void BranchOnCount(Register r1, Label* l);
385
386  // Shifts
387  void ShiftLeft(Register dst, Register src, Register val);
388  void ShiftLeft(Register dst, Register src, const Operand& val);
389  void ShiftRight(Register dst, Register src, Register val);
390  void ShiftRight(Register dst, Register src, const Operand& val);
391  void ShiftLeftArith(Register dst, Register src, Register shift);
392  void ShiftLeftArith(Register dst, Register src, const Operand& val);
393  void ShiftRightArith(Register dst, Register src, Register shift);
394  void ShiftRightArith(Register dst, Register src, const Operand& val);
395
396  void ClearRightImm(Register dst, Register src, const Operand& val);
397
398  // Bitwise operations
399  void And(Register dst, Register src);
400  void AndP(Register dst, Register src);
401  void And(Register dst, Register src1, Register src2);
402  void AndP(Register dst, Register src1, Register src2);
403  void And(Register dst, const MemOperand& opnd);
404  void AndP(Register dst, const MemOperand& opnd);
405  void And(Register dst, const Operand& opnd);
406  void AndP(Register dst, const Operand& opnd);
407  void And(Register dst, Register src, const Operand& opnd);
408  void AndP(Register dst, Register src, const Operand& opnd);
409  void Or(Register dst, Register src);
410  void OrP(Register dst, Register src);
411  void Or(Register dst, Register src1, Register src2);
412  void OrP(Register dst, Register src1, Register src2);
413  void Or(Register dst, const MemOperand& opnd);
414  void OrP(Register dst, const MemOperand& opnd);
415  void Or(Register dst, const Operand& opnd);
416  void OrP(Register dst, const Operand& opnd);
417  void Or(Register dst, Register src, const Operand& opnd);
418  void OrP(Register dst, Register src, const Operand& opnd);
419  void Xor(Register dst, Register src);
420  void XorP(Register dst, Register src);
421  void Xor(Register dst, Register src1, Register src2);
422  void XorP(Register dst, Register src1, Register src2);
423  void Xor(Register dst, const MemOperand& opnd);
424  void XorP(Register dst, const MemOperand& opnd);
425  void Xor(Register dst, const Operand& opnd);
426  void XorP(Register dst, const Operand& opnd);
427  void Xor(Register dst, Register src, const Operand& opnd);
428  void XorP(Register dst, Register src, const Operand& opnd);
429  void Popcnt32(Register dst, Register src);
430  void Not32(Register dst, Register src = no_reg);
431  void Not64(Register dst, Register src = no_reg);
432  void NotP(Register dst, Register src = no_reg);
433
434#ifdef V8_TARGET_ARCH_S390X
435  void Popcnt64(Register dst, Register src);
436#endif
437
438  void mov(Register dst, const Operand& src);
439
440  void CleanUInt32(Register x) {
441#ifdef V8_TARGET_ARCH_S390X
442    llgfr(x, x);
443#endif
444  }
445
446  // ---------------------------------------------------------------------------
447  // GC Support
448
449  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
450                                           Register address);
451
452  enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
453
454  // Record in the remembered set the fact that we have a pointer to new space
455  // at the address pointed to by the addr register.  Only works if addr is not
456  // in new space.
457  void RememberedSetHelper(Register object,  // Used for debug code.
458                           Register addr, Register scratch,
459                           SaveFPRegsMode save_fp,
460                           RememberedSetFinalAction and_then);
461
462  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
463                     Label* condition_met);
464
465  // Check if object is in new space.  Jumps if the object is not in new space.
466  // The register scratch can be object itself, but scratch will be clobbered.
467  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
468    InNewSpace(object, scratch, eq, branch);
469  }
470
471  // Check if object is in new space.  Jumps if the object is in new space.
472  // The register scratch can be object itself, but it will be clobbered.
473  void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
474    InNewSpace(object, scratch, ne, branch);
475  }
476
477  // Check if an object has a given incremental marking color.
478  void HasColor(Register object, Register scratch0, Register scratch1,
479                Label* has_color, int first_bit, int second_bit);
480
481  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
482                   Label* on_black);
483
484  // Checks the color of an object.  If the object is white we jump to the
485  // incremental marker.
486  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
487                   Register scratch3, Label* value_is_white);
488
489  // Notify the garbage collector that we wrote a pointer into an object.
490  // |object| is the object being stored into, |value| is the object being
491  // stored.  value and scratch registers are clobbered by the operation.
492  // The offset is the offset from the start of the object, not the offset from
493  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
494  void RecordWriteField(
495      Register object, int offset, Register value, Register scratch,
496      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
497      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
498      SmiCheck smi_check = INLINE_SMI_CHECK,
499      PointersToHereCheck pointers_to_here_check_for_value =
500          kPointersToHereMaybeInteresting);
501
502  // As above, but the offset has the tag presubtracted.  For use with
503  // MemOperand(reg, off).
504  inline void RecordWriteContextSlot(
505      Register context, int offset, Register value, Register scratch,
506      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
507      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
508      SmiCheck smi_check = INLINE_SMI_CHECK,
509      PointersToHereCheck pointers_to_here_check_for_value =
510          kPointersToHereMaybeInteresting) {
511    RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
512                     lr_status, save_fp, remembered_set_action, smi_check,
513                     pointers_to_here_check_for_value);
514  }
515
516  // Notify the garbage collector that we wrote a code entry into a
517  // JSFunction. Only scratch is clobbered by the operation.
518  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
519                                 Register scratch);
520
521  void RecordWriteForMap(Register object, Register map, Register dst,
522                         LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
523
524  // For a given |object| notify the garbage collector that the slot |address|
525  // has been written.  |value| is the object being stored. The value and
526  // address registers are clobbered by the operation.
527  void RecordWrite(
528      Register object, Register address, Register value,
529      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
530      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
531      SmiCheck smi_check = INLINE_SMI_CHECK,
532      PointersToHereCheck pointers_to_here_check_for_value =
533          kPointersToHereMaybeInteresting);
534
535  void push(Register src) {
536    lay(sp, MemOperand(sp, -kPointerSize));
537    StoreP(src, MemOperand(sp));
538  }
539
540  void pop(Register dst) {
541    LoadP(dst, MemOperand(sp));
542    la(sp, MemOperand(sp, kPointerSize));
543  }
544
545  void pop() { la(sp, MemOperand(sp, kPointerSize)); }
546
547  void Push(Register src) { push(src); }
548
549  // Push a handle.
550  void Push(Handle<Object> handle);
551  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
552
553  // Push two registers.  Pushes leftmost register first (to highest address).
554  void Push(Register src1, Register src2) {
555    lay(sp, MemOperand(sp, -kPointerSize * 2));
556    StoreP(src1, MemOperand(sp, kPointerSize));
557    StoreP(src2, MemOperand(sp, 0));
558  }
559
560  // Push three registers.  Pushes leftmost register first (to highest address).
561  void Push(Register src1, Register src2, Register src3) {
562    lay(sp, MemOperand(sp, -kPointerSize * 3));
563    StoreP(src1, MemOperand(sp, kPointerSize * 2));
564    StoreP(src2, MemOperand(sp, kPointerSize));
565    StoreP(src3, MemOperand(sp, 0));
566  }
567
568  // Push four registers.  Pushes leftmost register first (to highest address).
569  void Push(Register src1, Register src2, Register src3, Register src4) {
570    lay(sp, MemOperand(sp, -kPointerSize * 4));
571    StoreP(src1, MemOperand(sp, kPointerSize * 3));
572    StoreP(src2, MemOperand(sp, kPointerSize * 2));
573    StoreP(src3, MemOperand(sp, kPointerSize));
574    StoreP(src4, MemOperand(sp, 0));
575  }
576
577  // Push five registers.  Pushes leftmost register first (to highest address).
578  void Push(Register src1, Register src2, Register src3, Register src4,
579            Register src5) {
580    DCHECK(!src1.is(src2));
581    DCHECK(!src1.is(src3));
582    DCHECK(!src2.is(src3));
583    DCHECK(!src1.is(src4));
584    DCHECK(!src2.is(src4));
585    DCHECK(!src3.is(src4));
586    DCHECK(!src1.is(src5));
587    DCHECK(!src2.is(src5));
588    DCHECK(!src3.is(src5));
589    DCHECK(!src4.is(src5));
590
591    lay(sp, MemOperand(sp, -kPointerSize * 5));
592    StoreP(src1, MemOperand(sp, kPointerSize * 4));
593    StoreP(src2, MemOperand(sp, kPointerSize * 3));
594    StoreP(src3, MemOperand(sp, kPointerSize * 2));
595    StoreP(src4, MemOperand(sp, kPointerSize));
596    StoreP(src5, MemOperand(sp, 0));
597  }
598
599  void Pop(Register dst) { pop(dst); }
600
601  // Pop two registers. Pops rightmost register first (from lower address).
602  void Pop(Register src1, Register src2) {
603    LoadP(src2, MemOperand(sp, 0));
604    LoadP(src1, MemOperand(sp, kPointerSize));
605    la(sp, MemOperand(sp, 2 * kPointerSize));
606  }
607
608  // Pop three registers.  Pops rightmost register first (from lower address).
609  void Pop(Register src1, Register src2, Register src3) {
610    LoadP(src3, MemOperand(sp, 0));
611    LoadP(src2, MemOperand(sp, kPointerSize));
612    LoadP(src1, MemOperand(sp, 2 * kPointerSize));
613    la(sp, MemOperand(sp, 3 * kPointerSize));
614  }
615
616  // Pop four registers.  Pops rightmost register first (from lower address).
617  void Pop(Register src1, Register src2, Register src3, Register src4) {
618    LoadP(src4, MemOperand(sp, 0));
619    LoadP(src3, MemOperand(sp, kPointerSize));
620    LoadP(src2, MemOperand(sp, 2 * kPointerSize));
621    LoadP(src1, MemOperand(sp, 3 * kPointerSize));
622    la(sp, MemOperand(sp, 4 * kPointerSize));
623  }
624
625  // Pop five registers.  Pops rightmost register first (from lower address).
626  void Pop(Register src1, Register src2, Register src3, Register src4,
627           Register src5) {
628    LoadP(src5, MemOperand(sp, 0));
629    LoadP(src4, MemOperand(sp, kPointerSize));
630    LoadP(src3, MemOperand(sp, 2 * kPointerSize));
631    LoadP(src2, MemOperand(sp, 3 * kPointerSize));
632    LoadP(src1, MemOperand(sp, 4 * kPointerSize));
633    la(sp, MemOperand(sp, 5 * kPointerSize));
634  }
635
636  // Push a fixed frame, consisting of lr, fp, constant pool.
637  void PushCommonFrame(Register marker_reg = no_reg);
638
639  // Push a standard frame, consisting of lr, fp, constant pool,
640  // context and JS function
641  void PushStandardFrame(Register function_reg);
642
643  void PopCommonFrame(Register marker_reg = no_reg);
644
645  // Restore caller's frame pointer and return address prior to being
646  // overwritten by tail call stack preparation.
647  void RestoreFrameStateForTailCall();
648
649  // Push and pop the registers that can hold pointers, as defined by the
650  // RegList constant kSafepointSavedRegisters.
651  void PushSafepointRegisters();
652  void PopSafepointRegisters();
653  // Store value in register src in the safepoint stack slot for
654  // register dst.
655  void StoreToSafepointRegisterSlot(Register src, Register dst);
656  // Load the value of the src register from its safepoint stack slot
657  // into register dst.
658  void LoadFromSafepointRegisterSlot(Register dst, Register src);
659
660  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
661  // from C.
662  // Does not handle errors.
663  void FlushICache(Register address, size_t size, Register scratch);
664
665  // If the value is a NaN, canonicalize the value else, do nothing.
666  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
667  void CanonicalizeNaN(const DoubleRegister value) {
668    CanonicalizeNaN(value, value);
669  }
670
671  // Converts the integer (untagged smi) in |src| to a double, storing
672  // the result to |dst|
673  void ConvertIntToDouble(Register src, DoubleRegister dst);
674
675  // Converts the unsigned integer (untagged smi) in |src| to
676  // a double, storing the result to |dst|
677  void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
678
679  // Converts the integer (untagged smi) in |src| to
680  // a float, storing the result in |dst|
681  void ConvertIntToFloat(Register src, DoubleRegister dst);
682
683  // Converts the unsigned integer (untagged smi) in |src| to
684  // a float, storing the result in |dst|
685  void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
686
687#if V8_TARGET_ARCH_S390X
688  void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
689  void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
690  void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
691  void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
692#endif
693
694  void MovIntToFloat(DoubleRegister dst, Register src);
695  void MovFloatToInt(Register dst, DoubleRegister src);
696  void MovDoubleToInt64(Register dst, DoubleRegister src);
697  void MovInt64ToDouble(DoubleRegister dst, Register src);
698  // Converts the double_input to an integer.  Note that, upon return,
699  // the contents of double_dst will also hold the fixed point representation.
700  void ConvertFloat32ToInt64(const DoubleRegister double_input,
701#if !V8_TARGET_ARCH_S390X
702                             const Register dst_hi,
703#endif
704                             const Register dst,
705                             const DoubleRegister double_dst,
706                             FPRoundingMode rounding_mode = kRoundToZero);
707
708  // Converts the double_input to an integer.  Note that, upon return,
709  // the contents of double_dst will also hold the fixed point representation.
710  void ConvertDoubleToInt64(const DoubleRegister double_input,
711#if !V8_TARGET_ARCH_S390X
712                            const Register dst_hi,
713#endif
714                            const Register dst, const DoubleRegister double_dst,
715                            FPRoundingMode rounding_mode = kRoundToZero);
716
717  void ConvertFloat32ToInt32(const DoubleRegister double_input,
718                             const Register dst,
719                             const DoubleRegister double_dst,
720                             FPRoundingMode rounding_mode);
721  void ConvertFloat32ToUnsignedInt32(
722      const DoubleRegister double_input, const Register dst,
723      const DoubleRegister double_dst,
724      FPRoundingMode rounding_mode = kRoundToZero);
725#if V8_TARGET_ARCH_S390X
726  // Converts the double_input to an unsigned integer.  Note that, upon return,
727  // the contents of double_dst will also hold the fixed point representation.
728  void ConvertDoubleToUnsignedInt64(
729      const DoubleRegister double_input, const Register dst,
730      const DoubleRegister double_dst,
731      FPRoundingMode rounding_mode = kRoundToZero);
732  void ConvertFloat32ToUnsignedInt64(
733      const DoubleRegister double_input, const Register dst,
734      const DoubleRegister double_dst,
735      FPRoundingMode rounding_mode = kRoundToZero);
736#endif
737
738#if !V8_TARGET_ARCH_S390X
739  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
740                     Register src_high, Register scratch, Register shift);
741  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
742                     Register src_high, uint32_t shift);
743  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
744                      Register src_high, Register scratch, Register shift);
745  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
746                      Register src_high, uint32_t shift);
747  void ShiftRightArithPair(Register dst_low, Register dst_high,
748                           Register src_low, Register src_high,
749                           Register scratch, Register shift);
750  void ShiftRightArithPair(Register dst_low, Register dst_high,
751                           Register src_low, Register src_high, uint32_t shift);
752#endif
753
754  // Generates function and stub prologue code.
755  void StubPrologue(StackFrame::Type type, Register base = no_reg,
756                    int prologue_offset = 0);
757  void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
758
759  // Enter exit frame.
760  // stack_space - extra stack space, used for parameters before call to C.
761  // At least one slot (for the return address) should be provided.
762  void EnterExitFrame(bool save_doubles, int stack_space = 1,
763                      StackFrame::Type frame_type = StackFrame::EXIT);
764
765  // Leave the current exit frame. Expects the return value in r0.
766  // Expect the number of values, pushed prior to the exit frame, to
767  // remove in a register (or no_reg, if there is nothing to remove).
768  void LeaveExitFrame(bool save_doubles, Register argument_count,
769                      bool restore_context,
770                      bool argument_count_is_length = false);
771
772  // Get the actual activation frame alignment for target environment.
773  static int ActivationFrameAlignment();
774
775  void LoadContext(Register dst, int context_chain_length);
776
777  // Load the global object from the current context.
778  void LoadGlobalObject(Register dst) {
779    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
780  }
781
782  // Load the global proxy from the current context.
783  void LoadGlobalProxy(Register dst) {
784    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
785  }
786
787  // Conditionally load the cached Array transitioned map of type
788  // transitioned_kind from the native context if the map in register
789  // map_in_out is the cached Array map in the native context of
790  // expected_kind.
791  void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
792                                           ElementsKind transitioned_kind,
793                                           Register map_in_out,
794                                           Register scratch,
795                                           Label* no_map_match);
796
797  void LoadNativeContextSlot(int index, Register dst);
798
799  // Load the initial map from the global function. The registers
800  // function and map can be the same, function is then overwritten.
801  void LoadGlobalFunctionInitialMap(Register function, Register map,
802                                    Register scratch);
803
804  void InitializeRootRegister() {
805    ExternalReference roots_array_start =
806        ExternalReference::roots_array_start(isolate());
807    mov(kRootRegister, Operand(roots_array_start));
808  }
809
810  // ----------------------------------------------------------------
811  // new S390 macro-assembler interfaces that are slightly higher level
812  // than assembler-s390 and may generate variable length sequences
813
814  // load a literal signed int value <value> to GPR <dst>
815  void LoadIntLiteral(Register dst, int value);
816
817  // load an SMI value <value> to GPR <dst>
818  void LoadSmiLiteral(Register dst, Smi* smi);
819
820  // load a literal double value <value> to FPR <result>
821  void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
822  void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
823                         Register scratch);
824
825  void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
826
827  void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
828
829  void LoadHalfWordP(Register dst, const MemOperand& mem,
830                     Register scratch = no_reg);
831
832  void StoreHalfWord(Register src, const MemOperand& mem,
833                     Register scratch = r0);
834  void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
835
836  void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
837                          Register scratch = no_reg);
838  void StoreRepresentation(Register src, const MemOperand& mem,
839                           Representation r, Register scratch = no_reg);
840
841  void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
842  void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
843  void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
844  void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
845  void AndSmiLiteral(Register dst, Register src, Smi* smi);
846
847  // Set new rounding mode RN to FPSCR
848  void SetRoundingMode(FPRoundingMode RN);
849
850  // reset rounding mode to default (kRoundToNearest)
851  void ResetRoundingMode();
852
853  // These exist to provide portability between 32 and 64bit
854  void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
855  void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
856  void StoreP(const MemOperand& mem, const Operand& opnd,
857              Register scratch = no_reg);
858  void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
859  void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
860  void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
861  void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
862
863  // Cleanse pointer address on 31bit by zero out top  bit.
864  // This is a NOP on 64-bit.
865  void CleanseP(Register src) {
866#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
867    nilh(src, Operand(0x7FFF));
868#endif
869  }
870
871  // ---------------------------------------------------------------------------
872  // JavaScript invokes
873
874  // Set up call kind marking in ecx. The method takes ecx as an
875  // explicit first parameter to make the code more readable at the
876  // call sites.
877  // void SetCallKind(Register dst, CallKind kind);
878
879  // Removes current frame and its arguments from the stack preserving
880  // the arguments and a return address pushed to the stack for the next call.
881  // Both |callee_args_count| and |caller_args_count_reg| do not include
882  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
883  // is trashed.
884  void PrepareForTailCall(const ParameterCount& callee_args_count,
885                          Register caller_args_count_reg, Register scratch0,
886                          Register scratch1);
887
888  // Invoke the JavaScript function code by either calling or jumping.
889  void InvokeFunctionCode(Register function, Register new_target,
890                          const ParameterCount& expected,
891                          const ParameterCount& actual, InvokeFlag flag,
892                          const CallWrapper& call_wrapper);
893
894  void FloodFunctionIfStepping(Register fun, Register new_target,
895                               const ParameterCount& expected,
896                               const ParameterCount& actual);
897
898  // Invoke the JavaScript function in the given register. Changes the
899  // current context to the context in the function before invoking.
900  void InvokeFunction(Register function, Register new_target,
901                      const ParameterCount& actual, InvokeFlag flag,
902                      const CallWrapper& call_wrapper);
903
904  void InvokeFunction(Register function, const ParameterCount& expected,
905                      const ParameterCount& actual, InvokeFlag flag,
906                      const CallWrapper& call_wrapper);
907
908  void InvokeFunction(Handle<JSFunction> function,
909                      const ParameterCount& expected,
910                      const ParameterCount& actual, InvokeFlag flag,
911                      const CallWrapper& call_wrapper);
912
913  void IsObjectJSStringType(Register object, Register scratch, Label* fail);
914
915  void IsObjectNameType(Register object, Register scratch, Label* fail);
916
917  // ---------------------------------------------------------------------------
918  // Debugger Support
919
920  void DebugBreak();
921
922  // ---------------------------------------------------------------------------
923  // Exception handling
924
925  // Push a new stack handler and link into stack handler chain.
926  void PushStackHandler();
927
928  // Unlink the stack handler on top of the stack from the stack handler chain.
929  // Must preserve the result register.
930  void PopStackHandler();
931
932  // ---------------------------------------------------------------------------
933  // Inline caching support
934
935  void GetNumberHash(Register t0, Register scratch);
936
937  inline void MarkCode(NopMarkerTypes type) { nop(type); }
938
939  // Check if the given instruction is a 'type' marker.
940  // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
941  // These instructions are generated to mark special location in the code,
942  // like some special IC code.
943  static inline bool IsMarkedCode(Instr instr, int type) {
944    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
945    return IsNop(instr, type);
946  }
947
948  static inline int GetCodeMarker(Instr instr) {
949    int dst_reg_offset = 12;
950    int dst_mask = 0xf << dst_reg_offset;
951    int src_mask = 0xf;
952    int dst_reg = (instr & dst_mask) >> dst_reg_offset;
953    int src_reg = instr & src_mask;
954    uint32_t non_register_mask = ~(dst_mask | src_mask);
955    uint32_t mov_mask = al | 13 << 21;
956
957    // Return <n> if we have a mov rn rn, else return -1.
958    int type = ((instr & non_register_mask) == mov_mask) &&
959                       (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
960                       (dst_reg < LAST_CODE_MARKER)
961                   ? src_reg
962                   : -1;
963    DCHECK((type == -1) ||
964           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
965    return type;
966  }
967
968  // ---------------------------------------------------------------------------
969  // Allocation support
970
971  // Allocate an object in new space or old pointer space. The object_size is
972  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
973  // is passed. If the space is exhausted control continues at the gc_required
974  // label. The allocated object is returned in result. If the flag
975  // tag_allocated_object is true the result is tagged as as a heap object.
976  // All registers are clobbered also when control continues at the gc_required
977  // label.
978  void Allocate(int object_size, Register result, Register scratch1,
979                Register scratch2, Label* gc_required, AllocationFlags flags);
980
981  void Allocate(Register object_size, Register result, Register result_end,
982                Register scratch, Label* gc_required, AllocationFlags flags);
983
984  // FastAllocate is right now only used for folded allocations. It just
985  // increments the top pointer without checking against limit. This can only
986  // be done if it was proved earlier that the allocation will succeed.
987  void FastAllocate(int object_size, Register result, Register scratch1,
988                    Register scratch2, AllocationFlags flags);
989
990  void FastAllocate(Register object_size, Register result, Register result_end,
991                    Register scratch, AllocationFlags flags);
992
993  void AllocateTwoByteString(Register result, Register length,
994                             Register scratch1, Register scratch2,
995                             Register scratch3, Label* gc_required);
996  void AllocateOneByteString(Register result, Register length,
997                             Register scratch1, Register scratch2,
998                             Register scratch3, Label* gc_required);
999  void AllocateTwoByteConsString(Register result, Register length,
1000                                 Register scratch1, Register scratch2,
1001                                 Label* gc_required);
1002  void AllocateOneByteConsString(Register result, Register length,
1003                                 Register scratch1, Register scratch2,
1004                                 Label* gc_required);
1005  void AllocateTwoByteSlicedString(Register result, Register length,
1006                                   Register scratch1, Register scratch2,
1007                                   Label* gc_required);
1008  void AllocateOneByteSlicedString(Register result, Register length,
1009                                   Register scratch1, Register scratch2,
1010                                   Label* gc_required);
1011
1012  // Allocates a heap number or jumps to the gc_required label if the young
1013  // space is full and a scavenge is needed. All registers are clobbered also
1014  // when control continues at the gc_required label.
1015  void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
1016                          Register heap_number_map, Label* gc_required,
1017                          MutableMode mode = IMMUTABLE);
1018  void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
1019                                   Register scratch1, Register scratch2,
1020                                   Register heap_number_map,
1021                                   Label* gc_required);
1022
1023  // Allocate and initialize a JSValue wrapper with the specified {constructor}
1024  // and {value}.
1025  void AllocateJSValue(Register result, Register constructor, Register value,
1026                       Register scratch1, Register scratch2,
1027                       Label* gc_required);
1028
1029  // Initialize fields with filler values.  |count| fields starting at
1030  // |current_address| are overwritten with the value in |filler|.  At the end
1031  // the loop, |current_address| points at the next uninitialized field.
1032  // |count| is assumed to be non-zero.
1033  void InitializeNFieldsWithFiller(Register current_address, Register count,
1034                                   Register filler);
1035
1036  // Initialize fields with filler values.  Fields starting at |current_address|
1037  // not including |end_address| are overwritten with the value in |filler|.  At
1038  // the end the loop, |current_address| takes the value of |end_address|.
1039  void InitializeFieldsWithFiller(Register current_address,
1040                                  Register end_address, Register filler);
1041
1042  // ---------------------------------------------------------------------------
1043  // Support functions.
1044
1045  // Machine code version of Map::GetConstructor().
1046  // |temp| holds |result|'s map when done, and |temp2| its instance type.
1047  void GetMapConstructor(Register result, Register map, Register temp,
1048                         Register temp2);
1049
1050  // Try to get function prototype of a function and puts the value in
1051  // the result register. Checks that the function really is a
1052  // function and jumps to the miss label if the fast checks fail. The
1053  // function register will be untouched; the other registers may be
1054  // clobbered.
1055  void TryGetFunctionPrototype(Register function, Register result,
1056                               Register scratch, Label* miss);
1057
1058  // Compare object type for heap object.  heap_object contains a non-Smi
1059  // whose object type should be compared with the given type.  This both
1060  // sets the flags and leaves the object type in the type_reg register.
1061  // It leaves the map in the map register (unless the type_reg and map register
1062  // are the same register).  It leaves the heap object in the heap_object
1063  // register unless the heap_object register is the same register as one of the
1064  // other registers.
1065  // Type_reg can be no_reg. In that case ip is used.
1066  void CompareObjectType(Register heap_object, Register map, Register type_reg,
1067                         InstanceType type);
1068
1069  // Compare instance type in a map.  map contains a valid map object whose
1070  // object type should be compared with the given type.  This both
1071  // sets the flags and leaves the object type in the type_reg register.
1072  void CompareInstanceType(Register map, Register type_reg, InstanceType type);
1073
1074  // Check if a map for a JSObject indicates that the object can have both smi
1075  // and HeapObject elements.  Jump to the specified label if it does not.
1076  void CheckFastObjectElements(Register map, Register scratch, Label* fail);
1077
1078  // Check if a map for a JSObject indicates that the object has fast smi only
1079  // elements.  Jump to the specified label if it does not.
1080  void CheckFastSmiElements(Register map, Register scratch, Label* fail);
1081
1082  // Check to see if maybe_number can be stored as a double in
1083  // FastDoubleElements. If it can, store it at the index specified by key in
1084  // the FastDoubleElements array elements. Otherwise jump to fail.
1085  void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
1086                                   Register elements_reg, Register scratch1,
1087                                   DoubleRegister double_scratch, Label* fail,
1088                                   int elements_offset = 0);
1089
1090  // Compare an object's map with the specified map and its transitioned
1091  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
1092  // set with result of map compare. If multiple map compares are required, the
1093  // compare sequences branches to early_success.
1094  void CompareMap(Register obj, Register scratch, Handle<Map> map,
1095                  Label* early_success);
1096
1097  // As above, but the map of the object is already loaded into the register
1098  // which is preserved by the code generated.
1099  void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
1100
1101  // Check if the map of an object is equal to a specified map and branch to
1102  // label if not. Skip the smi check if not required (object is known to be a
1103  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1104  // against maps that are ElementsKind transition maps of the specified map.
1105  void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
1106                SmiCheckType smi_check_type);
1107
1108  void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
1109                Label* fail, SmiCheckType smi_check_type);
1110
1111  // Check if the map of an object is equal to a specified weak map and branch
1112  // to a specified target if equal. Skip the smi check if not required
1113  // (object is known to be a heap object)
1114  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1115                       Handle<WeakCell> cell, Handle<Code> success,
1116                       SmiCheckType smi_check_type);
1117
1118  // Compare the given value and the value of weak cell.
1119  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
1120                    CRegister cr = cr7);
1121
1122  void GetWeakValue(Register value, Handle<WeakCell> cell);
1123
1124  // Load the value of the weak cell in the value register. Branch to the given
1125  // miss label if the weak cell was cleared.
1126  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1127
1128  // Compare the object in a register to a value from the root list.
1129  // Uses the ip register as scratch.
1130  void CompareRoot(Register obj, Heap::RootListIndex index);
1131  void PushRoot(Heap::RootListIndex index) {
1132    LoadRoot(r0, index);
1133    Push(r0);
1134  }
1135
1136  // Compare the object in a register to a value and jump if they are equal.
1137  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
1138    CompareRoot(with, index);
1139    beq(if_equal);
1140  }
1141
1142  // Compare the object in a register to a value and jump if they are not equal.
1143  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
1144                     Label* if_not_equal) {
1145    CompareRoot(with, index);
1146    bne(if_not_equal);
1147  }
1148
1149  // Load and check the instance type of an object for being a string.
1150  // Loads the type into the second argument register.
1151  // Returns a condition that will be enabled if the object was a string.
1152  Condition IsObjectStringType(Register obj, Register type) {
1153    LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1154    LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1155    mov(r0, Operand(kIsNotStringMask));
1156    AndP(r0, type);
1157    DCHECK_EQ(0u, kStringTag);
1158    return eq;
1159  }
1160
1161  // Get the number of least significant bits from a register
1162  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1163  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1164
1165  // Load the value of a smi object into a FP double register. The register
1166  // scratch1 can be the same register as smi in which case smi will hold the
1167  // untagged value afterwards.
1168  void SmiToDouble(DoubleRegister value, Register smi);
1169
1170  // Check if a double can be exactly represented as a signed 32-bit integer.
1171  // CR_EQ in cr7 is set if true.
1172  void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
1173                         Register scratch2, DoubleRegister double_scratch);
1174
1175  // Check if a double is equal to -0.0.
1176  // CR_EQ in cr7 holds the result.
1177  void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
1178                             Register scratch2);
1179
1180  // Check the sign of a double.
1181  // CR_LT in cr7 holds the result.
1182  void TestDoubleSign(DoubleRegister input, Register scratch);
1183  void TestHeapNumberSign(Register input, Register scratch);
1184
1185  // Try to convert a double to a signed 32-bit integer.
1186  // CR_EQ in cr7 is set and result assigned if the conversion is exact.
1187  void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
1188                             Register scratch, DoubleRegister double_scratch);
1189
1190  // Floor a double and writes the value to the result register.
1191  // Go to exact if the conversion is exact (to be able to test -0),
1192  // fall through calling code if an overflow occurred, else go to done.
1193  // In return, input_high is loaded with high bits of input.
1194  void TryInt32Floor(Register result, DoubleRegister double_input,
1195                     Register input_high, Register scratch,
1196                     DoubleRegister double_scratch, Label* done, Label* exact);
1197
1198  // Performs a truncating conversion of a floating point number as used by
1199  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1200  // succeeds, otherwise falls through if result is saturated. On return
1201  // 'result' either holds answer, or is clobbered on fall through.
1202  //
1203  // Only public for the test code in test-code-stubs-arm.cc.
1204  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
1205                                  Label* done);
1206
1207  // Performs a truncating conversion of a floating point number as used by
1208  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1209  // Exits with 'result' holding the answer.
1210  void TruncateDoubleToI(Register result, DoubleRegister double_input);
1211
1212  // Performs a truncating conversion of a heap number as used by
1213  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1214  // must be different registers.  Exits with 'result' holding the answer.
1215  void TruncateHeapNumberToI(Register result, Register object);
1216
1217  // Converts the smi or heap number in object to an int32 using the rules
1218  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1219  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1220  // different registers.
1221  void TruncateNumberToI(Register object, Register result,
1222                         Register heap_number_map, Register scratch1,
1223                         Label* not_int32);
1224
1225  // ---------------------------------------------------------------------------
1226  // Runtime calls
1227
1228  // Call a code stub.
1229  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
1230                Condition cond = al);
1231
1232  // Call a code stub.
1233  void TailCallStub(CodeStub* stub, Condition cond = al);
1234
1235  // Call a runtime routine.
1236  void CallRuntime(const Runtime::Function* f, int num_arguments,
1237                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1238  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1239    const Runtime::Function* function = Runtime::FunctionForId(fid);
1240    CallRuntime(function, function->nargs, kSaveFPRegs);
1241  }
1242
1243  // Convenience function: Same as above, but takes the fid instead.
1244  void CallRuntime(Runtime::FunctionId fid,
1245                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1246    const Runtime::Function* function = Runtime::FunctionForId(fid);
1247    CallRuntime(function, function->nargs, save_doubles);
1248  }
1249
1250  // Convenience function: Same as above, but takes the fid instead.
1251  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1252                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1253    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1254  }
1255
1256  // Convenience function: call an external reference.
1257  void CallExternalReference(const ExternalReference& ext, int num_arguments);
1258
1259  // Convenience function: tail call a runtime routine (jump).
1260  void TailCallRuntime(Runtime::FunctionId fid);
1261
1262  int CalculateStackPassedWords(int num_reg_arguments,
1263                                int num_double_arguments);
1264
1265  // Before calling a C-function from generated code, align arguments on stack.
1266  // After aligning the frame, non-register arguments must be stored in
1267  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1268  // are word sized. If double arguments are used, this function assumes that
1269  // all double arguments are stored before core registers; otherwise the
1270  // correct alignment of the double values is not guaranteed.
1271  // Some compilers/platforms require the stack to be aligned when calling
1272  // C++ code.
1273  // Needs a scratch register to do some arithmetic. This register will be
1274  // trashed.
1275  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
1276                            Register scratch);
1277  void PrepareCallCFunction(int num_reg_arguments, Register scratch);
1278
1279  // There are two ways of passing double arguments on ARM, depending on
1280  // whether soft or hard floating point ABI is used. These functions
1281  // abstract parameter passing for the three different ways we call
1282  // C functions from generated code.
1283  void MovToFloatParameter(DoubleRegister src);
1284  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1285  void MovToFloatResult(DoubleRegister src);
1286
1287  // Calls a C function and cleans up the space for arguments allocated
1288  // by PrepareCallCFunction. The called function is not allowed to trigger a
1289  // garbage collection, since that might move the code and invalidate the
1290  // return address (unless this is somehow accounted for by the called
1291  // function).
1292  void CallCFunction(ExternalReference function, int num_arguments);
1293  void CallCFunction(Register function, int num_arguments);
1294  void CallCFunction(ExternalReference function, int num_reg_arguments,
1295                     int num_double_arguments);
1296  void CallCFunction(Register function, int num_reg_arguments,
1297                     int num_double_arguments);
1298
1299  void MovFromFloatParameter(DoubleRegister dst);
1300  void MovFromFloatResult(DoubleRegister dst);
1301
1302  // Jump to a runtime routine.
1303  void JumpToExternalReference(const ExternalReference& builtin,
1304                               bool builtin_exit_frame = false);
1305
1306  Handle<Object> CodeObject() {
1307    DCHECK(!code_object_.is_null());
1308    return code_object_;
1309  }
1310
1311  // Emit code for a truncating division by a constant. The dividend register is
1312  // unchanged and ip gets clobbered. Dividend and result must be different.
1313  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1314
1315  // ---------------------------------------------------------------------------
1316  // StatsCounter support
1317
1318  void SetCounter(StatsCounter* counter, int value, Register scratch1,
1319                  Register scratch2);
1320  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1321                        Register scratch2);
1322  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1323                        Register scratch2);
1324
1325  // ---------------------------------------------------------------------------
1326  // Debugging
1327
1328  // Calls Abort(msg) if the condition cond is not satisfied.
1329  // Use --debug_code to enable.
1330  void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
1331  void AssertFastElements(Register elements);
1332
1333  // Like Assert(), but always enabled.
1334  void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
1335
1336  // Print a message to stdout and abort execution.
1337  void Abort(BailoutReason reason);
1338
1339  // Verify restrictions about code generated in stubs.
1340  void set_generating_stub(bool value) { generating_stub_ = value; }
1341  bool generating_stub() { return generating_stub_; }
1342  void set_has_frame(bool value) { has_frame_ = value; }
1343  bool has_frame() { return has_frame_; }
1344  inline bool AllowThisStubCall(CodeStub* stub);
1345
1346  // ---------------------------------------------------------------------------
1347  // Number utilities
1348
1349  // Check whether the value of reg is a power of two and not zero. If not
1350  // control continues at the label not_power_of_two. If reg is a power of two
1351  // the register scratch contains the value of (reg - 1) when control falls
1352  // through.
1353  void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
1354                                 Label* not_power_of_two_or_zero);
1355  // Check whether the value of reg is a power of two and not zero.
1356  // Control falls through if it is, with scratch containing the mask
1357  // value (reg - 1).
1358  // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1359  // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1360  // strictly positive but not a power of two.
1361  void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
1362                                       Label* zero_and_neg,
1363                                       Label* not_power_of_two);
1364
1365  // ---------------------------------------------------------------------------
1366  // Bit testing/extraction
1367  //
1368  // Bit numbering is such that the least significant bit is bit 0
1369  // (for consistency between 32/64-bit).
1370
1371  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
1372  // and place them into the least significant bits of dst.
1373  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
1374                              int rangeEnd) {
1375    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
1376
1377    // Try to use RISBG if possible.
1378    if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1379      int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
1380      int endBit = 63;  // End is always LSB after shifting.
1381      int startBit = 63 - rangeStart + rangeEnd;
1382      risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
1383            true);
1384    } else {
1385      if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
1386        ShiftRightP(dst, src, Operand(rangeEnd));
1387      else if (!dst.is(src))  // If we didn't shift, we might need to copy
1388        LoadRR(dst, src);
1389      int width = rangeStart - rangeEnd + 1;
1390#if V8_TARGET_ARCH_S390X
1391      uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
1392      nihf(dst, Operand(mask >> 32));
1393      nilf(dst, Operand(mask & 0xFFFFFFFF));
1394      ltgr(dst, dst);
1395#else
1396      uint32_t mask = (1 << width) - 1;
1397      AndP(dst, Operand(mask));
1398#endif
1399    }
1400  }
1401
1402  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
1403    ExtractBitRange(dst, src, bitNumber, bitNumber);
1404  }
1405
1406  // Extract consecutive bits (defined by mask) from src and place them
1407  // into the least significant bits of dst.
1408  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
1409                             RCBit rc = LeaveRC) {
1410    int start = kBitsPerPointer - 1;
1411    int end;
1412    uintptr_t bit = (1L << start);
1413
1414    while (bit && (mask & bit) == 0) {
1415      start--;
1416      bit >>= 1;
1417    }
1418    end = start;
1419    bit >>= 1;
1420
1421    while (bit && (mask & bit)) {
1422      end--;
1423      bit >>= 1;
1424    }
1425
1426    // 1-bits in mask must be contiguous
1427    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
1428
1429    ExtractBitRange(dst, src, start, end);
1430  }
1431
1432  // Test single bit in value.
1433  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
1434    ExtractBitRange(scratch, value, bitNumber, bitNumber);
1435  }
1436
1437  // Test consecutive bit range in value.  Range is defined by
1438  // rangeStart - rangeEnd.
1439  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
1440                           Register scratch = r0) {
1441    ExtractBitRange(scratch, value, rangeStart, rangeEnd);
1442  }
1443
1444  // Test consecutive bit range in value.  Range is defined by mask.
1445  inline void TestBitMask(Register value, uintptr_t mask,
1446                          Register scratch = r0) {
1447    ExtractBitMask(scratch, value, mask, SetRC);
1448  }
1449
1450  // ---------------------------------------------------------------------------
1451  // Smi utilities
1452
1453  // Shift left by kSmiShift
1454  void SmiTag(Register reg) { SmiTag(reg, reg); }
1455  void SmiTag(Register dst, Register src) {
1456    ShiftLeftP(dst, src, Operand(kSmiShift));
1457  }
1458
1459#if !V8_TARGET_ARCH_S390X
1460  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1461  void SmiTagCheckOverflow(Register reg, Register overflow);
1462  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1463
1464  inline void JumpIfNotSmiCandidate(Register value, Register scratch,
1465                                    Label* not_smi_label) {
1466    // High bits must be identical to fit into an Smi
1467    STATIC_ASSERT(kSmiShift == 1);
1468    AddP(scratch, value, Operand(0x40000000u));
1469    CmpP(scratch, Operand::Zero());
1470    blt(not_smi_label);
1471  }
1472#endif
1473  inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
1474    // The test is different for unsigned int values. Since we need
1475    // the value to be in the range of a positive smi, we can't
1476    // handle any of the high bits being set in the value.
1477    TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
1478                 scratch);
1479  }
1480  inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
1481                                            Label* not_smi_label) {
1482    TestUnsignedSmiCandidate(value, scratch);
1483    bne(not_smi_label /*, cr0*/);
1484  }
1485
1486  void SmiUntag(Register reg) { SmiUntag(reg, reg); }
1487
1488  void SmiUntag(Register dst, Register src) {
1489    ShiftRightArithP(dst, src, Operand(kSmiShift));
1490  }
1491
1492  void SmiToPtrArrayOffset(Register dst, Register src) {
1493#if V8_TARGET_ARCH_S390X
1494    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1495    ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
1496#else
1497    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1498    ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1499#endif
1500  }
1501
1502  void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
1503
1504  void SmiToShortArrayOffset(Register dst, Register src) {
1505#if V8_TARGET_ARCH_S390X
1506    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
1507    ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
1508#else
1509    STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
1510    if (!dst.is(src)) {
1511      LoadRR(dst, src);
1512    }
1513#endif
1514  }
1515
1516  void SmiToIntArrayOffset(Register dst, Register src) {
1517#if V8_TARGET_ARCH_S390X
1518    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
1519    ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
1520#else
1521    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
1522    ShiftLeftP(dst, src, Operand(2 - kSmiShift));
1523#endif
1524  }
1525
1526#define SmiToFloatArrayOffset SmiToIntArrayOffset
1527
1528  void SmiToDoubleArrayOffset(Register dst, Register src) {
1529#if V8_TARGET_ARCH_S390X
1530    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
1531    ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
1532#else
1533    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
1534    ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
1535#endif
1536  }
1537
1538  void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
1539    if (kSmiShift < elementSizeLog2) {
1540      ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
1541    } else if (kSmiShift > elementSizeLog2) {
1542      ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
1543    } else if (!dst.is(src)) {
1544      LoadRR(dst, src);
1545    }
1546  }
1547
1548  void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
1549                          bool isSmi, bool keyMaybeNegative) {
1550    if (isSmi) {
1551      SmiToArrayOffset(dst, src, elementSizeLog2);
1552    } else if (keyMaybeNegative ||
1553          !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1554#if V8_TARGET_ARCH_S390X
1555      // If array access is dehoisted, the key, being an int32, can contain
1556      // a negative value, as needs to be sign-extended to 64-bit for
1557      // memory access.
1558      //
1559      // src (key) is a 32-bit integer.  Sign extension ensures
1560      // upper 32-bit does not contain garbage before being used to
1561      // reference memory.
1562      lgfr(src, src);
1563#endif
1564      ShiftLeftP(dst, src, Operand(elementSizeLog2));
1565    } else {
1566      // Small optimization to reduce pathlength.  After Bounds Check,
1567      // the key is guaranteed to be non-negative.  Leverage RISBG,
1568      // which also performs zero-extension.
1569      risbg(dst, src, Operand(32 - elementSizeLog2),
1570            Operand(63 - elementSizeLog2), Operand(elementSizeLog2),
1571            true);
1572    }
1573  }
1574
1575  // Untag the source value into destination and jump if source is a smi.
1576  // Souce and destination can be the same register.
1577  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1578
1579  // Untag the source value into destination and jump if source is not a smi.
1580  // Souce and destination can be the same register.
1581  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1582
1583  inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
1584
1585  inline void TestIfPositiveSmi(Register value, Register scratch) {
1586    STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
1587                  (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
1588    mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
1589    AndP(scratch, value);
1590  }
1591
1592  // Jump the register contains a smi.
1593  inline void JumpIfSmi(Register value, Label* smi_label) {
1594    TestIfSmi(value);
1595    beq(smi_label /*, cr0*/);  // branch if SMI
1596  }
1597  // Jump if either of the registers contain a non-smi.
1598  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1599    TestIfSmi(value);
1600    bne(not_smi_label /*, cr0*/);
1601  }
1602  // Jump if either of the registers contain a non-smi.
1603  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1604  // Jump if either of the registers contain a smi.
1605  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1606
1607  // Abort execution if argument is a number, enabled via --debug-code.
1608  void AssertNotNumber(Register object);
1609
1610  // Abort execution if argument is a smi, enabled via --debug-code.
1611  void AssertNotSmi(Register object);
1612  void AssertSmi(Register object);
1613
1614#if V8_TARGET_ARCH_S390X
1615  inline void TestIfInt32(Register value, Register scratch) {
1616    // High bits must be identical to fit into an 32-bit integer
1617    lgfr(scratch, value);
1618    CmpP(scratch, value);
1619  }
1620#else
1621  inline void TestIfInt32(Register hi_word, Register lo_word,
1622                          Register scratch) {
1623    // High bits must be identical to fit into an 32-bit integer
1624    ShiftRightArith(scratch, lo_word, Operand(31));
1625    CmpP(scratch, hi_word);
1626  }
1627#endif
1628
1629#if V8_TARGET_ARCH_S390X
1630  // Ensure it is permissable to read/write int value directly from
1631  // upper half of the smi.
1632  STATIC_ASSERT(kSmiTag == 0);
1633  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
1634#endif
1635#if V8_TARGET_LITTLE_ENDIAN
1636#define SmiWordOffset(offset) (offset + kPointerSize / 2)
1637#else
1638#define SmiWordOffset(offset) offset
1639#endif
1640
1641  // Abort execution if argument is not a string, enabled via --debug-code.
1642  void AssertString(Register object);
1643
1644  // Abort execution if argument is not a name, enabled via --debug-code.
1645  void AssertName(Register object);
1646
1647  void AssertFunction(Register object);
1648
1649  // Abort execution if argument is not a JSBoundFunction,
1650  // enabled via --debug-code.
1651  void AssertBoundFunction(Register object);
1652
1653  // Abort execution if argument is not a JSGeneratorObject,
1654  // enabled via --debug-code.
1655  void AssertGeneratorObject(Register object);
1656
1657  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1658  void AssertReceiver(Register object);
1659
1660  // Abort execution if argument is not undefined or an AllocationSite, enabled
1661  // via --debug-code.
1662  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1663
1664  // Abort execution if reg is not the root value with the given index,
1665  // enabled via --debug-code.
1666  void AssertIsRoot(Register reg, Heap::RootListIndex index);
1667
1668  // ---------------------------------------------------------------------------
1669  // HeapNumber utilities
1670
1671  void JumpIfNotHeapNumber(Register object, Register heap_number_map,
1672                           Register scratch, Label* on_not_heap_number);
1673
1674  // ---------------------------------------------------------------------------
1675  // String utilities
1676
1677  // Checks if both objects are sequential one-byte strings and jumps to label
1678  // if either is not. Assumes that neither object is a smi.
1679  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1680                                                    Register object2,
1681                                                    Register scratch1,
1682                                                    Register scratch2,
1683                                                    Label* failure);
1684
1685  // Checks if both objects are sequential one-byte strings and jumps to label
1686  // if either is not.
1687  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1688                                             Register scratch1,
1689                                             Register scratch2,
1690                                             Label* not_flat_one_byte_strings);
1691
1692  // Checks if both instance types are sequential one-byte strings and jumps to
1693  // label if either is not.
1694  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1695      Register first_object_instance_type, Register second_object_instance_type,
1696      Register scratch1, Register scratch2, Label* failure);
1697
1698  // Check if instance type is sequential one-byte string and jump to label if
1699  // it is not.
1700  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1701                                                Label* failure);
1702
1703  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1704
1705  void EmitSeqStringSetCharCheck(Register string, Register index,
1706                                 Register value, uint32_t encoding_mask);
1707
1708  // ---------------------------------------------------------------------------
1709  // Patching helpers.
1710
1711  void ClampUint8(Register output_reg, Register input_reg);
1712
1713  // Saturate a value into 8-bit unsigned integer
1714  //   if input_value < 0, output_value is 0
1715  //   if input_value > 255, output_value is 255
1716  //   otherwise output_value is the (int)input_value (round to nearest)
1717  void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
1718                          DoubleRegister temp_double_reg);
1719
1720  void LoadInstanceDescriptors(Register map, Register descriptors);
1721  void EnumLength(Register dst, Register map);
1722  void NumberOfOwnDescriptors(Register dst, Register map);
1723  void LoadAccessor(Register dst, Register holder, int accessor_index,
1724                    AccessorComponent accessor);
1725
1726  template <typename Field>
1727  void DecodeField(Register dst, Register src) {
1728    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
1729  }
1730
1731  template <typename Field>
1732  void DecodeField(Register reg) {
1733    DecodeField<Field>(reg, reg);
1734  }
1735
1736  template <typename Field>
1737  void DecodeFieldToSmi(Register dst, Register src) {
1738    // TODO(joransiu): Optimize into single instruction
1739    DecodeField<Field>(dst, src);
1740    SmiTag(dst);
1741  }
1742
1743  template <typename Field>
1744  void DecodeFieldToSmi(Register reg) {
1745    DecodeFieldToSmi<Field>(reg, reg);
1746  }
1747
1748  // Load the type feedback vector from a JavaScript frame.
1749  void EmitLoadTypeFeedbackVector(Register vector);
1750
1751  // Activation support.
1752  void EnterFrame(StackFrame::Type type,
1753                  bool load_constant_pool_pointer_reg = false);
1754  // Returns the pc offset at which the frame ends.
1755  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1756
1757  void EnterBuiltinFrame(Register context, Register target, Register argc);
1758  void LeaveBuiltinFrame(Register context, Register target, Register argc);
1759
1760  // Expects object in r2 and returns map with validated enum cache
1761  // in r2.  Assumes that any other register can be used as a scratch.
1762  void CheckEnumCache(Label* call_runtime);
1763
1764  // AllocationMemento support. Arrays may have an associated
1765  // AllocationMemento object that can be checked for in order to pretransition
1766  // to another type.
1767  // On entry, receiver_reg should point to the array object.
1768  // scratch_reg gets clobbered.
1769  // If allocation info is present, condition flags are set to eq.
1770  void TestJSArrayForAllocationMemento(Register receiver_reg,
1771                                       Register scratch_reg,
1772                                       Register scratch2_reg,
1773                                       Label* no_memento_found);
1774
1775  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1776                                         Register scratch_reg,
1777                                         Register scratch2_reg,
1778                                         Label* memento_found) {
1779    Label no_memento_found;
1780    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg,
1781                                    &no_memento_found);
1782    beq(memento_found);
1783    bind(&no_memento_found);
1784  }
1785
1786  // Jumps to found label if a prototype map has dictionary elements.
1787  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1788                                        Register scratch1, Label* found);
1789
1790 private:
1791  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1792
1793  void CallCFunctionHelper(Register function, int num_reg_arguments,
1794                           int num_double_arguments);
1795
1796  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
1797            CRegister cr = cr7);
1798
1799  // Helper functions for generating invokes.
1800  void InvokePrologue(const ParameterCount& expected,
1801                      const ParameterCount& actual, Label* done,
1802                      bool* definitely_mismatches, InvokeFlag flag,
1803                      const CallWrapper& call_wrapper);
1804
1805  void InitializeNewString(Register string, Register length,
1806                           Heap::RootListIndex map_index, Register scratch1,
1807                           Register scratch2);
1808
1809  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1810  void InNewSpace(Register object, Register scratch,
1811                  Condition cond,  // eq for new space, ne otherwise.
1812                  Label* branch);
1813
1814  // Helper for finding the mark bits for an address.  Afterwards, the
1815  // bitmap register points at the word with the mark bits and the mask
1816  // the position of the first bit.  Leaves addr_reg unchanged.
1817  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
1818                          Register mask_reg);
1819
1820  static const RegList kSafepointSavedRegisters;
1821  static const int kNumSafepointSavedRegisters;
1822
1823  // Compute memory operands for safepoint stack slots.
1824  static int SafepointRegisterStackIndex(int reg_code);
1825  MemOperand SafepointRegisterSlot(Register reg);
1826  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1827
1828  bool generating_stub_;
1829  bool has_frame_;
1830  // This handle will be patched with the code object on installation.
1831  Handle<Object> code_object_;
1832
1833  // Needs access to SafepointRegisterStackIndex for compiled frame
1834  // traversal.
1835  friend class StandardFrame;
1836};
1837
1838// The code patcher is used to patch (typically) small parts of code e.g. for
1839// debugging and other types of instrumentation. When using the code patcher
1840// the exact number of bytes specified must be emitted. It is not legal to emit
1841// relocation information. If any of these constraints are violated it causes
1842// an assertion to fail.
1843class CodePatcher {
1844 public:
1845  enum FlushICache { FLUSH, DONT_FLUSH };
1846
1847  CodePatcher(Isolate* isolate, byte* address, int instructions,
1848              FlushICache flush_cache = FLUSH);
1849  ~CodePatcher();
1850
1851  // Macro assembler to emit code.
1852  MacroAssembler* masm() { return &masm_; }
1853
1854 private:
1855  byte* address_;            // The address of the code being patched.
1856  int size_;                 // Number of bytes of the expected patch size.
1857  MacroAssembler masm_;      // Macro assembler used to generate the code.
1858  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1859};
1860
1861// -----------------------------------------------------------------------------
1862// Static helper functions.
1863
1864inline MemOperand ContextMemOperand(Register context, int index = 0) {
1865  return MemOperand(context, Context::SlotOffset(index));
1866}
1867
1868inline MemOperand NativeContextMemOperand() {
1869  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1870}
1871
1872#define ACCESS_MASM(masm) masm->
1873
1874}  // namespace internal
1875}  // namespace v8
1876
1877#endif  // V8_S390_MACRO_ASSEMBLER_S390_H_
1878