1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used argument matchers.  More
35// matchers can be defined by the user implementing the
36// MatcherInterface<T> interface if necessary.
37
38#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
41#include <math.h>
42#include <algorithm>
43#include <iterator>
44#include <limits>
45#include <ostream>  // NOLINT
46#include <sstream>
47#include <string>
48#include <utility>
49#include <vector>
50
51#include "gmock/internal/gmock-internal-utils.h"
52#include "gmock/internal/gmock-port.h"
53#include "gtest/gtest.h"
54
55#if GTEST_HAS_STD_INITIALIZER_LIST_
56# include <initializer_list>  // NOLINT -- must be after gtest.h
57#endif
58
59namespace testing {
60
61// To implement a matcher Foo for type T, define:
62//   1. a class FooMatcherImpl that implements the
63//      MatcherInterface<T> interface, and
64//   2. a factory function that creates a Matcher<T> object from a
65//      FooMatcherImpl*.
66//
67// The two-level delegation design makes it possible to allow a user
68// to write "v" instead of "Eq(v)" where a Matcher is expected, which
69// is impossible if we pass matchers by pointers.  It also eases
70// ownership management as Matcher objects can now be copied like
71// plain values.
72
73// MatchResultListener is an abstract class.  Its << operator can be
74// used by a matcher to explain why a value matches or doesn't match.
75//
76// TODO(wan@google.com): add method
77//   bool InterestedInWhy(bool result) const;
78// to indicate whether the listener is interested in why the match
79// result is 'result'.
80class MatchResultListener {
81 public:
82  // Creates a listener object with the given underlying ostream.  The
83  // listener does not own the ostream, and does not dereference it
84  // in the constructor or destructor.
85  explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
86  virtual ~MatchResultListener() = 0;  // Makes this class abstract.
87
88  // Streams x to the underlying ostream; does nothing if the ostream
89  // is NULL.
90  template <typename T>
91  MatchResultListener& operator<<(const T& x) {
92    if (stream_ != NULL)
93      *stream_ << x;
94    return *this;
95  }
96
97  // Returns the underlying ostream.
98  ::std::ostream* stream() { return stream_; }
99
100  // Returns true iff the listener is interested in an explanation of
101  // the match result.  A matcher's MatchAndExplain() method can use
102  // this information to avoid generating the explanation when no one
103  // intends to hear it.
104  bool IsInterested() const { return stream_ != NULL; }
105
106 private:
107  ::std::ostream* const stream_;
108
109  GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
110};
111
112inline MatchResultListener::~MatchResultListener() {
113}
114
115// An instance of a subclass of this knows how to describe itself as a
116// matcher.
117class MatcherDescriberInterface {
118 public:
119  virtual ~MatcherDescriberInterface() {}
120
121  // Describes this matcher to an ostream.  The function should print
122  // a verb phrase that describes the property a value matching this
123  // matcher should have.  The subject of the verb phrase is the value
124  // being matched.  For example, the DescribeTo() method of the Gt(7)
125  // matcher prints "is greater than 7".
126  virtual void DescribeTo(::std::ostream* os) const = 0;
127
128  // Describes the negation of this matcher to an ostream.  For
129  // example, if the description of this matcher is "is greater than
130  // 7", the negated description could be "is not greater than 7".
131  // You are not required to override this when implementing
132  // MatcherInterface, but it is highly advised so that your matcher
133  // can produce good error messages.
134  virtual void DescribeNegationTo(::std::ostream* os) const {
135    *os << "not (";
136    DescribeTo(os);
137    *os << ")";
138  }
139};
140
141// The implementation of a matcher.
142template <typename T>
143class MatcherInterface : public MatcherDescriberInterface {
144 public:
145  // Returns true iff the matcher matches x; also explains the match
146  // result to 'listener' if necessary (see the next paragraph), in
147  // the form of a non-restrictive relative clause ("which ...",
148  // "whose ...", etc) that describes x.  For example, the
149  // MatchAndExplain() method of the Pointee(...) matcher should
150  // generate an explanation like "which points to ...".
151  //
152  // Implementations of MatchAndExplain() should add an explanation of
153  // the match result *if and only if* they can provide additional
154  // information that's not already present (or not obvious) in the
155  // print-out of x and the matcher's description.  Whether the match
156  // succeeds is not a factor in deciding whether an explanation is
157  // needed, as sometimes the caller needs to print a failure message
158  // when the match succeeds (e.g. when the matcher is used inside
159  // Not()).
160  //
161  // For example, a "has at least 10 elements" matcher should explain
162  // what the actual element count is, regardless of the match result,
163  // as it is useful information to the reader; on the other hand, an
164  // "is empty" matcher probably only needs to explain what the actual
165  // size is when the match fails, as it's redundant to say that the
166  // size is 0 when the value is already known to be empty.
167  //
168  // You should override this method when defining a new matcher.
169  //
170  // It's the responsibility of the caller (Google Mock) to guarantee
171  // that 'listener' is not NULL.  This helps to simplify a matcher's
172  // implementation when it doesn't care about the performance, as it
173  // can talk to 'listener' without checking its validity first.
174  // However, in order to implement dummy listeners efficiently,
175  // listener->stream() may be NULL.
176  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
177
178  // Inherits these methods from MatcherDescriberInterface:
179  //   virtual void DescribeTo(::std::ostream* os) const = 0;
180  //   virtual void DescribeNegationTo(::std::ostream* os) const;
181};
182
183// A match result listener that stores the explanation in a string.
184class StringMatchResultListener : public MatchResultListener {
185 public:
186  StringMatchResultListener() : MatchResultListener(&ss_) {}
187
188  // Returns the explanation accumulated so far.
189  internal::string str() const { return ss_.str(); }
190
191  // Clears the explanation accumulated so far.
192  void Clear() { ss_.str(""); }
193
194 private:
195  ::std::stringstream ss_;
196
197  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
198};
199
200namespace internal {
201
202struct AnyEq {
203  template <typename A, typename B>
204  bool operator()(const A& a, const B& b) const { return a == b; }
205};
206struct AnyNe {
207  template <typename A, typename B>
208  bool operator()(const A& a, const B& b) const { return a != b; }
209};
210struct AnyLt {
211  template <typename A, typename B>
212  bool operator()(const A& a, const B& b) const { return a < b; }
213};
214struct AnyGt {
215  template <typename A, typename B>
216  bool operator()(const A& a, const B& b) const { return a > b; }
217};
218struct AnyLe {
219  template <typename A, typename B>
220  bool operator()(const A& a, const B& b) const { return a <= b; }
221};
222struct AnyGe {
223  template <typename A, typename B>
224  bool operator()(const A& a, const B& b) const { return a >= b; }
225};
226
227// A match result listener that ignores the explanation.
228class DummyMatchResultListener : public MatchResultListener {
229 public:
230  DummyMatchResultListener() : MatchResultListener(NULL) {}
231
232 private:
233  GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
234};
235
236// A match result listener that forwards the explanation to a given
237// ostream.  The difference between this and MatchResultListener is
238// that the former is concrete.
239class StreamMatchResultListener : public MatchResultListener {
240 public:
241  explicit StreamMatchResultListener(::std::ostream* os)
242      : MatchResultListener(os) {}
243
244 private:
245  GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
246};
247
248// An internal class for implementing Matcher<T>, which will derive
249// from it.  We put functionalities common to all Matcher<T>
250// specializations here to avoid code duplication.
251template <typename T>
252class MatcherBase {
253 public:
254  // Returns true iff the matcher matches x; also explains the match
255  // result to 'listener'.
256  bool MatchAndExplain(T x, MatchResultListener* listener) const {
257    return impl_->MatchAndExplain(x, listener);
258  }
259
260  // Returns true iff this matcher matches x.
261  bool Matches(T x) const {
262    DummyMatchResultListener dummy;
263    return MatchAndExplain(x, &dummy);
264  }
265
266  // Describes this matcher to an ostream.
267  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
268
269  // Describes the negation of this matcher to an ostream.
270  void DescribeNegationTo(::std::ostream* os) const {
271    impl_->DescribeNegationTo(os);
272  }
273
274  // Explains why x matches, or doesn't match, the matcher.
275  void ExplainMatchResultTo(T x, ::std::ostream* os) const {
276    StreamMatchResultListener listener(os);
277    MatchAndExplain(x, &listener);
278  }
279
280  // Returns the describer for this matcher object; retains ownership
281  // of the describer, which is only guaranteed to be alive when
282  // this matcher object is alive.
283  const MatcherDescriberInterface* GetDescriber() const {
284    return impl_.get();
285  }
286
287 protected:
288  MatcherBase() {}
289
290  // Constructs a matcher from its implementation.
291  explicit MatcherBase(const MatcherInterface<T>* impl)
292      : impl_(impl) {}
293
294  virtual ~MatcherBase() {}
295
296 private:
297  // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
298  // interfaces.  The former dynamically allocates a chunk of memory
299  // to hold the reference count, while the latter tracks all
300  // references using a circular linked list without allocating
301  // memory.  It has been observed that linked_ptr performs better in
302  // typical scenarios.  However, shared_ptr can out-perform
303  // linked_ptr when there are many more uses of the copy constructor
304  // than the default constructor.
305  //
306  // If performance becomes a problem, we should see if using
307  // shared_ptr helps.
308  ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
309};
310
311}  // namespace internal
312
313// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
314// object that can check whether a value of type T matches.  The
315// implementation of Matcher<T> is just a linked_ptr to const
316// MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
317// from Matcher!
318template <typename T>
319class Matcher : public internal::MatcherBase<T> {
320 public:
321  // Constructs a null matcher.  Needed for storing Matcher objects in STL
322  // containers.  A default-constructed matcher is not yet initialized.  You
323  // cannot use it until a valid value has been assigned to it.
324  explicit Matcher() {}  // NOLINT
325
326  // Constructs a matcher from its implementation.
327  explicit Matcher(const MatcherInterface<T>* impl)
328      : internal::MatcherBase<T>(impl) {}
329
330  // Implicit constructor here allows people to write
331  // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
332  Matcher(T value);  // NOLINT
333};
334
335// The following two specializations allow the user to write str
336// instead of Eq(str) and "foo" instead of Eq("foo") when a string
337// matcher is expected.
338template <>
339class GTEST_API_ Matcher<const internal::string&>
340    : public internal::MatcherBase<const internal::string&> {
341 public:
342  Matcher() {}
343
344  explicit Matcher(const MatcherInterface<const internal::string&>* impl)
345      : internal::MatcherBase<const internal::string&>(impl) {}
346
347  // Allows the user to write str instead of Eq(str) sometimes, where
348  // str is a string object.
349  Matcher(const internal::string& s);  // NOLINT
350
351  // Allows the user to write "foo" instead of Eq("foo") sometimes.
352  Matcher(const char* s);  // NOLINT
353};
354
355template <>
356class GTEST_API_ Matcher<internal::string>
357    : public internal::MatcherBase<internal::string> {
358 public:
359  Matcher() {}
360
361  explicit Matcher(const MatcherInterface<internal::string>* impl)
362      : internal::MatcherBase<internal::string>(impl) {}
363
364  // Allows the user to write str instead of Eq(str) sometimes, where
365  // str is a string object.
366  Matcher(const internal::string& s);  // NOLINT
367
368  // Allows the user to write "foo" instead of Eq("foo") sometimes.
369  Matcher(const char* s);  // NOLINT
370};
371
372#if GTEST_HAS_STRING_PIECE_
373// The following two specializations allow the user to write str
374// instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece
375// matcher is expected.
376template <>
377class GTEST_API_ Matcher<const StringPiece&>
378    : public internal::MatcherBase<const StringPiece&> {
379 public:
380  Matcher() {}
381
382  explicit Matcher(const MatcherInterface<const StringPiece&>* impl)
383      : internal::MatcherBase<const StringPiece&>(impl) {}
384
385  // Allows the user to write str instead of Eq(str) sometimes, where
386  // str is a string object.
387  Matcher(const internal::string& s);  // NOLINT
388
389  // Allows the user to write "foo" instead of Eq("foo") sometimes.
390  Matcher(const char* s);  // NOLINT
391
392  // Allows the user to pass StringPieces directly.
393  Matcher(StringPiece s);  // NOLINT
394};
395
396template <>
397class GTEST_API_ Matcher<StringPiece>
398    : public internal::MatcherBase<StringPiece> {
399 public:
400  Matcher() {}
401
402  explicit Matcher(const MatcherInterface<StringPiece>* impl)
403      : internal::MatcherBase<StringPiece>(impl) {}
404
405  // Allows the user to write str instead of Eq(str) sometimes, where
406  // str is a string object.
407  Matcher(const internal::string& s);  // NOLINT
408
409  // Allows the user to write "foo" instead of Eq("foo") sometimes.
410  Matcher(const char* s);  // NOLINT
411
412  // Allows the user to pass StringPieces directly.
413  Matcher(StringPiece s);  // NOLINT
414};
415#endif  // GTEST_HAS_STRING_PIECE_
416
417// The PolymorphicMatcher class template makes it easy to implement a
418// polymorphic matcher (i.e. a matcher that can match values of more
419// than one type, e.g. Eq(n) and NotNull()).
420//
421// To define a polymorphic matcher, a user should provide an Impl
422// class that has a DescribeTo() method and a DescribeNegationTo()
423// method, and define a member function (or member function template)
424//
425//   bool MatchAndExplain(const Value& value,
426//                        MatchResultListener* listener) const;
427//
428// See the definition of NotNull() for a complete example.
429template <class Impl>
430class PolymorphicMatcher {
431 public:
432  explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
433
434  // Returns a mutable reference to the underlying matcher
435  // implementation object.
436  Impl& mutable_impl() { return impl_; }
437
438  // Returns an immutable reference to the underlying matcher
439  // implementation object.
440  const Impl& impl() const { return impl_; }
441
442  template <typename T>
443  operator Matcher<T>() const {
444    return Matcher<T>(new MonomorphicImpl<T>(impl_));
445  }
446
447 private:
448  template <typename T>
449  class MonomorphicImpl : public MatcherInterface<T> {
450   public:
451    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
452
453    virtual void DescribeTo(::std::ostream* os) const {
454      impl_.DescribeTo(os);
455    }
456
457    virtual void DescribeNegationTo(::std::ostream* os) const {
458      impl_.DescribeNegationTo(os);
459    }
460
461    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
462      return impl_.MatchAndExplain(x, listener);
463    }
464
465   private:
466    const Impl impl_;
467
468    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
469  };
470
471  Impl impl_;
472
473  GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
474};
475
476// Creates a matcher from its implementation.  This is easier to use
477// than the Matcher<T> constructor as it doesn't require you to
478// explicitly write the template argument, e.g.
479//
480//   MakeMatcher(foo);
481// vs
482//   Matcher<const string&>(foo);
483template <typename T>
484inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
485  return Matcher<T>(impl);
486}
487
488// Creates a polymorphic matcher from its implementation.  This is
489// easier to use than the PolymorphicMatcher<Impl> constructor as it
490// doesn't require you to explicitly write the template argument, e.g.
491//
492//   MakePolymorphicMatcher(foo);
493// vs
494//   PolymorphicMatcher<TypeOfFoo>(foo);
495template <class Impl>
496inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
497  return PolymorphicMatcher<Impl>(impl);
498}
499
500// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
501// and MUST NOT BE USED IN USER CODE!!!
502namespace internal {
503
504// The MatcherCastImpl class template is a helper for implementing
505// MatcherCast().  We need this helper in order to partially
506// specialize the implementation of MatcherCast() (C++ allows
507// class/struct templates to be partially specialized, but not
508// function templates.).
509
510// This general version is used when MatcherCast()'s argument is a
511// polymorphic matcher (i.e. something that can be converted to a
512// Matcher but is not one yet; for example, Eq(value)) or a value (for
513// example, "hello").
514template <typename T, typename M>
515class MatcherCastImpl {
516 public:
517  static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
518    // M can be a polymorhic matcher, in which case we want to use
519    // its conversion operator to create Matcher<T>.  Or it can be a value
520    // that should be passed to the Matcher<T>'s constructor.
521    //
522    // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
523    // polymorphic matcher because it'll be ambiguous if T has an implicit
524    // constructor from M (this usually happens when T has an implicit
525    // constructor from any type).
526    //
527    // It won't work to unconditionally implict_cast
528    // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
529    // a user-defined conversion from M to T if one exists (assuming M is
530    // a value).
531    return CastImpl(
532        polymorphic_matcher_or_value,
533        BooleanConstant<
534            internal::ImplicitlyConvertible<M, Matcher<T> >::value>());
535  }
536
537 private:
538  static Matcher<T> CastImpl(const M& value, BooleanConstant<false>) {
539    // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
540    // matcher.  It must be a value then.  Use direct initialization to create
541    // a matcher.
542    return Matcher<T>(ImplicitCast_<T>(value));
543  }
544
545  static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
546                             BooleanConstant<true>) {
547    // M is implicitly convertible to Matcher<T>, which means that either
548    // M is a polymorhpic matcher or Matcher<T> has an implicit constructor
549    // from M.  In both cases using the implicit conversion will produce a
550    // matcher.
551    //
552    // Even if T has an implicit constructor from M, it won't be called because
553    // creating Matcher<T> would require a chain of two user-defined conversions
554    // (first to create T from M and then to create Matcher<T> from T).
555    return polymorphic_matcher_or_value;
556  }
557};
558
559// This more specialized version is used when MatcherCast()'s argument
560// is already a Matcher.  This only compiles when type T can be
561// statically converted to type U.
562template <typename T, typename U>
563class MatcherCastImpl<T, Matcher<U> > {
564 public:
565  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
566    return Matcher<T>(new Impl(source_matcher));
567  }
568
569 private:
570  class Impl : public MatcherInterface<T> {
571   public:
572    explicit Impl(const Matcher<U>& source_matcher)
573        : source_matcher_(source_matcher) {}
574
575    // We delegate the matching logic to the source matcher.
576    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
577      return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
578    }
579
580    virtual void DescribeTo(::std::ostream* os) const {
581      source_matcher_.DescribeTo(os);
582    }
583
584    virtual void DescribeNegationTo(::std::ostream* os) const {
585      source_matcher_.DescribeNegationTo(os);
586    }
587
588   private:
589    const Matcher<U> source_matcher_;
590
591    GTEST_DISALLOW_ASSIGN_(Impl);
592  };
593};
594
595// This even more specialized version is used for efficiently casting
596// a matcher to its own type.
597template <typename T>
598class MatcherCastImpl<T, Matcher<T> > {
599 public:
600  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
601};
602
603}  // namespace internal
604
605// In order to be safe and clear, casting between different matcher
606// types is done explicitly via MatcherCast<T>(m), which takes a
607// matcher m and returns a Matcher<T>.  It compiles only when T can be
608// statically converted to the argument type of m.
609template <typename T, typename M>
610inline Matcher<T> MatcherCast(const M& matcher) {
611  return internal::MatcherCastImpl<T, M>::Cast(matcher);
612}
613
614// Implements SafeMatcherCast().
615//
616// We use an intermediate class to do the actual safe casting as Nokia's
617// Symbian compiler cannot decide between
618// template <T, M> ... (M) and
619// template <T, U> ... (const Matcher<U>&)
620// for function templates but can for member function templates.
621template <typename T>
622class SafeMatcherCastImpl {
623 public:
624  // This overload handles polymorphic matchers and values only since
625  // monomorphic matchers are handled by the next one.
626  template <typename M>
627  static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
628    return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
629  }
630
631  // This overload handles monomorphic matchers.
632  //
633  // In general, if type T can be implicitly converted to type U, we can
634  // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
635  // contravariant): just keep a copy of the original Matcher<U>, convert the
636  // argument from type T to U, and then pass it to the underlying Matcher<U>.
637  // The only exception is when U is a reference and T is not, as the
638  // underlying Matcher<U> may be interested in the argument's address, which
639  // is not preserved in the conversion from T to U.
640  template <typename U>
641  static inline Matcher<T> Cast(const Matcher<U>& matcher) {
642    // Enforce that T can be implicitly converted to U.
643    GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
644                          T_must_be_implicitly_convertible_to_U);
645    // Enforce that we are not converting a non-reference type T to a reference
646    // type U.
647    GTEST_COMPILE_ASSERT_(
648        internal::is_reference<T>::value || !internal::is_reference<U>::value,
649        cannot_convert_non_referentce_arg_to_reference);
650    // In case both T and U are arithmetic types, enforce that the
651    // conversion is not lossy.
652    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
653    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
654    const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
655    const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
656    GTEST_COMPILE_ASSERT_(
657        kTIsOther || kUIsOther ||
658        (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
659        conversion_of_arithmetic_types_must_be_lossless);
660    return MatcherCast<T>(matcher);
661  }
662};
663
664template <typename T, typename M>
665inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
666  return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
667}
668
669// A<T>() returns a matcher that matches any value of type T.
670template <typename T>
671Matcher<T> A();
672
673// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
674// and MUST NOT BE USED IN USER CODE!!!
675namespace internal {
676
677// If the explanation is not empty, prints it to the ostream.
678inline void PrintIfNotEmpty(const internal::string& explanation,
679                            ::std::ostream* os) {
680  if (explanation != "" && os != NULL) {
681    *os << ", " << explanation;
682  }
683}
684
685// Returns true if the given type name is easy to read by a human.
686// This is used to decide whether printing the type of a value might
687// be helpful.
688inline bool IsReadableTypeName(const string& type_name) {
689  // We consider a type name readable if it's short or doesn't contain
690  // a template or function type.
691  return (type_name.length() <= 20 ||
692          type_name.find_first_of("<(") == string::npos);
693}
694
695// Matches the value against the given matcher, prints the value and explains
696// the match result to the listener. Returns the match result.
697// 'listener' must not be NULL.
698// Value cannot be passed by const reference, because some matchers take a
699// non-const argument.
700template <typename Value, typename T>
701bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
702                          MatchResultListener* listener) {
703  if (!listener->IsInterested()) {
704    // If the listener is not interested, we do not need to construct the
705    // inner explanation.
706    return matcher.Matches(value);
707  }
708
709  StringMatchResultListener inner_listener;
710  const bool match = matcher.MatchAndExplain(value, &inner_listener);
711
712  UniversalPrint(value, listener->stream());
713#if GTEST_HAS_RTTI
714  const string& type_name = GetTypeName<Value>();
715  if (IsReadableTypeName(type_name))
716    *listener->stream() << " (of type " << type_name << ")";
717#endif
718  PrintIfNotEmpty(inner_listener.str(), listener->stream());
719
720  return match;
721}
722
723// An internal helper class for doing compile-time loop on a tuple's
724// fields.
725template <size_t N>
726class TuplePrefix {
727 public:
728  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
729  // iff the first N fields of matcher_tuple matches the first N
730  // fields of value_tuple, respectively.
731  template <typename MatcherTuple, typename ValueTuple>
732  static bool Matches(const MatcherTuple& matcher_tuple,
733                      const ValueTuple& value_tuple) {
734    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
735        && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
736  }
737
738  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
739  // describes failures in matching the first N fields of matchers
740  // against the first N fields of values.  If there is no failure,
741  // nothing will be streamed to os.
742  template <typename MatcherTuple, typename ValueTuple>
743  static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
744                                     const ValueTuple& values,
745                                     ::std::ostream* os) {
746    // First, describes failures in the first N - 1 fields.
747    TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
748
749    // Then describes the failure (if any) in the (N - 1)-th (0-based)
750    // field.
751    typename tuple_element<N - 1, MatcherTuple>::type matcher =
752        get<N - 1>(matchers);
753    typedef typename tuple_element<N - 1, ValueTuple>::type Value;
754    Value value = get<N - 1>(values);
755    StringMatchResultListener listener;
756    if (!matcher.MatchAndExplain(value, &listener)) {
757      // TODO(wan): include in the message the name of the parameter
758      // as used in MOCK_METHOD*() when possible.
759      *os << "  Expected arg #" << N - 1 << ": ";
760      get<N - 1>(matchers).DescribeTo(os);
761      *os << "\n           Actual: ";
762      // We remove the reference in type Value to prevent the
763      // universal printer from printing the address of value, which
764      // isn't interesting to the user most of the time.  The
765      // matcher's MatchAndExplain() method handles the case when
766      // the address is interesting.
767      internal::UniversalPrint(value, os);
768      PrintIfNotEmpty(listener.str(), os);
769      *os << "\n";
770    }
771  }
772};
773
774// The base case.
775template <>
776class TuplePrefix<0> {
777 public:
778  template <typename MatcherTuple, typename ValueTuple>
779  static bool Matches(const MatcherTuple& /* matcher_tuple */,
780                      const ValueTuple& /* value_tuple */) {
781    return true;
782  }
783
784  template <typename MatcherTuple, typename ValueTuple>
785  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
786                                     const ValueTuple& /* values */,
787                                     ::std::ostream* /* os */) {}
788};
789
790// TupleMatches(matcher_tuple, value_tuple) returns true iff all
791// matchers in matcher_tuple match the corresponding fields in
792// value_tuple.  It is a compiler error if matcher_tuple and
793// value_tuple have different number of fields or incompatible field
794// types.
795template <typename MatcherTuple, typename ValueTuple>
796bool TupleMatches(const MatcherTuple& matcher_tuple,
797                  const ValueTuple& value_tuple) {
798  // Makes sure that matcher_tuple and value_tuple have the same
799  // number of fields.
800  GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
801                        tuple_size<ValueTuple>::value,
802                        matcher_and_value_have_different_numbers_of_fields);
803  return TuplePrefix<tuple_size<ValueTuple>::value>::
804      Matches(matcher_tuple, value_tuple);
805}
806
807// Describes failures in matching matchers against values.  If there
808// is no failure, nothing will be streamed to os.
809template <typename MatcherTuple, typename ValueTuple>
810void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
811                                const ValueTuple& values,
812                                ::std::ostream* os) {
813  TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
814      matchers, values, os);
815}
816
817// TransformTupleValues and its helper.
818//
819// TransformTupleValuesHelper hides the internal machinery that
820// TransformTupleValues uses to implement a tuple traversal.
821template <typename Tuple, typename Func, typename OutIter>
822class TransformTupleValuesHelper {
823 private:
824  typedef ::testing::tuple_size<Tuple> TupleSize;
825
826 public:
827  // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
828  // Returns the final value of 'out' in case the caller needs it.
829  static OutIter Run(Func f, const Tuple& t, OutIter out) {
830    return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
831  }
832
833 private:
834  template <typename Tup, size_t kRemainingSize>
835  struct IterateOverTuple {
836    OutIter operator() (Func f, const Tup& t, OutIter out) const {
837      *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t));
838      return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
839    }
840  };
841  template <typename Tup>
842  struct IterateOverTuple<Tup, 0> {
843    OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
844      return out;
845    }
846  };
847};
848
849// Successively invokes 'f(element)' on each element of the tuple 't',
850// appending each result to the 'out' iterator. Returns the final value
851// of 'out'.
852template <typename Tuple, typename Func, typename OutIter>
853OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
854  return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
855}
856
857// Implements A<T>().
858template <typename T>
859class AnyMatcherImpl : public MatcherInterface<T> {
860 public:
861  virtual bool MatchAndExplain(
862      T /* x */, MatchResultListener* /* listener */) const { return true; }
863  virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
864  virtual void DescribeNegationTo(::std::ostream* os) const {
865    // This is mostly for completeness' safe, as it's not very useful
866    // to write Not(A<bool>()).  However we cannot completely rule out
867    // such a possibility, and it doesn't hurt to be prepared.
868    *os << "never matches";
869  }
870};
871
872// Implements _, a matcher that matches any value of any
873// type.  This is a polymorphic matcher, so we need a template type
874// conversion operator to make it appearing as a Matcher<T> for any
875// type T.
876class AnythingMatcher {
877 public:
878  template <typename T>
879  operator Matcher<T>() const { return A<T>(); }
880};
881
882// Implements a matcher that compares a given value with a
883// pre-supplied value using one of the ==, <=, <, etc, operators.  The
884// two values being compared don't have to have the same type.
885//
886// The matcher defined here is polymorphic (for example, Eq(5) can be
887// used to match an int, a short, a double, etc).  Therefore we use
888// a template type conversion operator in the implementation.
889//
890// The following template definition assumes that the Rhs parameter is
891// a "bare" type (i.e. neither 'const T' nor 'T&').
892template <typename D, typename Rhs, typename Op>
893class ComparisonBase {
894 public:
895  explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {}
896  template <typename Lhs>
897  operator Matcher<Lhs>() const {
898    return MakeMatcher(new Impl<Lhs>(rhs_));
899  }
900
901 private:
902  template <typename Lhs>
903  class Impl : public MatcherInterface<Lhs> {
904   public:
905    explicit Impl(const Rhs& rhs) : rhs_(rhs) {}
906    virtual bool MatchAndExplain(
907        Lhs lhs, MatchResultListener* /* listener */) const {
908      return Op()(lhs, rhs_);
909    }
910    virtual void DescribeTo(::std::ostream* os) const {
911      *os << D::Desc() << " ";
912      UniversalPrint(rhs_, os);
913    }
914    virtual void DescribeNegationTo(::std::ostream* os) const {
915      *os << D::NegatedDesc() <<  " ";
916      UniversalPrint(rhs_, os);
917    }
918   private:
919    Rhs rhs_;
920    GTEST_DISALLOW_ASSIGN_(Impl);
921  };
922  Rhs rhs_;
923  GTEST_DISALLOW_ASSIGN_(ComparisonBase);
924};
925
926template <typename Rhs>
927class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> {
928 public:
929  explicit EqMatcher(const Rhs& rhs)
930      : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { }
931  static const char* Desc() { return "is equal to"; }
932  static const char* NegatedDesc() { return "isn't equal to"; }
933};
934template <typename Rhs>
935class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> {
936 public:
937  explicit NeMatcher(const Rhs& rhs)
938      : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { }
939  static const char* Desc() { return "isn't equal to"; }
940  static const char* NegatedDesc() { return "is equal to"; }
941};
942template <typename Rhs>
943class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> {
944 public:
945  explicit LtMatcher(const Rhs& rhs)
946      : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { }
947  static const char* Desc() { return "is <"; }
948  static const char* NegatedDesc() { return "isn't <"; }
949};
950template <typename Rhs>
951class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> {
952 public:
953  explicit GtMatcher(const Rhs& rhs)
954      : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { }
955  static const char* Desc() { return "is >"; }
956  static const char* NegatedDesc() { return "isn't >"; }
957};
958template <typename Rhs>
959class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> {
960 public:
961  explicit LeMatcher(const Rhs& rhs)
962      : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { }
963  static const char* Desc() { return "is <="; }
964  static const char* NegatedDesc() { return "isn't <="; }
965};
966template <typename Rhs>
967class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> {
968 public:
969  explicit GeMatcher(const Rhs& rhs)
970      : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { }
971  static const char* Desc() { return "is >="; }
972  static const char* NegatedDesc() { return "isn't >="; }
973};
974
975// Implements the polymorphic IsNull() matcher, which matches any raw or smart
976// pointer that is NULL.
977class IsNullMatcher {
978 public:
979  template <typename Pointer>
980  bool MatchAndExplain(const Pointer& p,
981                       MatchResultListener* /* listener */) const {
982#if GTEST_LANG_CXX11
983    return p == nullptr;
984#else  // GTEST_LANG_CXX11
985    return GetRawPointer(p) == NULL;
986#endif  // GTEST_LANG_CXX11
987  }
988
989  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
990  void DescribeNegationTo(::std::ostream* os) const {
991    *os << "isn't NULL";
992  }
993};
994
995// Implements the polymorphic NotNull() matcher, which matches any raw or smart
996// pointer that is not NULL.
997class NotNullMatcher {
998 public:
999  template <typename Pointer>
1000  bool MatchAndExplain(const Pointer& p,
1001                       MatchResultListener* /* listener */) const {
1002#if GTEST_LANG_CXX11
1003    return p != nullptr;
1004#else  // GTEST_LANG_CXX11
1005    return GetRawPointer(p) != NULL;
1006#endif  // GTEST_LANG_CXX11
1007  }
1008
1009  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
1010  void DescribeNegationTo(::std::ostream* os) const {
1011    *os << "is NULL";
1012  }
1013};
1014
1015// Ref(variable) matches any argument that is a reference to
1016// 'variable'.  This matcher is polymorphic as it can match any
1017// super type of the type of 'variable'.
1018//
1019// The RefMatcher template class implements Ref(variable).  It can
1020// only be instantiated with a reference type.  This prevents a user
1021// from mistakenly using Ref(x) to match a non-reference function
1022// argument.  For example, the following will righteously cause a
1023// compiler error:
1024//
1025//   int n;
1026//   Matcher<int> m1 = Ref(n);   // This won't compile.
1027//   Matcher<int&> m2 = Ref(n);  // This will compile.
1028template <typename T>
1029class RefMatcher;
1030
1031template <typename T>
1032class RefMatcher<T&> {
1033  // Google Mock is a generic framework and thus needs to support
1034  // mocking any function types, including those that take non-const
1035  // reference arguments.  Therefore the template parameter T (and
1036  // Super below) can be instantiated to either a const type or a
1037  // non-const type.
1038 public:
1039  // RefMatcher() takes a T& instead of const T&, as we want the
1040  // compiler to catch using Ref(const_value) as a matcher for a
1041  // non-const reference.
1042  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
1043
1044  template <typename Super>
1045  operator Matcher<Super&>() const {
1046    // By passing object_ (type T&) to Impl(), which expects a Super&,
1047    // we make sure that Super is a super type of T.  In particular,
1048    // this catches using Ref(const_value) as a matcher for a
1049    // non-const reference, as you cannot implicitly convert a const
1050    // reference to a non-const reference.
1051    return MakeMatcher(new Impl<Super>(object_));
1052  }
1053
1054 private:
1055  template <typename Super>
1056  class Impl : public MatcherInterface<Super&> {
1057   public:
1058    explicit Impl(Super& x) : object_(x) {}  // NOLINT
1059
1060    // MatchAndExplain() takes a Super& (as opposed to const Super&)
1061    // in order to match the interface MatcherInterface<Super&>.
1062    virtual bool MatchAndExplain(
1063        Super& x, MatchResultListener* listener) const {
1064      *listener << "which is located @" << static_cast<const void*>(&x);
1065      return &x == &object_;
1066    }
1067
1068    virtual void DescribeTo(::std::ostream* os) const {
1069      *os << "references the variable ";
1070      UniversalPrinter<Super&>::Print(object_, os);
1071    }
1072
1073    virtual void DescribeNegationTo(::std::ostream* os) const {
1074      *os << "does not reference the variable ";
1075      UniversalPrinter<Super&>::Print(object_, os);
1076    }
1077
1078   private:
1079    const Super& object_;
1080
1081    GTEST_DISALLOW_ASSIGN_(Impl);
1082  };
1083
1084  T& object_;
1085
1086  GTEST_DISALLOW_ASSIGN_(RefMatcher);
1087};
1088
1089// Polymorphic helper functions for narrow and wide string matchers.
1090inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
1091  return String::CaseInsensitiveCStringEquals(lhs, rhs);
1092}
1093
1094inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
1095                                         const wchar_t* rhs) {
1096  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
1097}
1098
1099// String comparison for narrow or wide strings that can have embedded NUL
1100// characters.
1101template <typename StringType>
1102bool CaseInsensitiveStringEquals(const StringType& s1,
1103                                 const StringType& s2) {
1104  // Are the heads equal?
1105  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
1106    return false;
1107  }
1108
1109  // Skip the equal heads.
1110  const typename StringType::value_type nul = 0;
1111  const size_t i1 = s1.find(nul), i2 = s2.find(nul);
1112
1113  // Are we at the end of either s1 or s2?
1114  if (i1 == StringType::npos || i2 == StringType::npos) {
1115    return i1 == i2;
1116  }
1117
1118  // Are the tails equal?
1119  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
1120}
1121
1122// String matchers.
1123
1124// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
1125template <typename StringType>
1126class StrEqualityMatcher {
1127 public:
1128  StrEqualityMatcher(const StringType& str, bool expect_eq,
1129                     bool case_sensitive)
1130      : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
1131
1132  // Accepts pointer types, particularly:
1133  //   const char*
1134  //   char*
1135  //   const wchar_t*
1136  //   wchar_t*
1137  template <typename CharType>
1138  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1139    if (s == NULL) {
1140      return !expect_eq_;
1141    }
1142    return MatchAndExplain(StringType(s), listener);
1143  }
1144
1145  // Matches anything that can convert to StringType.
1146  //
1147  // This is a template, not just a plain function with const StringType&,
1148  // because StringPiece has some interfering non-explicit constructors.
1149  template <typename MatcheeStringType>
1150  bool MatchAndExplain(const MatcheeStringType& s,
1151                       MatchResultListener* /* listener */) const {
1152    const StringType& s2(s);
1153    const bool eq = case_sensitive_ ? s2 == string_ :
1154        CaseInsensitiveStringEquals(s2, string_);
1155    return expect_eq_ == eq;
1156  }
1157
1158  void DescribeTo(::std::ostream* os) const {
1159    DescribeToHelper(expect_eq_, os);
1160  }
1161
1162  void DescribeNegationTo(::std::ostream* os) const {
1163    DescribeToHelper(!expect_eq_, os);
1164  }
1165
1166 private:
1167  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
1168    *os << (expect_eq ? "is " : "isn't ");
1169    *os << "equal to ";
1170    if (!case_sensitive_) {
1171      *os << "(ignoring case) ";
1172    }
1173    UniversalPrint(string_, os);
1174  }
1175
1176  const StringType string_;
1177  const bool expect_eq_;
1178  const bool case_sensitive_;
1179
1180  GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
1181};
1182
1183// Implements the polymorphic HasSubstr(substring) matcher, which
1184// can be used as a Matcher<T> as long as T can be converted to a
1185// string.
1186template <typename StringType>
1187class HasSubstrMatcher {
1188 public:
1189  explicit HasSubstrMatcher(const StringType& substring)
1190      : substring_(substring) {}
1191
1192  // Accepts pointer types, particularly:
1193  //   const char*
1194  //   char*
1195  //   const wchar_t*
1196  //   wchar_t*
1197  template <typename CharType>
1198  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1199    return s != NULL && MatchAndExplain(StringType(s), listener);
1200  }
1201
1202  // Matches anything that can convert to StringType.
1203  //
1204  // This is a template, not just a plain function with const StringType&,
1205  // because StringPiece has some interfering non-explicit constructors.
1206  template <typename MatcheeStringType>
1207  bool MatchAndExplain(const MatcheeStringType& s,
1208                       MatchResultListener* /* listener */) const {
1209    const StringType& s2(s);
1210    return s2.find(substring_) != StringType::npos;
1211  }
1212
1213  // Describes what this matcher matches.
1214  void DescribeTo(::std::ostream* os) const {
1215    *os << "has substring ";
1216    UniversalPrint(substring_, os);
1217  }
1218
1219  void DescribeNegationTo(::std::ostream* os) const {
1220    *os << "has no substring ";
1221    UniversalPrint(substring_, os);
1222  }
1223
1224 private:
1225  const StringType substring_;
1226
1227  GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
1228};
1229
1230// Implements the polymorphic StartsWith(substring) matcher, which
1231// can be used as a Matcher<T> as long as T can be converted to a
1232// string.
1233template <typename StringType>
1234class StartsWithMatcher {
1235 public:
1236  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1237  }
1238
1239  // Accepts pointer types, particularly:
1240  //   const char*
1241  //   char*
1242  //   const wchar_t*
1243  //   wchar_t*
1244  template <typename CharType>
1245  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1246    return s != NULL && MatchAndExplain(StringType(s), listener);
1247  }
1248
1249  // Matches anything that can convert to StringType.
1250  //
1251  // This is a template, not just a plain function with const StringType&,
1252  // because StringPiece has some interfering non-explicit constructors.
1253  template <typename MatcheeStringType>
1254  bool MatchAndExplain(const MatcheeStringType& s,
1255                       MatchResultListener* /* listener */) const {
1256    const StringType& s2(s);
1257    return s2.length() >= prefix_.length() &&
1258        s2.substr(0, prefix_.length()) == prefix_;
1259  }
1260
1261  void DescribeTo(::std::ostream* os) const {
1262    *os << "starts with ";
1263    UniversalPrint(prefix_, os);
1264  }
1265
1266  void DescribeNegationTo(::std::ostream* os) const {
1267    *os << "doesn't start with ";
1268    UniversalPrint(prefix_, os);
1269  }
1270
1271 private:
1272  const StringType prefix_;
1273
1274  GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
1275};
1276
1277// Implements the polymorphic EndsWith(substring) matcher, which
1278// can be used as a Matcher<T> as long as T can be converted to a
1279// string.
1280template <typename StringType>
1281class EndsWithMatcher {
1282 public:
1283  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1284
1285  // Accepts pointer types, particularly:
1286  //   const char*
1287  //   char*
1288  //   const wchar_t*
1289  //   wchar_t*
1290  template <typename CharType>
1291  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1292    return s != NULL && MatchAndExplain(StringType(s), listener);
1293  }
1294
1295  // Matches anything that can convert to StringType.
1296  //
1297  // This is a template, not just a plain function with const StringType&,
1298  // because StringPiece has some interfering non-explicit constructors.
1299  template <typename MatcheeStringType>
1300  bool MatchAndExplain(const MatcheeStringType& s,
1301                       MatchResultListener* /* listener */) const {
1302    const StringType& s2(s);
1303    return s2.length() >= suffix_.length() &&
1304        s2.substr(s2.length() - suffix_.length()) == suffix_;
1305  }
1306
1307  void DescribeTo(::std::ostream* os) const {
1308    *os << "ends with ";
1309    UniversalPrint(suffix_, os);
1310  }
1311
1312  void DescribeNegationTo(::std::ostream* os) const {
1313    *os << "doesn't end with ";
1314    UniversalPrint(suffix_, os);
1315  }
1316
1317 private:
1318  const StringType suffix_;
1319
1320  GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1321};
1322
1323// Implements polymorphic matchers MatchesRegex(regex) and
1324// ContainsRegex(regex), which can be used as a Matcher<T> as long as
1325// T can be converted to a string.
1326class MatchesRegexMatcher {
1327 public:
1328  MatchesRegexMatcher(const RE* regex, bool full_match)
1329      : regex_(regex), full_match_(full_match) {}
1330
1331  // Accepts pointer types, particularly:
1332  //   const char*
1333  //   char*
1334  //   const wchar_t*
1335  //   wchar_t*
1336  template <typename CharType>
1337  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1338    return s != NULL && MatchAndExplain(internal::string(s), listener);
1339  }
1340
1341  // Matches anything that can convert to internal::string.
1342  //
1343  // This is a template, not just a plain function with const internal::string&,
1344  // because StringPiece has some interfering non-explicit constructors.
1345  template <class MatcheeStringType>
1346  bool MatchAndExplain(const MatcheeStringType& s,
1347                       MatchResultListener* /* listener */) const {
1348    const internal::string& s2(s);
1349    return full_match_ ? RE::FullMatch(s2, *regex_) :
1350        RE::PartialMatch(s2, *regex_);
1351  }
1352
1353  void DescribeTo(::std::ostream* os) const {
1354    *os << (full_match_ ? "matches" : "contains")
1355        << " regular expression ";
1356    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1357  }
1358
1359  void DescribeNegationTo(::std::ostream* os) const {
1360    *os << "doesn't " << (full_match_ ? "match" : "contain")
1361        << " regular expression ";
1362    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1363  }
1364
1365 private:
1366  const internal::linked_ptr<const RE> regex_;
1367  const bool full_match_;
1368
1369  GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1370};
1371
1372// Implements a matcher that compares the two fields of a 2-tuple
1373// using one of the ==, <=, <, etc, operators.  The two fields being
1374// compared don't have to have the same type.
1375//
1376// The matcher defined here is polymorphic (for example, Eq() can be
1377// used to match a tuple<int, short>, a tuple<const long&, double>,
1378// etc).  Therefore we use a template type conversion operator in the
1379// implementation.
1380template <typename D, typename Op>
1381class PairMatchBase {
1382 public:
1383  template <typename T1, typename T2>
1384  operator Matcher< ::testing::tuple<T1, T2> >() const {
1385    return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >);
1386  }
1387  template <typename T1, typename T2>
1388  operator Matcher<const ::testing::tuple<T1, T2>&>() const {
1389    return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>);
1390  }
1391
1392 private:
1393  static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1394    return os << D::Desc();
1395  }
1396
1397  template <typename Tuple>
1398  class Impl : public MatcherInterface<Tuple> {
1399   public:
1400    virtual bool MatchAndExplain(
1401        Tuple args,
1402        MatchResultListener* /* listener */) const {
1403      return Op()(::testing::get<0>(args), ::testing::get<1>(args));
1404    }
1405    virtual void DescribeTo(::std::ostream* os) const {
1406      *os << "are " << GetDesc;
1407    }
1408    virtual void DescribeNegationTo(::std::ostream* os) const {
1409      *os << "aren't " << GetDesc;
1410    }
1411  };
1412};
1413
1414class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1415 public:
1416  static const char* Desc() { return "an equal pair"; }
1417};
1418class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1419 public:
1420  static const char* Desc() { return "an unequal pair"; }
1421};
1422class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1423 public:
1424  static const char* Desc() { return "a pair where the first < the second"; }
1425};
1426class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1427 public:
1428  static const char* Desc() { return "a pair where the first > the second"; }
1429};
1430class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1431 public:
1432  static const char* Desc() { return "a pair where the first <= the second"; }
1433};
1434class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1435 public:
1436  static const char* Desc() { return "a pair where the first >= the second"; }
1437};
1438
1439// Implements the Not(...) matcher for a particular argument type T.
1440// We do not nest it inside the NotMatcher class template, as that
1441// will prevent different instantiations of NotMatcher from sharing
1442// the same NotMatcherImpl<T> class.
1443template <typename T>
1444class NotMatcherImpl : public MatcherInterface<T> {
1445 public:
1446  explicit NotMatcherImpl(const Matcher<T>& matcher)
1447      : matcher_(matcher) {}
1448
1449  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1450    return !matcher_.MatchAndExplain(x, listener);
1451  }
1452
1453  virtual void DescribeTo(::std::ostream* os) const {
1454    matcher_.DescribeNegationTo(os);
1455  }
1456
1457  virtual void DescribeNegationTo(::std::ostream* os) const {
1458    matcher_.DescribeTo(os);
1459  }
1460
1461 private:
1462  const Matcher<T> matcher_;
1463
1464  GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1465};
1466
1467// Implements the Not(m) matcher, which matches a value that doesn't
1468// match matcher m.
1469template <typename InnerMatcher>
1470class NotMatcher {
1471 public:
1472  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1473
1474  // This template type conversion operator allows Not(m) to be used
1475  // to match any type m can match.
1476  template <typename T>
1477  operator Matcher<T>() const {
1478    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1479  }
1480
1481 private:
1482  InnerMatcher matcher_;
1483
1484  GTEST_DISALLOW_ASSIGN_(NotMatcher);
1485};
1486
1487// Implements the AllOf(m1, m2) matcher for a particular argument type
1488// T. We do not nest it inside the BothOfMatcher class template, as
1489// that will prevent different instantiations of BothOfMatcher from
1490// sharing the same BothOfMatcherImpl<T> class.
1491template <typename T>
1492class BothOfMatcherImpl : public MatcherInterface<T> {
1493 public:
1494  BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1495      : matcher1_(matcher1), matcher2_(matcher2) {}
1496
1497  virtual void DescribeTo(::std::ostream* os) const {
1498    *os << "(";
1499    matcher1_.DescribeTo(os);
1500    *os << ") and (";
1501    matcher2_.DescribeTo(os);
1502    *os << ")";
1503  }
1504
1505  virtual void DescribeNegationTo(::std::ostream* os) const {
1506    *os << "(";
1507    matcher1_.DescribeNegationTo(os);
1508    *os << ") or (";
1509    matcher2_.DescribeNegationTo(os);
1510    *os << ")";
1511  }
1512
1513  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1514    // If either matcher1_ or matcher2_ doesn't match x, we only need
1515    // to explain why one of them fails.
1516    StringMatchResultListener listener1;
1517    if (!matcher1_.MatchAndExplain(x, &listener1)) {
1518      *listener << listener1.str();
1519      return false;
1520    }
1521
1522    StringMatchResultListener listener2;
1523    if (!matcher2_.MatchAndExplain(x, &listener2)) {
1524      *listener << listener2.str();
1525      return false;
1526    }
1527
1528    // Otherwise we need to explain why *both* of them match.
1529    const internal::string s1 = listener1.str();
1530    const internal::string s2 = listener2.str();
1531
1532    if (s1 == "") {
1533      *listener << s2;
1534    } else {
1535      *listener << s1;
1536      if (s2 != "") {
1537        *listener << ", and " << s2;
1538      }
1539    }
1540    return true;
1541  }
1542
1543 private:
1544  const Matcher<T> matcher1_;
1545  const Matcher<T> matcher2_;
1546
1547  GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
1548};
1549
1550#if GTEST_LANG_CXX11
1551// MatcherList provides mechanisms for storing a variable number of matchers in
1552// a list structure (ListType) and creating a combining matcher from such a
1553// list.
1554// The template is defined recursively using the following template paramters:
1555//   * kSize is the length of the MatcherList.
1556//   * Head is the type of the first matcher of the list.
1557//   * Tail denotes the types of the remaining matchers of the list.
1558template <int kSize, typename Head, typename... Tail>
1559struct MatcherList {
1560  typedef MatcherList<kSize - 1, Tail...> MatcherListTail;
1561  typedef ::std::pair<Head, typename MatcherListTail::ListType> ListType;
1562
1563  // BuildList stores variadic type values in a nested pair structure.
1564  // Example:
1565  // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return
1566  // the corresponding result of type pair<int, pair<string, float>>.
1567  static ListType BuildList(const Head& matcher, const Tail&... tail) {
1568    return ListType(matcher, MatcherListTail::BuildList(tail...));
1569  }
1570
1571  // CreateMatcher<T> creates a Matcher<T> from a given list of matchers (built
1572  // by BuildList()). CombiningMatcher<T> is used to combine the matchers of the
1573  // list. CombiningMatcher<T> must implement MatcherInterface<T> and have a
1574  // constructor taking two Matcher<T>s as input.
1575  template <typename T, template <typename /* T */> class CombiningMatcher>
1576  static Matcher<T> CreateMatcher(const ListType& matchers) {
1577    return Matcher<T>(new CombiningMatcher<T>(
1578        SafeMatcherCast<T>(matchers.first),
1579        MatcherListTail::template CreateMatcher<T, CombiningMatcher>(
1580            matchers.second)));
1581  }
1582};
1583
1584// The following defines the base case for the recursive definition of
1585// MatcherList.
1586template <typename Matcher1, typename Matcher2>
1587struct MatcherList<2, Matcher1, Matcher2> {
1588  typedef ::std::pair<Matcher1, Matcher2> ListType;
1589
1590  static ListType BuildList(const Matcher1& matcher1,
1591                            const Matcher2& matcher2) {
1592    return ::std::pair<Matcher1, Matcher2>(matcher1, matcher2);
1593  }
1594
1595  template <typename T, template <typename /* T */> class CombiningMatcher>
1596  static Matcher<T> CreateMatcher(const ListType& matchers) {
1597    return Matcher<T>(new CombiningMatcher<T>(
1598        SafeMatcherCast<T>(matchers.first),
1599        SafeMatcherCast<T>(matchers.second)));
1600  }
1601};
1602
1603// VariadicMatcher is used for the variadic implementation of
1604// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1605// CombiningMatcher<T> is used to recursively combine the provided matchers
1606// (of type Args...).
1607template <template <typename T> class CombiningMatcher, typename... Args>
1608class VariadicMatcher {
1609 public:
1610  VariadicMatcher(const Args&... matchers)  // NOLINT
1611      : matchers_(MatcherListType::BuildList(matchers...)) {}
1612
1613  // This template type conversion operator allows an
1614  // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1615  // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1616  template <typename T>
1617  operator Matcher<T>() const {
1618    return MatcherListType::template CreateMatcher<T, CombiningMatcher>(
1619        matchers_);
1620  }
1621
1622 private:
1623  typedef MatcherList<sizeof...(Args), Args...> MatcherListType;
1624
1625  const typename MatcherListType::ListType matchers_;
1626
1627  GTEST_DISALLOW_ASSIGN_(VariadicMatcher);
1628};
1629
1630template <typename... Args>
1631using AllOfMatcher = VariadicMatcher<BothOfMatcherImpl, Args...>;
1632
1633#endif  // GTEST_LANG_CXX11
1634
1635// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1636// matches a value that matches all of the matchers m_1, ..., and m_n.
1637template <typename Matcher1, typename Matcher2>
1638class BothOfMatcher {
1639 public:
1640  BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1641      : matcher1_(matcher1), matcher2_(matcher2) {}
1642
1643  // This template type conversion operator allows a
1644  // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1645  // both Matcher1 and Matcher2 can match.
1646  template <typename T>
1647  operator Matcher<T>() const {
1648    return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1649                                               SafeMatcherCast<T>(matcher2_)));
1650  }
1651
1652 private:
1653  Matcher1 matcher1_;
1654  Matcher2 matcher2_;
1655
1656  GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1657};
1658
1659// Implements the AnyOf(m1, m2) matcher for a particular argument type
1660// T.  We do not nest it inside the AnyOfMatcher class template, as
1661// that will prevent different instantiations of AnyOfMatcher from
1662// sharing the same EitherOfMatcherImpl<T> class.
1663template <typename T>
1664class EitherOfMatcherImpl : public MatcherInterface<T> {
1665 public:
1666  EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1667      : matcher1_(matcher1), matcher2_(matcher2) {}
1668
1669  virtual void DescribeTo(::std::ostream* os) const {
1670    *os << "(";
1671    matcher1_.DescribeTo(os);
1672    *os << ") or (";
1673    matcher2_.DescribeTo(os);
1674    *os << ")";
1675  }
1676
1677  virtual void DescribeNegationTo(::std::ostream* os) const {
1678    *os << "(";
1679    matcher1_.DescribeNegationTo(os);
1680    *os << ") and (";
1681    matcher2_.DescribeNegationTo(os);
1682    *os << ")";
1683  }
1684
1685  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1686    // If either matcher1_ or matcher2_ matches x, we just need to
1687    // explain why *one* of them matches.
1688    StringMatchResultListener listener1;
1689    if (matcher1_.MatchAndExplain(x, &listener1)) {
1690      *listener << listener1.str();
1691      return true;
1692    }
1693
1694    StringMatchResultListener listener2;
1695    if (matcher2_.MatchAndExplain(x, &listener2)) {
1696      *listener << listener2.str();
1697      return true;
1698    }
1699
1700    // Otherwise we need to explain why *both* of them fail.
1701    const internal::string s1 = listener1.str();
1702    const internal::string s2 = listener2.str();
1703
1704    if (s1 == "") {
1705      *listener << s2;
1706    } else {
1707      *listener << s1;
1708      if (s2 != "") {
1709        *listener << ", and " << s2;
1710      }
1711    }
1712    return false;
1713  }
1714
1715 private:
1716  const Matcher<T> matcher1_;
1717  const Matcher<T> matcher2_;
1718
1719  GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
1720};
1721
1722#if GTEST_LANG_CXX11
1723// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1724template <typename... Args>
1725using AnyOfMatcher = VariadicMatcher<EitherOfMatcherImpl, Args...>;
1726
1727#endif  // GTEST_LANG_CXX11
1728
1729// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1730// matches a value that matches at least one of the matchers m_1, ...,
1731// and m_n.
1732template <typename Matcher1, typename Matcher2>
1733class EitherOfMatcher {
1734 public:
1735  EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1736      : matcher1_(matcher1), matcher2_(matcher2) {}
1737
1738  // This template type conversion operator allows a
1739  // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1740  // both Matcher1 and Matcher2 can match.
1741  template <typename T>
1742  operator Matcher<T>() const {
1743    return Matcher<T>(new EitherOfMatcherImpl<T>(
1744        SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1745  }
1746
1747 private:
1748  Matcher1 matcher1_;
1749  Matcher2 matcher2_;
1750
1751  GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1752};
1753
1754// Used for implementing Truly(pred), which turns a predicate into a
1755// matcher.
1756template <typename Predicate>
1757class TrulyMatcher {
1758 public:
1759  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1760
1761  // This method template allows Truly(pred) to be used as a matcher
1762  // for type T where T is the argument type of predicate 'pred'.  The
1763  // argument is passed by reference as the predicate may be
1764  // interested in the address of the argument.
1765  template <typename T>
1766  bool MatchAndExplain(T& x,  // NOLINT
1767                       MatchResultListener* /* listener */) const {
1768    // Without the if-statement, MSVC sometimes warns about converting
1769    // a value to bool (warning 4800).
1770    //
1771    // We cannot write 'return !!predicate_(x);' as that doesn't work
1772    // when predicate_(x) returns a class convertible to bool but
1773    // having no operator!().
1774    if (predicate_(x))
1775      return true;
1776    return false;
1777  }
1778
1779  void DescribeTo(::std::ostream* os) const {
1780    *os << "satisfies the given predicate";
1781  }
1782
1783  void DescribeNegationTo(::std::ostream* os) const {
1784    *os << "doesn't satisfy the given predicate";
1785  }
1786
1787 private:
1788  Predicate predicate_;
1789
1790  GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1791};
1792
1793// Used for implementing Matches(matcher), which turns a matcher into
1794// a predicate.
1795template <typename M>
1796class MatcherAsPredicate {
1797 public:
1798  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1799
1800  // This template operator() allows Matches(m) to be used as a
1801  // predicate on type T where m is a matcher on type T.
1802  //
1803  // The argument x is passed by reference instead of by value, as
1804  // some matcher may be interested in its address (e.g. as in
1805  // Matches(Ref(n))(x)).
1806  template <typename T>
1807  bool operator()(const T& x) const {
1808    // We let matcher_ commit to a particular type here instead of
1809    // when the MatcherAsPredicate object was constructed.  This
1810    // allows us to write Matches(m) where m is a polymorphic matcher
1811    // (e.g. Eq(5)).
1812    //
1813    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1814    // compile when matcher_ has type Matcher<const T&>; if we write
1815    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1816    // when matcher_ has type Matcher<T>; if we just write
1817    // matcher_.Matches(x), it won't compile when matcher_ is
1818    // polymorphic, e.g. Eq(5).
1819    //
1820    // MatcherCast<const T&>() is necessary for making the code work
1821    // in all of the above situations.
1822    return MatcherCast<const T&>(matcher_).Matches(x);
1823  }
1824
1825 private:
1826  M matcher_;
1827
1828  GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
1829};
1830
1831// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1832// argument M must be a type that can be converted to a matcher.
1833template <typename M>
1834class PredicateFormatterFromMatcher {
1835 public:
1836  explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {}
1837
1838  // This template () operator allows a PredicateFormatterFromMatcher
1839  // object to act as a predicate-formatter suitable for using with
1840  // Google Test's EXPECT_PRED_FORMAT1() macro.
1841  template <typename T>
1842  AssertionResult operator()(const char* value_text, const T& x) const {
1843    // We convert matcher_ to a Matcher<const T&> *now* instead of
1844    // when the PredicateFormatterFromMatcher object was constructed,
1845    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1846    // know which type to instantiate it to until we actually see the
1847    // type of x here.
1848    //
1849    // We write SafeMatcherCast<const T&>(matcher_) instead of
1850    // Matcher<const T&>(matcher_), as the latter won't compile when
1851    // matcher_ has type Matcher<T> (e.g. An<int>()).
1852    // We don't write MatcherCast<const T&> either, as that allows
1853    // potentially unsafe downcasting of the matcher argument.
1854    const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1855    StringMatchResultListener listener;
1856    if (MatchPrintAndExplain(x, matcher, &listener))
1857      return AssertionSuccess();
1858
1859    ::std::stringstream ss;
1860    ss << "Value of: " << value_text << "\n"
1861       << "Expected: ";
1862    matcher.DescribeTo(&ss);
1863    ss << "\n  Actual: " << listener.str();
1864    return AssertionFailure() << ss.str();
1865  }
1866
1867 private:
1868  const M matcher_;
1869
1870  GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
1871};
1872
1873// A helper function for converting a matcher to a predicate-formatter
1874// without the user needing to explicitly write the type.  This is
1875// used for implementing ASSERT_THAT() and EXPECT_THAT().
1876// Implementation detail: 'matcher' is received by-value to force decaying.
1877template <typename M>
1878inline PredicateFormatterFromMatcher<M>
1879MakePredicateFormatterFromMatcher(M matcher) {
1880  return PredicateFormatterFromMatcher<M>(internal::move(matcher));
1881}
1882
1883// Implements the polymorphic floating point equality matcher, which matches
1884// two float values using ULP-based approximation or, optionally, a
1885// user-specified epsilon.  The template is meant to be instantiated with
1886// FloatType being either float or double.
1887template <typename FloatType>
1888class FloatingEqMatcher {
1889 public:
1890  // Constructor for FloatingEqMatcher.
1891  // The matcher's input will be compared with expected.  The matcher treats two
1892  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1893  // equality comparisons between NANs will always return false.  We specify a
1894  // negative max_abs_error_ term to indicate that ULP-based approximation will
1895  // be used for comparison.
1896  FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
1897    expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
1898  }
1899
1900  // Constructor that supports a user-specified max_abs_error that will be used
1901  // for comparison instead of ULP-based approximation.  The max absolute
1902  // should be non-negative.
1903  FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1904                    FloatType max_abs_error)
1905      : expected_(expected),
1906        nan_eq_nan_(nan_eq_nan),
1907        max_abs_error_(max_abs_error) {
1908    GTEST_CHECK_(max_abs_error >= 0)
1909        << ", where max_abs_error is" << max_abs_error;
1910  }
1911
1912  // Implements floating point equality matcher as a Matcher<T>.
1913  template <typename T>
1914  class Impl : public MatcherInterface<T> {
1915   public:
1916    Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1917        : expected_(expected),
1918          nan_eq_nan_(nan_eq_nan),
1919          max_abs_error_(max_abs_error) {}
1920
1921    virtual bool MatchAndExplain(T value,
1922                                 MatchResultListener* listener) const {
1923      const FloatingPoint<FloatType> actual(value), expected(expected_);
1924
1925      // Compares NaNs first, if nan_eq_nan_ is true.
1926      if (actual.is_nan() || expected.is_nan()) {
1927        if (actual.is_nan() && expected.is_nan()) {
1928          return nan_eq_nan_;
1929        }
1930        // One is nan; the other is not nan.
1931        return false;
1932      }
1933      if (HasMaxAbsError()) {
1934        // We perform an equality check so that inf will match inf, regardless
1935        // of error bounds.  If the result of value - expected_ would result in
1936        // overflow or if either value is inf, the default result is infinity,
1937        // which should only match if max_abs_error_ is also infinity.
1938        if (value == expected_) {
1939          return true;
1940        }
1941
1942        const FloatType diff = value - expected_;
1943        if (fabs(diff) <= max_abs_error_) {
1944          return true;
1945        }
1946
1947        if (listener->IsInterested()) {
1948          *listener << "which is " << diff << " from " << expected_;
1949        }
1950        return false;
1951      } else {
1952        return actual.AlmostEquals(expected);
1953      }
1954    }
1955
1956    virtual void DescribeTo(::std::ostream* os) const {
1957      // os->precision() returns the previously set precision, which we
1958      // store to restore the ostream to its original configuration
1959      // after outputting.
1960      const ::std::streamsize old_precision = os->precision(
1961          ::std::numeric_limits<FloatType>::digits10 + 2);
1962      if (FloatingPoint<FloatType>(expected_).is_nan()) {
1963        if (nan_eq_nan_) {
1964          *os << "is NaN";
1965        } else {
1966          *os << "never matches";
1967        }
1968      } else {
1969        *os << "is approximately " << expected_;
1970        if (HasMaxAbsError()) {
1971          *os << " (absolute error <= " << max_abs_error_ << ")";
1972        }
1973      }
1974      os->precision(old_precision);
1975    }
1976
1977    virtual void DescribeNegationTo(::std::ostream* os) const {
1978      // As before, get original precision.
1979      const ::std::streamsize old_precision = os->precision(
1980          ::std::numeric_limits<FloatType>::digits10 + 2);
1981      if (FloatingPoint<FloatType>(expected_).is_nan()) {
1982        if (nan_eq_nan_) {
1983          *os << "isn't NaN";
1984        } else {
1985          *os << "is anything";
1986        }
1987      } else {
1988        *os << "isn't approximately " << expected_;
1989        if (HasMaxAbsError()) {
1990          *os << " (absolute error > " << max_abs_error_ << ")";
1991        }
1992      }
1993      // Restore original precision.
1994      os->precision(old_precision);
1995    }
1996
1997   private:
1998    bool HasMaxAbsError() const {
1999      return max_abs_error_ >= 0;
2000    }
2001
2002    const FloatType expected_;
2003    const bool nan_eq_nan_;
2004    // max_abs_error will be used for value comparison when >= 0.
2005    const FloatType max_abs_error_;
2006
2007    GTEST_DISALLOW_ASSIGN_(Impl);
2008  };
2009
2010  // The following 3 type conversion operators allow FloatEq(expected) and
2011  // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
2012  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
2013  // (While Google's C++ coding style doesn't allow arguments passed
2014  // by non-const reference, we may see them in code not conforming to
2015  // the style.  Therefore Google Mock needs to support them.)
2016  operator Matcher<FloatType>() const {
2017    return MakeMatcher(
2018        new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
2019  }
2020
2021  operator Matcher<const FloatType&>() const {
2022    return MakeMatcher(
2023        new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
2024  }
2025
2026  operator Matcher<FloatType&>() const {
2027    return MakeMatcher(
2028        new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
2029  }
2030
2031 private:
2032  const FloatType expected_;
2033  const bool nan_eq_nan_;
2034  // max_abs_error will be used for value comparison when >= 0.
2035  const FloatType max_abs_error_;
2036
2037  GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
2038};
2039
2040// Implements the Pointee(m) matcher for matching a pointer whose
2041// pointee matches matcher m.  The pointer can be either raw or smart.
2042template <typename InnerMatcher>
2043class PointeeMatcher {
2044 public:
2045  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
2046
2047  // This type conversion operator template allows Pointee(m) to be
2048  // used as a matcher for any pointer type whose pointee type is
2049  // compatible with the inner matcher, where type Pointer can be
2050  // either a raw pointer or a smart pointer.
2051  //
2052  // The reason we do this instead of relying on
2053  // MakePolymorphicMatcher() is that the latter is not flexible
2054  // enough for implementing the DescribeTo() method of Pointee().
2055  template <typename Pointer>
2056  operator Matcher<Pointer>() const {
2057    return MakeMatcher(new Impl<Pointer>(matcher_));
2058  }
2059
2060 private:
2061  // The monomorphic implementation that works for a particular pointer type.
2062  template <typename Pointer>
2063  class Impl : public MatcherInterface<Pointer> {
2064   public:
2065    typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT
2066        GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
2067
2068    explicit Impl(const InnerMatcher& matcher)
2069        : matcher_(MatcherCast<const Pointee&>(matcher)) {}
2070
2071    virtual void DescribeTo(::std::ostream* os) const {
2072      *os << "points to a value that ";
2073      matcher_.DescribeTo(os);
2074    }
2075
2076    virtual void DescribeNegationTo(::std::ostream* os) const {
2077      *os << "does not point to a value that ";
2078      matcher_.DescribeTo(os);
2079    }
2080
2081    virtual bool MatchAndExplain(Pointer pointer,
2082                                 MatchResultListener* listener) const {
2083      if (GetRawPointer(pointer) == NULL)
2084        return false;
2085
2086      *listener << "which points to ";
2087      return MatchPrintAndExplain(*pointer, matcher_, listener);
2088    }
2089
2090   private:
2091    const Matcher<const Pointee&> matcher_;
2092
2093    GTEST_DISALLOW_ASSIGN_(Impl);
2094  };
2095
2096  const InnerMatcher matcher_;
2097
2098  GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
2099};
2100
2101// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
2102// reference that matches inner_matcher when dynamic_cast<T> is applied.
2103// The result of dynamic_cast<To> is forwarded to the inner matcher.
2104// If To is a pointer and the cast fails, the inner matcher will receive NULL.
2105// If To is a reference and the cast fails, this matcher returns false
2106// immediately.
2107template <typename To>
2108class WhenDynamicCastToMatcherBase {
2109 public:
2110  explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
2111      : matcher_(matcher) {}
2112
2113  void DescribeTo(::std::ostream* os) const {
2114    GetCastTypeDescription(os);
2115    matcher_.DescribeTo(os);
2116  }
2117
2118  void DescribeNegationTo(::std::ostream* os) const {
2119    GetCastTypeDescription(os);
2120    matcher_.DescribeNegationTo(os);
2121  }
2122
2123 protected:
2124  const Matcher<To> matcher_;
2125
2126  static string GetToName() {
2127#if GTEST_HAS_RTTI
2128    return GetTypeName<To>();
2129#else  // GTEST_HAS_RTTI
2130    return "the target type";
2131#endif  // GTEST_HAS_RTTI
2132  }
2133
2134 private:
2135  static void GetCastTypeDescription(::std::ostream* os) {
2136    *os << "when dynamic_cast to " << GetToName() << ", ";
2137  }
2138
2139  GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase);
2140};
2141
2142// Primary template.
2143// To is a pointer. Cast and forward the result.
2144template <typename To>
2145class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2146 public:
2147  explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2148      : WhenDynamicCastToMatcherBase<To>(matcher) {}
2149
2150  template <typename From>
2151  bool MatchAndExplain(From from, MatchResultListener* listener) const {
2152    // TODO(sbenza): Add more detail on failures. ie did the dyn_cast fail?
2153    To to = dynamic_cast<To>(from);
2154    return MatchPrintAndExplain(to, this->matcher_, listener);
2155  }
2156};
2157
2158// Specialize for references.
2159// In this case we return false if the dynamic_cast fails.
2160template <typename To>
2161class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2162 public:
2163  explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2164      : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2165
2166  template <typename From>
2167  bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2168    // We don't want an std::bad_cast here, so do the cast with pointers.
2169    To* to = dynamic_cast<To*>(&from);
2170    if (to == NULL) {
2171      *listener << "which cannot be dynamic_cast to " << this->GetToName();
2172      return false;
2173    }
2174    return MatchPrintAndExplain(*to, this->matcher_, listener);
2175  }
2176};
2177
2178// Implements the Field() matcher for matching a field (i.e. member
2179// variable) of an object.
2180template <typename Class, typename FieldType>
2181class FieldMatcher {
2182 public:
2183  FieldMatcher(FieldType Class::*field,
2184               const Matcher<const FieldType&>& matcher)
2185      : field_(field), matcher_(matcher) {}
2186
2187  void DescribeTo(::std::ostream* os) const {
2188    *os << "is an object whose given field ";
2189    matcher_.DescribeTo(os);
2190  }
2191
2192  void DescribeNegationTo(::std::ostream* os) const {
2193    *os << "is an object whose given field ";
2194    matcher_.DescribeNegationTo(os);
2195  }
2196
2197  template <typename T>
2198  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2199    return MatchAndExplainImpl(
2200        typename ::testing::internal::
2201            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
2202        value, listener);
2203  }
2204
2205 private:
2206  // The first argument of MatchAndExplainImpl() is needed to help
2207  // Symbian's C++ compiler choose which overload to use.  Its type is
2208  // true_type iff the Field() matcher is used to match a pointer.
2209  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
2210                           MatchResultListener* listener) const {
2211    *listener << "whose given field is ";
2212    return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2213  }
2214
2215  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
2216                           MatchResultListener* listener) const {
2217    if (p == NULL)
2218      return false;
2219
2220    *listener << "which points to an object ";
2221    // Since *p has a field, it must be a class/struct/union type and
2222    // thus cannot be a pointer.  Therefore we pass false_type() as
2223    // the first argument.
2224    return MatchAndExplainImpl(false_type(), *p, listener);
2225  }
2226
2227  const FieldType Class::*field_;
2228  const Matcher<const FieldType&> matcher_;
2229
2230  GTEST_DISALLOW_ASSIGN_(FieldMatcher);
2231};
2232
2233// Implements the Property() matcher for matching a property
2234// (i.e. return value of a getter method) of an object.
2235template <typename Class, typename PropertyType>
2236class PropertyMatcher {
2237 public:
2238  // The property may have a reference type, so 'const PropertyType&'
2239  // may cause double references and fail to compile.  That's why we
2240  // need GTEST_REFERENCE_TO_CONST, which works regardless of
2241  // PropertyType being a reference or not.
2242  typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
2243
2244  PropertyMatcher(PropertyType (Class::*property)() const,
2245                  const Matcher<RefToConstProperty>& matcher)
2246      : property_(property), matcher_(matcher) {}
2247
2248  void DescribeTo(::std::ostream* os) const {
2249    *os << "is an object whose given property ";
2250    matcher_.DescribeTo(os);
2251  }
2252
2253  void DescribeNegationTo(::std::ostream* os) const {
2254    *os << "is an object whose given property ";
2255    matcher_.DescribeNegationTo(os);
2256  }
2257
2258  template <typename T>
2259  bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
2260    return MatchAndExplainImpl(
2261        typename ::testing::internal::
2262            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
2263        value, listener);
2264  }
2265
2266 private:
2267  // The first argument of MatchAndExplainImpl() is needed to help
2268  // Symbian's C++ compiler choose which overload to use.  Its type is
2269  // true_type iff the Property() matcher is used to match a pointer.
2270  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
2271                           MatchResultListener* listener) const {
2272    *listener << "whose given property is ";
2273    // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2274    // which takes a non-const reference as argument.
2275#if defined(_PREFAST_ ) && _MSC_VER == 1800
2276    // Workaround bug in VC++ 2013's /analyze parser.
2277    // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move
2278    posix::Abort();  // To make sure it is never run.
2279    return false;
2280#else
2281    RefToConstProperty result = (obj.*property_)();
2282    return MatchPrintAndExplain(result, matcher_, listener);
2283#endif
2284  }
2285
2286  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
2287                           MatchResultListener* listener) const {
2288    if (p == NULL)
2289      return false;
2290
2291    *listener << "which points to an object ";
2292    // Since *p has a property method, it must be a class/struct/union
2293    // type and thus cannot be a pointer.  Therefore we pass
2294    // false_type() as the first argument.
2295    return MatchAndExplainImpl(false_type(), *p, listener);
2296  }
2297
2298  PropertyType (Class::*property_)() const;
2299  const Matcher<RefToConstProperty> matcher_;
2300
2301  GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
2302};
2303
2304// Type traits specifying various features of different functors for ResultOf.
2305// The default template specifies features for functor objects.
2306// Functor classes have to typedef argument_type and result_type
2307// to be compatible with ResultOf.
2308template <typename Functor>
2309struct CallableTraits {
2310  typedef typename Functor::result_type ResultType;
2311  typedef Functor StorageType;
2312
2313  static void CheckIsValid(Functor /* functor */) {}
2314  template <typename T>
2315  static ResultType Invoke(Functor f, T arg) { return f(arg); }
2316};
2317
2318// Specialization for function pointers.
2319template <typename ArgType, typename ResType>
2320struct CallableTraits<ResType(*)(ArgType)> {
2321  typedef ResType ResultType;
2322  typedef ResType(*StorageType)(ArgType);
2323
2324  static void CheckIsValid(ResType(*f)(ArgType)) {
2325    GTEST_CHECK_(f != NULL)
2326        << "NULL function pointer is passed into ResultOf().";
2327  }
2328  template <typename T>
2329  static ResType Invoke(ResType(*f)(ArgType), T arg) {
2330    return (*f)(arg);
2331  }
2332};
2333
2334// Implements the ResultOf() matcher for matching a return value of a
2335// unary function of an object.
2336template <typename Callable>
2337class ResultOfMatcher {
2338 public:
2339  typedef typename CallableTraits<Callable>::ResultType ResultType;
2340
2341  ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
2342      : callable_(callable), matcher_(matcher) {
2343    CallableTraits<Callable>::CheckIsValid(callable_);
2344  }
2345
2346  template <typename T>
2347  operator Matcher<T>() const {
2348    return Matcher<T>(new Impl<T>(callable_, matcher_));
2349  }
2350
2351 private:
2352  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2353
2354  template <typename T>
2355  class Impl : public MatcherInterface<T> {
2356   public:
2357    Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
2358        : callable_(callable), matcher_(matcher) {}
2359
2360    virtual void DescribeTo(::std::ostream* os) const {
2361      *os << "is mapped by the given callable to a value that ";
2362      matcher_.DescribeTo(os);
2363    }
2364
2365    virtual void DescribeNegationTo(::std::ostream* os) const {
2366      *os << "is mapped by the given callable to a value that ";
2367      matcher_.DescribeNegationTo(os);
2368    }
2369
2370    virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
2371      *listener << "which is mapped by the given callable to ";
2372      // Cannot pass the return value (for example, int) to
2373      // MatchPrintAndExplain, which takes a non-const reference as argument.
2374      ResultType result =
2375          CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2376      return MatchPrintAndExplain(result, matcher_, listener);
2377    }
2378
2379   private:
2380    // Functors often define operator() as non-const method even though
2381    // they are actualy stateless. But we need to use them even when
2382    // 'this' is a const pointer. It's the user's responsibility not to
2383    // use stateful callables with ResultOf(), which does't guarantee
2384    // how many times the callable will be invoked.
2385    mutable CallableStorageType callable_;
2386    const Matcher<ResultType> matcher_;
2387
2388    GTEST_DISALLOW_ASSIGN_(Impl);
2389  };  // class Impl
2390
2391  const CallableStorageType callable_;
2392  const Matcher<ResultType> matcher_;
2393
2394  GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
2395};
2396
2397// Implements a matcher that checks the size of an STL-style container.
2398template <typename SizeMatcher>
2399class SizeIsMatcher {
2400 public:
2401  explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2402       : size_matcher_(size_matcher) {
2403  }
2404
2405  template <typename Container>
2406  operator Matcher<Container>() const {
2407    return MakeMatcher(new Impl<Container>(size_matcher_));
2408  }
2409
2410  template <typename Container>
2411  class Impl : public MatcherInterface<Container> {
2412   public:
2413    typedef internal::StlContainerView<
2414         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2415    typedef typename ContainerView::type::size_type SizeType;
2416    explicit Impl(const SizeMatcher& size_matcher)
2417        : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2418
2419    virtual void DescribeTo(::std::ostream* os) const {
2420      *os << "size ";
2421      size_matcher_.DescribeTo(os);
2422    }
2423    virtual void DescribeNegationTo(::std::ostream* os) const {
2424      *os << "size ";
2425      size_matcher_.DescribeNegationTo(os);
2426    }
2427
2428    virtual bool MatchAndExplain(Container container,
2429                                 MatchResultListener* listener) const {
2430      SizeType size = container.size();
2431      StringMatchResultListener size_listener;
2432      const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2433      *listener
2434          << "whose size " << size << (result ? " matches" : " doesn't match");
2435      PrintIfNotEmpty(size_listener.str(), listener->stream());
2436      return result;
2437    }
2438
2439   private:
2440    const Matcher<SizeType> size_matcher_;
2441    GTEST_DISALLOW_ASSIGN_(Impl);
2442  };
2443
2444 private:
2445  const SizeMatcher size_matcher_;
2446  GTEST_DISALLOW_ASSIGN_(SizeIsMatcher);
2447};
2448
2449// Implements a matcher that checks the begin()..end() distance of an STL-style
2450// container.
2451template <typename DistanceMatcher>
2452class BeginEndDistanceIsMatcher {
2453 public:
2454  explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2455      : distance_matcher_(distance_matcher) {}
2456
2457  template <typename Container>
2458  operator Matcher<Container>() const {
2459    return MakeMatcher(new Impl<Container>(distance_matcher_));
2460  }
2461
2462  template <typename Container>
2463  class Impl : public MatcherInterface<Container> {
2464   public:
2465    typedef internal::StlContainerView<
2466        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2467    typedef typename std::iterator_traits<
2468        typename ContainerView::type::const_iterator>::difference_type
2469        DistanceType;
2470    explicit Impl(const DistanceMatcher& distance_matcher)
2471        : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2472
2473    virtual void DescribeTo(::std::ostream* os) const {
2474      *os << "distance between begin() and end() ";
2475      distance_matcher_.DescribeTo(os);
2476    }
2477    virtual void DescribeNegationTo(::std::ostream* os) const {
2478      *os << "distance between begin() and end() ";
2479      distance_matcher_.DescribeNegationTo(os);
2480    }
2481
2482    virtual bool MatchAndExplain(Container container,
2483                                 MatchResultListener* listener) const {
2484#if GTEST_HAS_STD_BEGIN_AND_END_
2485      using std::begin;
2486      using std::end;
2487      DistanceType distance = std::distance(begin(container), end(container));
2488#else
2489      DistanceType distance = std::distance(container.begin(), container.end());
2490#endif
2491      StringMatchResultListener distance_listener;
2492      const bool result =
2493          distance_matcher_.MatchAndExplain(distance, &distance_listener);
2494      *listener << "whose distance between begin() and end() " << distance
2495                << (result ? " matches" : " doesn't match");
2496      PrintIfNotEmpty(distance_listener.str(), listener->stream());
2497      return result;
2498    }
2499
2500   private:
2501    const Matcher<DistanceType> distance_matcher_;
2502    GTEST_DISALLOW_ASSIGN_(Impl);
2503  };
2504
2505 private:
2506  const DistanceMatcher distance_matcher_;
2507  GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher);
2508};
2509
2510// Implements an equality matcher for any STL-style container whose elements
2511// support ==. This matcher is like Eq(), but its failure explanations provide
2512// more detailed information that is useful when the container is used as a set.
2513// The failure message reports elements that are in one of the operands but not
2514// the other. The failure messages do not report duplicate or out-of-order
2515// elements in the containers (which don't properly matter to sets, but can
2516// occur if the containers are vectors or lists, for example).
2517//
2518// Uses the container's const_iterator, value_type, operator ==,
2519// begin(), and end().
2520template <typename Container>
2521class ContainerEqMatcher {
2522 public:
2523  typedef internal::StlContainerView<Container> View;
2524  typedef typename View::type StlContainer;
2525  typedef typename View::const_reference StlContainerReference;
2526
2527  // We make a copy of expected in case the elements in it are modified
2528  // after this matcher is created.
2529  explicit ContainerEqMatcher(const Container& expected)
2530      : expected_(View::Copy(expected)) {
2531    // Makes sure the user doesn't instantiate this class template
2532    // with a const or reference type.
2533    (void)testing::StaticAssertTypeEq<Container,
2534        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
2535  }
2536
2537  void DescribeTo(::std::ostream* os) const {
2538    *os << "equals ";
2539    UniversalPrint(expected_, os);
2540  }
2541  void DescribeNegationTo(::std::ostream* os) const {
2542    *os << "does not equal ";
2543    UniversalPrint(expected_, os);
2544  }
2545
2546  template <typename LhsContainer>
2547  bool MatchAndExplain(const LhsContainer& lhs,
2548                       MatchResultListener* listener) const {
2549    // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
2550    // that causes LhsContainer to be a const type sometimes.
2551    typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
2552        LhsView;
2553    typedef typename LhsView::type LhsStlContainer;
2554    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2555    if (lhs_stl_container == expected_)
2556      return true;
2557
2558    ::std::ostream* const os = listener->stream();
2559    if (os != NULL) {
2560      // Something is different. Check for extra values first.
2561      bool printed_header = false;
2562      for (typename LhsStlContainer::const_iterator it =
2563               lhs_stl_container.begin();
2564           it != lhs_stl_container.end(); ++it) {
2565        if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2566            expected_.end()) {
2567          if (printed_header) {
2568            *os << ", ";
2569          } else {
2570            *os << "which has these unexpected elements: ";
2571            printed_header = true;
2572          }
2573          UniversalPrint(*it, os);
2574        }
2575      }
2576
2577      // Now check for missing values.
2578      bool printed_header2 = false;
2579      for (typename StlContainer::const_iterator it = expected_.begin();
2580           it != expected_.end(); ++it) {
2581        if (internal::ArrayAwareFind(
2582                lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
2583            lhs_stl_container.end()) {
2584          if (printed_header2) {
2585            *os << ", ";
2586          } else {
2587            *os << (printed_header ? ",\nand" : "which")
2588                << " doesn't have these expected elements: ";
2589            printed_header2 = true;
2590          }
2591          UniversalPrint(*it, os);
2592        }
2593      }
2594    }
2595
2596    return false;
2597  }
2598
2599 private:
2600  const StlContainer expected_;
2601
2602  GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
2603};
2604
2605// A comparator functor that uses the < operator to compare two values.
2606struct LessComparator {
2607  template <typename T, typename U>
2608  bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2609};
2610
2611// Implements WhenSortedBy(comparator, container_matcher).
2612template <typename Comparator, typename ContainerMatcher>
2613class WhenSortedByMatcher {
2614 public:
2615  WhenSortedByMatcher(const Comparator& comparator,
2616                      const ContainerMatcher& matcher)
2617      : comparator_(comparator), matcher_(matcher) {}
2618
2619  template <typename LhsContainer>
2620  operator Matcher<LhsContainer>() const {
2621    return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2622  }
2623
2624  template <typename LhsContainer>
2625  class Impl : public MatcherInterface<LhsContainer> {
2626   public:
2627    typedef internal::StlContainerView<
2628         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2629    typedef typename LhsView::type LhsStlContainer;
2630    typedef typename LhsView::const_reference LhsStlContainerReference;
2631    // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2632    // so that we can match associative containers.
2633    typedef typename RemoveConstFromKey<
2634        typename LhsStlContainer::value_type>::type LhsValue;
2635
2636    Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2637        : comparator_(comparator), matcher_(matcher) {}
2638
2639    virtual void DescribeTo(::std::ostream* os) const {
2640      *os << "(when sorted) ";
2641      matcher_.DescribeTo(os);
2642    }
2643
2644    virtual void DescribeNegationTo(::std::ostream* os) const {
2645      *os << "(when sorted) ";
2646      matcher_.DescribeNegationTo(os);
2647    }
2648
2649    virtual bool MatchAndExplain(LhsContainer lhs,
2650                                 MatchResultListener* listener) const {
2651      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2652      ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2653                                               lhs_stl_container.end());
2654      ::std::sort(
2655           sorted_container.begin(), sorted_container.end(), comparator_);
2656
2657      if (!listener->IsInterested()) {
2658        // If the listener is not interested, we do not need to
2659        // construct the inner explanation.
2660        return matcher_.Matches(sorted_container);
2661      }
2662
2663      *listener << "which is ";
2664      UniversalPrint(sorted_container, listener->stream());
2665      *listener << " when sorted";
2666
2667      StringMatchResultListener inner_listener;
2668      const bool match = matcher_.MatchAndExplain(sorted_container,
2669                                                  &inner_listener);
2670      PrintIfNotEmpty(inner_listener.str(), listener->stream());
2671      return match;
2672    }
2673
2674   private:
2675    const Comparator comparator_;
2676    const Matcher<const ::std::vector<LhsValue>&> matcher_;
2677
2678    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2679  };
2680
2681 private:
2682  const Comparator comparator_;
2683  const ContainerMatcher matcher_;
2684
2685  GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
2686};
2687
2688// Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2689// must be able to be safely cast to Matcher<tuple<const T1&, const
2690// T2&> >, where T1 and T2 are the types of elements in the LHS
2691// container and the RHS container respectively.
2692template <typename TupleMatcher, typename RhsContainer>
2693class PointwiseMatcher {
2694 public:
2695  typedef internal::StlContainerView<RhsContainer> RhsView;
2696  typedef typename RhsView::type RhsStlContainer;
2697  typedef typename RhsStlContainer::value_type RhsValue;
2698
2699  // Like ContainerEq, we make a copy of rhs in case the elements in
2700  // it are modified after this matcher is created.
2701  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2702      : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
2703    // Makes sure the user doesn't instantiate this class template
2704    // with a const or reference type.
2705    (void)testing::StaticAssertTypeEq<RhsContainer,
2706        GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
2707  }
2708
2709  template <typename LhsContainer>
2710  operator Matcher<LhsContainer>() const {
2711    return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
2712  }
2713
2714  template <typename LhsContainer>
2715  class Impl : public MatcherInterface<LhsContainer> {
2716   public:
2717    typedef internal::StlContainerView<
2718         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2719    typedef typename LhsView::type LhsStlContainer;
2720    typedef typename LhsView::const_reference LhsStlContainerReference;
2721    typedef typename LhsStlContainer::value_type LhsValue;
2722    // We pass the LHS value and the RHS value to the inner matcher by
2723    // reference, as they may be expensive to copy.  We must use tuple
2724    // instead of pair here, as a pair cannot hold references (C++ 98,
2725    // 20.2.2 [lib.pairs]).
2726    typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2727
2728    Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2729        // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2730        : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2731          rhs_(rhs) {}
2732
2733    virtual void DescribeTo(::std::ostream* os) const {
2734      *os << "contains " << rhs_.size()
2735          << " values, where each value and its corresponding value in ";
2736      UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2737      *os << " ";
2738      mono_tuple_matcher_.DescribeTo(os);
2739    }
2740    virtual void DescribeNegationTo(::std::ostream* os) const {
2741      *os << "doesn't contain exactly " << rhs_.size()
2742          << " values, or contains a value x at some index i"
2743          << " where x and the i-th value of ";
2744      UniversalPrint(rhs_, os);
2745      *os << " ";
2746      mono_tuple_matcher_.DescribeNegationTo(os);
2747    }
2748
2749    virtual bool MatchAndExplain(LhsContainer lhs,
2750                                 MatchResultListener* listener) const {
2751      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2752      const size_t actual_size = lhs_stl_container.size();
2753      if (actual_size != rhs_.size()) {
2754        *listener << "which contains " << actual_size << " values";
2755        return false;
2756      }
2757
2758      typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2759      typename RhsStlContainer::const_iterator right = rhs_.begin();
2760      for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2761        const InnerMatcherArg value_pair(*left, *right);
2762
2763        if (listener->IsInterested()) {
2764          StringMatchResultListener inner_listener;
2765          if (!mono_tuple_matcher_.MatchAndExplain(
2766                  value_pair, &inner_listener)) {
2767            *listener << "where the value pair (";
2768            UniversalPrint(*left, listener->stream());
2769            *listener << ", ";
2770            UniversalPrint(*right, listener->stream());
2771            *listener << ") at index #" << i << " don't match";
2772            PrintIfNotEmpty(inner_listener.str(), listener->stream());
2773            return false;
2774          }
2775        } else {
2776          if (!mono_tuple_matcher_.Matches(value_pair))
2777            return false;
2778        }
2779      }
2780
2781      return true;
2782    }
2783
2784   private:
2785    const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2786    const RhsStlContainer rhs_;
2787
2788    GTEST_DISALLOW_ASSIGN_(Impl);
2789  };
2790
2791 private:
2792  const TupleMatcher tuple_matcher_;
2793  const RhsStlContainer rhs_;
2794
2795  GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
2796};
2797
2798// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2799template <typename Container>
2800class QuantifierMatcherImpl : public MatcherInterface<Container> {
2801 public:
2802  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2803  typedef StlContainerView<RawContainer> View;
2804  typedef typename View::type StlContainer;
2805  typedef typename View::const_reference StlContainerReference;
2806  typedef typename StlContainer::value_type Element;
2807
2808  template <typename InnerMatcher>
2809  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2810      : inner_matcher_(
2811           testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2812
2813  // Checks whether:
2814  // * All elements in the container match, if all_elements_should_match.
2815  // * Any element in the container matches, if !all_elements_should_match.
2816  bool MatchAndExplainImpl(bool all_elements_should_match,
2817                           Container container,
2818                           MatchResultListener* listener) const {
2819    StlContainerReference stl_container = View::ConstReference(container);
2820    size_t i = 0;
2821    for (typename StlContainer::const_iterator it = stl_container.begin();
2822         it != stl_container.end(); ++it, ++i) {
2823      StringMatchResultListener inner_listener;
2824      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2825
2826      if (matches != all_elements_should_match) {
2827        *listener << "whose element #" << i
2828                  << (matches ? " matches" : " doesn't match");
2829        PrintIfNotEmpty(inner_listener.str(), listener->stream());
2830        return !all_elements_should_match;
2831      }
2832    }
2833    return all_elements_should_match;
2834  }
2835
2836 protected:
2837  const Matcher<const Element&> inner_matcher_;
2838
2839  GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
2840};
2841
2842// Implements Contains(element_matcher) for the given argument type Container.
2843// Symmetric to EachMatcherImpl.
2844template <typename Container>
2845class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2846 public:
2847  template <typename InnerMatcher>
2848  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2849      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2850
2851  // Describes what this matcher does.
2852  virtual void DescribeTo(::std::ostream* os) const {
2853    *os << "contains at least one element that ";
2854    this->inner_matcher_.DescribeTo(os);
2855  }
2856
2857  virtual void DescribeNegationTo(::std::ostream* os) const {
2858    *os << "doesn't contain any element that ";
2859    this->inner_matcher_.DescribeTo(os);
2860  }
2861
2862  virtual bool MatchAndExplain(Container container,
2863                               MatchResultListener* listener) const {
2864    return this->MatchAndExplainImpl(false, container, listener);
2865  }
2866
2867 private:
2868  GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
2869};
2870
2871// Implements Each(element_matcher) for the given argument type Container.
2872// Symmetric to ContainsMatcherImpl.
2873template <typename Container>
2874class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2875 public:
2876  template <typename InnerMatcher>
2877  explicit EachMatcherImpl(InnerMatcher inner_matcher)
2878      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2879
2880  // Describes what this matcher does.
2881  virtual void DescribeTo(::std::ostream* os) const {
2882    *os << "only contains elements that ";
2883    this->inner_matcher_.DescribeTo(os);
2884  }
2885
2886  virtual void DescribeNegationTo(::std::ostream* os) const {
2887    *os << "contains some element that ";
2888    this->inner_matcher_.DescribeNegationTo(os);
2889  }
2890
2891  virtual bool MatchAndExplain(Container container,
2892                               MatchResultListener* listener) const {
2893    return this->MatchAndExplainImpl(true, container, listener);
2894  }
2895
2896 private:
2897  GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
2898};
2899
2900// Implements polymorphic Contains(element_matcher).
2901template <typename M>
2902class ContainsMatcher {
2903 public:
2904  explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2905
2906  template <typename Container>
2907  operator Matcher<Container>() const {
2908    return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
2909  }
2910
2911 private:
2912  const M inner_matcher_;
2913
2914  GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
2915};
2916
2917// Implements polymorphic Each(element_matcher).
2918template <typename M>
2919class EachMatcher {
2920 public:
2921  explicit EachMatcher(M m) : inner_matcher_(m) {}
2922
2923  template <typename Container>
2924  operator Matcher<Container>() const {
2925    return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
2926  }
2927
2928 private:
2929  const M inner_matcher_;
2930
2931  GTEST_DISALLOW_ASSIGN_(EachMatcher);
2932};
2933
2934// Implements Key(inner_matcher) for the given argument pair type.
2935// Key(inner_matcher) matches an std::pair whose 'first' field matches
2936// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2937// std::map that contains at least one element whose key is >= 5.
2938template <typename PairType>
2939class KeyMatcherImpl : public MatcherInterface<PairType> {
2940 public:
2941  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2942  typedef typename RawPairType::first_type KeyType;
2943
2944  template <typename InnerMatcher>
2945  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2946      : inner_matcher_(
2947          testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2948  }
2949
2950  // Returns true iff 'key_value.first' (the key) matches the inner matcher.
2951  virtual bool MatchAndExplain(PairType key_value,
2952                               MatchResultListener* listener) const {
2953    StringMatchResultListener inner_listener;
2954    const bool match = inner_matcher_.MatchAndExplain(key_value.first,
2955                                                      &inner_listener);
2956    const internal::string explanation = inner_listener.str();
2957    if (explanation != "") {
2958      *listener << "whose first field is a value " << explanation;
2959    }
2960    return match;
2961  }
2962
2963  // Describes what this matcher does.
2964  virtual void DescribeTo(::std::ostream* os) const {
2965    *os << "has a key that ";
2966    inner_matcher_.DescribeTo(os);
2967  }
2968
2969  // Describes what the negation of this matcher does.
2970  virtual void DescribeNegationTo(::std::ostream* os) const {
2971    *os << "doesn't have a key that ";
2972    inner_matcher_.DescribeTo(os);
2973  }
2974
2975 private:
2976  const Matcher<const KeyType&> inner_matcher_;
2977
2978  GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
2979};
2980
2981// Implements polymorphic Key(matcher_for_key).
2982template <typename M>
2983class KeyMatcher {
2984 public:
2985  explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2986
2987  template <typename PairType>
2988  operator Matcher<PairType>() const {
2989    return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
2990  }
2991
2992 private:
2993  const M matcher_for_key_;
2994
2995  GTEST_DISALLOW_ASSIGN_(KeyMatcher);
2996};
2997
2998// Implements Pair(first_matcher, second_matcher) for the given argument pair
2999// type with its two matchers. See Pair() function below.
3000template <typename PairType>
3001class PairMatcherImpl : public MatcherInterface<PairType> {
3002 public:
3003  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3004  typedef typename RawPairType::first_type FirstType;
3005  typedef typename RawPairType::second_type SecondType;
3006
3007  template <typename FirstMatcher, typename SecondMatcher>
3008  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3009      : first_matcher_(
3010            testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3011        second_matcher_(
3012            testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
3013  }
3014
3015  // Describes what this matcher does.
3016  virtual void DescribeTo(::std::ostream* os) const {
3017    *os << "has a first field that ";
3018    first_matcher_.DescribeTo(os);
3019    *os << ", and has a second field that ";
3020    second_matcher_.DescribeTo(os);
3021  }
3022
3023  // Describes what the negation of this matcher does.
3024  virtual void DescribeNegationTo(::std::ostream* os) const {
3025    *os << "has a first field that ";
3026    first_matcher_.DescribeNegationTo(os);
3027    *os << ", or has a second field that ";
3028    second_matcher_.DescribeNegationTo(os);
3029  }
3030
3031  // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
3032  // matches second_matcher.
3033  virtual bool MatchAndExplain(PairType a_pair,
3034                               MatchResultListener* listener) const {
3035    if (!listener->IsInterested()) {
3036      // If the listener is not interested, we don't need to construct the
3037      // explanation.
3038      return first_matcher_.Matches(a_pair.first) &&
3039             second_matcher_.Matches(a_pair.second);
3040    }
3041    StringMatchResultListener first_inner_listener;
3042    if (!first_matcher_.MatchAndExplain(a_pair.first,
3043                                        &first_inner_listener)) {
3044      *listener << "whose first field does not match";
3045      PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3046      return false;
3047    }
3048    StringMatchResultListener second_inner_listener;
3049    if (!second_matcher_.MatchAndExplain(a_pair.second,
3050                                         &second_inner_listener)) {
3051      *listener << "whose second field does not match";
3052      PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3053      return false;
3054    }
3055    ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3056                   listener);
3057    return true;
3058  }
3059
3060 private:
3061  void ExplainSuccess(const internal::string& first_explanation,
3062                      const internal::string& second_explanation,
3063                      MatchResultListener* listener) const {
3064    *listener << "whose both fields match";
3065    if (first_explanation != "") {
3066      *listener << ", where the first field is a value " << first_explanation;
3067    }
3068    if (second_explanation != "") {
3069      *listener << ", ";
3070      if (first_explanation != "") {
3071        *listener << "and ";
3072      } else {
3073        *listener << "where ";
3074      }
3075      *listener << "the second field is a value " << second_explanation;
3076    }
3077  }
3078
3079  const Matcher<const FirstType&> first_matcher_;
3080  const Matcher<const SecondType&> second_matcher_;
3081
3082  GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
3083};
3084
3085// Implements polymorphic Pair(first_matcher, second_matcher).
3086template <typename FirstMatcher, typename SecondMatcher>
3087class PairMatcher {
3088 public:
3089  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3090      : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3091
3092  template <typename PairType>
3093  operator Matcher<PairType> () const {
3094    return MakeMatcher(
3095        new PairMatcherImpl<PairType>(
3096            first_matcher_, second_matcher_));
3097  }
3098
3099 private:
3100  const FirstMatcher first_matcher_;
3101  const SecondMatcher second_matcher_;
3102
3103  GTEST_DISALLOW_ASSIGN_(PairMatcher);
3104};
3105
3106// Implements ElementsAre() and ElementsAreArray().
3107template <typename Container>
3108class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3109 public:
3110  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3111  typedef internal::StlContainerView<RawContainer> View;
3112  typedef typename View::type StlContainer;
3113  typedef typename View::const_reference StlContainerReference;
3114  typedef typename StlContainer::value_type Element;
3115
3116  // Constructs the matcher from a sequence of element values or
3117  // element matchers.
3118  template <typename InputIter>
3119  ElementsAreMatcherImpl(InputIter first, InputIter last) {
3120    while (first != last) {
3121      matchers_.push_back(MatcherCast<const Element&>(*first++));
3122    }
3123  }
3124
3125  // Describes what this matcher does.
3126  virtual void DescribeTo(::std::ostream* os) const {
3127    if (count() == 0) {
3128      *os << "is empty";
3129    } else if (count() == 1) {
3130      *os << "has 1 element that ";
3131      matchers_[0].DescribeTo(os);
3132    } else {
3133      *os << "has " << Elements(count()) << " where\n";
3134      for (size_t i = 0; i != count(); ++i) {
3135        *os << "element #" << i << " ";
3136        matchers_[i].DescribeTo(os);
3137        if (i + 1 < count()) {
3138          *os << ",\n";
3139        }
3140      }
3141    }
3142  }
3143
3144  // Describes what the negation of this matcher does.
3145  virtual void DescribeNegationTo(::std::ostream* os) const {
3146    if (count() == 0) {
3147      *os << "isn't empty";
3148      return;
3149    }
3150
3151    *os << "doesn't have " << Elements(count()) << ", or\n";
3152    for (size_t i = 0; i != count(); ++i) {
3153      *os << "element #" << i << " ";
3154      matchers_[i].DescribeNegationTo(os);
3155      if (i + 1 < count()) {
3156        *os << ", or\n";
3157      }
3158    }
3159  }
3160
3161  virtual bool MatchAndExplain(Container container,
3162                               MatchResultListener* listener) const {
3163    // To work with stream-like "containers", we must only walk
3164    // through the elements in one pass.
3165
3166    const bool listener_interested = listener->IsInterested();
3167
3168    // explanations[i] is the explanation of the element at index i.
3169    ::std::vector<internal::string> explanations(count());
3170    StlContainerReference stl_container = View::ConstReference(container);
3171    typename StlContainer::const_iterator it = stl_container.begin();
3172    size_t exam_pos = 0;
3173    bool mismatch_found = false;  // Have we found a mismatched element yet?
3174
3175    // Go through the elements and matchers in pairs, until we reach
3176    // the end of either the elements or the matchers, or until we find a
3177    // mismatch.
3178    for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3179      bool match;  // Does the current element match the current matcher?
3180      if (listener_interested) {
3181        StringMatchResultListener s;
3182        match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3183        explanations[exam_pos] = s.str();
3184      } else {
3185        match = matchers_[exam_pos].Matches(*it);
3186      }
3187
3188      if (!match) {
3189        mismatch_found = true;
3190        break;
3191      }
3192    }
3193    // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3194
3195    // Find how many elements the actual container has.  We avoid
3196    // calling size() s.t. this code works for stream-like "containers"
3197    // that don't define size().
3198    size_t actual_count = exam_pos;
3199    for (; it != stl_container.end(); ++it) {
3200      ++actual_count;
3201    }
3202
3203    if (actual_count != count()) {
3204      // The element count doesn't match.  If the container is empty,
3205      // there's no need to explain anything as Google Mock already
3206      // prints the empty container.  Otherwise we just need to show
3207      // how many elements there actually are.
3208      if (listener_interested && (actual_count != 0)) {
3209        *listener << "which has " << Elements(actual_count);
3210      }
3211      return false;
3212    }
3213
3214    if (mismatch_found) {
3215      // The element count matches, but the exam_pos-th element doesn't match.
3216      if (listener_interested) {
3217        *listener << "whose element #" << exam_pos << " doesn't match";
3218        PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3219      }
3220      return false;
3221    }
3222
3223    // Every element matches its expectation.  We need to explain why
3224    // (the obvious ones can be skipped).
3225    if (listener_interested) {
3226      bool reason_printed = false;
3227      for (size_t i = 0; i != count(); ++i) {
3228        const internal::string& s = explanations[i];
3229        if (!s.empty()) {
3230          if (reason_printed) {
3231            *listener << ",\nand ";
3232          }
3233          *listener << "whose element #" << i << " matches, " << s;
3234          reason_printed = true;
3235        }
3236      }
3237    }
3238    return true;
3239  }
3240
3241 private:
3242  static Message Elements(size_t count) {
3243    return Message() << count << (count == 1 ? " element" : " elements");
3244  }
3245
3246  size_t count() const { return matchers_.size(); }
3247
3248  ::std::vector<Matcher<const Element&> > matchers_;
3249
3250  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
3251};
3252
3253// Connectivity matrix of (elements X matchers), in element-major order.
3254// Initially, there are no edges.
3255// Use NextGraph() to iterate over all possible edge configurations.
3256// Use Randomize() to generate a random edge configuration.
3257class GTEST_API_ MatchMatrix {
3258 public:
3259  MatchMatrix(size_t num_elements, size_t num_matchers)
3260      : num_elements_(num_elements),
3261        num_matchers_(num_matchers),
3262        matched_(num_elements_* num_matchers_, 0) {
3263  }
3264
3265  size_t LhsSize() const { return num_elements_; }
3266  size_t RhsSize() const { return num_matchers_; }
3267  bool HasEdge(size_t ilhs, size_t irhs) const {
3268    return matched_[SpaceIndex(ilhs, irhs)] == 1;
3269  }
3270  void SetEdge(size_t ilhs, size_t irhs, bool b) {
3271    matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3272  }
3273
3274  // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3275  // adds 1 to that number; returns false if incrementing the graph left it
3276  // empty.
3277  bool NextGraph();
3278
3279  void Randomize();
3280
3281  string DebugString() const;
3282
3283 private:
3284  size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3285    return ilhs * num_matchers_ + irhs;
3286  }
3287
3288  size_t num_elements_;
3289  size_t num_matchers_;
3290
3291  // Each element is a char interpreted as bool. They are stored as a
3292  // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3293  // a (ilhs, irhs) matrix coordinate into an offset.
3294  ::std::vector<char> matched_;
3295};
3296
3297typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3298typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3299
3300// Returns a maximum bipartite matching for the specified graph 'g'.
3301// The matching is represented as a vector of {element, matcher} pairs.
3302GTEST_API_ ElementMatcherPairs
3303FindMaxBipartiteMatching(const MatchMatrix& g);
3304
3305GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
3306                            MatchResultListener* listener);
3307
3308// Untyped base class for implementing UnorderedElementsAre.  By
3309// putting logic that's not specific to the element type here, we
3310// reduce binary bloat and increase compilation speed.
3311class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3312 protected:
3313  // A vector of matcher describers, one for each element matcher.
3314  // Does not own the describers (and thus can be used only when the
3315  // element matchers are alive).
3316  typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3317
3318  // Describes this UnorderedElementsAre matcher.
3319  void DescribeToImpl(::std::ostream* os) const;
3320
3321  // Describes the negation of this UnorderedElementsAre matcher.
3322  void DescribeNegationToImpl(::std::ostream* os) const;
3323
3324  bool VerifyAllElementsAndMatchersAreMatched(
3325      const ::std::vector<string>& element_printouts,
3326      const MatchMatrix& matrix,
3327      MatchResultListener* listener) const;
3328
3329  MatcherDescriberVec& matcher_describers() {
3330    return matcher_describers_;
3331  }
3332
3333  static Message Elements(size_t n) {
3334    return Message() << n << " element" << (n == 1 ? "" : "s");
3335  }
3336
3337 private:
3338  MatcherDescriberVec matcher_describers_;
3339
3340  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase);
3341};
3342
3343// Implements unordered ElementsAre and unordered ElementsAreArray.
3344template <typename Container>
3345class UnorderedElementsAreMatcherImpl
3346    : public MatcherInterface<Container>,
3347      public UnorderedElementsAreMatcherImplBase {
3348 public:
3349  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3350  typedef internal::StlContainerView<RawContainer> View;
3351  typedef typename View::type StlContainer;
3352  typedef typename View::const_reference StlContainerReference;
3353  typedef typename StlContainer::const_iterator StlContainerConstIterator;
3354  typedef typename StlContainer::value_type Element;
3355
3356  // Constructs the matcher from a sequence of element values or
3357  // element matchers.
3358  template <typename InputIter>
3359  UnorderedElementsAreMatcherImpl(InputIter first, InputIter last) {
3360    for (; first != last; ++first) {
3361      matchers_.push_back(MatcherCast<const Element&>(*first));
3362      matcher_describers().push_back(matchers_.back().GetDescriber());
3363    }
3364  }
3365
3366  // Describes what this matcher does.
3367  virtual void DescribeTo(::std::ostream* os) const {
3368    return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3369  }
3370
3371  // Describes what the negation of this matcher does.
3372  virtual void DescribeNegationTo(::std::ostream* os) const {
3373    return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3374  }
3375
3376  virtual bool MatchAndExplain(Container container,
3377                               MatchResultListener* listener) const {
3378    StlContainerReference stl_container = View::ConstReference(container);
3379    ::std::vector<string> element_printouts;
3380    MatchMatrix matrix = AnalyzeElements(stl_container.begin(),
3381                                         stl_container.end(),
3382                                         &element_printouts,
3383                                         listener);
3384
3385    const size_t actual_count = matrix.LhsSize();
3386    if (actual_count == 0 && matchers_.empty()) {
3387      return true;
3388    }
3389    if (actual_count != matchers_.size()) {
3390      // The element count doesn't match.  If the container is empty,
3391      // there's no need to explain anything as Google Mock already
3392      // prints the empty container. Otherwise we just need to show
3393      // how many elements there actually are.
3394      if (actual_count != 0 && listener->IsInterested()) {
3395        *listener << "which has " << Elements(actual_count);
3396      }
3397      return false;
3398    }
3399
3400    return VerifyAllElementsAndMatchersAreMatched(element_printouts,
3401                                                  matrix, listener) &&
3402           FindPairing(matrix, listener);
3403  }
3404
3405 private:
3406  typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3407
3408  template <typename ElementIter>
3409  MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3410                              ::std::vector<string>* element_printouts,
3411                              MatchResultListener* listener) const {
3412    element_printouts->clear();
3413    ::std::vector<char> did_match;
3414    size_t num_elements = 0;
3415    for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3416      if (listener->IsInterested()) {
3417        element_printouts->push_back(PrintToString(*elem_first));
3418      }
3419      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3420        did_match.push_back(Matches(matchers_[irhs])(*elem_first));
3421      }
3422    }
3423
3424    MatchMatrix matrix(num_elements, matchers_.size());
3425    ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3426    for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3427      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3428        matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3429      }
3430    }
3431    return matrix;
3432  }
3433
3434  MatcherVec matchers_;
3435
3436  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl);
3437};
3438
3439// Functor for use in TransformTuple.
3440// Performs MatcherCast<Target> on an input argument of any type.
3441template <typename Target>
3442struct CastAndAppendTransform {
3443  template <typename Arg>
3444  Matcher<Target> operator()(const Arg& a) const {
3445    return MatcherCast<Target>(a);
3446  }
3447};
3448
3449// Implements UnorderedElementsAre.
3450template <typename MatcherTuple>
3451class UnorderedElementsAreMatcher {
3452 public:
3453  explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3454      : matchers_(args) {}
3455
3456  template <typename Container>
3457  operator Matcher<Container>() const {
3458    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3459    typedef typename internal::StlContainerView<RawContainer>::type View;
3460    typedef typename View::value_type Element;
3461    typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3462    MatcherVec matchers;
3463    matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
3464    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3465                         ::std::back_inserter(matchers));
3466    return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>(
3467                           matchers.begin(), matchers.end()));
3468  }
3469
3470 private:
3471  const MatcherTuple matchers_;
3472  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher);
3473};
3474
3475// Implements ElementsAre.
3476template <typename MatcherTuple>
3477class ElementsAreMatcher {
3478 public:
3479  explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3480
3481  template <typename Container>
3482  operator Matcher<Container>() const {
3483    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3484    typedef typename internal::StlContainerView<RawContainer>::type View;
3485    typedef typename View::value_type Element;
3486    typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3487    MatcherVec matchers;
3488    matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
3489    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3490                         ::std::back_inserter(matchers));
3491    return MakeMatcher(new ElementsAreMatcherImpl<Container>(
3492                           matchers.begin(), matchers.end()));
3493  }
3494
3495 private:
3496  const MatcherTuple matchers_;
3497  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher);
3498};
3499
3500// Implements UnorderedElementsAreArray().
3501template <typename T>
3502class UnorderedElementsAreArrayMatcher {
3503 public:
3504  UnorderedElementsAreArrayMatcher() {}
3505
3506  template <typename Iter>
3507  UnorderedElementsAreArrayMatcher(Iter first, Iter last)
3508      : matchers_(first, last) {}
3509
3510  template <typename Container>
3511  operator Matcher<Container>() const {
3512    return MakeMatcher(
3513        new UnorderedElementsAreMatcherImpl<Container>(matchers_.begin(),
3514                                                       matchers_.end()));
3515  }
3516
3517 private:
3518  ::std::vector<T> matchers_;
3519
3520  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher);
3521};
3522
3523// Implements ElementsAreArray().
3524template <typename T>
3525class ElementsAreArrayMatcher {
3526 public:
3527  template <typename Iter>
3528  ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3529
3530  template <typename Container>
3531  operator Matcher<Container>() const {
3532    return MakeMatcher(new ElementsAreMatcherImpl<Container>(
3533        matchers_.begin(), matchers_.end()));
3534  }
3535
3536 private:
3537  const ::std::vector<T> matchers_;
3538
3539  GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
3540};
3541
3542// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3543// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3544// second) is a polymorphic matcher that matches a value x iff tm
3545// matches tuple (x, second).  Useful for implementing
3546// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3547//
3548// BoundSecondMatcher is copyable and assignable, as we need to put
3549// instances of this class in a vector when implementing
3550// UnorderedPointwise().
3551template <typename Tuple2Matcher, typename Second>
3552class BoundSecondMatcher {
3553 public:
3554  BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3555      : tuple2_matcher_(tm), second_value_(second) {}
3556
3557  template <typename T>
3558  operator Matcher<T>() const {
3559    return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3560  }
3561
3562  // We have to define this for UnorderedPointwise() to compile in
3563  // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3564  // which requires the elements to be assignable in C++98.  The
3565  // compiler cannot generate the operator= for us, as Tuple2Matcher
3566  // and Second may not be assignable.
3567  //
3568  // However, this should never be called, so the implementation just
3569  // need to assert.
3570  void operator=(const BoundSecondMatcher& /*rhs*/) {
3571    GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3572  }
3573
3574 private:
3575  template <typename T>
3576  class Impl : public MatcherInterface<T> {
3577   public:
3578    typedef ::testing::tuple<T, Second> ArgTuple;
3579
3580    Impl(const Tuple2Matcher& tm, const Second& second)
3581        : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3582          second_value_(second) {}
3583
3584    virtual void DescribeTo(::std::ostream* os) const {
3585      *os << "and ";
3586      UniversalPrint(second_value_, os);
3587      *os << " ";
3588      mono_tuple2_matcher_.DescribeTo(os);
3589    }
3590
3591    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
3592      return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3593                                                  listener);
3594    }
3595
3596   private:
3597    const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3598    const Second second_value_;
3599
3600    GTEST_DISALLOW_ASSIGN_(Impl);
3601  };
3602
3603  const Tuple2Matcher tuple2_matcher_;
3604  const Second second_value_;
3605};
3606
3607// Given a 2-tuple matcher tm and a value second,
3608// MatcherBindSecond(tm, second) returns a matcher that matches a
3609// value x iff tm matches tuple (x, second).  Useful for implementing
3610// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3611template <typename Tuple2Matcher, typename Second>
3612BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3613    const Tuple2Matcher& tm, const Second& second) {
3614  return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3615}
3616
3617// Returns the description for a matcher defined using the MATCHER*()
3618// macro where the user-supplied description string is "", if
3619// 'negation' is false; otherwise returns the description of the
3620// negation of the matcher.  'param_values' contains a list of strings
3621// that are the print-out of the matcher's parameters.
3622GTEST_API_ string FormatMatcherDescription(bool negation,
3623                                           const char* matcher_name,
3624                                           const Strings& param_values);
3625
3626}  // namespace internal
3627
3628// ElementsAreArray(first, last)
3629// ElementsAreArray(pointer, count)
3630// ElementsAreArray(array)
3631// ElementsAreArray(container)
3632// ElementsAreArray({ e1, e2, ..., en })
3633//
3634// The ElementsAreArray() functions are like ElementsAre(...), except
3635// that they are given a homogeneous sequence rather than taking each
3636// element as a function argument. The sequence can be specified as an
3637// array, a pointer and count, a vector, an initializer list, or an
3638// STL iterator range. In each of these cases, the underlying sequence
3639// can be either a sequence of values or a sequence of matchers.
3640//
3641// All forms of ElementsAreArray() make a copy of the input matcher sequence.
3642
3643template <typename Iter>
3644inline internal::ElementsAreArrayMatcher<
3645    typename ::std::iterator_traits<Iter>::value_type>
3646ElementsAreArray(Iter first, Iter last) {
3647  typedef typename ::std::iterator_traits<Iter>::value_type T;
3648  return internal::ElementsAreArrayMatcher<T>(first, last);
3649}
3650
3651template <typename T>
3652inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3653    const T* pointer, size_t count) {
3654  return ElementsAreArray(pointer, pointer + count);
3655}
3656
3657template <typename T, size_t N>
3658inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3659    const T (&array)[N]) {
3660  return ElementsAreArray(array, N);
3661}
3662
3663template <typename Container>
3664inline internal::ElementsAreArrayMatcher<typename Container::value_type>
3665ElementsAreArray(const Container& container) {
3666  return ElementsAreArray(container.begin(), container.end());
3667}
3668
3669#if GTEST_HAS_STD_INITIALIZER_LIST_
3670template <typename T>
3671inline internal::ElementsAreArrayMatcher<T>
3672ElementsAreArray(::std::initializer_list<T> xs) {
3673  return ElementsAreArray(xs.begin(), xs.end());
3674}
3675#endif
3676
3677// UnorderedElementsAreArray(first, last)
3678// UnorderedElementsAreArray(pointer, count)
3679// UnorderedElementsAreArray(array)
3680// UnorderedElementsAreArray(container)
3681// UnorderedElementsAreArray({ e1, e2, ..., en })
3682//
3683// The UnorderedElementsAreArray() functions are like
3684// ElementsAreArray(...), but allow matching the elements in any order.
3685template <typename Iter>
3686inline internal::UnorderedElementsAreArrayMatcher<
3687    typename ::std::iterator_traits<Iter>::value_type>
3688UnorderedElementsAreArray(Iter first, Iter last) {
3689  typedef typename ::std::iterator_traits<Iter>::value_type T;
3690  return internal::UnorderedElementsAreArrayMatcher<T>(first, last);
3691}
3692
3693template <typename T>
3694inline internal::UnorderedElementsAreArrayMatcher<T>
3695UnorderedElementsAreArray(const T* pointer, size_t count) {
3696  return UnorderedElementsAreArray(pointer, pointer + count);
3697}
3698
3699template <typename T, size_t N>
3700inline internal::UnorderedElementsAreArrayMatcher<T>
3701UnorderedElementsAreArray(const T (&array)[N]) {
3702  return UnorderedElementsAreArray(array, N);
3703}
3704
3705template <typename Container>
3706inline internal::UnorderedElementsAreArrayMatcher<
3707    typename Container::value_type>
3708UnorderedElementsAreArray(const Container& container) {
3709  return UnorderedElementsAreArray(container.begin(), container.end());
3710}
3711
3712#if GTEST_HAS_STD_INITIALIZER_LIST_
3713template <typename T>
3714inline internal::UnorderedElementsAreArrayMatcher<T>
3715UnorderedElementsAreArray(::std::initializer_list<T> xs) {
3716  return UnorderedElementsAreArray(xs.begin(), xs.end());
3717}
3718#endif
3719
3720// _ is a matcher that matches anything of any type.
3721//
3722// This definition is fine as:
3723//
3724//   1. The C++ standard permits using the name _ in a namespace that
3725//      is not the global namespace or ::std.
3726//   2. The AnythingMatcher class has no data member or constructor,
3727//      so it's OK to create global variables of this type.
3728//   3. c-style has approved of using _ in this case.
3729const internal::AnythingMatcher _ = {};
3730// Creates a matcher that matches any value of the given type T.
3731template <typename T>
3732inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
3733
3734// Creates a matcher that matches any value of the given type T.
3735template <typename T>
3736inline Matcher<T> An() { return A<T>(); }
3737
3738// Creates a polymorphic matcher that matches anything equal to x.
3739// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
3740// wouldn't compile.
3741template <typename T>
3742inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
3743
3744// Constructs a Matcher<T> from a 'value' of type T.  The constructed
3745// matcher matches any value that's equal to 'value'.
3746template <typename T>
3747Matcher<T>::Matcher(T value) { *this = Eq(value); }
3748
3749// Creates a monomorphic matcher that matches anything with type Lhs
3750// and equal to rhs.  A user may need to use this instead of Eq(...)
3751// in order to resolve an overloading ambiguity.
3752//
3753// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
3754// or Matcher<T>(x), but more readable than the latter.
3755//
3756// We could define similar monomorphic matchers for other comparison
3757// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
3758// it yet as those are used much less than Eq() in practice.  A user
3759// can always write Matcher<T>(Lt(5)) to be explicit about the type,
3760// for example.
3761template <typename Lhs, typename Rhs>
3762inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
3763
3764// Creates a polymorphic matcher that matches anything >= x.
3765template <typename Rhs>
3766inline internal::GeMatcher<Rhs> Ge(Rhs x) {
3767  return internal::GeMatcher<Rhs>(x);
3768}
3769
3770// Creates a polymorphic matcher that matches anything > x.
3771template <typename Rhs>
3772inline internal::GtMatcher<Rhs> Gt(Rhs x) {
3773  return internal::GtMatcher<Rhs>(x);
3774}
3775
3776// Creates a polymorphic matcher that matches anything <= x.
3777template <typename Rhs>
3778inline internal::LeMatcher<Rhs> Le(Rhs x) {
3779  return internal::LeMatcher<Rhs>(x);
3780}
3781
3782// Creates a polymorphic matcher that matches anything < x.
3783template <typename Rhs>
3784inline internal::LtMatcher<Rhs> Lt(Rhs x) {
3785  return internal::LtMatcher<Rhs>(x);
3786}
3787
3788// Creates a polymorphic matcher that matches anything != x.
3789template <typename Rhs>
3790inline internal::NeMatcher<Rhs> Ne(Rhs x) {
3791  return internal::NeMatcher<Rhs>(x);
3792}
3793
3794// Creates a polymorphic matcher that matches any NULL pointer.
3795inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
3796  return MakePolymorphicMatcher(internal::IsNullMatcher());
3797}
3798
3799// Creates a polymorphic matcher that matches any non-NULL pointer.
3800// This is convenient as Not(NULL) doesn't compile (the compiler
3801// thinks that that expression is comparing a pointer with an integer).
3802inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
3803  return MakePolymorphicMatcher(internal::NotNullMatcher());
3804}
3805
3806// Creates a polymorphic matcher that matches any argument that
3807// references variable x.
3808template <typename T>
3809inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
3810  return internal::RefMatcher<T&>(x);
3811}
3812
3813// Creates a matcher that matches any double argument approximately
3814// equal to rhs, where two NANs are considered unequal.
3815inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
3816  return internal::FloatingEqMatcher<double>(rhs, false);
3817}
3818
3819// Creates a matcher that matches any double argument approximately
3820// equal to rhs, including NaN values when rhs is NaN.
3821inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
3822  return internal::FloatingEqMatcher<double>(rhs, true);
3823}
3824
3825// Creates a matcher that matches any double argument approximately equal to
3826// rhs, up to the specified max absolute error bound, where two NANs are
3827// considered unequal.  The max absolute error bound must be non-negative.
3828inline internal::FloatingEqMatcher<double> DoubleNear(
3829    double rhs, double max_abs_error) {
3830  return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
3831}
3832
3833// Creates a matcher that matches any double argument approximately equal to
3834// rhs, up to the specified max absolute error bound, including NaN values when
3835// rhs is NaN.  The max absolute error bound must be non-negative.
3836inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
3837    double rhs, double max_abs_error) {
3838  return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
3839}
3840
3841// Creates a matcher that matches any float argument approximately
3842// equal to rhs, where two NANs are considered unequal.
3843inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
3844  return internal::FloatingEqMatcher<float>(rhs, false);
3845}
3846
3847// Creates a matcher that matches any float argument approximately
3848// equal to rhs, including NaN values when rhs is NaN.
3849inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
3850  return internal::FloatingEqMatcher<float>(rhs, true);
3851}
3852
3853// Creates a matcher that matches any float argument approximately equal to
3854// rhs, up to the specified max absolute error bound, where two NANs are
3855// considered unequal.  The max absolute error bound must be non-negative.
3856inline internal::FloatingEqMatcher<float> FloatNear(
3857    float rhs, float max_abs_error) {
3858  return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
3859}
3860
3861// Creates a matcher that matches any float argument approximately equal to
3862// rhs, up to the specified max absolute error bound, including NaN values when
3863// rhs is NaN.  The max absolute error bound must be non-negative.
3864inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
3865    float rhs, float max_abs_error) {
3866  return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
3867}
3868
3869// Creates a matcher that matches a pointer (raw or smart) that points
3870// to a value that matches inner_matcher.
3871template <typename InnerMatcher>
3872inline internal::PointeeMatcher<InnerMatcher> Pointee(
3873    const InnerMatcher& inner_matcher) {
3874  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
3875}
3876
3877// Creates a matcher that matches a pointer or reference that matches
3878// inner_matcher when dynamic_cast<To> is applied.
3879// The result of dynamic_cast<To> is forwarded to the inner matcher.
3880// If To is a pointer and the cast fails, the inner matcher will receive NULL.
3881// If To is a reference and the cast fails, this matcher returns false
3882// immediately.
3883template <typename To>
3884inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
3885WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
3886  return MakePolymorphicMatcher(
3887      internal::WhenDynamicCastToMatcher<To>(inner_matcher));
3888}
3889
3890// Creates a matcher that matches an object whose given field matches
3891// 'matcher'.  For example,
3892//   Field(&Foo::number, Ge(5))
3893// matches a Foo object x iff x.number >= 5.
3894template <typename Class, typename FieldType, typename FieldMatcher>
3895inline PolymorphicMatcher<
3896  internal::FieldMatcher<Class, FieldType> > Field(
3897    FieldType Class::*field, const FieldMatcher& matcher) {
3898  return MakePolymorphicMatcher(
3899      internal::FieldMatcher<Class, FieldType>(
3900          field, MatcherCast<const FieldType&>(matcher)));
3901  // The call to MatcherCast() is required for supporting inner
3902  // matchers of compatible types.  For example, it allows
3903  //   Field(&Foo::bar, m)
3904  // to compile where bar is an int32 and m is a matcher for int64.
3905}
3906
3907// Creates a matcher that matches an object whose given property
3908// matches 'matcher'.  For example,
3909//   Property(&Foo::str, StartsWith("hi"))
3910// matches a Foo object x iff x.str() starts with "hi".
3911template <typename Class, typename PropertyType, typename PropertyMatcher>
3912inline PolymorphicMatcher<
3913  internal::PropertyMatcher<Class, PropertyType> > Property(
3914    PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
3915  return MakePolymorphicMatcher(
3916      internal::PropertyMatcher<Class, PropertyType>(
3917          property,
3918          MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
3919  // The call to MatcherCast() is required for supporting inner
3920  // matchers of compatible types.  For example, it allows
3921  //   Property(&Foo::bar, m)
3922  // to compile where bar() returns an int32 and m is a matcher for int64.
3923}
3924
3925// Creates a matcher that matches an object iff the result of applying
3926// a callable to x matches 'matcher'.
3927// For example,
3928//   ResultOf(f, StartsWith("hi"))
3929// matches a Foo object x iff f(x) starts with "hi".
3930// callable parameter can be a function, function pointer, or a functor.
3931// Callable has to satisfy the following conditions:
3932//   * It is required to keep no state affecting the results of
3933//     the calls on it and make no assumptions about how many calls
3934//     will be made. Any state it keeps must be protected from the
3935//     concurrent access.
3936//   * If it is a function object, it has to define type result_type.
3937//     We recommend deriving your functor classes from std::unary_function.
3938template <typename Callable, typename ResultOfMatcher>
3939internal::ResultOfMatcher<Callable> ResultOf(
3940    Callable callable, const ResultOfMatcher& matcher) {
3941  return internal::ResultOfMatcher<Callable>(
3942          callable,
3943          MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
3944              matcher));
3945  // The call to MatcherCast() is required for supporting inner
3946  // matchers of compatible types.  For example, it allows
3947  //   ResultOf(Function, m)
3948  // to compile where Function() returns an int32 and m is a matcher for int64.
3949}
3950
3951// String matchers.
3952
3953// Matches a string equal to str.
3954inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3955    StrEq(const internal::string& str) {
3956  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3957      str, true, true));
3958}
3959
3960// Matches a string not equal to str.
3961inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3962    StrNe(const internal::string& str) {
3963  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3964      str, false, true));
3965}
3966
3967// Matches a string equal to str, ignoring case.
3968inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3969    StrCaseEq(const internal::string& str) {
3970  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3971      str, true, false));
3972}
3973
3974// Matches a string not equal to str, ignoring case.
3975inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3976    StrCaseNe(const internal::string& str) {
3977  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3978      str, false, false));
3979}
3980
3981// Creates a matcher that matches any string, std::string, or C string
3982// that contains the given substring.
3983inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
3984    HasSubstr(const internal::string& substring) {
3985  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
3986      substring));
3987}
3988
3989// Matches a string that starts with 'prefix' (case-sensitive).
3990inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
3991    StartsWith(const internal::string& prefix) {
3992  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
3993      prefix));
3994}
3995
3996// Matches a string that ends with 'suffix' (case-sensitive).
3997inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
3998    EndsWith(const internal::string& suffix) {
3999  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
4000      suffix));
4001}
4002
4003// Matches a string that fully matches regular expression 'regex'.
4004// The matcher takes ownership of 'regex'.
4005inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
4006    const internal::RE* regex) {
4007  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
4008}
4009inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
4010    const internal::string& regex) {
4011  return MatchesRegex(new internal::RE(regex));
4012}
4013
4014// Matches a string that contains regular expression 'regex'.
4015// The matcher takes ownership of 'regex'.
4016inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
4017    const internal::RE* regex) {
4018  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
4019}
4020inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
4021    const internal::string& regex) {
4022  return ContainsRegex(new internal::RE(regex));
4023}
4024
4025#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
4026// Wide string matchers.
4027
4028// Matches a string equal to str.
4029inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4030    StrEq(const internal::wstring& str) {
4031  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4032      str, true, true));
4033}
4034
4035// Matches a string not equal to str.
4036inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4037    StrNe(const internal::wstring& str) {
4038  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4039      str, false, true));
4040}
4041
4042// Matches a string equal to str, ignoring case.
4043inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4044    StrCaseEq(const internal::wstring& str) {
4045  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4046      str, true, false));
4047}
4048
4049// Matches a string not equal to str, ignoring case.
4050inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4051    StrCaseNe(const internal::wstring& str) {
4052  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4053      str, false, false));
4054}
4055
4056// Creates a matcher that matches any wstring, std::wstring, or C wide string
4057// that contains the given substring.
4058inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
4059    HasSubstr(const internal::wstring& substring) {
4060  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
4061      substring));
4062}
4063
4064// Matches a string that starts with 'prefix' (case-sensitive).
4065inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
4066    StartsWith(const internal::wstring& prefix) {
4067  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
4068      prefix));
4069}
4070
4071// Matches a string that ends with 'suffix' (case-sensitive).
4072inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
4073    EndsWith(const internal::wstring& suffix) {
4074  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
4075      suffix));
4076}
4077
4078#endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
4079
4080// Creates a polymorphic matcher that matches a 2-tuple where the
4081// first field == the second field.
4082inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4083
4084// Creates a polymorphic matcher that matches a 2-tuple where the
4085// first field >= the second field.
4086inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4087
4088// Creates a polymorphic matcher that matches a 2-tuple where the
4089// first field > the second field.
4090inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4091
4092// Creates a polymorphic matcher that matches a 2-tuple where the
4093// first field <= the second field.
4094inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4095
4096// Creates a polymorphic matcher that matches a 2-tuple where the
4097// first field < the second field.
4098inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4099
4100// Creates a polymorphic matcher that matches a 2-tuple where the
4101// first field != the second field.
4102inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4103
4104// Creates a matcher that matches any value of type T that m doesn't
4105// match.
4106template <typename InnerMatcher>
4107inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4108  return internal::NotMatcher<InnerMatcher>(m);
4109}
4110
4111// Returns a matcher that matches anything that satisfies the given
4112// predicate.  The predicate can be any unary function or functor
4113// whose return type can be implicitly converted to bool.
4114template <typename Predicate>
4115inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
4116Truly(Predicate pred) {
4117  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4118}
4119
4120// Returns a matcher that matches the container size. The container must
4121// support both size() and size_type which all STL-like containers provide.
4122// Note that the parameter 'size' can be a value of type size_type as well as
4123// matcher. For instance:
4124//   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4125//   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4126template <typename SizeMatcher>
4127inline internal::SizeIsMatcher<SizeMatcher>
4128SizeIs(const SizeMatcher& size_matcher) {
4129  return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4130}
4131
4132// Returns a matcher that matches the distance between the container's begin()
4133// iterator and its end() iterator, i.e. the size of the container. This matcher
4134// can be used instead of SizeIs with containers such as std::forward_list which
4135// do not implement size(). The container must provide const_iterator (with
4136// valid iterator_traits), begin() and end().
4137template <typename DistanceMatcher>
4138inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
4139BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
4140  return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4141}
4142
4143// Returns a matcher that matches an equal container.
4144// This matcher behaves like Eq(), but in the event of mismatch lists the
4145// values that are included in one container but not the other. (Duplicate
4146// values and order differences are not explained.)
4147template <typename Container>
4148inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
4149                            GTEST_REMOVE_CONST_(Container)> >
4150    ContainerEq(const Container& rhs) {
4151  // This following line is for working around a bug in MSVC 8.0,
4152  // which causes Container to be a const type sometimes.
4153  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
4154  return MakePolymorphicMatcher(
4155      internal::ContainerEqMatcher<RawContainer>(rhs));
4156}
4157
4158// Returns a matcher that matches a container that, when sorted using
4159// the given comparator, matches container_matcher.
4160template <typename Comparator, typename ContainerMatcher>
4161inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
4162WhenSortedBy(const Comparator& comparator,
4163             const ContainerMatcher& container_matcher) {
4164  return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4165      comparator, container_matcher);
4166}
4167
4168// Returns a matcher that matches a container that, when sorted using
4169// the < operator, matches container_matcher.
4170template <typename ContainerMatcher>
4171inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4172WhenSorted(const ContainerMatcher& container_matcher) {
4173  return
4174      internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
4175          internal::LessComparator(), container_matcher);
4176}
4177
4178// Matches an STL-style container or a native array that contains the
4179// same number of elements as in rhs, where its i-th element and rhs's
4180// i-th element (as a pair) satisfy the given pair matcher, for all i.
4181// TupleMatcher must be able to be safely cast to Matcher<tuple<const
4182// T1&, const T2&> >, where T1 and T2 are the types of elements in the
4183// LHS container and the RHS container respectively.
4184template <typename TupleMatcher, typename Container>
4185inline internal::PointwiseMatcher<TupleMatcher,
4186                                  GTEST_REMOVE_CONST_(Container)>
4187Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4188  // This following line is for working around a bug in MSVC 8.0,
4189  // which causes Container to be a const type sometimes (e.g. when
4190  // rhs is a const int[])..
4191  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
4192  return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
4193      tuple_matcher, rhs);
4194}
4195
4196#if GTEST_HAS_STD_INITIALIZER_LIST_
4197
4198// Supports the Pointwise(m, {a, b, c}) syntax.
4199template <typename TupleMatcher, typename T>
4200inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
4201    const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4202  return Pointwise(tuple_matcher, std::vector<T>(rhs));
4203}
4204
4205#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
4206
4207// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4208// container or a native array that contains the same number of
4209// elements as in rhs, where in some permutation of the container, its
4210// i-th element and rhs's i-th element (as a pair) satisfy the given
4211// pair matcher, for all i.  Tuple2Matcher must be able to be safely
4212// cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are
4213// the types of elements in the LHS container and the RHS container
4214// respectively.
4215//
4216// This is like Pointwise(pair_matcher, rhs), except that the element
4217// order doesn't matter.
4218template <typename Tuple2Matcher, typename RhsContainer>
4219inline internal::UnorderedElementsAreArrayMatcher<
4220    typename internal::BoundSecondMatcher<
4221        Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_(
4222                           RhsContainer)>::type::value_type> >
4223UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4224                   const RhsContainer& rhs_container) {
4225  // This following line is for working around a bug in MSVC 8.0,
4226  // which causes RhsContainer to be a const type sometimes (e.g. when
4227  // rhs_container is a const int[]).
4228  typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer;
4229
4230  // RhsView allows the same code to handle RhsContainer being a
4231  // STL-style container and it being a native C-style array.
4232  typedef typename internal::StlContainerView<RawRhsContainer> RhsView;
4233  typedef typename RhsView::type RhsStlContainer;
4234  typedef typename RhsStlContainer::value_type Second;
4235  const RhsStlContainer& rhs_stl_container =
4236      RhsView::ConstReference(rhs_container);
4237
4238  // Create a matcher for each element in rhs_container.
4239  ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
4240  for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
4241       it != rhs_stl_container.end(); ++it) {
4242    matchers.push_back(
4243        internal::MatcherBindSecond(tuple2_matcher, *it));
4244  }
4245
4246  // Delegate the work to UnorderedElementsAreArray().
4247  return UnorderedElementsAreArray(matchers);
4248}
4249
4250#if GTEST_HAS_STD_INITIALIZER_LIST_
4251
4252// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4253template <typename Tuple2Matcher, typename T>
4254inline internal::UnorderedElementsAreArrayMatcher<
4255    typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
4256UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4257                   std::initializer_list<T> rhs) {
4258  return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4259}
4260
4261#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
4262
4263// Matches an STL-style container or a native array that contains at
4264// least one element matching the given value or matcher.
4265//
4266// Examples:
4267//   ::std::set<int> page_ids;
4268//   page_ids.insert(3);
4269//   page_ids.insert(1);
4270//   EXPECT_THAT(page_ids, Contains(1));
4271//   EXPECT_THAT(page_ids, Contains(Gt(2)));
4272//   EXPECT_THAT(page_ids, Not(Contains(4)));
4273//
4274//   ::std::map<int, size_t> page_lengths;
4275//   page_lengths[1] = 100;
4276//   EXPECT_THAT(page_lengths,
4277//               Contains(::std::pair<const int, size_t>(1, 100)));
4278//
4279//   const char* user_ids[] = { "joe", "mike", "tom" };
4280//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4281template <typename M>
4282inline internal::ContainsMatcher<M> Contains(M matcher) {
4283  return internal::ContainsMatcher<M>(matcher);
4284}
4285
4286// Matches an STL-style container or a native array that contains only
4287// elements matching the given value or matcher.
4288//
4289// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
4290// the messages are different.
4291//
4292// Examples:
4293//   ::std::set<int> page_ids;
4294//   // Each(m) matches an empty container, regardless of what m is.
4295//   EXPECT_THAT(page_ids, Each(Eq(1)));
4296//   EXPECT_THAT(page_ids, Each(Eq(77)));
4297//
4298//   page_ids.insert(3);
4299//   EXPECT_THAT(page_ids, Each(Gt(0)));
4300//   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4301//   page_ids.insert(1);
4302//   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4303//
4304//   ::std::map<int, size_t> page_lengths;
4305//   page_lengths[1] = 100;
4306//   page_lengths[2] = 200;
4307//   page_lengths[3] = 300;
4308//   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4309//   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4310//
4311//   const char* user_ids[] = { "joe", "mike", "tom" };
4312//   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4313template <typename M>
4314inline internal::EachMatcher<M> Each(M matcher) {
4315  return internal::EachMatcher<M>(matcher);
4316}
4317
4318// Key(inner_matcher) matches an std::pair whose 'first' field matches
4319// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
4320// std::map that contains at least one element whose key is >= 5.
4321template <typename M>
4322inline internal::KeyMatcher<M> Key(M inner_matcher) {
4323  return internal::KeyMatcher<M>(inner_matcher);
4324}
4325
4326// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4327// matches first_matcher and whose 'second' field matches second_matcher.  For
4328// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4329// to match a std::map<int, string> that contains exactly one element whose key
4330// is >= 5 and whose value equals "foo".
4331template <typename FirstMatcher, typename SecondMatcher>
4332inline internal::PairMatcher<FirstMatcher, SecondMatcher>
4333Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
4334  return internal::PairMatcher<FirstMatcher, SecondMatcher>(
4335      first_matcher, second_matcher);
4336}
4337
4338// Returns a predicate that is satisfied by anything that matches the
4339// given matcher.
4340template <typename M>
4341inline internal::MatcherAsPredicate<M> Matches(M matcher) {
4342  return internal::MatcherAsPredicate<M>(matcher);
4343}
4344
4345// Returns true iff the value matches the matcher.
4346template <typename T, typename M>
4347inline bool Value(const T& value, M matcher) {
4348  return testing::Matches(matcher)(value);
4349}
4350
4351// Matches the value against the given matcher and explains the match
4352// result to listener.
4353template <typename T, typename M>
4354inline bool ExplainMatchResult(
4355    M matcher, const T& value, MatchResultListener* listener) {
4356  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
4357}
4358
4359#if GTEST_LANG_CXX11
4360// Define variadic matcher versions. They are overloaded in
4361// gmock-generated-matchers.h for the cases supported by pre C++11 compilers.
4362template <typename... Args>
4363inline internal::AllOfMatcher<Args...> AllOf(const Args&... matchers) {
4364  return internal::AllOfMatcher<Args...>(matchers...);
4365}
4366
4367template <typename... Args>
4368inline internal::AnyOfMatcher<Args...> AnyOf(const Args&... matchers) {
4369  return internal::AnyOfMatcher<Args...>(matchers...);
4370}
4371
4372#endif  // GTEST_LANG_CXX11
4373
4374// AllArgs(m) is a synonym of m.  This is useful in
4375//
4376//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
4377//
4378// which is easier to read than
4379//
4380//   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
4381template <typename InnerMatcher>
4382inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
4383
4384// These macros allow using matchers to check values in Google Test
4385// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
4386// succeed iff the value matches the matcher.  If the assertion fails,
4387// the value and the description of the matcher will be printed.
4388#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
4389    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
4390#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
4391    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
4392
4393}  // namespace testing
4394
4395// Include any custom callback matchers added by the local installation.
4396// We must include this header at the end to make sure it can use the
4397// declarations from this file.
4398#include "gmock/internal/custom/gmock-matchers.h"
4399#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
4400