1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// Macroblock analysis
11//
12// Author: Skal (pascal.massimino@gmail.com)
13
14#include <stdlib.h>
15#include <string.h>
16#include <assert.h>
17
18#include "./vp8i_enc.h"
19#include "./cost_enc.h"
20#include "../utils/utils.h"
21
22#define MAX_ITERS_K_MEANS  6
23
24//------------------------------------------------------------------------------
25// Smooth the segment map by replacing isolated block by the majority of its
26// neighbours.
27
28static void SmoothSegmentMap(VP8Encoder* const enc) {
29  int n, x, y;
30  const int w = enc->mb_w_;
31  const int h = enc->mb_h_;
32  const int majority_cnt_3_x_3_grid = 5;
33  uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34  assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
35
36  if (tmp == NULL) return;
37  for (y = 1; y < h - 1; ++y) {
38    for (x = 1; x < w - 1; ++x) {
39      int cnt[NUM_MB_SEGMENTS] = { 0 };
40      const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41      int majority_seg = mb->segment_;
42      // Check the 8 neighbouring segment values.
43      cnt[mb[-w - 1].segment_]++;  // top-left
44      cnt[mb[-w + 0].segment_]++;  // top
45      cnt[mb[-w + 1].segment_]++;  // top-right
46      cnt[mb[   - 1].segment_]++;  // left
47      cnt[mb[   + 1].segment_]++;  // right
48      cnt[mb[ w - 1].segment_]++;  // bottom-left
49      cnt[mb[ w + 0].segment_]++;  // bottom
50      cnt[mb[ w + 1].segment_]++;  // bottom-right
51      for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52        if (cnt[n] >= majority_cnt_3_x_3_grid) {
53          majority_seg = n;
54          break;
55        }
56      }
57      tmp[x + y * w] = majority_seg;
58    }
59  }
60  for (y = 1; y < h - 1; ++y) {
61    for (x = 1; x < w - 1; ++x) {
62      VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63      mb->segment_ = tmp[x + y * w];
64    }
65  }
66  WebPSafeFree(tmp);
67}
68
69//------------------------------------------------------------------------------
70// set segment susceptibility alpha_ / beta_
71
72static WEBP_INLINE int clip(int v, int m, int M) {
73  return (v < m) ? m : (v > M) ? M : v;
74}
75
76static void SetSegmentAlphas(VP8Encoder* const enc,
77                             const int centers[NUM_MB_SEGMENTS],
78                             int mid) {
79  const int nb = enc->segment_hdr_.num_segments_;
80  int min = centers[0], max = centers[0];
81  int n;
82
83  if (nb > 1) {
84    for (n = 0; n < nb; ++n) {
85      if (min > centers[n]) min = centers[n];
86      if (max < centers[n]) max = centers[n];
87    }
88  }
89  if (max == min) max = min + 1;
90  assert(mid <= max && mid >= min);
91  for (n = 0; n < nb; ++n) {
92    const int alpha = 255 * (centers[n] - mid) / (max - min);
93    const int beta = 255 * (centers[n] - min) / (max - min);
94    enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95    enc->dqm_[n].beta_ = clip(beta, 0, 255);
96  }
97}
98
99//------------------------------------------------------------------------------
100// Compute susceptibility based on DCT-coeff histograms:
101// the higher, the "easier" the macroblock is to compress.
102
103#define MAX_ALPHA 255                // 8b of precision for susceptibilities.
104#define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
105#define DEFAULT_ALPHA (-1)
106#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107
108static int FinalAlphaValue(int alpha) {
109  alpha = MAX_ALPHA - alpha;
110  return clip(alpha, 0, MAX_ALPHA);
111}
112
113static int GetAlpha(const VP8Histogram* const histo) {
114  // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
115  // values which happen to be mostly noise. This leaves the maximum precision
116  // for handling the useful small values which contribute most.
117  const int max_value = histo->max_value;
118  const int last_non_zero = histo->last_non_zero;
119  const int alpha =
120      (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
121  return alpha;
122}
123
124static void InitHistogram(VP8Histogram* const histo) {
125  histo->max_value = 0;
126  histo->last_non_zero = 1;
127}
128
129static void MergeHistograms(const VP8Histogram* const in,
130                            VP8Histogram* const out) {
131  if (in->max_value > out->max_value) {
132    out->max_value = in->max_value;
133  }
134  if (in->last_non_zero > out->last_non_zero) {
135    out->last_non_zero = in->last_non_zero;
136  }
137}
138
139//------------------------------------------------------------------------------
140// Simplified k-Means, to assign Nb segments based on alpha-histogram
141
142static void AssignSegments(VP8Encoder* const enc,
143                           const int alphas[MAX_ALPHA + 1]) {
144  // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
145  // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
146  // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
147  const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
148                 enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
149  int centers[NUM_MB_SEGMENTS];
150  int weighted_average = 0;
151  int map[MAX_ALPHA + 1];
152  int a, n, k;
153  int min_a = 0, max_a = MAX_ALPHA, range_a;
154  // 'int' type is ok for histo, and won't overflow
155  int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
156
157  assert(nb >= 1);
158  assert(nb <= NUM_MB_SEGMENTS);
159
160  // bracket the input
161  for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
162  min_a = n;
163  for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
164  max_a = n;
165  range_a = max_a - min_a;
166
167  // Spread initial centers evenly
168  for (k = 0, n = 1; k < nb; ++k, n += 2) {
169    assert(n < 2 * nb);
170    centers[k] = min_a + (n * range_a) / (2 * nb);
171  }
172
173  for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
174    int total_weight;
175    int displaced;
176    // Reset stats
177    for (n = 0; n < nb; ++n) {
178      accum[n] = 0;
179      dist_accum[n] = 0;
180    }
181    // Assign nearest center for each 'a'
182    n = 0;    // track the nearest center for current 'a'
183    for (a = min_a; a <= max_a; ++a) {
184      if (alphas[a]) {
185        while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
186          n++;
187        }
188        map[a] = n;
189        // accumulate contribution into best centroid
190        dist_accum[n] += a * alphas[a];
191        accum[n] += alphas[a];
192      }
193    }
194    // All point are classified. Move the centroids to the
195    // center of their respective cloud.
196    displaced = 0;
197    weighted_average = 0;
198    total_weight = 0;
199    for (n = 0; n < nb; ++n) {
200      if (accum[n]) {
201        const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
202        displaced += abs(centers[n] - new_center);
203        centers[n] = new_center;
204        weighted_average += new_center * accum[n];
205        total_weight += accum[n];
206      }
207    }
208    weighted_average = (weighted_average + total_weight / 2) / total_weight;
209    if (displaced < 5) break;   // no need to keep on looping...
210  }
211
212  // Map each original value to the closest centroid
213  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
214    VP8MBInfo* const mb = &enc->mb_info_[n];
215    const int alpha = mb->alpha_;
216    mb->segment_ = map[alpha];
217    mb->alpha_ = centers[map[alpha]];  // for the record.
218  }
219
220  if (nb > 1) {
221    const int smooth = (enc->config_->preprocessing & 1);
222    if (smooth) SmoothSegmentMap(enc);
223  }
224
225  SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
226}
227
228//------------------------------------------------------------------------------
229// Macroblock analysis: collect histogram for each mode, deduce the maximal
230// susceptibility and set best modes for this macroblock.
231// Segment assignment is done later.
232
233// Number of modes to inspect for alpha_ evaluation. We don't need to test all
234// the possible modes during the analysis phase: we risk falling into a local
235// optimum, or be subject to boundary effect
236#define MAX_INTRA16_MODE 2
237#define MAX_INTRA4_MODE  2
238#define MAX_UV_MODE      2
239
240static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
241  const int max_mode = MAX_INTRA16_MODE;
242  int mode;
243  int best_alpha = DEFAULT_ALPHA;
244  int best_mode = 0;
245
246  VP8MakeLuma16Preds(it);
247  for (mode = 0; mode < max_mode; ++mode) {
248    VP8Histogram histo;
249    int alpha;
250
251    InitHistogram(&histo);
252    VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
253                        it->yuv_p_ + VP8I16ModeOffsets[mode],
254                        0, 16, &histo);
255    alpha = GetAlpha(&histo);
256    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
257      best_alpha = alpha;
258      best_mode = mode;
259    }
260  }
261  VP8SetIntra16Mode(it, best_mode);
262  return best_alpha;
263}
264
265static int FastMBAnalyze(VP8EncIterator* const it) {
266  // Empirical cut-off value, should be around 16 (~=block size). We use the
267  // [8-17] range and favor intra4 at high quality, intra16 for low quality.
268  const int q = (int)it->enc_->config_->quality;
269  const uint32_t kThreshold = 8 + (17 - 8) * q / 100;
270  int k;
271  uint32_t dc[16], m, m2;
272  for (k = 0; k < 16; k += 4) {
273    VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]);
274  }
275  for (m = 0, m2 = 0, k = 0; k < 16; ++k) {
276    m += dc[k];
277    m2 += dc[k] * dc[k];
278  }
279  if (kThreshold * m2 < m * m) {
280    VP8SetIntra16Mode(it, 0);   // DC16
281  } else {
282    const uint8_t modes[16] = { 0 };  // DC4
283    VP8SetIntra4Mode(it, modes);
284  }
285  return 0;
286}
287
288static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
289                                   int best_alpha) {
290  uint8_t modes[16];
291  const int max_mode = MAX_INTRA4_MODE;
292  int i4_alpha;
293  VP8Histogram total_histo;
294  int cur_histo = 0;
295  InitHistogram(&total_histo);
296
297  VP8IteratorStartI4(it);
298  do {
299    int mode;
300    int best_mode_alpha = DEFAULT_ALPHA;
301    VP8Histogram histos[2];
302    const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_];
303
304    VP8MakeIntra4Preds(it);
305    for (mode = 0; mode < max_mode; ++mode) {
306      int alpha;
307
308      InitHistogram(&histos[cur_histo]);
309      VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
310                          0, 1, &histos[cur_histo]);
311      alpha = GetAlpha(&histos[cur_histo]);
312      if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
313        best_mode_alpha = alpha;
314        modes[it->i4_] = mode;
315        cur_histo ^= 1;   // keep track of best histo so far.
316      }
317    }
318    // accumulate best histogram
319    MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
320    // Note: we reuse the original samples for predictors
321  } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC));
322
323  i4_alpha = GetAlpha(&total_histo);
324  if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
325    VP8SetIntra4Mode(it, modes);
326    best_alpha = i4_alpha;
327  }
328  return best_alpha;
329}
330
331static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
332  int best_alpha = DEFAULT_ALPHA;
333  int smallest_alpha = 0;
334  int best_mode = 0;
335  const int max_mode = MAX_UV_MODE;
336  int mode;
337
338  VP8MakeChroma8Preds(it);
339  for (mode = 0; mode < max_mode; ++mode) {
340    VP8Histogram histo;
341    int alpha;
342    InitHistogram(&histo);
343    VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
344                        it->yuv_p_ + VP8UVModeOffsets[mode],
345                        16, 16 + 4 + 4, &histo);
346    alpha = GetAlpha(&histo);
347    if (IS_BETTER_ALPHA(alpha, best_alpha)) {
348      best_alpha = alpha;
349    }
350    // The best prediction mode tends to be the one with the smallest alpha.
351    if (mode == 0 || alpha < smallest_alpha) {
352      smallest_alpha = alpha;
353      best_mode = mode;
354    }
355  }
356  VP8SetIntraUVMode(it, best_mode);
357  return best_alpha;
358}
359
360static void MBAnalyze(VP8EncIterator* const it,
361                      int alphas[MAX_ALPHA + 1],
362                      int* const alpha, int* const uv_alpha) {
363  const VP8Encoder* const enc = it->enc_;
364  int best_alpha, best_uv_alpha;
365
366  VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
367  VP8SetSkip(it, 0);         // not skipped
368  VP8SetSegment(it, 0);      // default segment, spec-wise.
369
370  if (enc->method_ <= 1) {
371    best_alpha = FastMBAnalyze(it);
372  } else {
373    best_alpha = MBAnalyzeBestIntra16Mode(it);
374    if (enc->method_ >= 5) {
375      // We go and make a fast decision for intra4/intra16.
376      // It's usually not a good and definitive pick, but helps seeding the
377      // stats about level bit-cost.
378      // TODO(skal): improve criterion.
379      best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
380    }
381  }
382  best_uv_alpha = MBAnalyzeBestUVMode(it);
383
384  // Final susceptibility mix
385  best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
386  best_alpha = FinalAlphaValue(best_alpha);
387  alphas[best_alpha]++;
388  it->mb_->alpha_ = best_alpha;   // for later remapping.
389
390  // Accumulate for later complexity analysis.
391  *alpha += best_alpha;   // mixed susceptibility (not just luma)
392  *uv_alpha += best_uv_alpha;
393}
394
395static void DefaultMBInfo(VP8MBInfo* const mb) {
396  mb->type_ = 1;     // I16x16
397  mb->uv_mode_ = 0;
398  mb->skip_ = 0;     // not skipped
399  mb->segment_ = 0;  // default segment
400  mb->alpha_ = 0;
401}
402
403//------------------------------------------------------------------------------
404// Main analysis loop:
405// Collect all susceptibilities for each macroblock and record their
406// distribution in alphas[]. Segments is assigned a-posteriori, based on
407// this histogram.
408// We also pick an intra16 prediction mode, which shouldn't be considered
409// final except for fast-encode settings. We can also pick some intra4 modes
410// and decide intra4/intra16, but that's usually almost always a bad choice at
411// this stage.
412
413static void ResetAllMBInfo(VP8Encoder* const enc) {
414  int n;
415  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
416    DefaultMBInfo(&enc->mb_info_[n]);
417  }
418  // Default susceptibilities.
419  enc->dqm_[0].alpha_ = 0;
420  enc->dqm_[0].beta_ = 0;
421  // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
422  enc->alpha_ = 0;
423  enc->uv_alpha_ = 0;
424  WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
425}
426
427// struct used to collect job result
428typedef struct {
429  WebPWorker worker;
430  int alphas[MAX_ALPHA + 1];
431  int alpha, uv_alpha;
432  VP8EncIterator it;
433  int delta_progress;
434} SegmentJob;
435
436// main work call
437static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
438  int ok = 1;
439  if (!VP8IteratorIsDone(it)) {
440    uint8_t tmp[32 + WEBP_ALIGN_CST];
441    uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
442    do {
443      // Let's pretend we have perfect lossless reconstruction.
444      VP8IteratorImport(it, scratch);
445      MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
446      ok = VP8IteratorProgress(it, job->delta_progress);
447    } while (ok && VP8IteratorNext(it));
448  }
449  return ok;
450}
451
452static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
453  int i;
454  for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
455  dst->alpha += src->alpha;
456  dst->uv_alpha += src->uv_alpha;
457}
458
459// initialize the job struct with some TODOs
460static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
461                           int start_row, int end_row) {
462  WebPGetWorkerInterface()->Init(&job->worker);
463  job->worker.data1 = job;
464  job->worker.data2 = &job->it;
465  job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
466  VP8IteratorInit(enc, &job->it);
467  VP8IteratorSetRow(&job->it, start_row);
468  VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
469  memset(job->alphas, 0, sizeof(job->alphas));
470  job->alpha = 0;
471  job->uv_alpha = 0;
472  // only one of both jobs can record the progress, since we don't
473  // expect the user's hook to be multi-thread safe
474  job->delta_progress = (start_row == 0) ? 20 : 0;
475}
476
477// main entry point
478int VP8EncAnalyze(VP8Encoder* const enc) {
479  int ok = 1;
480  const int do_segments =
481      enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
482      (enc->segment_hdr_.num_segments_ > 1) ||
483      (enc->method_ <= 1);  // for method 0 - 1, we need preds_[] to be filled.
484  if (do_segments) {
485    const int last_row = enc->mb_h_;
486    // We give a little more than a half work to the main thread.
487    const int split_row = (9 * last_row + 15) >> 4;
488    const int total_mb = last_row * enc->mb_w_;
489#ifdef WEBP_USE_THREAD
490    const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
491    const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
492#else
493    const int do_mt = 0;
494#endif
495    const WebPWorkerInterface* const worker_interface =
496        WebPGetWorkerInterface();
497    SegmentJob main_job;
498    if (do_mt) {
499      SegmentJob side_job;
500      // Note the use of '&' instead of '&&' because we must call the functions
501      // no matter what.
502      InitSegmentJob(enc, &main_job, 0, split_row);
503      InitSegmentJob(enc, &side_job, split_row, last_row);
504      // we don't need to call Reset() on main_job.worker, since we're calling
505      // WebPWorkerExecute() on it
506      ok &= worker_interface->Reset(&side_job.worker);
507      // launch the two jobs in parallel
508      if (ok) {
509        worker_interface->Launch(&side_job.worker);
510        worker_interface->Execute(&main_job.worker);
511        ok &= worker_interface->Sync(&side_job.worker);
512        ok &= worker_interface->Sync(&main_job.worker);
513      }
514      worker_interface->End(&side_job.worker);
515      if (ok) MergeJobs(&side_job, &main_job);  // merge results together
516    } else {
517      // Even for single-thread case, we use the generic Worker tools.
518      InitSegmentJob(enc, &main_job, 0, last_row);
519      worker_interface->Execute(&main_job.worker);
520      ok &= worker_interface->Sync(&main_job.worker);
521    }
522    worker_interface->End(&main_job.worker);
523    if (ok) {
524      enc->alpha_ = main_job.alpha / total_mb;
525      enc->uv_alpha_ = main_job.uv_alpha / total_mb;
526      AssignSegments(enc, main_job.alphas);
527    }
528  } else {   // Use only one default segment.
529    ResetAllMBInfo(enc);
530  }
531  return ok;
532}
533
534