1// Copyright 2013 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// Implement gradient smoothing: we replace a current alpha value by its
11// surrounding average if it's close enough (that is: the change will be less
12// than the minimum distance between two quantized level).
13// We use sliding window for computing the 2d moving average.
14//
15// Author: Skal (pascal.massimino@gmail.com)
16
17#include "./quant_levels_dec_utils.h"
18
19#include <string.h>   // for memset
20
21#include "./utils.h"
22
23// #define USE_DITHERING   // uncomment to enable ordered dithering (not vital)
24
25#define FIX 16     // fix-point precision for averaging
26#define LFIX 2     // extra precision for look-up table
27#define LUT_SIZE ((1 << (8 + LFIX)) - 1)  // look-up table size
28
29#if defined(USE_DITHERING)
30
31#define DFIX 4           // extra precision for ordered dithering
32#define DSIZE 4          // dithering size (must be a power of two)
33// cf. http://en.wikipedia.org/wiki/Ordered_dithering
34static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
35  {  0,  8,  2, 10 },     // coefficients are in DFIX fixed-point precision
36  { 12,  4, 14,  6 },
37  {  3, 11,  1,  9 },
38  { 15,  7, 13,  5 }
39};
40
41#else
42#define DFIX 0
43#endif
44
45typedef struct {
46  int width_, height_;  // dimension
47  int stride_;          // stride in bytes
48  int row_;             // current input row being processed
49  uint8_t* src_;        // input pointer
50  uint8_t* dst_;        // output pointer
51
52  int radius_;          // filter radius (=delay)
53  int scale_;           // normalization factor, in FIX bits precision
54
55  void* mem_;           // all memory
56
57  // various scratch buffers
58  uint16_t* start_;
59  uint16_t* cur_;
60  uint16_t* end_;
61  uint16_t* top_;
62  uint16_t* average_;
63
64  // input levels distribution
65  int num_levels_;       // number of quantized levels
66  int min_, max_;        // min and max level values
67  int min_level_dist_;   // smallest distance between two consecutive levels
68
69  int16_t* correction_;  // size = 1 + 2*LUT_SIZE  -> ~4k memory
70} SmoothParams;
71
72//------------------------------------------------------------------------------
73
74#define CLIP_MASK (int)(~0U << (8 + DFIX))
75static WEBP_INLINE uint8_t clip_8b(int v) {
76  return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
77}
78
79// vertical accumulation
80static void VFilter(SmoothParams* const p) {
81  const uint8_t* src = p->src_;
82  const int w = p->width_;
83  uint16_t* const cur = p->cur_;
84  const uint16_t* const top = p->top_;
85  uint16_t* const out = p->end_;
86  uint16_t sum = 0;               // all arithmetic is modulo 16bit
87  int x;
88
89  for (x = 0; x < w; ++x) {
90    uint16_t new_value;
91    sum += src[x];
92    new_value = top[x] + sum;
93    out[x] = new_value - cur[x];  // vertical sum of 'r' pixels.
94    cur[x] = new_value;
95  }
96  // move input pointers one row down
97  p->top_ = p->cur_;
98  p->cur_ += w;
99  if (p->cur_ == p->end_) p->cur_ = p->start_;  // roll-over
100  // We replicate edges, as it's somewhat easier as a boundary condition.
101  // That's why we don't update the 'src' pointer on top/bottom area:
102  if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
103    p->src_ += p->stride_;
104  }
105}
106
107// horizontal accumulation. We use mirror replication of missing pixels, as it's
108// a little easier to implement (surprisingly).
109static void HFilter(SmoothParams* const p) {
110  const uint16_t* const in = p->end_;
111  uint16_t* const out = p->average_;
112  const uint32_t scale = p->scale_;
113  const int w = p->width_;
114  const int r = p->radius_;
115
116  int x;
117  for (x = 0; x <= r; ++x) {   // left mirroring
118    const uint16_t delta = in[x + r - 1] + in[r - x];
119    out[x] = (delta * scale) >> FIX;
120  }
121  for (; x < w - r; ++x) {     // bulk middle run
122    const uint16_t delta = in[x + r] - in[x - r - 1];
123    out[x] = (delta * scale) >> FIX;
124  }
125  for (; x < w; ++x) {         // right mirroring
126    const uint16_t delta =
127        2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
128    out[x] = (delta * scale) >> FIX;
129  }
130}
131
132// emit one filtered output row
133static void ApplyFilter(SmoothParams* const p) {
134  const uint16_t* const average = p->average_;
135  const int w = p->width_;
136  const int16_t* const correction = p->correction_;
137#if defined(USE_DITHERING)
138  const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
139#endif
140  uint8_t* const dst = p->dst_;
141  int x;
142  for (x = 0; x < w; ++x) {
143    const int v = dst[x];
144    if (v < p->max_ && v > p->min_) {
145      const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
146#if defined(USE_DITHERING)
147      dst[x] = clip_8b(c + dither[x % DSIZE]);
148#else
149      dst[x] = clip_8b(c);
150#endif
151    }
152  }
153  p->dst_ += p->stride_;  // advance output pointer
154}
155
156//------------------------------------------------------------------------------
157// Initialize correction table
158
159static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
160  // The correction curve is:
161  //   f(x) = x for x <= threshold2
162  //   f(x) = 0 for x >= threshold1
163  // and a linear interpolation for range x=[threshold2, threshold1]
164  // (along with f(-x) = -f(x) symmetry).
165  // Note that: threshold2 = 3/4 * threshold1
166  const int threshold1 = min_dist << LFIX;
167  const int threshold2 = (3 * threshold1) >> 2;
168  const int max_threshold = threshold2 << DFIX;
169  const int delta = threshold1 - threshold2;
170  int i;
171  for (i = 1; i <= LUT_SIZE; ++i) {
172    int c = (i <= threshold2) ? (i << DFIX)
173          : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
174          : 0;
175    c >>= LFIX;
176    lut[+i] = +c;
177    lut[-i] = -c;
178  }
179  lut[0] = 0;
180}
181
182static void CountLevels(SmoothParams* const p) {
183  int i, j, last_level;
184  uint8_t used_levels[256] = { 0 };
185  const uint8_t* data = p->src_;
186  p->min_ = 255;
187  p->max_ = 0;
188  for (j = 0; j < p->height_; ++j) {
189    for (i = 0; i < p->width_; ++i) {
190      const int v = data[i];
191      if (v < p->min_) p->min_ = v;
192      if (v > p->max_) p->max_ = v;
193      used_levels[v] = 1;
194    }
195    data += p->stride_;
196  }
197  // Compute the mininum distance between two non-zero levels.
198  p->min_level_dist_ = p->max_ - p->min_;
199  last_level = -1;
200  for (i = 0; i < 256; ++i) {
201    if (used_levels[i]) {
202      ++p->num_levels_;
203      if (last_level >= 0) {
204        const int level_dist = i - last_level;
205        if (level_dist < p->min_level_dist_) {
206          p->min_level_dist_ = level_dist;
207        }
208      }
209      last_level = i;
210    }
211  }
212}
213
214// Initialize all params.
215static int InitParams(uint8_t* const data, int width, int height, int stride,
216                      int radius, SmoothParams* const p) {
217  const int R = 2 * radius + 1;  // total size of the kernel
218
219  const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
220  const size_t size_m =  width * sizeof(*p->average_);
221  const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
222  const size_t total_size = size_scratch_m + size_m + size_lut;
223  uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
224
225  if (mem == NULL) return 0;
226  p->mem_ = (void*)mem;
227
228  p->start_ = (uint16_t*)mem;
229  p->cur_ = p->start_;
230  p->end_ = p->start_ + R * width;
231  p->top_ = p->end_ - width;
232  memset(p->top_, 0, width * sizeof(*p->top_));
233  mem += size_scratch_m;
234
235  p->average_ = (uint16_t*)mem;
236  mem += size_m;
237
238  p->width_ = width;
239  p->height_ = height;
240  p->stride_ = stride;
241  p->src_ = data;
242  p->dst_ = data;
243  p->radius_ = radius;
244  p->scale_ = (1 << (FIX + LFIX)) / (R * R);  // normalization constant
245  p->row_ = -radius;
246
247  // analyze the input distribution so we can best-fit the threshold
248  CountLevels(p);
249
250  // correction table
251  p->correction_ = ((int16_t*)mem) + LUT_SIZE;
252  InitCorrectionLUT(p->correction_, p->min_level_dist_);
253
254  return 1;
255}
256
257static void CleanupParams(SmoothParams* const p) {
258  WebPSafeFree(p->mem_);
259}
260
261int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
262                         int strength) {
263  const int radius = 4 * strength / 100;
264  if (strength < 0 || strength > 100) return 0;
265  if (data == NULL || width <= 0 || height <= 0) return 0;  // bad params
266  if (radius > 0) {
267    SmoothParams p;
268    memset(&p, 0, sizeof(p));
269    if (!InitParams(data, width, height, stride, radius, &p)) return 0;
270    if (p.num_levels_ > 2) {
271      for (; p.row_ < p.height_; ++p.row_) {
272        VFilter(&p);  // accumulate average of input
273        // Need to wait few rows in order to prime the filter,
274        // before emitting some output.
275        if (p.row_ >= p.radius_) {
276          HFilter(&p);
277          ApplyFilter(&p);
278        }
279      }
280    }
281    CleanupParams(&p);
282  }
283  return 1;
284}
285