1/*
2 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/common_audio/vad/vad_core.h"
12
13#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
14#include "webrtc/common_audio/vad/vad_filterbank.h"
15#include "webrtc/common_audio/vad/vad_gmm.h"
16#include "webrtc/common_audio/vad/vad_sp.h"
17#include "webrtc/typedefs.h"
18
19// Spectrum Weighting
20static const int16_t kSpectrumWeight[kNumChannels] = { 6, 8, 10, 12, 14, 16 };
21static const int16_t kNoiseUpdateConst = 655; // Q15
22static const int16_t kSpeechUpdateConst = 6554; // Q15
23static const int16_t kBackEta = 154; // Q8
24// Minimum difference between the two models, Q5
25static const int16_t kMinimumDifference[kNumChannels] = {
26    544, 544, 576, 576, 576, 576 };
27// Upper limit of mean value for speech model, Q7
28static const int16_t kMaximumSpeech[kNumChannels] = {
29    11392, 11392, 11520, 11520, 11520, 11520 };
30// Minimum value for mean value
31static const int16_t kMinimumMean[kNumGaussians] = { 640, 768 };
32// Upper limit of mean value for noise model, Q7
33static const int16_t kMaximumNoise[kNumChannels] = {
34    9216, 9088, 8960, 8832, 8704, 8576 };
35// Start values for the Gaussian models, Q7
36// Weights for the two Gaussians for the six channels (noise)
37static const int16_t kNoiseDataWeights[kTableSize] = {
38    34, 62, 72, 66, 53, 25, 94, 66, 56, 62, 75, 103 };
39// Weights for the two Gaussians for the six channels (speech)
40static const int16_t kSpeechDataWeights[kTableSize] = {
41    48, 82, 45, 87, 50, 47, 80, 46, 83, 41, 78, 81 };
42// Means for the two Gaussians for the six channels (noise)
43static const int16_t kNoiseDataMeans[kTableSize] = {
44    6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362 };
45// Means for the two Gaussians for the six channels (speech)
46static const int16_t kSpeechDataMeans[kTableSize] = {
47    8306, 10085, 10078, 11823, 11843, 6309, 9473, 9571, 10879, 7581, 8180, 7483
48};
49// Stds for the two Gaussians for the six channels (noise)
50static const int16_t kNoiseDataStds[kTableSize] = {
51    378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455 };
52// Stds for the two Gaussians for the six channels (speech)
53static const int16_t kSpeechDataStds[kTableSize] = {
54    555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850 };
55
56// Constants used in GmmProbability().
57//
58// Maximum number of counted speech (VAD = 1) frames in a row.
59static const int16_t kMaxSpeechFrames = 6;
60// Minimum standard deviation for both speech and noise.
61static const int16_t kMinStd = 384;
62
63// Constants in WebRtcVad_InitCore().
64// Default aggressiveness mode.
65static const short kDefaultMode = 0;
66static const int kInitCheck = 42;
67
68// Constants used in WebRtcVad_set_mode_core().
69//
70// Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
71//
72// Mode 0, Quality.
73static const int16_t kOverHangMax1Q[3] = { 8, 4, 3 };
74static const int16_t kOverHangMax2Q[3] = { 14, 7, 5 };
75static const int16_t kLocalThresholdQ[3] = { 24, 21, 24 };
76static const int16_t kGlobalThresholdQ[3] = { 57, 48, 57 };
77// Mode 1, Low bitrate.
78static const int16_t kOverHangMax1LBR[3] = { 8, 4, 3 };
79static const int16_t kOverHangMax2LBR[3] = { 14, 7, 5 };
80static const int16_t kLocalThresholdLBR[3] = { 37, 32, 37 };
81static const int16_t kGlobalThresholdLBR[3] = { 100, 80, 100 };
82// Mode 2, Aggressive.
83static const int16_t kOverHangMax1AGG[3] = { 6, 3, 2 };
84static const int16_t kOverHangMax2AGG[3] = { 9, 5, 3 };
85static const int16_t kLocalThresholdAGG[3] = { 82, 78, 82 };
86static const int16_t kGlobalThresholdAGG[3] = { 285, 260, 285 };
87// Mode 3, Very aggressive.
88static const int16_t kOverHangMax1VAG[3] = { 6, 3, 2 };
89static const int16_t kOverHangMax2VAG[3] = { 9, 5, 3 };
90static const int16_t kLocalThresholdVAG[3] = { 94, 94, 94 };
91static const int16_t kGlobalThresholdVAG[3] = { 1100, 1050, 1100 };
92
93// Calculates the weighted average w.r.t. number of Gaussians. The |data| are
94// updated with an |offset| before averaging.
95//
96// - data     [i/o] : Data to average.
97// - offset   [i]   : An offset added to |data|.
98// - weights  [i]   : Weights used for averaging.
99//
100// returns          : The weighted average.
101static int32_t WeightedAverage(int16_t* data, int16_t offset,
102                               const int16_t* weights) {
103  int k;
104  int32_t weighted_average = 0;
105
106  for (k = 0; k < kNumGaussians; k++) {
107    data[k * kNumChannels] += offset;
108    weighted_average += data[k * kNumChannels] * weights[k * kNumChannels];
109  }
110  return weighted_average;
111}
112
113// Calculates the probabilities for both speech and background noise using
114// Gaussian Mixture Models (GMM). A hypothesis-test is performed to decide which
115// type of signal is most probable.
116//
117// - self           [i/o] : Pointer to VAD instance
118// - features       [i]   : Feature vector of length |kNumChannels|
119//                          = log10(energy in frequency band)
120// - total_power    [i]   : Total power in audio frame.
121// - frame_length   [i]   : Number of input samples
122//
123// - returns              : the VAD decision (0 - noise, 1 - speech).
124static int16_t GmmProbability(VadInstT* self, int16_t* features,
125                              int16_t total_power, size_t frame_length) {
126  int channel, k;
127  int16_t feature_minimum;
128  int16_t h0, h1;
129  int16_t log_likelihood_ratio;
130  int16_t vadflag = 0;
131  int16_t shifts_h0, shifts_h1;
132  int16_t tmp_s16, tmp1_s16, tmp2_s16;
133  int16_t diff;
134  int gaussian;
135  int16_t nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
136  int16_t delt, ndelt;
137  int16_t maxspe, maxmu;
138  int16_t deltaN[kTableSize], deltaS[kTableSize];
139  int16_t ngprvec[kTableSize] = { 0 };  // Conditional probability = 0.
140  int16_t sgprvec[kTableSize] = { 0 };  // Conditional probability = 0.
141  int32_t h0_test, h1_test;
142  int32_t tmp1_s32, tmp2_s32;
143  int32_t sum_log_likelihood_ratios = 0;
144  int32_t noise_global_mean, speech_global_mean;
145  int32_t noise_probability[kNumGaussians], speech_probability[kNumGaussians];
146  int16_t overhead1, overhead2, individualTest, totalTest;
147
148  // Set various thresholds based on frame lengths (80, 160 or 240 samples).
149  if (frame_length == 80) {
150    overhead1 = self->over_hang_max_1[0];
151    overhead2 = self->over_hang_max_2[0];
152    individualTest = self->individual[0];
153    totalTest = self->total[0];
154  } else if (frame_length == 160) {
155    overhead1 = self->over_hang_max_1[1];
156    overhead2 = self->over_hang_max_2[1];
157    individualTest = self->individual[1];
158    totalTest = self->total[1];
159  } else {
160    overhead1 = self->over_hang_max_1[2];
161    overhead2 = self->over_hang_max_2[2];
162    individualTest = self->individual[2];
163    totalTest = self->total[2];
164  }
165
166  if (total_power > kMinEnergy) {
167    // The signal power of current frame is large enough for processing. The
168    // processing consists of two parts:
169    // 1) Calculating the likelihood of speech and thereby a VAD decision.
170    // 2) Updating the underlying model, w.r.t., the decision made.
171
172    // The detection scheme is an LRT with hypothesis
173    // H0: Noise
174    // H1: Speech
175    //
176    // We combine a global LRT with local tests, for each frequency sub-band,
177    // here defined as |channel|.
178    for (channel = 0; channel < kNumChannels; channel++) {
179      // For each channel we model the probability with a GMM consisting of
180      // |kNumGaussians|, with different means and standard deviations depending
181      // on H0 or H1.
182      h0_test = 0;
183      h1_test = 0;
184      for (k = 0; k < kNumGaussians; k++) {
185        gaussian = channel + k * kNumChannels;
186        // Probability under H0, that is, probability of frame being noise.
187        // Value given in Q27 = Q7 * Q20.
188        tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
189                                                 self->noise_means[gaussian],
190                                                 self->noise_stds[gaussian],
191                                                 &deltaN[gaussian]);
192        noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
193        h0_test += noise_probability[k];  // Q27
194
195        // Probability under H1, that is, probability of frame being speech.
196        // Value given in Q27 = Q7 * Q20.
197        tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
198                                                 self->speech_means[gaussian],
199                                                 self->speech_stds[gaussian],
200                                                 &deltaS[gaussian]);
201        speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
202        h1_test += speech_probability[k];  // Q27
203      }
204
205      // Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
206      // Approximation:
207      // log2(Pr{X|H1} / Pr{X|H1}) = log2(Pr{X|H1}*2^Q) - log2(Pr{X|H1}*2^Q)
208      //                           = log2(h1_test) - log2(h0_test)
209      //                           = log2(2^(31-shifts_h1)*(1+b1))
210      //                             - log2(2^(31-shifts_h0)*(1+b0))
211      //                           = shifts_h0 - shifts_h1
212      //                             + log2(1+b1) - log2(1+b0)
213      //                          ~= shifts_h0 - shifts_h1
214      //
215      // Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
216      // Further, b0 and b1 are independent and on the average the two terms
217      // cancel.
218      shifts_h0 = WebRtcSpl_NormW32(h0_test);
219      shifts_h1 = WebRtcSpl_NormW32(h1_test);
220      if (h0_test == 0) {
221        shifts_h0 = 31;
222      }
223      if (h1_test == 0) {
224        shifts_h1 = 31;
225      }
226      log_likelihood_ratio = shifts_h0 - shifts_h1;
227
228      // Update |sum_log_likelihood_ratios| with spectrum weighting. This is
229      // used for the global VAD decision.
230      sum_log_likelihood_ratios +=
231          (int32_t) (log_likelihood_ratio * kSpectrumWeight[channel]);
232
233      // Local VAD decision.
234      if ((log_likelihood_ratio << 2) > individualTest) {
235        vadflag = 1;
236      }
237
238      // TODO(bjornv): The conditional probabilities below are applied on the
239      // hard coded number of Gaussians set to two. Find a way to generalize.
240      // Calculate local noise probabilities used later when updating the GMM.
241      h0 = (int16_t) (h0_test >> 12);  // Q15
242      if (h0 > 0) {
243        // High probability of noise. Assign conditional probabilities for each
244        // Gaussian in the GMM.
245        tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2;  // Q29
246        ngprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h0);  // Q14
247        ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
248      } else {
249        // Low noise probability. Assign conditional probability 1 to the first
250        // Gaussian and 0 to the rest (which is already set at initialization).
251        ngprvec[channel] = 16384;
252      }
253
254      // Calculate local speech probabilities used later when updating the GMM.
255      h1 = (int16_t) (h1_test >> 12);  // Q15
256      if (h1 > 0) {
257        // High probability of speech. Assign conditional probabilities for each
258        // Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
259        tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2;  // Q29
260        sgprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h1);  // Q14
261        sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
262      }
263    }
264
265    // Make a global VAD decision.
266    vadflag |= (sum_log_likelihood_ratios >= totalTest);
267
268    // Update the model parameters.
269    maxspe = 12800;
270    for (channel = 0; channel < kNumChannels; channel++) {
271
272      // Get minimum value in past which is used for long term correction in Q4.
273      feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);
274
275      // Compute the "global" mean, that is the sum of the two means weighted.
276      noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
277                                          &kNoiseDataWeights[channel]);
278      tmp1_s16 = (int16_t) (noise_global_mean >> 6);  // Q8
279
280      for (k = 0; k < kNumGaussians; k++) {
281        gaussian = channel + k * kNumChannels;
282
283        nmk = self->noise_means[gaussian];
284        smk = self->speech_means[gaussian];
285        nsk = self->noise_stds[gaussian];
286        ssk = self->speech_stds[gaussian];
287
288        // Update noise mean vector if the frame consists of noise only.
289        nmk2 = nmk;
290        if (!vadflag) {
291          // deltaN = (x-mu)/sigma^2
292          // ngprvec[k] = |noise_probability[k]| /
293          //   (|noise_probability[0]| + |noise_probability[1]|)
294
295          // (Q14 * Q11 >> 11) = Q14.
296          delt = (int16_t)((ngprvec[gaussian] * deltaN[gaussian]) >> 11);
297          // Q7 + (Q14 * Q15 >> 22) = Q7.
298          nmk2 = nmk + (int16_t)((delt * kNoiseUpdateConst) >> 22);
299        }
300
301        // Long term correction of the noise mean.
302        // Q8 - Q8 = Q8.
303        ndelt = (feature_minimum << 4) - tmp1_s16;
304        // Q7 + (Q8 * Q8) >> 9 = Q7.
305        nmk3 = nmk2 + (int16_t)((ndelt * kBackEta) >> 9);
306
307        // Control that the noise mean does not drift to much.
308        tmp_s16 = (int16_t) ((k + 5) << 7);
309        if (nmk3 < tmp_s16) {
310          nmk3 = tmp_s16;
311        }
312        tmp_s16 = (int16_t) ((72 + k - channel) << 7);
313        if (nmk3 > tmp_s16) {
314          nmk3 = tmp_s16;
315        }
316        self->noise_means[gaussian] = nmk3;
317
318        if (vadflag) {
319          // Update speech mean vector:
320          // |deltaS| = (x-mu)/sigma^2
321          // sgprvec[k] = |speech_probability[k]| /
322          //   (|speech_probability[0]| + |speech_probability[1]|)
323
324          // (Q14 * Q11) >> 11 = Q14.
325          delt = (int16_t)((sgprvec[gaussian] * deltaS[gaussian]) >> 11);
326          // Q14 * Q15 >> 21 = Q8.
327          tmp_s16 = (int16_t)((delt * kSpeechUpdateConst) >> 21);
328          // Q7 + (Q8 >> 1) = Q7. With rounding.
329          smk2 = smk + ((tmp_s16 + 1) >> 1);
330
331          // Control that the speech mean does not drift to much.
332          maxmu = maxspe + 640;
333          if (smk2 < kMinimumMean[k]) {
334            smk2 = kMinimumMean[k];
335          }
336          if (smk2 > maxmu) {
337            smk2 = maxmu;
338          }
339          self->speech_means[gaussian] = smk2;  // Q7.
340
341          // (Q7 >> 3) = Q4. With rounding.
342          tmp_s16 = ((smk + 4) >> 3);
343
344          tmp_s16 = features[channel] - tmp_s16;  // Q4
345          // (Q11 * Q4 >> 3) = Q12.
346          tmp1_s32 = (deltaS[gaussian] * tmp_s16) >> 3;
347          tmp2_s32 = tmp1_s32 - 4096;
348          tmp_s16 = sgprvec[gaussian] >> 2;
349          // (Q14 >> 2) * Q12 = Q24.
350          tmp1_s32 = tmp_s16 * tmp2_s32;
351
352          tmp2_s32 = tmp1_s32 >> 4;  // Q20
353
354          // 0.1 * Q20 / Q7 = Q13.
355          if (tmp2_s32 > 0) {
356            tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
357          } else {
358            tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
359            tmp_s16 = -tmp_s16;
360          }
361          // Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
362          // Note that division by 4 equals shift by 2, hence,
363          // (Q13 >> 8) = (Q13 >> 6) / 4 = Q7.
364          tmp_s16 += 128;  // Rounding.
365          ssk += (tmp_s16 >> 8);
366          if (ssk < kMinStd) {
367            ssk = kMinStd;
368          }
369          self->speech_stds[gaussian] = ssk;
370        } else {
371          // Update GMM variance vectors.
372          // deltaN * (features[channel] - nmk) - 1
373          // Q4 - (Q7 >> 3) = Q4.
374          tmp_s16 = features[channel] - (nmk >> 3);
375          // (Q11 * Q4 >> 3) = Q12.
376          tmp1_s32 = (deltaN[gaussian] * tmp_s16) >> 3;
377          tmp1_s32 -= 4096;
378
379          // (Q14 >> 2) * Q12 = Q24.
380          tmp_s16 = (ngprvec[gaussian] + 2) >> 2;
381          tmp2_s32 = tmp_s16 * tmp1_s32;
382          // Q20  * approx 0.001 (2^-10=0.0009766), hence,
383          // (Q24 >> 14) = (Q24 >> 4) / 2^10 = Q20.
384          tmp1_s32 = tmp2_s32 >> 14;
385
386          // Q20 / Q7 = Q13.
387          if (tmp1_s32 > 0) {
388            tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, nsk);
389          } else {
390            tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
391            tmp_s16 = -tmp_s16;
392          }
393          tmp_s16 += 32;  // Rounding
394          nsk += tmp_s16 >> 6;  // Q13 >> 6 = Q7.
395          if (nsk < kMinStd) {
396            nsk = kMinStd;
397          }
398          self->noise_stds[gaussian] = nsk;
399        }
400      }
401
402      // Separate models if they are too close.
403      // |noise_global_mean| in Q14 (= Q7 * Q7).
404      noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
405                                          &kNoiseDataWeights[channel]);
406
407      // |speech_global_mean| in Q14 (= Q7 * Q7).
408      speech_global_mean = WeightedAverage(&self->speech_means[channel], 0,
409                                           &kSpeechDataWeights[channel]);
410
411      // |diff| = "global" speech mean - "global" noise mean.
412      // (Q14 >> 9) - (Q14 >> 9) = Q5.
413      diff = (int16_t) (speech_global_mean >> 9) -
414          (int16_t) (noise_global_mean >> 9);
415      if (diff < kMinimumDifference[channel]) {
416        tmp_s16 = kMinimumDifference[channel] - diff;
417
418        // |tmp1_s16| = ~0.8 * (kMinimumDifference - diff) in Q7.
419        // |tmp2_s16| = ~0.2 * (kMinimumDifference - diff) in Q7.
420        tmp1_s16 = (int16_t)((13 * tmp_s16) >> 2);
421        tmp2_s16 = (int16_t)((3 * tmp_s16) >> 2);
422
423        // Move Gaussian means for speech model by |tmp1_s16| and update
424        // |speech_global_mean|. Note that |self->speech_means[channel]| is
425        // changed after the call.
426        speech_global_mean = WeightedAverage(&self->speech_means[channel],
427                                             tmp1_s16,
428                                             &kSpeechDataWeights[channel]);
429
430        // Move Gaussian means for noise model by -|tmp2_s16| and update
431        // |noise_global_mean|. Note that |self->noise_means[channel]| is
432        // changed after the call.
433        noise_global_mean = WeightedAverage(&self->noise_means[channel],
434                                            -tmp2_s16,
435                                            &kNoiseDataWeights[channel]);
436      }
437
438      // Control that the speech & noise means do not drift to much.
439      maxspe = kMaximumSpeech[channel];
440      tmp2_s16 = (int16_t) (speech_global_mean >> 7);
441      if (tmp2_s16 > maxspe) {
442        // Upper limit of speech model.
443        tmp2_s16 -= maxspe;
444
445        for (k = 0; k < kNumGaussians; k++) {
446          self->speech_means[channel + k * kNumChannels] -= tmp2_s16;
447        }
448      }
449
450      tmp2_s16 = (int16_t) (noise_global_mean >> 7);
451      if (tmp2_s16 > kMaximumNoise[channel]) {
452        tmp2_s16 -= kMaximumNoise[channel];
453
454        for (k = 0; k < kNumGaussians; k++) {
455          self->noise_means[channel + k * kNumChannels] -= tmp2_s16;
456        }
457      }
458    }
459    self->frame_counter++;
460  }
461
462  // Smooth with respect to transition hysteresis.
463  if (!vadflag) {
464    if (self->over_hang > 0) {
465      vadflag = 2 + self->over_hang;
466      self->over_hang--;
467    }
468    self->num_of_speech = 0;
469  } else {
470    self->num_of_speech++;
471    if (self->num_of_speech > kMaxSpeechFrames) {
472      self->num_of_speech = kMaxSpeechFrames;
473      self->over_hang = overhead2;
474    } else {
475      self->over_hang = overhead1;
476    }
477  }
478  return vadflag;
479}
480
481// Initialize the VAD. Set aggressiveness mode to default value.
482int WebRtcVad_InitCore(VadInstT* self) {
483  int i;
484
485  if (self == NULL) {
486    return -1;
487  }
488
489  // Initialization of general struct variables.
490  self->vad = 1;  // Speech active (=1).
491  self->frame_counter = 0;
492  self->over_hang = 0;
493  self->num_of_speech = 0;
494
495  // Initialization of downsampling filter state.
496  memset(self->downsampling_filter_states, 0,
497         sizeof(self->downsampling_filter_states));
498
499  // Initialization of 48 to 8 kHz downsampling.
500  WebRtcSpl_ResetResample48khzTo8khz(&self->state_48_to_8);
501
502  // Read initial PDF parameters.
503  for (i = 0; i < kTableSize; i++) {
504    self->noise_means[i] = kNoiseDataMeans[i];
505    self->speech_means[i] = kSpeechDataMeans[i];
506    self->noise_stds[i] = kNoiseDataStds[i];
507    self->speech_stds[i] = kSpeechDataStds[i];
508  }
509
510  // Initialize Index and Minimum value vectors.
511  for (i = 0; i < 16 * kNumChannels; i++) {
512    self->low_value_vector[i] = 10000;
513    self->index_vector[i] = 0;
514  }
515
516  // Initialize splitting filter states.
517  memset(self->upper_state, 0, sizeof(self->upper_state));
518  memset(self->lower_state, 0, sizeof(self->lower_state));
519
520  // Initialize high pass filter states.
521  memset(self->hp_filter_state, 0, sizeof(self->hp_filter_state));
522
523  // Initialize mean value memory, for WebRtcVad_FindMinimum().
524  for (i = 0; i < kNumChannels; i++) {
525    self->mean_value[i] = 1600;
526  }
527
528  // Set aggressiveness mode to default (=|kDefaultMode|).
529  if (WebRtcVad_set_mode_core(self, kDefaultMode) != 0) {
530    return -1;
531  }
532
533  self->init_flag = kInitCheck;
534
535  return 0;
536}
537
538// Set aggressiveness mode
539int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
540  int return_value = 0;
541
542  switch (mode) {
543    case 0:
544      // Quality mode.
545      memcpy(self->over_hang_max_1, kOverHangMax1Q,
546             sizeof(self->over_hang_max_1));
547      memcpy(self->over_hang_max_2, kOverHangMax2Q,
548             sizeof(self->over_hang_max_2));
549      memcpy(self->individual, kLocalThresholdQ,
550             sizeof(self->individual));
551      memcpy(self->total, kGlobalThresholdQ,
552             sizeof(self->total));
553      break;
554    case 1:
555      // Low bitrate mode.
556      memcpy(self->over_hang_max_1, kOverHangMax1LBR,
557             sizeof(self->over_hang_max_1));
558      memcpy(self->over_hang_max_2, kOverHangMax2LBR,
559             sizeof(self->over_hang_max_2));
560      memcpy(self->individual, kLocalThresholdLBR,
561             sizeof(self->individual));
562      memcpy(self->total, kGlobalThresholdLBR,
563             sizeof(self->total));
564      break;
565    case 2:
566      // Aggressive mode.
567      memcpy(self->over_hang_max_1, kOverHangMax1AGG,
568             sizeof(self->over_hang_max_1));
569      memcpy(self->over_hang_max_2, kOverHangMax2AGG,
570             sizeof(self->over_hang_max_2));
571      memcpy(self->individual, kLocalThresholdAGG,
572             sizeof(self->individual));
573      memcpy(self->total, kGlobalThresholdAGG,
574             sizeof(self->total));
575      break;
576    case 3:
577      // Very aggressive mode.
578      memcpy(self->over_hang_max_1, kOverHangMax1VAG,
579             sizeof(self->over_hang_max_1));
580      memcpy(self->over_hang_max_2, kOverHangMax2VAG,
581             sizeof(self->over_hang_max_2));
582      memcpy(self->individual, kLocalThresholdVAG,
583             sizeof(self->individual));
584      memcpy(self->total, kGlobalThresholdVAG,
585             sizeof(self->total));
586      break;
587    default:
588      return_value = -1;
589      break;
590  }
591
592  return return_value;
593}
594
595// Calculate VAD decision by first extracting feature values and then calculate
596// probability for both speech and background noise.
597
598int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
599                           size_t frame_length) {
600  int vad;
601  size_t i;
602  int16_t speech_nb[240];  // 30 ms in 8 kHz.
603  // |tmp_mem| is a temporary memory used by resample function, length is
604  // frame length in 10 ms (480 samples) + 256 extra.
605  int32_t tmp_mem[480 + 256] = { 0 };
606  const size_t kFrameLen10ms48khz = 480;
607  const size_t kFrameLen10ms8khz = 80;
608  size_t num_10ms_frames = frame_length / kFrameLen10ms48khz;
609
610  for (i = 0; i < num_10ms_frames; i++) {
611    WebRtcSpl_Resample48khzTo8khz(speech_frame,
612                                  &speech_nb[i * kFrameLen10ms8khz],
613                                  &inst->state_48_to_8,
614                                  tmp_mem);
615  }
616
617  // Do VAD on an 8 kHz signal
618  vad = WebRtcVad_CalcVad8khz(inst, speech_nb, frame_length / 6);
619
620  return vad;
621}
622
623int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
624                           size_t frame_length)
625{
626    size_t len;
627    int vad;
628    int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
629    int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
630
631
632    // Downsample signal 32->16->8 before doing VAD
633    WebRtcVad_Downsampling(speech_frame, speechWB, &(inst->downsampling_filter_states[2]),
634                           frame_length);
635    len = frame_length / 2;
636
637    WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states, len);
638    len /= 2;
639
640    // Do VAD on an 8 kHz signal
641    vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
642
643    return vad;
644}
645
646int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
647                           size_t frame_length)
648{
649    size_t len;
650    int vad;
651    int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
652
653    // Wideband: Downsample signal before doing VAD
654    WebRtcVad_Downsampling(speech_frame, speechNB, inst->downsampling_filter_states,
655                           frame_length);
656
657    len = frame_length / 2;
658    vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
659
660    return vad;
661}
662
663int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
664                          size_t frame_length)
665{
666    int16_t feature_vector[kNumChannels], total_power;
667
668    // Get power in the bands
669    total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
670                                              feature_vector);
671
672    // Make a VAD
673    inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
674
675    return inst->vad;
676}
677