1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.annotation.SystemApi;
20import android.annotation.SystemService;
21import android.content.Context;
22import android.os.Build;
23import android.os.Handler;
24import android.os.MemoryFile;
25import android.util.Log;
26import android.util.SparseArray;
27
28import java.util.ArrayList;
29import java.util.Collections;
30import java.util.List;
31
32/**
33 * <p>
34 * SensorManager lets you access the device's {@link android.hardware.Sensor
35 * sensors}.
36 * </p>
37 * <p>
38 * Always make sure to disable sensors you don't need, especially when your
39 * activity is paused. Failing to do so can drain the battery in just a few
40 * hours. Note that the system will <i>not</i> disable sensors automatically when
41 * the screen turns off.
42 * </p>
43 * <p class="note">
44 * Note: Don't use this mechanism with a Trigger Sensor, have a look
45 * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION}
46 * is an example of a trigger sensor.
47 * </p>
48 * <pre class="prettyprint">
49 * public class SensorActivity extends Activity implements SensorEventListener {
50 *     private final SensorManager mSensorManager;
51 *     private final Sensor mAccelerometer;
52 *
53 *     public SensorActivity() {
54 *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
55 *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
56 *     }
57 *
58 *     protected void onResume() {
59 *         super.onResume();
60 *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
61 *     }
62 *
63 *     protected void onPause() {
64 *         super.onPause();
65 *         mSensorManager.unregisterListener(this);
66 *     }
67 *
68 *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
69 *     }
70 *
71 *     public void onSensorChanged(SensorEvent event) {
72 *     }
73 * }
74 * </pre>
75 *
76 * @see SensorEventListener
77 * @see SensorEvent
78 * @see Sensor
79 *
80 */
81@SystemService(Context.SENSOR_SERVICE)
82public abstract class SensorManager {
83    /** @hide */
84    protected static final String TAG = "SensorManager";
85
86    private static final float[] mTempMatrix = new float[16];
87
88    // Cached lists of sensors by type.  Guarded by mSensorListByType.
89    private final SparseArray<List<Sensor>> mSensorListByType =
90            new SparseArray<List<Sensor>>();
91
92    // Legacy sensor manager implementation.  Guarded by mSensorListByType during initialization.
93    private LegacySensorManager mLegacySensorManager;
94
95    /* NOTE: sensor IDs must be a power of 2 */
96
97    /**
98     * A constant describing an orientation sensor. See
99     * {@link android.hardware.SensorListener SensorListener} for more details.
100     *
101     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
102     */
103    @Deprecated
104    public static final int SENSOR_ORIENTATION = 1 << 0;
105
106    /**
107     * A constant describing an accelerometer. See
108     * {@link android.hardware.SensorListener SensorListener} for more details.
109     *
110     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
111     */
112    @Deprecated
113    public static final int SENSOR_ACCELEROMETER = 1 << 1;
114
115    /**
116     * A constant describing a temperature sensor See
117     * {@link android.hardware.SensorListener SensorListener} for more details.
118     *
119     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
120     */
121    @Deprecated
122    public static final int SENSOR_TEMPERATURE = 1 << 2;
123
124    /**
125     * A constant describing a magnetic sensor See
126     * {@link android.hardware.SensorListener SensorListener} for more details.
127     *
128     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
129     */
130    @Deprecated
131    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
132
133    /**
134     * A constant describing an ambient light sensor See
135     * {@link android.hardware.SensorListener SensorListener} for more details.
136     *
137     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
138     */
139    @Deprecated
140    public static final int SENSOR_LIGHT = 1 << 4;
141
142    /**
143     * A constant describing a proximity sensor See
144     * {@link android.hardware.SensorListener SensorListener} for more details.
145     *
146     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
147     */
148    @Deprecated
149    public static final int SENSOR_PROXIMITY = 1 << 5;
150
151    /**
152     * A constant describing a Tricorder See
153     * {@link android.hardware.SensorListener SensorListener} for more details.
154     *
155     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
156     */
157    @Deprecated
158    public static final int SENSOR_TRICORDER = 1 << 6;
159
160    /**
161     * A constant describing an orientation sensor. See
162     * {@link android.hardware.SensorListener SensorListener} for more details.
163     *
164     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
165     */
166    @Deprecated
167    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
168
169    /**
170     * A constant that includes all sensors
171     *
172     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
173     */
174    @Deprecated
175    public static final int SENSOR_ALL = 0x7F;
176
177    /**
178     * Smallest sensor ID
179     *
180     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
181     */
182    @Deprecated
183    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
184
185    /**
186     * Largest sensor ID
187     *
188     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
189     */
190    @Deprecated
191    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
192
193
194    /**
195     * Index of the X value in the array returned by
196     * {@link android.hardware.SensorListener#onSensorChanged}
197     *
198     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
199     */
200    @Deprecated
201    public static final int DATA_X = 0;
202
203    /**
204     * Index of the Y value in the array returned by
205     * {@link android.hardware.SensorListener#onSensorChanged}
206     *
207     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
208     */
209    @Deprecated
210    public static final int DATA_Y = 1;
211
212    /**
213     * Index of the Z value in the array returned by
214     * {@link android.hardware.SensorListener#onSensorChanged}
215     *
216     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
217     */
218    @Deprecated
219    public static final int DATA_Z = 2;
220
221    /**
222     * Offset to the untransformed values in the array returned by
223     * {@link android.hardware.SensorListener#onSensorChanged}
224     *
225     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
226     */
227    @Deprecated
228    public static final int RAW_DATA_INDEX = 3;
229
230    /**
231     * Index of the untransformed X value in the array returned by
232     * {@link android.hardware.SensorListener#onSensorChanged}
233     *
234     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
235     */
236    @Deprecated
237    public static final int RAW_DATA_X = 3;
238
239    /**
240     * Index of the untransformed Y value in the array returned by
241     * {@link android.hardware.SensorListener#onSensorChanged}
242     *
243     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
244     */
245    @Deprecated
246    public static final int RAW_DATA_Y = 4;
247
248    /**
249     * Index of the untransformed Z value in the array returned by
250     * {@link android.hardware.SensorListener#onSensorChanged}
251     *
252     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
253     */
254    @Deprecated
255    public static final int RAW_DATA_Z = 5;
256
257    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
258    public static final float STANDARD_GRAVITY = 9.80665f;
259
260    /** Sun's gravity in SI units (m/s^2) */
261    public static final float GRAVITY_SUN             = 275.0f;
262    /** Mercury's gravity in SI units (m/s^2) */
263    public static final float GRAVITY_MERCURY         = 3.70f;
264    /** Venus' gravity in SI units (m/s^2) */
265    public static final float GRAVITY_VENUS           = 8.87f;
266    /** Earth's gravity in SI units (m/s^2) */
267    public static final float GRAVITY_EARTH           = 9.80665f;
268    /** The Moon's gravity in SI units (m/s^2) */
269    public static final float GRAVITY_MOON            = 1.6f;
270    /** Mars' gravity in SI units (m/s^2) */
271    public static final float GRAVITY_MARS            = 3.71f;
272    /** Jupiter's gravity in SI units (m/s^2) */
273    public static final float GRAVITY_JUPITER         = 23.12f;
274    /** Saturn's gravity in SI units (m/s^2) */
275    public static final float GRAVITY_SATURN          = 8.96f;
276    /** Uranus' gravity in SI units (m/s^2) */
277    public static final float GRAVITY_URANUS          = 8.69f;
278    /** Neptune's gravity in SI units (m/s^2) */
279    public static final float GRAVITY_NEPTUNE         = 11.0f;
280    /** Pluto's gravity in SI units (m/s^2) */
281    public static final float GRAVITY_PLUTO           = 0.6f;
282    /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
283    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
284    /** Gravity on the island */
285    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
286
287
288    /** Maximum magnetic field on Earth's surface */
289    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
290    /** Minimum magnetic field on Earth's surface */
291    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
292
293
294    /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
295    public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
296
297
298    /** Maximum luminance of sunlight in lux */
299    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
300    /** luminance of sunlight in lux */
301    public static final float LIGHT_SUNLIGHT     = 110000.0f;
302    /** luminance in shade in lux */
303    public static final float LIGHT_SHADE        = 20000.0f;
304    /** luminance under an overcast sky in lux */
305    public static final float LIGHT_OVERCAST     = 10000.0f;
306    /** luminance at sunrise in lux */
307    public static final float LIGHT_SUNRISE      = 400.0f;
308    /** luminance under a cloudy sky in lux */
309    public static final float LIGHT_CLOUDY       = 100.0f;
310    /** luminance at night with full moon in lux */
311    public static final float LIGHT_FULLMOON     = 0.25f;
312    /** luminance at night with no moon in lux*/
313    public static final float LIGHT_NO_MOON      = 0.001f;
314
315
316    /** get sensor data as fast as possible */
317    public static final int SENSOR_DELAY_FASTEST = 0;
318    /** rate suitable for games */
319    public static final int SENSOR_DELAY_GAME = 1;
320    /** rate suitable for the user interface  */
321    public static final int SENSOR_DELAY_UI = 2;
322    /** rate (default) suitable for screen orientation changes */
323    public static final int SENSOR_DELAY_NORMAL = 3;
324
325
326    /**
327      * The values returned by this sensor cannot be trusted because the sensor
328      * had no contact with what it was measuring (for example, the heart rate
329      * monitor is not in contact with the user).
330      */
331    public static final int SENSOR_STATUS_NO_CONTACT = -1;
332
333    /**
334     * The values returned by this sensor cannot be trusted, calibration is
335     * needed or the environment doesn't allow readings
336     */
337    public static final int SENSOR_STATUS_UNRELIABLE = 0;
338
339    /**
340     * This sensor is reporting data with low accuracy, calibration with the
341     * environment is needed
342     */
343    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
344
345    /**
346     * This sensor is reporting data with an average level of accuracy,
347     * calibration with the environment may improve the readings
348     */
349    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
350
351    /** This sensor is reporting data with maximum accuracy */
352    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
353
354    /** see {@link #remapCoordinateSystem} */
355    public static final int AXIS_X = 1;
356    /** see {@link #remapCoordinateSystem} */
357    public static final int AXIS_Y = 2;
358    /** see {@link #remapCoordinateSystem} */
359    public static final int AXIS_Z = 3;
360    /** see {@link #remapCoordinateSystem} */
361    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
362    /** see {@link #remapCoordinateSystem} */
363    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
364    /** see {@link #remapCoordinateSystem} */
365    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
366
367
368    /**
369     * {@hide}
370     */
371    public SensorManager() {
372    }
373
374    /**
375     * Gets the full list of sensors that are available.
376     * @hide
377     */
378    protected abstract List<Sensor> getFullSensorList();
379
380    /**
381     * Gets the full list of dynamic sensors that are available.
382     * @hide
383     */
384    protected abstract List<Sensor> getFullDynamicSensorList();
385
386    /**
387     * @return available sensors.
388     * @deprecated This method is deprecated, use
389     *             {@link SensorManager#getSensorList(int)} instead
390     */
391    @Deprecated
392    public int getSensors() {
393        return getLegacySensorManager().getSensors();
394    }
395
396    /**
397     * Use this method to get the list of available sensors of a certain type.
398     * Make multiple calls to get sensors of different types or use
399     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
400     * sensors.
401     *
402     * <p class="note">
403     * NOTE: Both wake-up and non wake-up sensors matching the given type are
404     * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
405     * of the returned {@link Sensor}.
406     * </p>
407     *
408     * @param type
409     *        of sensors requested
410     *
411     * @return a list of sensors matching the asked type.
412     *
413     * @see #getDefaultSensor(int)
414     * @see Sensor
415     */
416    public List<Sensor> getSensorList(int type) {
417        // cache the returned lists the first time
418        List<Sensor> list;
419        final List<Sensor> fullList = getFullSensorList();
420        synchronized (mSensorListByType) {
421            list = mSensorListByType.get(type);
422            if (list == null) {
423                if (type == Sensor.TYPE_ALL) {
424                    list = fullList;
425                } else {
426                    list = new ArrayList<Sensor>();
427                    for (Sensor i : fullList) {
428                        if (i.getType() == type)
429                            list.add(i);
430                    }
431                }
432                list = Collections.unmodifiableList(list);
433                mSensorListByType.append(type, list);
434            }
435        }
436        return list;
437    }
438
439    /**
440     * Use this method to get a list of available dynamic sensors of a certain type.
441     * Make multiple calls to get sensors of different types or use
442     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all dynamic sensors.
443     *
444     * <p class="note">
445     * NOTE: Both wake-up and non wake-up sensors matching the given type are
446     * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
447     * of the returned {@link Sensor}.
448     * </p>
449     *
450     * @param type of sensors requested
451     *
452     * @return a list of dynamic sensors matching the requested type.
453     *
454     * @see Sensor
455     */
456    public List<Sensor> getDynamicSensorList(int type) {
457        // cache the returned lists the first time
458        final List<Sensor> fullList = getFullDynamicSensorList();
459        if (type == Sensor.TYPE_ALL) {
460            return Collections.unmodifiableList(fullList);
461        } else {
462            List<Sensor> list = new ArrayList();
463            for (Sensor i : fullList) {
464                if (i.getType() == type)
465                    list.add(i);
466            }
467            return Collections.unmodifiableList(list);
468        }
469    }
470
471    /**
472     * Use this method to get the default sensor for a given type. Note that the
473     * returned sensor could be a composite sensor, and its data could be
474     * averaged or filtered. If you need to access the raw sensors use
475     * {@link SensorManager#getSensorList(int) getSensorList}.
476     *
477     * @param type
478     *         of sensors requested
479     *
480     * @return the default sensor matching the requested type if one exists and the application
481     *         has the necessary permissions, or null otherwise.
482     *
483     * @see #getSensorList(int)
484     * @see Sensor
485     */
486    public Sensor getDefaultSensor(int type) {
487        // TODO: need to be smarter, for now, just return the 1st sensor
488        List<Sensor> l = getSensorList(type);
489        boolean wakeUpSensor = false;
490        // For the following sensor types, return a wake-up sensor. These types are by default
491        // defined as wake-up sensors. For the rest of the SDK defined sensor types return a
492        // non_wake-up version.
493        if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION ||
494                type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE ||
495                type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE ||
496                type == Sensor.TYPE_WRIST_TILT_GESTURE || type == Sensor.TYPE_DYNAMIC_SENSOR_META) {
497            wakeUpSensor = true;
498        }
499
500        for (Sensor sensor : l) {
501            if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor;
502        }
503        return null;
504    }
505
506    /**
507     * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this
508     * type exist, any one of them may be returned.
509     * <p>
510     * For example,
511     * <ul>
512     *     <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up accelerometer
513     *     sensor if it exists. </li>
514     *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up proximity
515     *     sensor if it exists. </li>
516     *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity sensor
517     *     which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li>
518     * </ul>
519     * </p>
520     * <p class="note">
521     * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION}
522     * are declared as wake-up sensors by default.
523     * </p>
524     * @param type
525     *        type of sensor requested
526     * @param wakeUp
527     *        flag to indicate whether the Sensor is a wake-up or non wake-up sensor.
528     * @return the default sensor matching the requested type and wakeUp properties if one exists
529     *         and the application has the necessary permissions, or null otherwise.
530     * @see Sensor#isWakeUpSensor()
531     */
532    public Sensor getDefaultSensor(int type, boolean wakeUp) {
533        List<Sensor> l = getSensorList(type);
534        for (Sensor sensor : l) {
535            if (sensor.isWakeUpSensor() == wakeUp)
536                return sensor;
537        }
538        return null;
539    }
540
541    /**
542     * Registers a listener for given sensors.
543     *
544     * @deprecated This method is deprecated, use
545     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
546     *             instead.
547     *
548     * @param listener
549     *        sensor listener object
550     *
551     * @param sensors
552     *        a bit masks of the sensors to register to
553     *
554     * @return <code>true</code> if the sensor is supported and successfully
555     *         enabled
556     */
557    @Deprecated
558    public boolean registerListener(SensorListener listener, int sensors) {
559        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
560    }
561
562    /**
563     * Registers a SensorListener for given sensors.
564     *
565     * @deprecated This method is deprecated, use
566     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
567     *             instead.
568     *
569     * @param listener
570     *        sensor listener object
571     *
572     * @param sensors
573     *        a bit masks of the sensors to register to
574     *
575     * @param rate
576     *        rate of events. This is only a hint to the system. events may be
577     *        received faster or slower than the specified rate. Usually events
578     *        are received faster. The value must be one of
579     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
580     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
581     *
582     * @return <code>true</code> if the sensor is supported and successfully
583     *         enabled
584     */
585    @Deprecated
586    public boolean registerListener(SensorListener listener, int sensors, int rate) {
587        return getLegacySensorManager().registerListener(listener, sensors, rate);
588    }
589
590    /**
591     * Unregisters a listener for all sensors.
592     *
593     * @deprecated This method is deprecated, use
594     *             {@link SensorManager#unregisterListener(SensorEventListener)}
595     *             instead.
596     *
597     * @param listener
598     *        a SensorListener object
599     */
600    @Deprecated
601    public void unregisterListener(SensorListener listener) {
602        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
603    }
604
605    /**
606     * Unregisters a listener for the sensors with which it is registered.
607     *
608     * @deprecated This method is deprecated, use
609     *             {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
610     *             instead.
611     *
612     * @param listener
613     *        a SensorListener object
614     *
615     * @param sensors
616     *        a bit masks of the sensors to unregister from
617     */
618    @Deprecated
619    public void unregisterListener(SensorListener listener, int sensors) {
620        getLegacySensorManager().unregisterListener(listener, sensors);
621    }
622
623    /**
624     * Unregisters a listener for the sensors with which it is registered.
625     *
626     * <p class="note"></p>
627     * Note: Don't use this method with a one shot trigger sensor such as
628     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
629     * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
630     * </p>
631     *
632     * @param listener
633     *        a SensorEventListener object
634     *
635     * @param sensor
636     *        the sensor to unregister from
637     *
638     * @see #unregisterListener(SensorEventListener)
639     * @see #registerListener(SensorEventListener, Sensor, int)
640     */
641    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
642        if (listener == null || sensor == null) {
643            return;
644        }
645
646        unregisterListenerImpl(listener, sensor);
647    }
648
649    /**
650     * Unregisters a listener for all sensors.
651     *
652     * @param listener
653     *        a SensorListener object
654     *
655     * @see #unregisterListener(SensorEventListener, Sensor)
656     * @see #registerListener(SensorEventListener, Sensor, int)
657     *
658     */
659    public void unregisterListener(SensorEventListener listener) {
660        if (listener == null) {
661            return;
662        }
663
664        unregisterListenerImpl(listener, null);
665    }
666
667    /** @hide */
668    protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
669
670    /**
671     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
672     * sensor at the given sampling frequency.
673     * <p>
674     * The events will be delivered to the provided {@code SensorEventListener} as soon as they are
675     * available. To reduce the power consumption, applications can use
676     * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
677     * positive non-zero maximum reporting latency.
678     * </p>
679     * <p>
680     * In the case of non-wake-up sensors, the events are only delivered while the Application
681     * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details.
682     * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the
683     * application registering to the sensor must hold a partial wake-lock to keep the AP awake,
684     * otherwise some events might be lost while the AP is asleep. Note that although events might
685     * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly
686     * deactivated by the application. Applications must unregister their {@code
687     * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power
688     * while the device is inactive.  See {@link #registerListener(SensorEventListener, Sensor, int,
689     * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events
690     * might be lost.
691     * </p>
692     * <p>
693     * In the case of wake-up sensors, each event generated by the sensor will cause the AP to
694     * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up
695     * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check
696     * whether a sensor is a wake-up sensor. See
697     * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to
698     * reduce the power impact of registering to wake-up sensors.
699     * </p>
700     * <p class="note">
701     * Note: Don't use this method with one-shot trigger sensors such as
702     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
703     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use
704     * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor.
705     * </p>
706     *
707     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
708     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
709     * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
710     *            delivered at. This is only a hint to the system. Events may be received faster or
711     *            slower than the specified rate. Usually events are received faster. The value must
712     *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
713     *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay
714     *            between events in microseconds. Specifying the delay in microseconds only works
715     *            from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of
716     *            the {@code SENSOR_DELAY_*} constants.
717     * @return <code>true</code> if the sensor is supported and successfully enabled.
718     * @see #registerListener(SensorEventListener, Sensor, int, Handler)
719     * @see #unregisterListener(SensorEventListener)
720     * @see #unregisterListener(SensorEventListener, Sensor)
721     */
722    public boolean registerListener(SensorEventListener listener, Sensor sensor,
723            int samplingPeriodUs) {
724        return registerListener(listener, sensor, samplingPeriodUs, null);
725    }
726
727    /**
728     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
729     * sensor at the given sampling frequency and the given maximum reporting latency.
730     * <p>
731     * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but
732     * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The
733     * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once
734     * one of the events in the FIFO needs to be reported, all of the events in the FIFO are
735     * reported sequentially. This means that some events will be reported before the maximum
736     * reporting latency has elapsed.
737     * </p><p>
738     * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to
739     * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be
740     * delivered as soon as possible.
741     * </p><p>
742     * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call
743     * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}.
744     * </p><p>
745     * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of
746     * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the
747     * AP can switch to a lower power state while the sensor is capturing the data. This is
748     * especially important when registering to wake-up sensors, for which each interrupt causes the
749     * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more
750     * information on wake-up sensors.
751     * </p>
752     * <p class="note">
753     * </p>
754     * Note: Don't use this method with one-shot trigger sensors such as
755     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
756     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
757     *
758     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
759     *            that will receive the sensor events. If the application is interested in receiving
760     *            flush complete notifications, it should register with
761     *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
762     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
763     * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
764     *            This is only a hint to the system. Events may be received faster or slower than
765     *            the specified rate. Usually events are received faster. Can be one of
766     *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
767     *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
768     *            microseconds.
769     * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
770     *            being reported to the application. A large value allows reducing the power
771     *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
772     *            events are delivered as soon as they are available, which is equivalent to calling
773     *            {@link #registerListener(SensorEventListener, Sensor, int)}.
774     * @return <code>true</code> if the sensor is supported and successfully enabled.
775     * @see #registerListener(SensorEventListener, Sensor, int)
776     * @see #unregisterListener(SensorEventListener)
777     * @see #flush(SensorEventListener)
778     */
779    public boolean registerListener(SensorEventListener listener, Sensor sensor,
780            int samplingPeriodUs, int maxReportLatencyUs) {
781        int delay = getDelay(samplingPeriodUs);
782        return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0);
783    }
784
785    /**
786     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
787     * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
788     * power consumption, applications can use
789     * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
790     * positive non-zero maximum reporting latency.
791     * <p class="note">
792     * </p>
793     * Note: Don't use this method with a one shot trigger sensor such as
794     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
795     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
796     *
797     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
798     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
799     * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
800     *            delivered at. This is only a hint to the system. Events may be received faster or
801     *            slower than the specified rate. Usually events are received faster. The value must
802     *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
803     *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired
804     *            delay between events in microseconds. Specifying the delay in microseconds only
805     *            works from Android 2.3 (API level 9) onwards. For earlier releases, you must use
806     *            one of the {@code SENSOR_DELAY_*} constants.
807     * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
808     *            sensor events} will be delivered to.
809     * @return <code>true</code> if the sensor is supported and successfully enabled.
810     * @see #registerListener(SensorEventListener, Sensor, int)
811     * @see #unregisterListener(SensorEventListener)
812     * @see #unregisterListener(SensorEventListener, Sensor)
813     */
814    public boolean registerListener(SensorEventListener listener, Sensor sensor,
815            int samplingPeriodUs, Handler handler) {
816        int delay = getDelay(samplingPeriodUs);
817        return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
818    }
819
820    /**
821     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
822     * sensor at the given sampling frequency and the given maximum reporting latency.
823     *
824     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
825     *            that will receive the sensor events. If the application is interested in receiving
826     *            flush complete notifications, it should register with
827     *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
828     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
829     * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
830     *            This is only a hint to the system. Events may be received faster or slower than
831     *            the specified rate. Usually events are received faster. Can be one of
832     *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
833     *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
834     *            microseconds.
835     * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
836     *            being reported to the application. A large value allows reducing the power
837     *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
838     *            events are delivered as soon as they are available, which is equivalent to calling
839     *            {@link #registerListener(SensorEventListener, Sensor, int)}.
840     * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
841     *            sensor events} will be delivered to.
842     * @return <code>true</code> if the sensor is supported and successfully enabled.
843     * @see #registerListener(SensorEventListener, Sensor, int, int)
844     */
845    public boolean registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs,
846            int maxReportLatencyUs, Handler handler) {
847        int delayUs = getDelay(samplingPeriodUs);
848        return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0);
849    }
850
851    /** @hide */
852    protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
853            int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags);
854
855
856    /**
857     * Flushes the FIFO of all the sensors registered for this listener. If there are events
858     * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has
859     * expired. Events are returned in the usual way through the SensorEventListener.
860     * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and
861     * returns immediately.
862     * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
863     * after all the events in the batch at the time of calling this method have been delivered
864     * successfully. If the hardware doesn't support flush, it still returns true and a trivial
865     * flush complete event is sent after the current event for all the clients registered for this
866     * sensor.
867     *
868     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
869     *        which was previously used in a registerListener call.
870     * @return <code>true</code> if the flush is initiated successfully on all the sensors
871     *         registered for this listener, false if no sensor is previously registered for this
872     *         listener or flush on one of the sensors fails.
873     * @see #registerListener(SensorEventListener, Sensor, int, int)
874     * @throws IllegalArgumentException when listener is null.
875     */
876    public boolean flush(SensorEventListener listener) {
877        return flushImpl(listener);
878    }
879
880    /** @hide */
881    protected abstract boolean flushImpl(SensorEventListener listener);
882
883
884    /**
885     * Create a sensor direct channel backed by shared memory wrapped in MemoryFile object.
886     *
887     * The resulting channel can be used for delivering sensor events to native code, other
888     * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
889     * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
890     * and cares about sensor event latency.
891     *
892     * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
893     * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
894     * to free up resource in sensor system associated with the direct channel.
895     *
896     * @param mem A {@link android.os.MemoryFile} shared memory object.
897     * @return A {@link android.hardware.SensorDirectChannel} object if successful, null otherwise.
898     * @throws NullPointerException when mem is null.
899     * @see SensorDirectChannel#close()
900     * @see #configureDirectChannel(SensorDirectChannel, Sensor, int)
901     */
902    public SensorDirectChannel createDirectChannel(MemoryFile mem) {
903        return createDirectChannelImpl(mem, null);
904    }
905
906    /**
907     * Create a sensor direct channel backed by shared memory wrapped in HardwareBuffer object.
908     *
909     * The resulting channel can be used for delivering sensor events to native code, other
910     * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
911     * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
912     * and cares about sensor event latency.
913     *
914     * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
915     * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
916     * to free up resource in sensor system associated with the direct channel.
917     *
918     * @param mem A {@link android.hardware.HardwareBuffer} shared memory object.
919     * @return A {@link android.hardware.SensorDirectChannel} object if successful,
920     *         null otherwise.
921     * @throws NullPointerException when mem is null.
922     * @see SensorDirectChannel#close()
923     * @see #configureDirectChannel(SensorDirectChannel, Sensor, int)
924     */
925    public SensorDirectChannel createDirectChannel(HardwareBuffer mem) {
926        return createDirectChannelImpl(null, mem);
927    }
928
929    /** @hide */
930    protected abstract SensorDirectChannel createDirectChannelImpl(
931            MemoryFile memoryFile, HardwareBuffer hardwareBuffer);
932
933    /** @hide */
934    void destroyDirectChannel(SensorDirectChannel channel) {
935        destroyDirectChannelImpl(channel);
936    }
937
938    /** @hide */
939    protected abstract void destroyDirectChannelImpl(SensorDirectChannel channel);
940
941    /** @removed */
942    @Deprecated
943    public int configureDirectChannel(SensorDirectChannel channel, Sensor sensor, int rateLevel) {
944        return configureDirectChannelImpl(channel, sensor, rateLevel);
945    }
946
947    /** @hide */
948    protected abstract int configureDirectChannelImpl(
949            SensorDirectChannel channel, Sensor s, int rate);
950
951    /**
952     * Used for receiving notifications from the SensorManager when dynamic sensors are connected or
953     * disconnected.
954     */
955    public static abstract class DynamicSensorCallback {
956        /**
957         * Called when there is a dynamic sensor being connected to the system.
958         *
959         * @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}.
960         */
961        public void onDynamicSensorConnected(Sensor sensor) {}
962
963        /**
964         * Called when there is a dynamic sensor being disconnected from the system.
965         *
966         * @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}.
967         */
968        public void onDynamicSensorDisconnected(Sensor sensor) {}
969    }
970
971
972    /**
973     * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
974     * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
975     * registration with the already registered callback object will have no additional effect.
976     *
977     * @param callback An object that implements the
978     *        {@link android.hardware.SensorManager.DynamicSensorCallback
979     *        DynamicSensorCallback}
980     *        interface for receiving callbacks.
981     * @see #addDynamicSensorCallback(DynamicSensorCallback, Handler)
982     *
983     * @throws IllegalArgumentException when callback is null.
984     */
985    public void registerDynamicSensorCallback(DynamicSensorCallback callback) {
986        registerDynamicSensorCallback(callback, null);
987    }
988
989    /**
990     * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
991     * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
992     * registration with the already registered callback object will have no additional effect.
993     *
994     * @param callback An object that implements the
995     *        {@link android.hardware.SensorManager.DynamicSensorCallback
996     *        DynamicSensorCallback} interface for receiving callbacks.
997     * @param handler The {@link android.os.Handler Handler} the {@link
998     *        android.hardware.SensorManager.DynamicSensorCallback
999     *        sensor connection events} will be delivered to.
1000     *
1001     * @throws IllegalArgumentException when callback is null.
1002     */
1003    public void registerDynamicSensorCallback(
1004            DynamicSensorCallback callback, Handler handler) {
1005        registerDynamicSensorCallbackImpl(callback, handler);
1006    }
1007
1008    /**
1009     * Remove a {@link android.hardware.SensorManager.DynamicSensorCallback
1010     * DynamicSensorCallback} to stop sending dynamic sensor connection events to that
1011     * callback.
1012     *
1013     * @param callback An object that implements the
1014     *        {@link android.hardware.SensorManager.DynamicSensorCallback
1015     *        DynamicSensorCallback}
1016     *        interface for receiving callbacks.
1017     */
1018    public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) {
1019        unregisterDynamicSensorCallbackImpl(callback);
1020    }
1021
1022    /**
1023     * Tell if dynamic sensor discovery feature is supported by system.
1024     *
1025     * @return <code>true</code> if dynamic sensor discovery is supported, <code>false</code>
1026     * otherwise.
1027     */
1028    public boolean isDynamicSensorDiscoverySupported() {
1029        List<Sensor> sensors = getSensorList(Sensor.TYPE_DYNAMIC_SENSOR_META);
1030        return sensors.size() > 0;
1031    }
1032
1033    /** @hide */
1034    protected abstract void registerDynamicSensorCallbackImpl(
1035            DynamicSensorCallback callback, Handler handler);
1036
1037    /** @hide */
1038    protected abstract void unregisterDynamicSensorCallbackImpl(
1039            DynamicSensorCallback callback);
1040
1041    /**
1042     * <p>
1043     * Computes the inclination matrix <b>I</b> as well as the rotation matrix
1044     * <b>R</b> transforming a vector from the device coordinate system to the
1045     * world's coordinate system which is defined as a direct orthonormal basis,
1046     * where:
1047     * </p>
1048     *
1049     * <ul>
1050     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
1051     * the ground at the device's current location and roughly points East).</li>
1052     * <li>Y is tangential to the ground at the device's current location and
1053     * points towards the magnetic North Pole.</li>
1054     * <li>Z points towards the sky and is perpendicular to the ground.</li>
1055     * </ul>
1056     *
1057     * <p>
1058     * <center><img src="../../../images/axis_globe.png"
1059     * alt="World coordinate-system diagram." border="0" /></center>
1060     * </p>
1061     *
1062     * <p>
1063     * <hr>
1064     * <p>
1065     * By definition:
1066     * <p>
1067     * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
1068     * <p>
1069     * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
1070     * geomagnetic field)
1071     * <p>
1072     * <b>R</b> is the identity matrix when the device is aligned with the
1073     * world's coordinate system, that is, when the device's X axis points
1074     * toward East, the Y axis points to the North Pole and the device is facing
1075     * the sky.
1076     *
1077     * <p>
1078     * <b>I</b> is a rotation matrix transforming the geomagnetic vector into
1079     * the same coordinate space as gravity (the world's coordinate space).
1080     * <b>I</b> is a simple rotation around the X axis. The inclination angle in
1081     * radians can be computed with {@link #getInclination}.
1082     * <hr>
1083     *
1084     * <p>
1085     * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
1086     * on the length of the passed array:
1087     * <p>
1088     * <u>If the array length is 16:</u>
1089     *
1090     * <pre>
1091     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
1092     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
1093     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
1094     *   \  M[12]   M[13]   M[14]   M[15]  /
1095     *</pre>
1096     *
1097     * This matrix is ready to be used by OpenGL ES's
1098     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
1099     * glLoadMatrixf(float[], int)}.
1100     * <p>
1101     * Note that because OpenGL matrices are column-major matrices you must
1102     * transpose the matrix before using it. However, since the matrix is a
1103     * rotation matrix, its transpose is also its inverse, conveniently, it is
1104     * often the inverse of the rotation that is needed for rendering; it can
1105     * therefore be used with OpenGL ES directly.
1106     * <p>
1107     * Also note that the returned matrices always have this form:
1108     *
1109     * <pre>
1110     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
1111     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
1112     *   |  M[ 8]   M[ 9]   M[10]   0  |
1113     *   \      0       0       0   1  /
1114     *</pre>
1115     *
1116     * <p>
1117     * <u>If the array length is 9:</u>
1118     *
1119     * <pre>
1120     *   /  M[ 0]   M[ 1]   M[ 2]  \
1121     *   |  M[ 3]   M[ 4]   M[ 5]  |
1122     *   \  M[ 6]   M[ 7]   M[ 8]  /
1123     *</pre>
1124     *
1125     * <hr>
1126     * <p>
1127     * The inverse of each matrix can be computed easily by taking its
1128     * transpose.
1129     *
1130     * <p>
1131     * The matrices returned by this function are meaningful only when the
1132     * device is not free-falling and it is not close to the magnetic north. If
1133     * the device is accelerating, or placed into a strong magnetic field, the
1134     * returned matrices may be inaccurate.
1135     *
1136     * @param R
1137     *        is an array of 9 floats holding the rotation matrix <b>R</b> when
1138     *        this function returns. R can be null.
1139     *        <p>
1140     *
1141     * @param I
1142     *        is an array of 9 floats holding the rotation matrix <b>I</b> when
1143     *        this function returns. I can be null.
1144     *        <p>
1145     *
1146     * @param gravity
1147     *        is an array of 3 floats containing the gravity vector expressed in
1148     *        the device's coordinate. You can simply use the
1149     *        {@link android.hardware.SensorEvent#values values} returned by a
1150     *        {@link android.hardware.SensorEvent SensorEvent} of a
1151     *        {@link android.hardware.Sensor Sensor} of type
1152     *        {@link android.hardware.Sensor#TYPE_ACCELEROMETER
1153     *        TYPE_ACCELEROMETER}.
1154     *        <p>
1155     *
1156     * @param geomagnetic
1157     *        is an array of 3 floats containing the geomagnetic vector
1158     *        expressed in the device's coordinate. You can simply use the
1159     *        {@link android.hardware.SensorEvent#values values} returned by a
1160     *        {@link android.hardware.SensorEvent SensorEvent} of a
1161     *        {@link android.hardware.Sensor Sensor} of type
1162     *        {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
1163     *        TYPE_MAGNETIC_FIELD}.
1164     *
1165     * @return <code>true</code> on success, <code>false</code> on failure (for
1166     *         instance, if the device is in free fall). Free fall is defined as
1167     *         condition when the magnitude of the gravity is less than 1/10 of
1168     *         the nominal value. On failure the output matrices are not modified.
1169     *
1170     * @see #getInclination(float[])
1171     * @see #getOrientation(float[], float[])
1172     * @see #remapCoordinateSystem(float[], int, int, float[])
1173     */
1174
1175    public static boolean getRotationMatrix(float[] R, float[] I,
1176            float[] gravity, float[] geomagnetic) {
1177        // TODO: move this to native code for efficiency
1178        float Ax = gravity[0];
1179        float Ay = gravity[1];
1180        float Az = gravity[2];
1181
1182        final float normsqA = (Ax*Ax + Ay*Ay + Az*Az);
1183        final float g = 9.81f;
1184        final float freeFallGravitySquared = 0.01f * g * g;
1185        if (normsqA < freeFallGravitySquared) {
1186            // gravity less than 10% of normal value
1187            return false;
1188        }
1189
1190        final float Ex = geomagnetic[0];
1191        final float Ey = geomagnetic[1];
1192        final float Ez = geomagnetic[2];
1193        float Hx = Ey*Az - Ez*Ay;
1194        float Hy = Ez*Ax - Ex*Az;
1195        float Hz = Ex*Ay - Ey*Ax;
1196        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
1197
1198        if (normH < 0.1f) {
1199            // device is close to free fall (or in space?), or close to
1200            // magnetic north pole. Typical values are  > 100.
1201            return false;
1202        }
1203        final float invH = 1.0f / normH;
1204        Hx *= invH;
1205        Hy *= invH;
1206        Hz *= invH;
1207        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
1208        Ax *= invA;
1209        Ay *= invA;
1210        Az *= invA;
1211        final float Mx = Ay*Hz - Az*Hy;
1212        final float My = Az*Hx - Ax*Hz;
1213        final float Mz = Ax*Hy - Ay*Hx;
1214        if (R != null) {
1215            if (R.length == 9) {
1216                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1217                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1218                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1219            } else if (R.length == 16) {
1220                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1221                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1222                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1223                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1224            }
1225        }
1226        if (I != null) {
1227            // compute the inclination matrix by projecting the geomagnetic
1228            // vector onto the Z (gravity) and X (horizontal component
1229            // of geomagnetic vector) axes.
1230            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1231            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1232            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1233            if (I.length == 9) {
1234                I[0] = 1;     I[1] = 0;     I[2] = 0;
1235                I[3] = 0;     I[4] = c;     I[5] = s;
1236                I[6] = 0;     I[7] =-s;     I[8] = c;
1237            } else if (I.length == 16) {
1238                I[0] = 1;     I[1] = 0;     I[2] = 0;
1239                I[4] = 0;     I[5] = c;     I[6] = s;
1240                I[8] = 0;     I[9] =-s;     I[10]= c;
1241                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1242                I[15] = 1;
1243            }
1244        }
1245        return true;
1246    }
1247
1248    /**
1249     * Computes the geomagnetic inclination angle in radians from the
1250     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1251     *
1252     * @param I
1253     *        inclination matrix see {@link #getRotationMatrix}.
1254     *
1255     * @return The geomagnetic inclination angle in radians.
1256     *
1257     * @see #getRotationMatrix(float[], float[], float[], float[])
1258     * @see #getOrientation(float[], float[])
1259     * @see GeomagneticField
1260     *
1261     */
1262    public static float getInclination(float[] I) {
1263        if (I.length == 9) {
1264            return (float)Math.atan2(I[5], I[4]);
1265        } else {
1266            return (float)Math.atan2(I[6], I[5]);
1267        }
1268    }
1269
1270    /**
1271     * <p>
1272     * Rotates the supplied rotation matrix so it is expressed in a different
1273     * coordinate system. This is typically used when an application needs to
1274     * compute the three orientation angles of the device (see
1275     * {@link #getOrientation}) in a different coordinate system.
1276     * </p>
1277     *
1278     * <p>
1279     * When the rotation matrix is used for drawing (for instance with OpenGL
1280     * ES), it usually <b>doesn't need</b> to be transformed by this function,
1281     * unless the screen is physically rotated, in which case you can use
1282     * {@link android.view.Display#getRotation() Display.getRotation()} to
1283     * retrieve the current rotation of the screen. Note that because the user
1284     * is generally free to rotate their screen, you often should consider the
1285     * rotation in deciding the parameters to use here.
1286     * </p>
1287     *
1288     * <p>
1289     * <u>Examples:</u>
1290     * <p>
1291     *
1292     * <ul>
1293     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1294     * reality application where the rotation angles are needed:</li>
1295     *
1296     * <p>
1297     * <ul>
1298     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
1299     * </ul>
1300     * </p>
1301     *
1302     * <li>Using the device as a mechanical compass when rotation is
1303     * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
1304     *
1305     * <p>
1306     * <ul>
1307     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
1308     * </ul>
1309     * </p>
1310     *
1311     * Beware of the above example. This call is needed only to account for a
1312     * rotation from its natural orientation when calculating the rotation
1313     * angles (see {@link #getOrientation}). If the rotation matrix is also used
1314     * for rendering, it may not need to be transformed, for instance if your
1315     * {@link android.app.Activity Activity} is running in landscape mode.
1316     * </ul>
1317     *
1318     * <p>
1319     * Since the resulting coordinate system is orthonormal, only two axes need
1320     * to be specified.
1321     *
1322     * @param inR
1323     *        the rotation matrix to be transformed. Usually it is the matrix
1324     *        returned by {@link #getRotationMatrix}.
1325     *
1326     * @param X
1327     *        defines the axis of the new cooridinate system that coincide with the X axis of the
1328     *        original coordinate system.
1329     *
1330     * @param Y
1331     *        defines the axis of the new cooridinate system that coincide with the Y axis of the
1332     *        original coordinate system.
1333     *
1334     * @param outR
1335     *        the transformed rotation matrix. inR and outR should not be the same
1336     *        array.
1337     *
1338     * @return <code>true</code> on success. <code>false</code> if the input
1339     *         parameters are incorrect, for instance if X and Y define the same
1340     *         axis. Or if inR and outR don't have the same length.
1341     *
1342     * @see #getRotationMatrix(float[], float[], float[], float[])
1343     */
1344
1345    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1346            float[] outR)
1347    {
1348        if (inR == outR) {
1349            final float[] temp = mTempMatrix;
1350            synchronized(temp) {
1351                // we don't expect to have a lot of contention
1352                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1353                    final int size = outR.length;
1354                    for (int i=0 ; i<size ; i++)
1355                        outR[i] = temp[i];
1356                    return true;
1357                }
1358            }
1359        }
1360        return remapCoordinateSystemImpl(inR, X, Y, outR);
1361    }
1362
1363    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1364            float[] outR)
1365    {
1366        /*
1367         * X and Y define a rotation matrix 'r':
1368         *
1369         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1370         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1371         *                              r[0] ^ r[1]
1372         *
1373         * where the 3rd line is the vector product of the first 2 lines
1374         *
1375         */
1376
1377        final int length = outR.length;
1378        if (inR.length != length)
1379            return false;   // invalid parameter
1380        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1381            return false;   // invalid parameter
1382        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1383            return false;   // no axis specified
1384        if ((X & 0x3) == (Y & 0x3))
1385            return false;   // same axis specified
1386
1387        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1388        // this can be calculated by exclusive-or'ing X and Y; except for
1389        // the sign inversion (+/-) which is calculated below.
1390        int Z = X ^ Y;
1391
1392        // extract the axis (remove the sign), offset in the range 0 to 2.
1393        final int x = (X & 0x3)-1;
1394        final int y = (Y & 0x3)-1;
1395        final int z = (Z & 0x3)-1;
1396
1397        // compute the sign of Z (whether it needs to be inverted)
1398        final int axis_y = (z+1)%3;
1399        final int axis_z = (z+2)%3;
1400        if (((x^axis_y)|(y^axis_z)) != 0)
1401            Z ^= 0x80;
1402
1403        final boolean sx = (X>=0x80);
1404        final boolean sy = (Y>=0x80);
1405        final boolean sz = (Z>=0x80);
1406
1407        // Perform R * r, in avoiding actual muls and adds.
1408        final int rowLength = ((length==16)?4:3);
1409        for (int j=0 ; j<3 ; j++) {
1410            final int offset = j*rowLength;
1411            for (int i=0 ; i<3 ; i++) {
1412                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1413                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1414                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1415            }
1416        }
1417        if (length == 16) {
1418            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1419            outR[15] = 1;
1420        }
1421        return true;
1422    }
1423
1424    /**
1425     * Computes the device's orientation based on the rotation matrix.
1426     * <p>
1427     * When it returns, the array values are as follows:
1428     * <ul>
1429     * <li>values[0]: <i>Azimuth</i>, angle of rotation about the -z axis.
1430     *                This value represents the angle between the device's y
1431     *                axis and the magnetic north pole. When facing north, this
1432     *                angle is 0, when facing south, this angle is &pi;.
1433     *                Likewise, when facing east, this angle is &pi;/2, and
1434     *                when facing west, this angle is -&pi;/2. The range of
1435     *                values is -&pi; to &pi;.</li>
1436     * <li>values[1]: <i>Pitch</i>, angle of rotation about the x axis.
1437     *                This value represents the angle between a plane parallel
1438     *                to the device's screen and a plane parallel to the ground.
1439     *                Assuming that the bottom edge of the device faces the
1440     *                user and that the screen is face-up, tilting the top edge
1441     *                of the device toward the ground creates a positive pitch
1442     *                angle. The range of values is -&pi; to &pi;.</li>
1443     * <li>values[2]: <i>Roll</i>, angle of rotation about the y axis. This
1444     *                value represents the angle between a plane perpendicular
1445     *                to the device's screen and a plane perpendicular to the
1446     *                ground. Assuming that the bottom edge of the device faces
1447     *                the user and that the screen is face-up, tilting the left
1448     *                edge of the device toward the ground creates a positive
1449     *                roll angle. The range of values is -&pi;/2 to &pi;/2.</li>
1450     * </ul>
1451     * <p>
1452     * Applying these three rotations in the azimuth, pitch, roll order
1453     * transforms an identity matrix to the rotation matrix passed into this
1454     * method. Also, note that all three orientation angles are expressed in
1455     * <b>radians</b>.
1456     *
1457     * @param R
1458     *        rotation matrix see {@link #getRotationMatrix}.
1459     *
1460     * @param values
1461     *        an array of 3 floats to hold the result.
1462     *
1463     * @return The array values passed as argument.
1464     *
1465     * @see #getRotationMatrix(float[], float[], float[], float[])
1466     * @see GeomagneticField
1467     */
1468    public static float[] getOrientation(float[] R, float values[]) {
1469        /*
1470         * 4x4 (length=16) case:
1471         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1472         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1473         *   |  R[ 8]   R[ 9]   R[10]   0  |
1474         *   \      0       0       0   1  /
1475         *
1476         * 3x3 (length=9) case:
1477         *   /  R[ 0]   R[ 1]   R[ 2]  \
1478         *   |  R[ 3]   R[ 4]   R[ 5]  |
1479         *   \  R[ 6]   R[ 7]   R[ 8]  /
1480         *
1481         */
1482        if (R.length == 9) {
1483            values[0] = (float)Math.atan2(R[1], R[4]);
1484            values[1] = (float)Math.asin(-R[7]);
1485            values[2] = (float)Math.atan2(-R[6], R[8]);
1486        } else {
1487            values[0] = (float)Math.atan2(R[1], R[5]);
1488            values[1] = (float)Math.asin(-R[9]);
1489            values[2] = (float)Math.atan2(-R[8], R[10]);
1490        }
1491
1492        return values;
1493    }
1494
1495    /**
1496     * Computes the Altitude in meters from the atmospheric pressure and the
1497     * pressure at sea level.
1498     * <p>
1499     * Typically the atmospheric pressure is read from a
1500     * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
1501     * known, usually it can be retrieved from airport databases in the
1502     * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
1503     * as an approximation, but absolute altitudes won't be accurate.
1504     * </p>
1505     * <p>
1506     * To calculate altitude differences, you must calculate the difference
1507     * between the altitudes at both points. If you don't know the altitude
1508     * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
1509     * which will give good results considering the range of pressure typically
1510     * involved.
1511     * </p>
1512     * <p>
1513     * <code><ul>
1514     *  float altitude_difference =
1515     *      getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
1516     *      - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
1517     * </ul></code>
1518     * </p>
1519     *
1520     * @param p0 pressure at sea level
1521     * @param p atmospheric pressure
1522     * @return Altitude in meters
1523     */
1524    public static float getAltitude(float p0, float p) {
1525        final float coef = 1.0f / 5.255f;
1526        return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef));
1527    }
1528
1529    /** Helper function to compute the angle change between two rotation matrices.
1530     *  Given a current rotation matrix (R) and a previous rotation matrix
1531     *  (prevR) computes the intrinsic rotation around the z, x, and y axes which
1532     *  transforms prevR to R.
1533     *  outputs a 3 element vector containing the z, x, and y angle
1534     *  change at indexes 0, 1, and 2 respectively.
1535     * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
1536     * depending on the length of the passed array:
1537     * <p>If the array length is 9, then the array elements represent this matrix
1538     * <pre>
1539     *   /  R[ 0]   R[ 1]   R[ 2]   \
1540     *   |  R[ 3]   R[ 4]   R[ 5]   |
1541     *   \  R[ 6]   R[ 7]   R[ 8]   /
1542     *</pre>
1543     * <p>If the array length is 16, then the array elements represent this matrix
1544     * <pre>
1545     *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
1546     *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
1547     *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
1548     *   \  R[12]   R[13]   R[14]   R[15]  /
1549     *</pre>
1550     *
1551     * See {@link #getOrientation} for more detailed definition of the output.
1552     *
1553     * @param R current rotation matrix
1554     * @param prevR previous rotation matrix
1555     * @param angleChange an an array of floats (z, x, and y) in which the angle change
1556     *        (in radians) is stored
1557     */
1558
1559    public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) {
1560        float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0;
1561        float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0;
1562        float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0;
1563
1564        if(R.length == 9) {
1565            ri0 = R[0];
1566            ri1 = R[1];
1567            ri2 = R[2];
1568            ri3 = R[3];
1569            ri4 = R[4];
1570            ri5 = R[5];
1571            ri6 = R[6];
1572            ri7 = R[7];
1573            ri8 = R[8];
1574        } else if(R.length == 16) {
1575            ri0 = R[0];
1576            ri1 = R[1];
1577            ri2 = R[2];
1578            ri3 = R[4];
1579            ri4 = R[5];
1580            ri5 = R[6];
1581            ri6 = R[8];
1582            ri7 = R[9];
1583            ri8 = R[10];
1584        }
1585
1586        if(prevR.length == 9) {
1587            pri0 = prevR[0];
1588            pri1 = prevR[1];
1589            pri2 = prevR[2];
1590            pri3 = prevR[3];
1591            pri4 = prevR[4];
1592            pri5 = prevR[5];
1593            pri6 = prevR[6];
1594            pri7 = prevR[7];
1595            pri8 = prevR[8];
1596        } else if(prevR.length == 16) {
1597            pri0 = prevR[0];
1598            pri1 = prevR[1];
1599            pri2 = prevR[2];
1600            pri3 = prevR[4];
1601            pri4 = prevR[5];
1602            pri5 = prevR[6];
1603            pri6 = prevR[8];
1604            pri7 = prevR[9];
1605            pri8 = prevR[10];
1606        }
1607
1608        // calculate the parts of the rotation difference matrix we need
1609        // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
1610
1611        rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
1612        rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
1613        rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
1614        rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
1615        rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
1616
1617        angleChange[0] = (float)Math.atan2(rd1, rd4);
1618        angleChange[1] = (float)Math.asin(-rd7);
1619        angleChange[2] = (float)Math.atan2(-rd6, rd8);
1620
1621    }
1622
1623    /** Helper function to convert a rotation vector to a rotation matrix.
1624     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
1625     *  9  or 16 element rotation matrix in the array R.  R must have length 9 or 16.
1626     *  If R.length == 9, the following matrix is returned:
1627     * <pre>
1628     *   /  R[ 0]   R[ 1]   R[ 2]   \
1629     *   |  R[ 3]   R[ 4]   R[ 5]   |
1630     *   \  R[ 6]   R[ 7]   R[ 8]   /
1631     *</pre>
1632     * If R.length == 16, the following matrix is returned:
1633     * <pre>
1634     *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1635     *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1636     *   |  R[ 8]   R[ 9]   R[10]   0  |
1637     *   \  0       0       0       1  /
1638     *</pre>
1639     *  @param rotationVector the rotation vector to convert
1640     *  @param R an array of floats in which to store the rotation matrix
1641     */
1642    public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
1643
1644        float q0;
1645        float q1 = rotationVector[0];
1646        float q2 = rotationVector[1];
1647        float q3 = rotationVector[2];
1648
1649        if (rotationVector.length >= 4) {
1650            q0 = rotationVector[3];
1651        } else {
1652            q0 = 1 - q1*q1 - q2*q2 - q3*q3;
1653            q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0;
1654        }
1655
1656        float sq_q1 = 2 * q1 * q1;
1657        float sq_q2 = 2 * q2 * q2;
1658        float sq_q3 = 2 * q3 * q3;
1659        float q1_q2 = 2 * q1 * q2;
1660        float q3_q0 = 2 * q3 * q0;
1661        float q1_q3 = 2 * q1 * q3;
1662        float q2_q0 = 2 * q2 * q0;
1663        float q2_q3 = 2 * q2 * q3;
1664        float q1_q0 = 2 * q1 * q0;
1665
1666        if(R.length == 9) {
1667            R[0] = 1 - sq_q2 - sq_q3;
1668            R[1] = q1_q2 - q3_q0;
1669            R[2] = q1_q3 + q2_q0;
1670
1671            R[3] = q1_q2 + q3_q0;
1672            R[4] = 1 - sq_q1 - sq_q3;
1673            R[5] = q2_q3 - q1_q0;
1674
1675            R[6] = q1_q3 - q2_q0;
1676            R[7] = q2_q3 + q1_q0;
1677            R[8] = 1 - sq_q1 - sq_q2;
1678        } else if (R.length == 16) {
1679            R[0] = 1 - sq_q2 - sq_q3;
1680            R[1] = q1_q2 - q3_q0;
1681            R[2] = q1_q3 + q2_q0;
1682            R[3] = 0.0f;
1683
1684            R[4] = q1_q2 + q3_q0;
1685            R[5] = 1 - sq_q1 - sq_q3;
1686            R[6] = q2_q3 - q1_q0;
1687            R[7] = 0.0f;
1688
1689            R[8] = q1_q3 - q2_q0;
1690            R[9] = q2_q3 + q1_q0;
1691            R[10] = 1 - sq_q1 - sq_q2;
1692            R[11] = 0.0f;
1693
1694            R[12] = R[13] = R[14] = 0.0f;
1695            R[15] = 1.0f;
1696        }
1697    }
1698
1699    /** Helper function to convert a rotation vector to a normalized quaternion.
1700     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
1701     *  quaternion in the array Q.  The quaternion is stored as [w, x, y, z]
1702     *  @param rv the rotation vector to convert
1703     *  @param Q an array of floats in which to store the computed quaternion
1704     */
1705    public static void getQuaternionFromVector(float[] Q, float[] rv) {
1706        if (rv.length >= 4) {
1707            Q[0] = rv[3];
1708        } else {
1709            Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2];
1710            Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0;
1711        }
1712        Q[1] = rv[0];
1713        Q[2] = rv[1];
1714        Q[3] = rv[2];
1715    }
1716
1717    /**
1718     * Requests receiving trigger events for a trigger sensor.
1719     *
1720     * <p>
1721     * When the sensor detects a trigger event condition, such as significant motion in
1722     * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
1723     * will be invoked once and then its request to receive trigger events will be canceled.
1724     * To continue receiving trigger events, the application must request to receive trigger
1725     * events again.
1726     * </p>
1727     *
1728     * @param listener The listener on which the
1729     *        {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered.
1730     * @param sensor The sensor to be enabled.
1731     *
1732     * @return true if the sensor was successfully enabled.
1733     *
1734     * @throws IllegalArgumentException when sensor is null or not a trigger sensor.
1735     */
1736    public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1737        return requestTriggerSensorImpl(listener, sensor);
1738    }
1739
1740    /**
1741     * @hide
1742     */
1743    protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener,
1744            Sensor sensor);
1745
1746    /**
1747     * Cancels receiving trigger events for a trigger sensor.
1748     *
1749     * <p>
1750     * Note that a Trigger sensor will be auto disabled if
1751     * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
1752     * This method is provided in case the user wants to explicitly cancel the request
1753     * to receive trigger events.
1754     * </p>
1755     *
1756     * @param listener The listener on which the
1757     *        {@link TriggerEventListener#onTrigger(TriggerEvent)}
1758     *        is delivered.It should be the same as the one used
1759     *        in {@link #requestTriggerSensor(TriggerEventListener, Sensor)}
1760     * @param sensor The sensor for which the trigger request should be canceled.
1761     *        If null, it cancels receiving trigger for all sensors associated
1762     *        with the listener.
1763     *
1764     * @return true if successfully canceled.
1765     *
1766     * @throws IllegalArgumentException when sensor is a trigger sensor.
1767     */
1768    public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1769        return cancelTriggerSensorImpl(listener, sensor, true);
1770    }
1771
1772    /**
1773     * @hide
1774     */
1775    protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener,
1776            Sensor sensor, boolean disable);
1777
1778
1779    /**
1780     * For testing purposes only. Not for third party applications.
1781     *
1782     * Initialize data injection mode and create a client for data injection. SensorService should
1783     * already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into
1784     * DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called
1785     * through adb. Typically this is done using a host side test.  This mode is expected to be used
1786     * only for testing purposes. If the HAL is set to data injection mode, it will ignore the input
1787     * from physical sensors and read sensor data that is injected from the test application. This
1788     * mode is used for testing vendor implementations for various algorithms like Rotation Vector,
1789     * Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will
1790     * fail in those cases. Once this method succeeds, the test can call
1791     * {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL.
1792     *
1793     * @param enable True to initialize a client in DATA_INJECTION mode.
1794     *               False to clean up the native resources.
1795     *
1796     * @return true if the HAL supports data injection and false
1797     *         otherwise.
1798     * @hide
1799     */
1800    @SystemApi
1801    public boolean initDataInjection(boolean enable) {
1802          return initDataInjectionImpl(enable);
1803    }
1804
1805    /**
1806     * @hide
1807     */
1808    protected abstract boolean initDataInjectionImpl(boolean enable);
1809
1810    /**
1811     * For testing purposes only. Not for third party applications.
1812     *
1813     * This method is used to inject raw sensor data into the HAL.  Call {@link
1814     * initDataInjection(boolean)} before this method to set the HAL in data injection mode. This
1815     * method should be called only if a previous call to initDataInjection has been successful and
1816     * the HAL and SensorService are already opreating in data injection mode.
1817     *
1818     * @param sensor The sensor to inject.
1819     * @param values Sensor values to inject. The length of this
1820     *               array must be exactly equal to the number of
1821     *               values reported by the sensor type.
1822     * @param accuracy Accuracy of the sensor.
1823     * @param timestamp Sensor timestamp associated with the event.
1824     *
1825     * @return boolean True if the data injection succeeds, false
1826     *         otherwise.
1827     * @throws IllegalArgumentException when the sensor is null,
1828     *         data injection is not supported by the sensor, values
1829     *         are null, incorrect number of values for the sensor,
1830     *         sensor accuracy is incorrect or timestamps are
1831     *         invalid.
1832     * @hide
1833     */
1834    @SystemApi
1835    public boolean injectSensorData(Sensor sensor, float[] values, int accuracy,
1836                long timestamp) {
1837        if (sensor == null) {
1838            throw new IllegalArgumentException("sensor cannot be null");
1839        }
1840        if (!sensor.isDataInjectionSupported()) {
1841            throw new IllegalArgumentException("sensor does not support data injection");
1842        }
1843        if (values == null) {
1844            throw new IllegalArgumentException("sensor data cannot be null");
1845        }
1846        int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M);
1847        if (values.length != expectedNumValues) {
1848            throw new  IllegalArgumentException ("Wrong number of values for sensor " +
1849                    sensor.getName() + " actual=" + values.length + " expected=" +
1850                                                  expectedNumValues);
1851        }
1852        if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) {
1853            throw new IllegalArgumentException("Invalid sensor accuracy");
1854        }
1855        if (timestamp <= 0) {
1856            throw new IllegalArgumentException("Negative or zero sensor timestamp");
1857        }
1858        return injectSensorDataImpl(sensor, values, accuracy, timestamp);
1859    }
1860
1861    /**
1862     * @hide
1863     */
1864    protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy,
1865                long timestamp);
1866
1867    private LegacySensorManager getLegacySensorManager() {
1868        synchronized (mSensorListByType) {
1869            if (mLegacySensorManager == null) {
1870                Log.i(TAG, "This application is using deprecated SensorManager API which will "
1871                        + "be removed someday.  Please consider switching to the new API.");
1872                mLegacySensorManager = new LegacySensorManager(this);
1873            }
1874            return mLegacySensorManager;
1875        }
1876    }
1877
1878    private static int getDelay(int rate) {
1879        int delay = -1;
1880        switch (rate) {
1881            case SENSOR_DELAY_FASTEST:
1882                delay = 0;
1883                break;
1884            case SENSOR_DELAY_GAME:
1885                delay = 20000;
1886                break;
1887            case SENSOR_DELAY_UI:
1888                delay = 66667;
1889                break;
1890            case SENSOR_DELAY_NORMAL:
1891                delay = 200000;
1892                break;
1893            default:
1894                delay = rate;
1895                break;
1896        }
1897        return delay;
1898    }
1899
1900    /** @hide */
1901    public boolean setOperationParameter(SensorAdditionalInfo parameter) {
1902        return setOperationParameterImpl(parameter);
1903    }
1904
1905    /** @hide */
1906    protected abstract boolean setOperationParameterImpl(SensorAdditionalInfo parameter);
1907}
1908