Parcel.cpp revision 6ff4920cb12fa4776d27b54e2e4daa27bb78fc10
1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "Parcel"
18//#define LOG_NDEBUG 0
19
20#include <errno.h>
21#include <fcntl.h>
22#include <inttypes.h>
23#include <pthread.h>
24#include <stdint.h>
25#include <stdio.h>
26#include <stdlib.h>
27#include <sys/mman.h>
28#include <sys/stat.h>
29#include <sys/types.h>
30#include <unistd.h>
31
32#include <binder/Binder.h>
33#include <binder/BpBinder.h>
34#include <binder/IPCThreadState.h>
35#include <binder/Parcel.h>
36#include <binder/ProcessState.h>
37#include <binder/Status.h>
38#include <binder/TextOutput.h>
39
40#include <cutils/ashmem.h>
41#include <utils/Debug.h>
42#include <utils/Flattenable.h>
43#include <utils/Log.h>
44#include <utils/misc.h>
45#include <utils/String8.h>
46#include <utils/String16.h>
47
48#include <private/binder/binder_module.h>
49#include <private/binder/Static.h>
50
51#ifndef INT32_MAX
52#define INT32_MAX ((int32_t)(2147483647))
53#endif
54
55#define LOG_REFS(...)
56//#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
57#define LOG_ALLOC(...)
58//#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
59
60// ---------------------------------------------------------------------------
61
62// This macro should never be used at runtime, as a too large value
63// of s could cause an integer overflow. Instead, you should always
64// use the wrapper function pad_size()
65#define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
66
67static size_t pad_size(size_t s) {
68    if (s > (SIZE_T_MAX - 3)) {
69        abort();
70    }
71    return PAD_SIZE_UNSAFE(s);
72}
73
74// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
75#define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
76
77// XXX This can be made public if we want to provide
78// support for typed data.
79struct small_flat_data
80{
81    uint32_t type;
82    uint32_t data;
83};
84
85namespace android {
86
87static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
88static size_t gParcelGlobalAllocSize = 0;
89static size_t gParcelGlobalAllocCount = 0;
90
91// Maximum size of a blob to transfer in-place.
92static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
93
94enum {
95    BLOB_INPLACE = 0,
96    BLOB_ASHMEM_IMMUTABLE = 1,
97    BLOB_ASHMEM_MUTABLE = 2,
98};
99
100static dev_t ashmem_rdev()
101{
102    static dev_t __ashmem_rdev;
103    static pthread_mutex_t __ashmem_rdev_lock = PTHREAD_MUTEX_INITIALIZER;
104
105    pthread_mutex_lock(&__ashmem_rdev_lock);
106
107    dev_t rdev = __ashmem_rdev;
108    if (!rdev) {
109        int fd = TEMP_FAILURE_RETRY(open("/dev/ashmem", O_RDONLY));
110        if (fd >= 0) {
111            struct stat st;
112
113            int ret = TEMP_FAILURE_RETRY(fstat(fd, &st));
114            close(fd);
115            if ((ret >= 0) && S_ISCHR(st.st_mode)) {
116                rdev = __ashmem_rdev = st.st_rdev;
117            }
118        }
119    }
120
121    pthread_mutex_unlock(&__ashmem_rdev_lock);
122
123    return rdev;
124}
125
126void acquire_object(const sp<ProcessState>& proc,
127    const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
128{
129    switch (obj.type) {
130        case BINDER_TYPE_BINDER:
131            if (obj.binder) {
132                LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
133                reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
134            }
135            return;
136        case BINDER_TYPE_WEAK_BINDER:
137            if (obj.binder)
138                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
139            return;
140        case BINDER_TYPE_HANDLE: {
141            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
142            if (b != NULL) {
143                LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
144                b->incStrong(who);
145            }
146            return;
147        }
148        case BINDER_TYPE_WEAK_HANDLE: {
149            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
150            if (b != NULL) b.get_refs()->incWeak(who);
151            return;
152        }
153        case BINDER_TYPE_FD: {
154            if ((obj.cookie != 0) && (outAshmemSize != NULL)) {
155                struct stat st;
156                int ret = fstat(obj.handle, &st);
157                if (!ret && S_ISCHR(st.st_mode) && (st.st_rdev == ashmem_rdev())) {
158                    // If we own an ashmem fd, keep track of how much memory it refers to.
159                    int size = ashmem_get_size_region(obj.handle);
160                    if (size > 0) {
161                        *outAshmemSize += size;
162                    }
163                }
164            }
165            return;
166        }
167    }
168
169    ALOGD("Invalid object type 0x%08x", obj.type);
170}
171
172void acquire_object(const sp<ProcessState>& proc,
173    const flat_binder_object& obj, const void* who)
174{
175    acquire_object(proc, obj, who, NULL);
176}
177
178static void release_object(const sp<ProcessState>& proc,
179    const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
180{
181    switch (obj.type) {
182        case BINDER_TYPE_BINDER:
183            if (obj.binder) {
184                LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
185                reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
186            }
187            return;
188        case BINDER_TYPE_WEAK_BINDER:
189            if (obj.binder)
190                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
191            return;
192        case BINDER_TYPE_HANDLE: {
193            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
194            if (b != NULL) {
195                LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
196                b->decStrong(who);
197            }
198            return;
199        }
200        case BINDER_TYPE_WEAK_HANDLE: {
201            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
202            if (b != NULL) b.get_refs()->decWeak(who);
203            return;
204        }
205        case BINDER_TYPE_FD: {
206            if (obj.cookie != 0) { // owned
207                if (outAshmemSize != NULL) {
208                    struct stat st;
209                    int ret = fstat(obj.handle, &st);
210                    if (!ret && S_ISCHR(st.st_mode) && (st.st_rdev == ashmem_rdev())) {
211                        int size = ashmem_get_size_region(obj.handle);
212                        if (size > 0) {
213                            *outAshmemSize -= size;
214                        }
215                    }
216                }
217
218                close(obj.handle);
219            }
220            return;
221        }
222    }
223
224    ALOGE("Invalid object type 0x%08x", obj.type);
225}
226
227void release_object(const sp<ProcessState>& proc,
228    const flat_binder_object& obj, const void* who)
229{
230    release_object(proc, obj, who, NULL);
231}
232
233inline static status_t finish_flatten_binder(
234    const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
235{
236    return out->writeObject(flat, false);
237}
238
239status_t flatten_binder(const sp<ProcessState>& /*proc*/,
240    const sp<IBinder>& binder, Parcel* out)
241{
242    flat_binder_object obj;
243
244    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
245    if (binder != NULL) {
246        IBinder *local = binder->localBinder();
247        if (!local) {
248            BpBinder *proxy = binder->remoteBinder();
249            if (proxy == NULL) {
250                ALOGE("null proxy");
251            }
252            const int32_t handle = proxy ? proxy->handle() : 0;
253            obj.type = BINDER_TYPE_HANDLE;
254            obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
255            obj.handle = handle;
256            obj.cookie = 0;
257        } else {
258            obj.type = BINDER_TYPE_BINDER;
259            obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
260            obj.cookie = reinterpret_cast<uintptr_t>(local);
261        }
262    } else {
263        obj.type = BINDER_TYPE_BINDER;
264        obj.binder = 0;
265        obj.cookie = 0;
266    }
267
268    return finish_flatten_binder(binder, obj, out);
269}
270
271status_t flatten_binder(const sp<ProcessState>& /*proc*/,
272    const wp<IBinder>& binder, Parcel* out)
273{
274    flat_binder_object obj;
275
276    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
277    if (binder != NULL) {
278        sp<IBinder> real = binder.promote();
279        if (real != NULL) {
280            IBinder *local = real->localBinder();
281            if (!local) {
282                BpBinder *proxy = real->remoteBinder();
283                if (proxy == NULL) {
284                    ALOGE("null proxy");
285                }
286                const int32_t handle = proxy ? proxy->handle() : 0;
287                obj.type = BINDER_TYPE_WEAK_HANDLE;
288                obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
289                obj.handle = handle;
290                obj.cookie = 0;
291            } else {
292                obj.type = BINDER_TYPE_WEAK_BINDER;
293                obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
294                obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
295            }
296            return finish_flatten_binder(real, obj, out);
297        }
298
299        // XXX How to deal?  In order to flatten the given binder,
300        // we need to probe it for information, which requires a primary
301        // reference...  but we don't have one.
302        //
303        // The OpenBinder implementation uses a dynamic_cast<> here,
304        // but we can't do that with the different reference counting
305        // implementation we are using.
306        ALOGE("Unable to unflatten Binder weak reference!");
307        obj.type = BINDER_TYPE_BINDER;
308        obj.binder = 0;
309        obj.cookie = 0;
310        return finish_flatten_binder(NULL, obj, out);
311
312    } else {
313        obj.type = BINDER_TYPE_BINDER;
314        obj.binder = 0;
315        obj.cookie = 0;
316        return finish_flatten_binder(NULL, obj, out);
317    }
318}
319
320inline static status_t finish_unflatten_binder(
321    BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
322    const Parcel& /*in*/)
323{
324    return NO_ERROR;
325}
326
327status_t unflatten_binder(const sp<ProcessState>& proc,
328    const Parcel& in, sp<IBinder>* out)
329{
330    const flat_binder_object* flat = in.readObject(false);
331
332    if (flat) {
333        switch (flat->type) {
334            case BINDER_TYPE_BINDER:
335                *out = reinterpret_cast<IBinder*>(flat->cookie);
336                return finish_unflatten_binder(NULL, *flat, in);
337            case BINDER_TYPE_HANDLE:
338                *out = proc->getStrongProxyForHandle(flat->handle);
339                return finish_unflatten_binder(
340                    static_cast<BpBinder*>(out->get()), *flat, in);
341        }
342    }
343    return BAD_TYPE;
344}
345
346status_t unflatten_binder(const sp<ProcessState>& proc,
347    const Parcel& in, wp<IBinder>* out)
348{
349    const flat_binder_object* flat = in.readObject(false);
350
351    if (flat) {
352        switch (flat->type) {
353            case BINDER_TYPE_BINDER:
354                *out = reinterpret_cast<IBinder*>(flat->cookie);
355                return finish_unflatten_binder(NULL, *flat, in);
356            case BINDER_TYPE_WEAK_BINDER:
357                if (flat->binder != 0) {
358                    out->set_object_and_refs(
359                        reinterpret_cast<IBinder*>(flat->cookie),
360                        reinterpret_cast<RefBase::weakref_type*>(flat->binder));
361                } else {
362                    *out = NULL;
363                }
364                return finish_unflatten_binder(NULL, *flat, in);
365            case BINDER_TYPE_HANDLE:
366            case BINDER_TYPE_WEAK_HANDLE:
367                *out = proc->getWeakProxyForHandle(flat->handle);
368                return finish_unflatten_binder(
369                    static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
370        }
371    }
372    return BAD_TYPE;
373}
374
375// ---------------------------------------------------------------------------
376
377Parcel::Parcel()
378{
379    LOG_ALLOC("Parcel %p: constructing", this);
380    initState();
381}
382
383Parcel::~Parcel()
384{
385    freeDataNoInit();
386    LOG_ALLOC("Parcel %p: destroyed", this);
387}
388
389size_t Parcel::getGlobalAllocSize() {
390    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
391    size_t size = gParcelGlobalAllocSize;
392    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
393    return size;
394}
395
396size_t Parcel::getGlobalAllocCount() {
397    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
398    size_t count = gParcelGlobalAllocCount;
399    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
400    return count;
401}
402
403const uint8_t* Parcel::data() const
404{
405    return mData;
406}
407
408size_t Parcel::dataSize() const
409{
410    return (mDataSize > mDataPos ? mDataSize : mDataPos);
411}
412
413size_t Parcel::dataAvail() const
414{
415    size_t result = dataSize() - dataPosition();
416    if (result > INT32_MAX) {
417        abort();
418    }
419    return result;
420}
421
422size_t Parcel::dataPosition() const
423{
424    return mDataPos;
425}
426
427size_t Parcel::dataCapacity() const
428{
429    return mDataCapacity;
430}
431
432status_t Parcel::setDataSize(size_t size)
433{
434    if (size > INT32_MAX) {
435        // don't accept size_t values which may have come from an
436        // inadvertent conversion from a negative int.
437        return BAD_VALUE;
438    }
439
440    status_t err;
441    err = continueWrite(size);
442    if (err == NO_ERROR) {
443        mDataSize = size;
444        ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
445    }
446    return err;
447}
448
449void Parcel::setDataPosition(size_t pos) const
450{
451    if (pos > INT32_MAX) {
452        // don't accept size_t values which may have come from an
453        // inadvertent conversion from a negative int.
454        abort();
455    }
456
457    mDataPos = pos;
458    mNextObjectHint = 0;
459}
460
461status_t Parcel::setDataCapacity(size_t size)
462{
463    if (size > INT32_MAX) {
464        // don't accept size_t values which may have come from an
465        // inadvertent conversion from a negative int.
466        return BAD_VALUE;
467    }
468
469    if (size > mDataCapacity) return continueWrite(size);
470    return NO_ERROR;
471}
472
473status_t Parcel::setData(const uint8_t* buffer, size_t len)
474{
475    if (len > INT32_MAX) {
476        // don't accept size_t values which may have come from an
477        // inadvertent conversion from a negative int.
478        return BAD_VALUE;
479    }
480
481    status_t err = restartWrite(len);
482    if (err == NO_ERROR) {
483        memcpy(const_cast<uint8_t*>(data()), buffer, len);
484        mDataSize = len;
485        mFdsKnown = false;
486    }
487    return err;
488}
489
490status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
491{
492    const sp<ProcessState> proc(ProcessState::self());
493    status_t err;
494    const uint8_t *data = parcel->mData;
495    const binder_size_t *objects = parcel->mObjects;
496    size_t size = parcel->mObjectsSize;
497    int startPos = mDataPos;
498    int firstIndex = -1, lastIndex = -2;
499
500    if (len == 0) {
501        return NO_ERROR;
502    }
503
504    if (len > INT32_MAX) {
505        // don't accept size_t values which may have come from an
506        // inadvertent conversion from a negative int.
507        return BAD_VALUE;
508    }
509
510    // range checks against the source parcel size
511    if ((offset > parcel->mDataSize)
512            || (len > parcel->mDataSize)
513            || (offset + len > parcel->mDataSize)) {
514        return BAD_VALUE;
515    }
516
517    // Count objects in range
518    for (int i = 0; i < (int) size; i++) {
519        size_t off = objects[i];
520        if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
521            if (firstIndex == -1) {
522                firstIndex = i;
523            }
524            lastIndex = i;
525        }
526    }
527    int numObjects = lastIndex - firstIndex + 1;
528
529    if ((mDataSize+len) > mDataCapacity) {
530        // grow data
531        err = growData(len);
532        if (err != NO_ERROR) {
533            return err;
534        }
535    }
536
537    // append data
538    memcpy(mData + mDataPos, data + offset, len);
539    mDataPos += len;
540    mDataSize += len;
541
542    err = NO_ERROR;
543
544    if (numObjects > 0) {
545        // grow objects
546        if (mObjectsCapacity < mObjectsSize + numObjects) {
547            size_t newSize = ((mObjectsSize + numObjects)*3)/2;
548            if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
549            binder_size_t *objects =
550                (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
551            if (objects == (binder_size_t*)0) {
552                return NO_MEMORY;
553            }
554            mObjects = objects;
555            mObjectsCapacity = newSize;
556        }
557
558        // append and acquire objects
559        int idx = mObjectsSize;
560        for (int i = firstIndex; i <= lastIndex; i++) {
561            size_t off = objects[i] - offset + startPos;
562            mObjects[idx++] = off;
563            mObjectsSize++;
564
565            flat_binder_object* flat
566                = reinterpret_cast<flat_binder_object*>(mData + off);
567            acquire_object(proc, *flat, this, &mOpenAshmemSize);
568
569            if (flat->type == BINDER_TYPE_FD) {
570                // If this is a file descriptor, we need to dup it so the
571                // new Parcel now owns its own fd, and can declare that we
572                // officially know we have fds.
573                flat->handle = dup(flat->handle);
574                flat->cookie = 1;
575                mHasFds = mFdsKnown = true;
576                if (!mAllowFds) {
577                    err = FDS_NOT_ALLOWED;
578                }
579            }
580        }
581    }
582
583    return err;
584}
585
586bool Parcel::allowFds() const
587{
588    return mAllowFds;
589}
590
591bool Parcel::pushAllowFds(bool allowFds)
592{
593    const bool origValue = mAllowFds;
594    if (!allowFds) {
595        mAllowFds = false;
596    }
597    return origValue;
598}
599
600void Parcel::restoreAllowFds(bool lastValue)
601{
602    mAllowFds = lastValue;
603}
604
605bool Parcel::hasFileDescriptors() const
606{
607    if (!mFdsKnown) {
608        scanForFds();
609    }
610    return mHasFds;
611}
612
613// Write RPC headers.  (previously just the interface token)
614status_t Parcel::writeInterfaceToken(const String16& interface)
615{
616    writeInt32(IPCThreadState::self()->getStrictModePolicy() |
617               STRICT_MODE_PENALTY_GATHER);
618    // currently the interface identification token is just its name as a string
619    return writeString16(interface);
620}
621
622bool Parcel::checkInterface(IBinder* binder) const
623{
624    return enforceInterface(binder->getInterfaceDescriptor());
625}
626
627bool Parcel::enforceInterface(const String16& interface,
628                              IPCThreadState* threadState) const
629{
630    int32_t strictPolicy = readInt32();
631    if (threadState == NULL) {
632        threadState = IPCThreadState::self();
633    }
634    if ((threadState->getLastTransactionBinderFlags() &
635         IBinder::FLAG_ONEWAY) != 0) {
636      // For one-way calls, the callee is running entirely
637      // disconnected from the caller, so disable StrictMode entirely.
638      // Not only does disk/network usage not impact the caller, but
639      // there's no way to commuicate back any violations anyway.
640      threadState->setStrictModePolicy(0);
641    } else {
642      threadState->setStrictModePolicy(strictPolicy);
643    }
644    const String16 str(readString16());
645    if (str == interface) {
646        return true;
647    } else {
648        ALOGW("**** enforceInterface() expected '%s' but read '%s'",
649                String8(interface).string(), String8(str).string());
650        return false;
651    }
652}
653
654const binder_size_t* Parcel::objects() const
655{
656    return mObjects;
657}
658
659size_t Parcel::objectsCount() const
660{
661    return mObjectsSize;
662}
663
664status_t Parcel::errorCheck() const
665{
666    return mError;
667}
668
669void Parcel::setError(status_t err)
670{
671    mError = err;
672}
673
674status_t Parcel::finishWrite(size_t len)
675{
676    if (len > INT32_MAX) {
677        // don't accept size_t values which may have come from an
678        // inadvertent conversion from a negative int.
679        return BAD_VALUE;
680    }
681
682    //printf("Finish write of %d\n", len);
683    mDataPos += len;
684    ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
685    if (mDataPos > mDataSize) {
686        mDataSize = mDataPos;
687        ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
688    }
689    //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
690    return NO_ERROR;
691}
692
693status_t Parcel::writeUnpadded(const void* data, size_t len)
694{
695    if (len > INT32_MAX) {
696        // don't accept size_t values which may have come from an
697        // inadvertent conversion from a negative int.
698        return BAD_VALUE;
699    }
700
701    size_t end = mDataPos + len;
702    if (end < mDataPos) {
703        // integer overflow
704        return BAD_VALUE;
705    }
706
707    if (end <= mDataCapacity) {
708restart_write:
709        memcpy(mData+mDataPos, data, len);
710        return finishWrite(len);
711    }
712
713    status_t err = growData(len);
714    if (err == NO_ERROR) goto restart_write;
715    return err;
716}
717
718status_t Parcel::write(const void* data, size_t len)
719{
720    if (len > INT32_MAX) {
721        // don't accept size_t values which may have come from an
722        // inadvertent conversion from a negative int.
723        return BAD_VALUE;
724    }
725
726    void* const d = writeInplace(len);
727    if (d) {
728        memcpy(d, data, len);
729        return NO_ERROR;
730    }
731    return mError;
732}
733
734void* Parcel::writeInplace(size_t len)
735{
736    if (len > INT32_MAX) {
737        // don't accept size_t values which may have come from an
738        // inadvertent conversion from a negative int.
739        return NULL;
740    }
741
742    const size_t padded = pad_size(len);
743
744    // sanity check for integer overflow
745    if (mDataPos+padded < mDataPos) {
746        return NULL;
747    }
748
749    if ((mDataPos+padded) <= mDataCapacity) {
750restart_write:
751        //printf("Writing %ld bytes, padded to %ld\n", len, padded);
752        uint8_t* const data = mData+mDataPos;
753
754        // Need to pad at end?
755        if (padded != len) {
756#if BYTE_ORDER == BIG_ENDIAN
757            static const uint32_t mask[4] = {
758                0x00000000, 0xffffff00, 0xffff0000, 0xff000000
759            };
760#endif
761#if BYTE_ORDER == LITTLE_ENDIAN
762            static const uint32_t mask[4] = {
763                0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
764            };
765#endif
766            //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
767            //    *reinterpret_cast<void**>(data+padded-4));
768            *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
769        }
770
771        finishWrite(padded);
772        return data;
773    }
774
775    status_t err = growData(padded);
776    if (err == NO_ERROR) goto restart_write;
777    return NULL;
778}
779
780status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
781    const uint8_t* strData = (uint8_t*)str.data();
782    const size_t strLen= str.length();
783    const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
784    if (utf16Len < 0 || utf16Len> std::numeric_limits<int32_t>::max()) {
785        return BAD_VALUE;
786    }
787
788    status_t err = writeInt32(utf16Len);
789    if (err) {
790        return err;
791    }
792
793    // Allocate enough bytes to hold our converted string and its terminating NULL.
794    void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
795    if (!dst) {
796        return NO_MEMORY;
797    }
798
799    utf8_to_utf16(strData, strLen, (char16_t*)dst);
800
801    return NO_ERROR;
802}
803
804status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
805  if (!str) {
806    return writeInt32(-1);
807  }
808  return writeUtf8AsUtf16(*str);
809}
810
811status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
812{
813    if (!val) {
814        return writeInt32(-1);
815    }
816
817    return writeByteVector(*val);
818}
819
820status_t Parcel::writeByteVector(const std::vector<int8_t>& val)
821{
822    status_t status;
823    if (val.size() > std::numeric_limits<int32_t>::max()) {
824        status = BAD_VALUE;
825        return status;
826    }
827
828    status = writeInt32(val.size());
829    if (status != OK) {
830        return status;
831    }
832
833    void* data = writeInplace(val.size());
834    if (!data) {
835        status = BAD_VALUE;
836        return status;
837    }
838
839    memcpy(data, val.data(), val.size());
840    return status;
841}
842
843status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
844{
845    return writeTypedVector(val, &Parcel::writeInt32);
846}
847
848status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
849{
850    return writeNullableTypedVector(val, &Parcel::writeInt32);
851}
852
853status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
854{
855    return writeTypedVector(val, &Parcel::writeInt64);
856}
857
858status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
859{
860    return writeNullableTypedVector(val, &Parcel::writeInt64);
861}
862
863status_t Parcel::writeFloatVector(const std::vector<float>& val)
864{
865    return writeTypedVector(val, &Parcel::writeFloat);
866}
867
868status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
869{
870    return writeNullableTypedVector(val, &Parcel::writeFloat);
871}
872
873status_t Parcel::writeDoubleVector(const std::vector<double>& val)
874{
875    return writeTypedVector(val, &Parcel::writeDouble);
876}
877
878status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
879{
880    return writeNullableTypedVector(val, &Parcel::writeDouble);
881}
882
883status_t Parcel::writeBoolVector(const std::vector<bool>& val)
884{
885    return writeTypedVector(val, &Parcel::writeBool);
886}
887
888status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
889{
890    return writeNullableTypedVector(val, &Parcel::writeBool);
891}
892
893status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
894{
895    return writeTypedVector(val, &Parcel::writeChar);
896}
897
898status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
899{
900    return writeNullableTypedVector(val, &Parcel::writeChar);
901}
902
903status_t Parcel::writeString16Vector(const std::vector<String16>& val)
904{
905    return writeTypedVector(val, &Parcel::writeString16);
906}
907
908status_t Parcel::writeString16Vector(
909        const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
910{
911    return writeNullableTypedVector(val, &Parcel::writeString16);
912}
913
914status_t Parcel::writeUtf8VectorAsUtf16Vector(
915                        const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
916    return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
917}
918
919status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
920    return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
921}
922
923status_t Parcel::writeInt32(int32_t val)
924{
925    return writeAligned(val);
926}
927
928status_t Parcel::writeUint32(uint32_t val)
929{
930    return writeAligned(val);
931}
932
933status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
934    if (len > INT32_MAX) {
935        // don't accept size_t values which may have come from an
936        // inadvertent conversion from a negative int.
937        return BAD_VALUE;
938    }
939
940    if (!val) {
941        return writeInt32(-1);
942    }
943    status_t ret = writeInt32(static_cast<uint32_t>(len));
944    if (ret == NO_ERROR) {
945        ret = write(val, len * sizeof(*val));
946    }
947    return ret;
948}
949status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
950    if (len > INT32_MAX) {
951        // don't accept size_t values which may have come from an
952        // inadvertent conversion from a negative int.
953        return BAD_VALUE;
954    }
955
956    if (!val) {
957        return writeInt32(-1);
958    }
959    status_t ret = writeInt32(static_cast<uint32_t>(len));
960    if (ret == NO_ERROR) {
961        ret = write(val, len * sizeof(*val));
962    }
963    return ret;
964}
965
966status_t Parcel::writeBool(bool val)
967{
968    return writeInt32(int32_t(val));
969}
970
971status_t Parcel::writeChar(char16_t val)
972{
973    return writeInt32(int32_t(val));
974}
975
976status_t Parcel::writeByte(int8_t val)
977{
978    return writeInt32(int32_t(val));
979}
980
981status_t Parcel::writeInt64(int64_t val)
982{
983    return writeAligned(val);
984}
985
986status_t Parcel::writeUint64(uint64_t val)
987{
988    return writeAligned(val);
989}
990
991status_t Parcel::writePointer(uintptr_t val)
992{
993    return writeAligned<binder_uintptr_t>(val);
994}
995
996status_t Parcel::writeFloat(float val)
997{
998    return writeAligned(val);
999}
1000
1001#if defined(__mips__) && defined(__mips_hard_float)
1002
1003status_t Parcel::writeDouble(double val)
1004{
1005    union {
1006        double d;
1007        unsigned long long ll;
1008    } u;
1009    u.d = val;
1010    return writeAligned(u.ll);
1011}
1012
1013#else
1014
1015status_t Parcel::writeDouble(double val)
1016{
1017    return writeAligned(val);
1018}
1019
1020#endif
1021
1022status_t Parcel::writeCString(const char* str)
1023{
1024    return write(str, strlen(str)+1);
1025}
1026
1027status_t Parcel::writeString8(const String8& str)
1028{
1029    status_t err = writeInt32(str.bytes());
1030    // only write string if its length is more than zero characters,
1031    // as readString8 will only read if the length field is non-zero.
1032    // this is slightly different from how writeString16 works.
1033    if (str.bytes() > 0 && err == NO_ERROR) {
1034        err = write(str.string(), str.bytes()+1);
1035    }
1036    return err;
1037}
1038
1039status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
1040{
1041    if (!str) {
1042        return writeInt32(-1);
1043    }
1044
1045    return writeString16(*str);
1046}
1047
1048status_t Parcel::writeString16(const String16& str)
1049{
1050    return writeString16(str.string(), str.size());
1051}
1052
1053status_t Parcel::writeString16(const char16_t* str, size_t len)
1054{
1055    if (str == NULL) return writeInt32(-1);
1056
1057    status_t err = writeInt32(len);
1058    if (err == NO_ERROR) {
1059        len *= sizeof(char16_t);
1060        uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1061        if (data) {
1062            memcpy(data, str, len);
1063            *reinterpret_cast<char16_t*>(data+len) = 0;
1064            return NO_ERROR;
1065        }
1066        err = mError;
1067    }
1068    return err;
1069}
1070
1071status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1072{
1073    return flatten_binder(ProcessState::self(), val, this);
1074}
1075
1076status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1077{
1078    return writeTypedVector(val, &Parcel::writeStrongBinder);
1079}
1080
1081status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
1082{
1083    return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
1084}
1085
1086status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
1087    return readNullableTypedVector(val, &Parcel::readStrongBinder);
1088}
1089
1090status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1091    return readTypedVector(val, &Parcel::readStrongBinder);
1092}
1093
1094status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1095{
1096    return flatten_binder(ProcessState::self(), val, this);
1097}
1098
1099status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1100    if (!parcelable) {
1101        return writeInt32(0);
1102    }
1103
1104    return writeParcelable(*parcelable);
1105}
1106
1107status_t Parcel::writeParcelable(const Parcelable& parcelable) {
1108    status_t status = writeInt32(1);  // parcelable is not null.
1109    if (status != OK) {
1110        return status;
1111    }
1112    return parcelable.writeToParcel(this);
1113}
1114
1115status_t Parcel::writeNativeHandle(const native_handle* handle)
1116{
1117    if (!handle || handle->version != sizeof(native_handle))
1118        return BAD_TYPE;
1119
1120    status_t err;
1121    err = writeInt32(handle->numFds);
1122    if (err != NO_ERROR) return err;
1123
1124    err = writeInt32(handle->numInts);
1125    if (err != NO_ERROR) return err;
1126
1127    for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1128        err = writeDupFileDescriptor(handle->data[i]);
1129
1130    if (err != NO_ERROR) {
1131        ALOGD("write native handle, write dup fd failed");
1132        return err;
1133    }
1134    err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1135    return err;
1136}
1137
1138status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1139{
1140    flat_binder_object obj;
1141    obj.type = BINDER_TYPE_FD;
1142    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1143    obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1144    obj.handle = fd;
1145    obj.cookie = takeOwnership ? 1 : 0;
1146    return writeObject(obj, true);
1147}
1148
1149status_t Parcel::writeDupFileDescriptor(int fd)
1150{
1151    int dupFd = dup(fd);
1152    if (dupFd < 0) {
1153        return -errno;
1154    }
1155    status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1156    if (err != OK) {
1157        close(dupFd);
1158    }
1159    return err;
1160}
1161
1162status_t Parcel::writeUniqueFileDescriptor(const ScopedFd& fd) {
1163    return writeDupFileDescriptor(fd.get());
1164}
1165
1166status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<ScopedFd>& val) {
1167    return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1168}
1169
1170status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<ScopedFd>>& val) {
1171    return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1172}
1173
1174status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1175{
1176    if (len > INT32_MAX) {
1177        // don't accept size_t values which may have come from an
1178        // inadvertent conversion from a negative int.
1179        return BAD_VALUE;
1180    }
1181
1182    status_t status;
1183    if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1184        ALOGV("writeBlob: write in place");
1185        status = writeInt32(BLOB_INPLACE);
1186        if (status) return status;
1187
1188        void* ptr = writeInplace(len);
1189        if (!ptr) return NO_MEMORY;
1190
1191        outBlob->init(-1, ptr, len, false);
1192        return NO_ERROR;
1193    }
1194
1195    ALOGV("writeBlob: write to ashmem");
1196    int fd = ashmem_create_region("Parcel Blob", len);
1197    if (fd < 0) return NO_MEMORY;
1198
1199    int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1200    if (result < 0) {
1201        status = result;
1202    } else {
1203        void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1204        if (ptr == MAP_FAILED) {
1205            status = -errno;
1206        } else {
1207            if (!mutableCopy) {
1208                result = ashmem_set_prot_region(fd, PROT_READ);
1209            }
1210            if (result < 0) {
1211                status = result;
1212            } else {
1213                status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1214                if (!status) {
1215                    status = writeFileDescriptor(fd, true /*takeOwnership*/);
1216                    if (!status) {
1217                        outBlob->init(fd, ptr, len, mutableCopy);
1218                        return NO_ERROR;
1219                    }
1220                }
1221            }
1222        }
1223        ::munmap(ptr, len);
1224    }
1225    ::close(fd);
1226    return status;
1227}
1228
1229status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1230{
1231    // Must match up with what's done in writeBlob.
1232    if (!mAllowFds) return FDS_NOT_ALLOWED;
1233    status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1234    if (status) return status;
1235    return writeDupFileDescriptor(fd);
1236}
1237
1238status_t Parcel::write(const FlattenableHelperInterface& val)
1239{
1240    status_t err;
1241
1242    // size if needed
1243    const size_t len = val.getFlattenedSize();
1244    const size_t fd_count = val.getFdCount();
1245
1246    if ((len > INT32_MAX) || (fd_count > INT32_MAX)) {
1247        // don't accept size_t values which may have come from an
1248        // inadvertent conversion from a negative int.
1249        return BAD_VALUE;
1250    }
1251
1252    err = this->writeInt32(len);
1253    if (err) return err;
1254
1255    err = this->writeInt32(fd_count);
1256    if (err) return err;
1257
1258    // payload
1259    void* const buf = this->writeInplace(pad_size(len));
1260    if (buf == NULL)
1261        return BAD_VALUE;
1262
1263    int* fds = NULL;
1264    if (fd_count) {
1265        fds = new int[fd_count];
1266    }
1267
1268    err = val.flatten(buf, len, fds, fd_count);
1269    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1270        err = this->writeDupFileDescriptor( fds[i] );
1271    }
1272
1273    if (fd_count) {
1274        delete [] fds;
1275    }
1276
1277    return err;
1278}
1279
1280status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1281{
1282    const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1283    const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1284    if (enoughData && enoughObjects) {
1285restart_write:
1286        *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1287
1288        // remember if it's a file descriptor
1289        if (val.type == BINDER_TYPE_FD) {
1290            if (!mAllowFds) {
1291                // fail before modifying our object index
1292                return FDS_NOT_ALLOWED;
1293            }
1294            mHasFds = mFdsKnown = true;
1295        }
1296
1297        // Need to write meta-data?
1298        if (nullMetaData || val.binder != 0) {
1299            mObjects[mObjectsSize] = mDataPos;
1300            acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1301            mObjectsSize++;
1302        }
1303
1304        return finishWrite(sizeof(flat_binder_object));
1305    }
1306
1307    if (!enoughData) {
1308        const status_t err = growData(sizeof(val));
1309        if (err != NO_ERROR) return err;
1310    }
1311    if (!enoughObjects) {
1312        size_t newSize = ((mObjectsSize+2)*3)/2;
1313        if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
1314        binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1315        if (objects == NULL) return NO_MEMORY;
1316        mObjects = objects;
1317        mObjectsCapacity = newSize;
1318    }
1319
1320    goto restart_write;
1321}
1322
1323status_t Parcel::writeNoException()
1324{
1325    binder::Status status;
1326    return status.writeToParcel(this);
1327}
1328
1329void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1330{
1331    LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1332}
1333
1334status_t Parcel::read(void* outData, size_t len) const
1335{
1336    if (len > INT32_MAX) {
1337        // don't accept size_t values which may have come from an
1338        // inadvertent conversion from a negative int.
1339        return BAD_VALUE;
1340    }
1341
1342    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1343            && len <= pad_size(len)) {
1344        memcpy(outData, mData+mDataPos, len);
1345        mDataPos += pad_size(len);
1346        ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1347        return NO_ERROR;
1348    }
1349    return NOT_ENOUGH_DATA;
1350}
1351
1352const void* Parcel::readInplace(size_t len) const
1353{
1354    if (len > INT32_MAX) {
1355        // don't accept size_t values which may have come from an
1356        // inadvertent conversion from a negative int.
1357        return NULL;
1358    }
1359
1360    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1361            && len <= pad_size(len)) {
1362        const void* data = mData+mDataPos;
1363        mDataPos += pad_size(len);
1364        ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1365        return data;
1366    }
1367    return NULL;
1368}
1369
1370template<class T>
1371status_t Parcel::readAligned(T *pArg) const {
1372    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1373
1374    if ((mDataPos+sizeof(T)) <= mDataSize) {
1375        const void* data = mData+mDataPos;
1376        mDataPos += sizeof(T);
1377        *pArg =  *reinterpret_cast<const T*>(data);
1378        return NO_ERROR;
1379    } else {
1380        return NOT_ENOUGH_DATA;
1381    }
1382}
1383
1384template<class T>
1385T Parcel::readAligned() const {
1386    T result;
1387    if (readAligned(&result) != NO_ERROR) {
1388        result = 0;
1389    }
1390
1391    return result;
1392}
1393
1394template<class T>
1395status_t Parcel::writeAligned(T val) {
1396    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1397
1398    if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1399restart_write:
1400        *reinterpret_cast<T*>(mData+mDataPos) = val;
1401        return finishWrite(sizeof(val));
1402    }
1403
1404    status_t err = growData(sizeof(val));
1405    if (err == NO_ERROR) goto restart_write;
1406    return err;
1407}
1408
1409status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1410    val->clear();
1411
1412    int32_t size;
1413    status_t status = readInt32(&size);
1414
1415    if (status != OK) {
1416        return status;
1417    }
1418
1419    if (size < 0) {
1420        status = UNEXPECTED_NULL;
1421        return status;
1422    }
1423    if (size_t(size) > dataAvail()) {
1424        status = BAD_VALUE;
1425        return status;
1426    }
1427
1428    const void* data = readInplace(size);
1429    if (!data) {
1430        status = BAD_VALUE;
1431        return status;
1432    }
1433    val->resize(size);
1434    memcpy(val->data(), data, size);
1435
1436    return status;
1437}
1438
1439status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
1440    const int32_t start = dataPosition();
1441    int32_t size;
1442    status_t status = readInt32(&size);
1443    val->reset();
1444
1445    if (status != OK || size < 0) {
1446        return status;
1447    }
1448
1449    setDataPosition(start);
1450    val->reset(new std::vector<int8_t>());
1451
1452    status = readByteVector(val->get());
1453
1454    if (status != OK) {
1455        val->reset();
1456    }
1457
1458    return status;
1459}
1460
1461status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
1462    return readNullableTypedVector(val, &Parcel::readInt32);
1463}
1464
1465status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1466    return readTypedVector(val, &Parcel::readInt32);
1467}
1468
1469status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
1470    return readNullableTypedVector(val, &Parcel::readInt64);
1471}
1472
1473status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1474    return readTypedVector(val, &Parcel::readInt64);
1475}
1476
1477status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
1478    return readNullableTypedVector(val, &Parcel::readFloat);
1479}
1480
1481status_t Parcel::readFloatVector(std::vector<float>* val) const {
1482    return readTypedVector(val, &Parcel::readFloat);
1483}
1484
1485status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
1486    return readNullableTypedVector(val, &Parcel::readDouble);
1487}
1488
1489status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1490    return readTypedVector(val, &Parcel::readDouble);
1491}
1492
1493status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
1494    const int32_t start = dataPosition();
1495    int32_t size;
1496    status_t status = readInt32(&size);
1497    val->reset();
1498
1499    if (status != OK || size < 0) {
1500        return status;
1501    }
1502
1503    setDataPosition(start);
1504    val->reset(new std::vector<bool>());
1505
1506    status = readBoolVector(val->get());
1507
1508    if (status != OK) {
1509        val->reset();
1510    }
1511
1512    return status;
1513}
1514
1515status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1516    int32_t size;
1517    status_t status = readInt32(&size);
1518
1519    if (status != OK) {
1520        return status;
1521    }
1522
1523    if (size < 0) {
1524        return UNEXPECTED_NULL;
1525    }
1526
1527    val->resize(size);
1528
1529    /* C++ bool handling means a vector of bools isn't necessarily addressable
1530     * (we might use individual bits)
1531     */
1532    bool data;
1533    for (int32_t i = 0; i < size; ++i) {
1534        status = readBool(&data);
1535        (*val)[i] = data;
1536
1537        if (status != OK) {
1538            return status;
1539        }
1540    }
1541
1542    return OK;
1543}
1544
1545status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
1546    return readNullableTypedVector(val, &Parcel::readChar);
1547}
1548
1549status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1550    return readTypedVector(val, &Parcel::readChar);
1551}
1552
1553status_t Parcel::readString16Vector(
1554        std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
1555    return readNullableTypedVector(val, &Parcel::readString16);
1556}
1557
1558status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1559    return readTypedVector(val, &Parcel::readString16);
1560}
1561
1562status_t Parcel::readUtf8VectorFromUtf16Vector(
1563        std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
1564    return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
1565}
1566
1567status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
1568    return readTypedVector(val, &Parcel::readUtf8FromUtf16);
1569}
1570
1571status_t Parcel::readInt32(int32_t *pArg) const
1572{
1573    return readAligned(pArg);
1574}
1575
1576int32_t Parcel::readInt32() const
1577{
1578    return readAligned<int32_t>();
1579}
1580
1581status_t Parcel::readUint32(uint32_t *pArg) const
1582{
1583    return readAligned(pArg);
1584}
1585
1586uint32_t Parcel::readUint32() const
1587{
1588    return readAligned<uint32_t>();
1589}
1590
1591status_t Parcel::readInt64(int64_t *pArg) const
1592{
1593    return readAligned(pArg);
1594}
1595
1596
1597int64_t Parcel::readInt64() const
1598{
1599    return readAligned<int64_t>();
1600}
1601
1602status_t Parcel::readUint64(uint64_t *pArg) const
1603{
1604    return readAligned(pArg);
1605}
1606
1607uint64_t Parcel::readUint64() const
1608{
1609    return readAligned<uint64_t>();
1610}
1611
1612status_t Parcel::readPointer(uintptr_t *pArg) const
1613{
1614    status_t ret;
1615    binder_uintptr_t ptr;
1616    ret = readAligned(&ptr);
1617    if (!ret)
1618        *pArg = ptr;
1619    return ret;
1620}
1621
1622uintptr_t Parcel::readPointer() const
1623{
1624    return readAligned<binder_uintptr_t>();
1625}
1626
1627
1628status_t Parcel::readFloat(float *pArg) const
1629{
1630    return readAligned(pArg);
1631}
1632
1633
1634float Parcel::readFloat() const
1635{
1636    return readAligned<float>();
1637}
1638
1639#if defined(__mips__) && defined(__mips_hard_float)
1640
1641status_t Parcel::readDouble(double *pArg) const
1642{
1643    union {
1644      double d;
1645      unsigned long long ll;
1646    } u;
1647    u.d = 0;
1648    status_t status;
1649    status = readAligned(&u.ll);
1650    *pArg = u.d;
1651    return status;
1652}
1653
1654double Parcel::readDouble() const
1655{
1656    union {
1657      double d;
1658      unsigned long long ll;
1659    } u;
1660    u.ll = readAligned<unsigned long long>();
1661    return u.d;
1662}
1663
1664#else
1665
1666status_t Parcel::readDouble(double *pArg) const
1667{
1668    return readAligned(pArg);
1669}
1670
1671double Parcel::readDouble() const
1672{
1673    return readAligned<double>();
1674}
1675
1676#endif
1677
1678status_t Parcel::readIntPtr(intptr_t *pArg) const
1679{
1680    return readAligned(pArg);
1681}
1682
1683
1684intptr_t Parcel::readIntPtr() const
1685{
1686    return readAligned<intptr_t>();
1687}
1688
1689status_t Parcel::readBool(bool *pArg) const
1690{
1691    int32_t tmp;
1692    status_t ret = readInt32(&tmp);
1693    *pArg = (tmp != 0);
1694    return ret;
1695}
1696
1697bool Parcel::readBool() const
1698{
1699    return readInt32() != 0;
1700}
1701
1702status_t Parcel::readChar(char16_t *pArg) const
1703{
1704    int32_t tmp;
1705    status_t ret = readInt32(&tmp);
1706    *pArg = char16_t(tmp);
1707    return ret;
1708}
1709
1710char16_t Parcel::readChar() const
1711{
1712    return char16_t(readInt32());
1713}
1714
1715status_t Parcel::readByte(int8_t *pArg) const
1716{
1717    int32_t tmp;
1718    status_t ret = readInt32(&tmp);
1719    *pArg = int8_t(tmp);
1720    return ret;
1721}
1722
1723int8_t Parcel::readByte() const
1724{
1725    return int8_t(readInt32());
1726}
1727
1728status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1729    size_t utf16Size = 0;
1730    const char16_t* src = readString16Inplace(&utf16Size);
1731    if (!src) {
1732        return UNEXPECTED_NULL;
1733    }
1734
1735    // Save ourselves the trouble, we're done.
1736    if (utf16Size == 0u) {
1737        str->clear();
1738       return NO_ERROR;
1739    }
1740
1741    ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size);
1742    if (utf8Size < 0) {
1743        return BAD_VALUE;
1744    }
1745    // Note that while it is probably safe to assume string::resize keeps a
1746    // spare byte around for the trailing null, we're going to be explicit.
1747    str->resize(utf8Size + 1);
1748    utf16_to_utf8(src, utf16Size, &((*str)[0]));
1749    str->resize(utf8Size);
1750    return NO_ERROR;
1751}
1752
1753status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
1754    const int32_t start = dataPosition();
1755    int32_t size;
1756    status_t status = readInt32(&size);
1757    str->reset();
1758
1759    if (status != OK || size < 0) {
1760        return status;
1761    }
1762
1763    setDataPosition(start);
1764    str->reset(new std::string());
1765    return readUtf8FromUtf16(str->get());
1766}
1767
1768const char* Parcel::readCString() const
1769{
1770    const size_t avail = mDataSize-mDataPos;
1771    if (avail > 0) {
1772        const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1773        // is the string's trailing NUL within the parcel's valid bounds?
1774        const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1775        if (eos) {
1776            const size_t len = eos - str;
1777            mDataPos += pad_size(len+1);
1778            ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1779            return str;
1780        }
1781    }
1782    return NULL;
1783}
1784
1785String8 Parcel::readString8() const
1786{
1787    int32_t size = readInt32();
1788    // watch for potential int overflow adding 1 for trailing NUL
1789    if (size > 0 && size < INT32_MAX) {
1790        const char* str = (const char*)readInplace(size+1);
1791        if (str) return String8(str, size);
1792    }
1793    return String8();
1794}
1795
1796String16 Parcel::readString16() const
1797{
1798    size_t len;
1799    const char16_t* str = readString16Inplace(&len);
1800    if (str) return String16(str, len);
1801    ALOGE("Reading a NULL string not supported here.");
1802    return String16();
1803}
1804
1805status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1806{
1807    const int32_t start = dataPosition();
1808    int32_t size;
1809    status_t status = readInt32(&size);
1810    pArg->reset();
1811
1812    if (status != OK || size < 0) {
1813        return status;
1814    }
1815
1816    setDataPosition(start);
1817    pArg->reset(new String16());
1818
1819    status = readString16(pArg->get());
1820
1821    if (status != OK) {
1822        pArg->reset();
1823    }
1824
1825    return status;
1826}
1827
1828status_t Parcel::readString16(String16* pArg) const
1829{
1830    size_t len;
1831    const char16_t* str = readString16Inplace(&len);
1832    if (str) {
1833        pArg->setTo(str, len);
1834        return 0;
1835    } else {
1836        *pArg = String16();
1837        return UNEXPECTED_NULL;
1838    }
1839}
1840
1841const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1842{
1843    int32_t size = readInt32();
1844    // watch for potential int overflow from size+1
1845    if (size >= 0 && size < INT32_MAX) {
1846        *outLen = size;
1847        const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1848        if (str != NULL) {
1849            return str;
1850        }
1851    }
1852    *outLen = 0;
1853    return NULL;
1854}
1855
1856status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1857{
1858    return unflatten_binder(ProcessState::self(), *this, val);
1859}
1860
1861sp<IBinder> Parcel::readStrongBinder() const
1862{
1863    sp<IBinder> val;
1864    readStrongBinder(&val);
1865    return val;
1866}
1867
1868wp<IBinder> Parcel::readWeakBinder() const
1869{
1870    wp<IBinder> val;
1871    unflatten_binder(ProcessState::self(), *this, &val);
1872    return val;
1873}
1874
1875status_t Parcel::readParcelable(Parcelable* parcelable) const {
1876    int32_t have_parcelable = 0;
1877    status_t status = readInt32(&have_parcelable);
1878    if (status != OK) {
1879        return status;
1880    }
1881    if (!have_parcelable) {
1882        return UNEXPECTED_NULL;
1883    }
1884    return parcelable->readFromParcel(this);
1885}
1886
1887int32_t Parcel::readExceptionCode() const
1888{
1889    binder::Status status;
1890    status.readFromParcel(*this);
1891    return status.exceptionCode();
1892}
1893
1894native_handle* Parcel::readNativeHandle() const
1895{
1896    int numFds, numInts;
1897    status_t err;
1898    err = readInt32(&numFds);
1899    if (err != NO_ERROR) return 0;
1900    err = readInt32(&numInts);
1901    if (err != NO_ERROR) return 0;
1902
1903    native_handle* h = native_handle_create(numFds, numInts);
1904    if (!h) {
1905        return 0;
1906    }
1907
1908    for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
1909        h->data[i] = dup(readFileDescriptor());
1910        if (h->data[i] < 0) err = BAD_VALUE;
1911    }
1912    err = read(h->data + numFds, sizeof(int)*numInts);
1913    if (err != NO_ERROR) {
1914        native_handle_close(h);
1915        native_handle_delete(h);
1916        h = 0;
1917    }
1918    return h;
1919}
1920
1921
1922int Parcel::readFileDescriptor() const
1923{
1924    const flat_binder_object* flat = readObject(true);
1925
1926    if (flat && flat->type == BINDER_TYPE_FD) {
1927        return flat->handle;
1928    }
1929
1930    return BAD_TYPE;
1931}
1932
1933status_t Parcel::readUniqueFileDescriptor(ScopedFd* val) const
1934{
1935    int got = readFileDescriptor();
1936
1937    if (got == BAD_TYPE) {
1938        return BAD_TYPE;
1939    }
1940
1941    val->reset(dup(got));
1942
1943    if (val->get() < 0) {
1944        return BAD_VALUE;
1945    }
1946
1947    return OK;
1948}
1949
1950
1951status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<ScopedFd>>* val) const {
1952    return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
1953}
1954
1955status_t Parcel::readUniqueFileDescriptorVector(std::vector<ScopedFd>* val) const {
1956    return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
1957}
1958
1959status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
1960{
1961    int32_t blobType;
1962    status_t status = readInt32(&blobType);
1963    if (status) return status;
1964
1965    if (blobType == BLOB_INPLACE) {
1966        ALOGV("readBlob: read in place");
1967        const void* ptr = readInplace(len);
1968        if (!ptr) return BAD_VALUE;
1969
1970        outBlob->init(-1, const_cast<void*>(ptr), len, false);
1971        return NO_ERROR;
1972    }
1973
1974    ALOGV("readBlob: read from ashmem");
1975    bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
1976    int fd = readFileDescriptor();
1977    if (fd == int(BAD_TYPE)) return BAD_VALUE;
1978
1979    void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
1980            MAP_SHARED, fd, 0);
1981    if (ptr == MAP_FAILED) return NO_MEMORY;
1982
1983    outBlob->init(fd, ptr, len, isMutable);
1984    return NO_ERROR;
1985}
1986
1987status_t Parcel::read(FlattenableHelperInterface& val) const
1988{
1989    // size
1990    const size_t len = this->readInt32();
1991    const size_t fd_count = this->readInt32();
1992
1993    if (len > INT32_MAX) {
1994        // don't accept size_t values which may have come from an
1995        // inadvertent conversion from a negative int.
1996        return BAD_VALUE;
1997    }
1998
1999    // payload
2000    void const* const buf = this->readInplace(pad_size(len));
2001    if (buf == NULL)
2002        return BAD_VALUE;
2003
2004    int* fds = NULL;
2005    if (fd_count) {
2006        fds = new int[fd_count];
2007    }
2008
2009    status_t err = NO_ERROR;
2010    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2011        fds[i] = dup(this->readFileDescriptor());
2012        if (fds[i] < 0) {
2013            err = BAD_VALUE;
2014            ALOGE("dup() failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2015                i, fds[i], fd_count, strerror(errno));
2016        }
2017    }
2018
2019    if (err == NO_ERROR) {
2020        err = val.unflatten(buf, len, fds, fd_count);
2021    }
2022
2023    if (fd_count) {
2024        delete [] fds;
2025    }
2026
2027    return err;
2028}
2029const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2030{
2031    const size_t DPOS = mDataPos;
2032    if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2033        const flat_binder_object* obj
2034                = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2035        mDataPos = DPOS + sizeof(flat_binder_object);
2036        if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2037            // When transferring a NULL object, we don't write it into
2038            // the object list, so we don't want to check for it when
2039            // reading.
2040            ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2041            return obj;
2042        }
2043
2044        // Ensure that this object is valid...
2045        binder_size_t* const OBJS = mObjects;
2046        const size_t N = mObjectsSize;
2047        size_t opos = mNextObjectHint;
2048
2049        if (N > 0) {
2050            ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2051                 this, DPOS, opos);
2052
2053            // Start at the current hint position, looking for an object at
2054            // the current data position.
2055            if (opos < N) {
2056                while (opos < (N-1) && OBJS[opos] < DPOS) {
2057                    opos++;
2058                }
2059            } else {
2060                opos = N-1;
2061            }
2062            if (OBJS[opos] == DPOS) {
2063                // Found it!
2064                ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2065                     this, DPOS, opos);
2066                mNextObjectHint = opos+1;
2067                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2068                return obj;
2069            }
2070
2071            // Look backwards for it...
2072            while (opos > 0 && OBJS[opos] > DPOS) {
2073                opos--;
2074            }
2075            if (OBJS[opos] == DPOS) {
2076                // Found it!
2077                ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2078                     this, DPOS, opos);
2079                mNextObjectHint = opos+1;
2080                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2081                return obj;
2082            }
2083        }
2084        ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2085             this, DPOS);
2086    }
2087    return NULL;
2088}
2089
2090void Parcel::closeFileDescriptors()
2091{
2092    size_t i = mObjectsSize;
2093    if (i > 0) {
2094        //ALOGI("Closing file descriptors for %zu objects...", i);
2095    }
2096    while (i > 0) {
2097        i--;
2098        const flat_binder_object* flat
2099            = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2100        if (flat->type == BINDER_TYPE_FD) {
2101            //ALOGI("Closing fd: %ld", flat->handle);
2102            close(flat->handle);
2103        }
2104    }
2105}
2106
2107uintptr_t Parcel::ipcData() const
2108{
2109    return reinterpret_cast<uintptr_t>(mData);
2110}
2111
2112size_t Parcel::ipcDataSize() const
2113{
2114    return (mDataSize > mDataPos ? mDataSize : mDataPos);
2115}
2116
2117uintptr_t Parcel::ipcObjects() const
2118{
2119    return reinterpret_cast<uintptr_t>(mObjects);
2120}
2121
2122size_t Parcel::ipcObjectsCount() const
2123{
2124    return mObjectsSize;
2125}
2126
2127void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2128    const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
2129{
2130    binder_size_t minOffset = 0;
2131    freeDataNoInit();
2132    mError = NO_ERROR;
2133    mData = const_cast<uint8_t*>(data);
2134    mDataSize = mDataCapacity = dataSize;
2135    //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
2136    mDataPos = 0;
2137    ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
2138    mObjects = const_cast<binder_size_t*>(objects);
2139    mObjectsSize = mObjectsCapacity = objectsCount;
2140    mNextObjectHint = 0;
2141    mOwner = relFunc;
2142    mOwnerCookie = relCookie;
2143    for (size_t i = 0; i < mObjectsSize; i++) {
2144        binder_size_t offset = mObjects[i];
2145        if (offset < minOffset) {
2146            ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2147                  __func__, (uint64_t)offset, (uint64_t)minOffset);
2148            mObjectsSize = 0;
2149            break;
2150        }
2151        minOffset = offset + sizeof(flat_binder_object);
2152    }
2153    scanForFds();
2154}
2155
2156void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2157{
2158    to << "Parcel(";
2159
2160    if (errorCheck() != NO_ERROR) {
2161        const status_t err = errorCheck();
2162        to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2163    } else if (dataSize() > 0) {
2164        const uint8_t* DATA = data();
2165        to << indent << HexDump(DATA, dataSize()) << dedent;
2166        const binder_size_t* OBJS = objects();
2167        const size_t N = objectsCount();
2168        for (size_t i=0; i<N; i++) {
2169            const flat_binder_object* flat
2170                = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2171            to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2172                << TypeCode(flat->type & 0x7f7f7f00)
2173                << " = " << flat->binder;
2174        }
2175    } else {
2176        to << "NULL";
2177    }
2178
2179    to << ")";
2180}
2181
2182void Parcel::releaseObjects()
2183{
2184    const sp<ProcessState> proc(ProcessState::self());
2185    size_t i = mObjectsSize;
2186    uint8_t* const data = mData;
2187    binder_size_t* const objects = mObjects;
2188    while (i > 0) {
2189        i--;
2190        const flat_binder_object* flat
2191            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2192        release_object(proc, *flat, this, &mOpenAshmemSize);
2193    }
2194}
2195
2196void Parcel::acquireObjects()
2197{
2198    const sp<ProcessState> proc(ProcessState::self());
2199    size_t i = mObjectsSize;
2200    uint8_t* const data = mData;
2201    binder_size_t* const objects = mObjects;
2202    while (i > 0) {
2203        i--;
2204        const flat_binder_object* flat
2205            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2206        acquire_object(proc, *flat, this, &mOpenAshmemSize);
2207    }
2208}
2209
2210void Parcel::freeData()
2211{
2212    freeDataNoInit();
2213    initState();
2214}
2215
2216void Parcel::freeDataNoInit()
2217{
2218    if (mOwner) {
2219        LOG_ALLOC("Parcel %p: freeing other owner data", this);
2220        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2221        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2222    } else {
2223        LOG_ALLOC("Parcel %p: freeing allocated data", this);
2224        releaseObjects();
2225        if (mData) {
2226            LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2227            pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2228            if (mDataCapacity <= gParcelGlobalAllocSize) {
2229              gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2230            } else {
2231              gParcelGlobalAllocSize = 0;
2232            }
2233            if (gParcelGlobalAllocCount > 0) {
2234              gParcelGlobalAllocCount--;
2235            }
2236            pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2237            free(mData);
2238        }
2239        if (mObjects) free(mObjects);
2240    }
2241}
2242
2243status_t Parcel::growData(size_t len)
2244{
2245    if (len > INT32_MAX) {
2246        // don't accept size_t values which may have come from an
2247        // inadvertent conversion from a negative int.
2248        return BAD_VALUE;
2249    }
2250
2251    size_t newSize = ((mDataSize+len)*3)/2;
2252    return (newSize <= mDataSize)
2253            ? (status_t) NO_MEMORY
2254            : continueWrite(newSize);
2255}
2256
2257status_t Parcel::restartWrite(size_t desired)
2258{
2259    if (desired > INT32_MAX) {
2260        // don't accept size_t values which may have come from an
2261        // inadvertent conversion from a negative int.
2262        return BAD_VALUE;
2263    }
2264
2265    if (mOwner) {
2266        freeData();
2267        return continueWrite(desired);
2268    }
2269
2270    uint8_t* data = (uint8_t*)realloc(mData, desired);
2271    if (!data && desired > mDataCapacity) {
2272        mError = NO_MEMORY;
2273        return NO_MEMORY;
2274    }
2275
2276    releaseObjects();
2277
2278    if (data) {
2279        LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2280        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2281        gParcelGlobalAllocSize += desired;
2282        gParcelGlobalAllocSize -= mDataCapacity;
2283        if (!mData) {
2284            gParcelGlobalAllocCount++;
2285        }
2286        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2287        mData = data;
2288        mDataCapacity = desired;
2289    }
2290
2291    mDataSize = mDataPos = 0;
2292    ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2293    ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2294
2295    free(mObjects);
2296    mObjects = NULL;
2297    mObjectsSize = mObjectsCapacity = 0;
2298    mNextObjectHint = 0;
2299    mHasFds = false;
2300    mFdsKnown = true;
2301    mAllowFds = true;
2302
2303    return NO_ERROR;
2304}
2305
2306status_t Parcel::continueWrite(size_t desired)
2307{
2308    if (desired > INT32_MAX) {
2309        // don't accept size_t values which may have come from an
2310        // inadvertent conversion from a negative int.
2311        return BAD_VALUE;
2312    }
2313
2314    // If shrinking, first adjust for any objects that appear
2315    // after the new data size.
2316    size_t objectsSize = mObjectsSize;
2317    if (desired < mDataSize) {
2318        if (desired == 0) {
2319            objectsSize = 0;
2320        } else {
2321            while (objectsSize > 0) {
2322                if (mObjects[objectsSize-1] < desired)
2323                    break;
2324                objectsSize--;
2325            }
2326        }
2327    }
2328
2329    if (mOwner) {
2330        // If the size is going to zero, just release the owner's data.
2331        if (desired == 0) {
2332            freeData();
2333            return NO_ERROR;
2334        }
2335
2336        // If there is a different owner, we need to take
2337        // posession.
2338        uint8_t* data = (uint8_t*)malloc(desired);
2339        if (!data) {
2340            mError = NO_MEMORY;
2341            return NO_MEMORY;
2342        }
2343        binder_size_t* objects = NULL;
2344
2345        if (objectsSize) {
2346            objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2347            if (!objects) {
2348                free(data);
2349
2350                mError = NO_MEMORY;
2351                return NO_MEMORY;
2352            }
2353
2354            // Little hack to only acquire references on objects
2355            // we will be keeping.
2356            size_t oldObjectsSize = mObjectsSize;
2357            mObjectsSize = objectsSize;
2358            acquireObjects();
2359            mObjectsSize = oldObjectsSize;
2360        }
2361
2362        if (mData) {
2363            memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2364        }
2365        if (objects && mObjects) {
2366            memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2367        }
2368        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2369        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2370        mOwner = NULL;
2371
2372        LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2373        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2374        gParcelGlobalAllocSize += desired;
2375        gParcelGlobalAllocCount++;
2376        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2377
2378        mData = data;
2379        mObjects = objects;
2380        mDataSize = (mDataSize < desired) ? mDataSize : desired;
2381        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2382        mDataCapacity = desired;
2383        mObjectsSize = mObjectsCapacity = objectsSize;
2384        mNextObjectHint = 0;
2385
2386    } else if (mData) {
2387        if (objectsSize < mObjectsSize) {
2388            // Need to release refs on any objects we are dropping.
2389            const sp<ProcessState> proc(ProcessState::self());
2390            for (size_t i=objectsSize; i<mObjectsSize; i++) {
2391                const flat_binder_object* flat
2392                    = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2393                if (flat->type == BINDER_TYPE_FD) {
2394                    // will need to rescan because we may have lopped off the only FDs
2395                    mFdsKnown = false;
2396                }
2397                release_object(proc, *flat, this, &mOpenAshmemSize);
2398            }
2399            binder_size_t* objects =
2400                (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2401            if (objects) {
2402                mObjects = objects;
2403            }
2404            mObjectsSize = objectsSize;
2405            mNextObjectHint = 0;
2406        }
2407
2408        // We own the data, so we can just do a realloc().
2409        if (desired > mDataCapacity) {
2410            uint8_t* data = (uint8_t*)realloc(mData, desired);
2411            if (data) {
2412                LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2413                        desired);
2414                pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2415                gParcelGlobalAllocSize += desired;
2416                gParcelGlobalAllocSize -= mDataCapacity;
2417                pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2418                mData = data;
2419                mDataCapacity = desired;
2420            } else if (desired > mDataCapacity) {
2421                mError = NO_MEMORY;
2422                return NO_MEMORY;
2423            }
2424        } else {
2425            if (mDataSize > desired) {
2426                mDataSize = desired;
2427                ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2428            }
2429            if (mDataPos > desired) {
2430                mDataPos = desired;
2431                ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2432            }
2433        }
2434
2435    } else {
2436        // This is the first data.  Easy!
2437        uint8_t* data = (uint8_t*)malloc(desired);
2438        if (!data) {
2439            mError = NO_MEMORY;
2440            return NO_MEMORY;
2441        }
2442
2443        if(!(mDataCapacity == 0 && mObjects == NULL
2444             && mObjectsCapacity == 0)) {
2445            ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2446        }
2447
2448        LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2449        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2450        gParcelGlobalAllocSize += desired;
2451        gParcelGlobalAllocCount++;
2452        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2453
2454        mData = data;
2455        mDataSize = mDataPos = 0;
2456        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2457        ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2458        mDataCapacity = desired;
2459    }
2460
2461    return NO_ERROR;
2462}
2463
2464void Parcel::initState()
2465{
2466    LOG_ALLOC("Parcel %p: initState", this);
2467    mError = NO_ERROR;
2468    mData = 0;
2469    mDataSize = 0;
2470    mDataCapacity = 0;
2471    mDataPos = 0;
2472    ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2473    ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2474    mObjects = NULL;
2475    mObjectsSize = 0;
2476    mObjectsCapacity = 0;
2477    mNextObjectHint = 0;
2478    mHasFds = false;
2479    mFdsKnown = true;
2480    mAllowFds = true;
2481    mOwner = NULL;
2482    mOpenAshmemSize = 0;
2483}
2484
2485void Parcel::scanForFds() const
2486{
2487    bool hasFds = false;
2488    for (size_t i=0; i<mObjectsSize; i++) {
2489        const flat_binder_object* flat
2490            = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2491        if (flat->type == BINDER_TYPE_FD) {
2492            hasFds = true;
2493            break;
2494        }
2495    }
2496    mHasFds = hasFds;
2497    mFdsKnown = true;
2498}
2499
2500size_t Parcel::getBlobAshmemSize() const
2501{
2502    // This used to return the size of all blobs that were written to ashmem, now we're returning
2503    // the ashmem currently referenced by this Parcel, which should be equivalent.
2504    // TODO: Remove method once ABI can be changed.
2505    return mOpenAshmemSize;
2506}
2507
2508size_t Parcel::getOpenAshmemSize() const
2509{
2510    return mOpenAshmemSize;
2511}
2512
2513// --- Parcel::Blob ---
2514
2515Parcel::Blob::Blob() :
2516        mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2517}
2518
2519Parcel::Blob::~Blob() {
2520    release();
2521}
2522
2523void Parcel::Blob::release() {
2524    if (mFd != -1 && mData) {
2525        ::munmap(mData, mSize);
2526    }
2527    clear();
2528}
2529
2530void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2531    mFd = fd;
2532    mData = data;
2533    mSize = size;
2534    mMutable = isMutable;
2535}
2536
2537void Parcel::Blob::clear() {
2538    mFd = -1;
2539    mData = NULL;
2540    mSize = 0;
2541    mMutable = false;
2542}
2543
2544}; // namespace android
2545