1/*
2 * Copyright 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *       http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.support.v4.graphics;
18
19import android.graphics.Color;
20import android.support.annotation.ColorInt;
21import android.support.annotation.FloatRange;
22import android.support.annotation.IntRange;
23import android.support.annotation.NonNull;
24import android.support.annotation.VisibleForTesting;
25
26/**
27 * A set of color-related utility methods, building upon those available in {@code Color}.
28 */
29public final class ColorUtils {
30
31    private static final double XYZ_WHITE_REFERENCE_X = 95.047;
32    private static final double XYZ_WHITE_REFERENCE_Y = 100;
33    private static final double XYZ_WHITE_REFERENCE_Z = 108.883;
34    private static final double XYZ_EPSILON = 0.008856;
35    private static final double XYZ_KAPPA = 903.3;
36
37    private static final int MIN_ALPHA_SEARCH_MAX_ITERATIONS = 10;
38    private static final int MIN_ALPHA_SEARCH_PRECISION = 1;
39
40    private static final ThreadLocal<double[]> TEMP_ARRAY = new ThreadLocal<>();
41
42    private ColorUtils() {}
43
44    /**
45     * Composite two potentially translucent colors over each other and returns the result.
46     */
47    public static int compositeColors(@ColorInt int foreground, @ColorInt int background) {
48        int bgAlpha = Color.alpha(background);
49        int fgAlpha = Color.alpha(foreground);
50        int a = compositeAlpha(fgAlpha, bgAlpha);
51
52        int r = compositeComponent(Color.red(foreground), fgAlpha,
53                Color.red(background), bgAlpha, a);
54        int g = compositeComponent(Color.green(foreground), fgAlpha,
55                Color.green(background), bgAlpha, a);
56        int b = compositeComponent(Color.blue(foreground), fgAlpha,
57                Color.blue(background), bgAlpha, a);
58
59        return Color.argb(a, r, g, b);
60    }
61
62    private static int compositeAlpha(int foregroundAlpha, int backgroundAlpha) {
63        return 0xFF - (((0xFF - backgroundAlpha) * (0xFF - foregroundAlpha)) / 0xFF);
64    }
65
66    private static int compositeComponent(int fgC, int fgA, int bgC, int bgA, int a) {
67        if (a == 0) return 0;
68        return ((0xFF * fgC * fgA) + (bgC * bgA * (0xFF - fgA))) / (a * 0xFF);
69    }
70
71    /**
72     * Returns the luminance of a color as a float between {@code 0.0} and {@code 1.0}.
73     * <p>Defined as the Y component in the XYZ representation of {@code color}.</p>
74     */
75    @FloatRange(from = 0.0, to = 1.0)
76    public static double calculateLuminance(@ColorInt int color) {
77        final double[] result = getTempDouble3Array();
78        colorToXYZ(color, result);
79        // Luminance is the Y component
80        return result[1] / 100;
81    }
82
83    /**
84     * Returns the contrast ratio between {@code foreground} and {@code background}.
85     * {@code background} must be opaque.
86     * <p>
87     * Formula defined
88     * <a href="http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef">here</a>.
89     */
90    public static double calculateContrast(@ColorInt int foreground, @ColorInt int background) {
91        if (Color.alpha(background) != 255) {
92            throw new IllegalArgumentException("background can not be translucent: #"
93                    + Integer.toHexString(background));
94        }
95        if (Color.alpha(foreground) < 255) {
96            // If the foreground is translucent, composite the foreground over the background
97            foreground = compositeColors(foreground, background);
98        }
99
100        final double luminance1 = calculateLuminance(foreground) + 0.05;
101        final double luminance2 = calculateLuminance(background) + 0.05;
102
103        // Now return the lighter luminance divided by the darker luminance
104        return Math.max(luminance1, luminance2) / Math.min(luminance1, luminance2);
105    }
106
107    /**
108     * Calculates the minimum alpha value which can be applied to {@code foreground} so that would
109     * have a contrast value of at least {@code minContrastRatio} when compared to
110     * {@code background}.
111     *
112     * @param foreground       the foreground color
113     * @param background       the opaque background color
114     * @param minContrastRatio the minimum contrast ratio
115     * @return the alpha value in the range 0-255, or -1 if no value could be calculated
116     */
117    public static int calculateMinimumAlpha(@ColorInt int foreground, @ColorInt int background,
118            float minContrastRatio) {
119        if (Color.alpha(background) != 255) {
120            throw new IllegalArgumentException("background can not be translucent: #"
121                    + Integer.toHexString(background));
122        }
123
124        // First lets check that a fully opaque foreground has sufficient contrast
125        int testForeground = setAlphaComponent(foreground, 255);
126        double testRatio = calculateContrast(testForeground, background);
127        if (testRatio < minContrastRatio) {
128            // Fully opaque foreground does not have sufficient contrast, return error
129            return -1;
130        }
131
132        // Binary search to find a value with the minimum value which provides sufficient contrast
133        int numIterations = 0;
134        int minAlpha = 0;
135        int maxAlpha = 255;
136
137        while (numIterations <= MIN_ALPHA_SEARCH_MAX_ITERATIONS &&
138                (maxAlpha - minAlpha) > MIN_ALPHA_SEARCH_PRECISION) {
139            final int testAlpha = (minAlpha + maxAlpha) / 2;
140
141            testForeground = setAlphaComponent(foreground, testAlpha);
142            testRatio = calculateContrast(testForeground, background);
143
144            if (testRatio < minContrastRatio) {
145                minAlpha = testAlpha;
146            } else {
147                maxAlpha = testAlpha;
148            }
149
150            numIterations++;
151        }
152
153        // Conservatively return the max of the range of possible alphas, which is known to pass.
154        return maxAlpha;
155    }
156
157    /**
158     * Convert RGB components to HSL (hue-saturation-lightness).
159     * <ul>
160     * <li>outHsl[0] is Hue [0 .. 360)</li>
161     * <li>outHsl[1] is Saturation [0...1]</li>
162     * <li>outHsl[2] is Lightness [0...1]</li>
163     * </ul>
164     *
165     * @param r      red component value [0..255]
166     * @param g      green component value [0..255]
167     * @param b      blue component value [0..255]
168     * @param outHsl 3-element array which holds the resulting HSL components
169     */
170    public static void RGBToHSL(@IntRange(from = 0x0, to = 0xFF) int r,
171            @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
172            @NonNull float[] outHsl) {
173        final float rf = r / 255f;
174        final float gf = g / 255f;
175        final float bf = b / 255f;
176
177        final float max = Math.max(rf, Math.max(gf, bf));
178        final float min = Math.min(rf, Math.min(gf, bf));
179        final float deltaMaxMin = max - min;
180
181        float h, s;
182        float l = (max + min) / 2f;
183
184        if (max == min) {
185            // Monochromatic
186            h = s = 0f;
187        } else {
188            if (max == rf) {
189                h = ((gf - bf) / deltaMaxMin) % 6f;
190            } else if (max == gf) {
191                h = ((bf - rf) / deltaMaxMin) + 2f;
192            } else {
193                h = ((rf - gf) / deltaMaxMin) + 4f;
194            }
195
196            s = deltaMaxMin / (1f - Math.abs(2f * l - 1f));
197        }
198
199        h = (h * 60f) % 360f;
200        if (h < 0) {
201            h += 360f;
202        }
203
204        outHsl[0] = constrain(h, 0f, 360f);
205        outHsl[1] = constrain(s, 0f, 1f);
206        outHsl[2] = constrain(l, 0f, 1f);
207    }
208
209    /**
210     * Convert the ARGB color to its HSL (hue-saturation-lightness) components.
211     * <ul>
212     * <li>outHsl[0] is Hue [0 .. 360)</li>
213     * <li>outHsl[1] is Saturation [0...1]</li>
214     * <li>outHsl[2] is Lightness [0...1]</li>
215     * </ul>
216     *
217     * @param color  the ARGB color to convert. The alpha component is ignored
218     * @param outHsl 3-element array which holds the resulting HSL components
219     */
220    public static void colorToHSL(@ColorInt int color, @NonNull float[] outHsl) {
221        RGBToHSL(Color.red(color), Color.green(color), Color.blue(color), outHsl);
222    }
223
224    /**
225     * Convert HSL (hue-saturation-lightness) components to a RGB color.
226     * <ul>
227     * <li>hsl[0] is Hue [0 .. 360)</li>
228     * <li>hsl[1] is Saturation [0...1]</li>
229     * <li>hsl[2] is Lightness [0...1]</li>
230     * </ul>
231     * If hsv values are out of range, they are pinned.
232     *
233     * @param hsl 3-element array which holds the input HSL components
234     * @return the resulting RGB color
235     */
236    @ColorInt
237    public static int HSLToColor(@NonNull float[] hsl) {
238        final float h = hsl[0];
239        final float s = hsl[1];
240        final float l = hsl[2];
241
242        final float c = (1f - Math.abs(2 * l - 1f)) * s;
243        final float m = l - 0.5f * c;
244        final float x = c * (1f - Math.abs((h / 60f % 2f) - 1f));
245
246        final int hueSegment = (int) h / 60;
247
248        int r = 0, g = 0, b = 0;
249
250        switch (hueSegment) {
251            case 0:
252                r = Math.round(255 * (c + m));
253                g = Math.round(255 * (x + m));
254                b = Math.round(255 * m);
255                break;
256            case 1:
257                r = Math.round(255 * (x + m));
258                g = Math.round(255 * (c + m));
259                b = Math.round(255 * m);
260                break;
261            case 2:
262                r = Math.round(255 * m);
263                g = Math.round(255 * (c + m));
264                b = Math.round(255 * (x + m));
265                break;
266            case 3:
267                r = Math.round(255 * m);
268                g = Math.round(255 * (x + m));
269                b = Math.round(255 * (c + m));
270                break;
271            case 4:
272                r = Math.round(255 * (x + m));
273                g = Math.round(255 * m);
274                b = Math.round(255 * (c + m));
275                break;
276            case 5:
277            case 6:
278                r = Math.round(255 * (c + m));
279                g = Math.round(255 * m);
280                b = Math.round(255 * (x + m));
281                break;
282        }
283
284        r = constrain(r, 0, 255);
285        g = constrain(g, 0, 255);
286        b = constrain(b, 0, 255);
287
288        return Color.rgb(r, g, b);
289    }
290
291    /**
292     * Set the alpha component of {@code color} to be {@code alpha}.
293     */
294    @ColorInt
295    public static int setAlphaComponent(@ColorInt int color,
296            @IntRange(from = 0x0, to = 0xFF) int alpha) {
297        if (alpha < 0 || alpha > 255) {
298            throw new IllegalArgumentException("alpha must be between 0 and 255.");
299        }
300        return (color & 0x00ffffff) | (alpha << 24);
301    }
302
303    /**
304     * Convert the ARGB color to its CIE Lab representative components.
305     *
306     * @param color  the ARGB color to convert. The alpha component is ignored
307     * @param outLab 3-element array which holds the resulting LAB components
308     */
309    public static void colorToLAB(@ColorInt int color, @NonNull double[] outLab) {
310        RGBToLAB(Color.red(color), Color.green(color), Color.blue(color), outLab);
311    }
312
313    /**
314     * Convert RGB components to its CIE Lab representative components.
315     *
316     * <ul>
317     * <li>outLab[0] is L [0 ...1)</li>
318     * <li>outLab[1] is a [-128...127)</li>
319     * <li>outLab[2] is b [-128...127)</li>
320     * </ul>
321     *
322     * @param r      red component value [0..255]
323     * @param g      green component value [0..255]
324     * @param b      blue component value [0..255]
325     * @param outLab 3-element array which holds the resulting LAB components
326     */
327    public static void RGBToLAB(@IntRange(from = 0x0, to = 0xFF) int r,
328            @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
329            @NonNull double[] outLab) {
330        // First we convert RGB to XYZ
331        RGBToXYZ(r, g, b, outLab);
332        // outLab now contains XYZ
333        XYZToLAB(outLab[0], outLab[1], outLab[2], outLab);
334        // outLab now contains LAB representation
335    }
336
337    /**
338     * Convert the ARGB color to its CIE XYZ representative components.
339     *
340     * <p>The resulting XYZ representation will use the D65 illuminant and the CIE
341     * 2° Standard Observer (1931).</p>
342     *
343     * <ul>
344     * <li>outXyz[0] is X [0 ...95.047)</li>
345     * <li>outXyz[1] is Y [0...100)</li>
346     * <li>outXyz[2] is Z [0...108.883)</li>
347     * </ul>
348     *
349     * @param color  the ARGB color to convert. The alpha component is ignored
350     * @param outXyz 3-element array which holds the resulting LAB components
351     */
352    public static void colorToXYZ(@ColorInt int color, @NonNull double[] outXyz) {
353        RGBToXYZ(Color.red(color), Color.green(color), Color.blue(color), outXyz);
354    }
355
356    /**
357     * Convert RGB components to its CIE XYZ representative components.
358     *
359     * <p>The resulting XYZ representation will use the D65 illuminant and the CIE
360     * 2° Standard Observer (1931).</p>
361     *
362     * <ul>
363     * <li>outXyz[0] is X [0 ...95.047)</li>
364     * <li>outXyz[1] is Y [0...100)</li>
365     * <li>outXyz[2] is Z [0...108.883)</li>
366     * </ul>
367     *
368     * @param r      red component value [0..255]
369     * @param g      green component value [0..255]
370     * @param b      blue component value [0..255]
371     * @param outXyz 3-element array which holds the resulting XYZ components
372     */
373    public static void RGBToXYZ(@IntRange(from = 0x0, to = 0xFF) int r,
374            @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
375            @NonNull double[] outXyz) {
376        if (outXyz.length != 3) {
377            throw new IllegalArgumentException("outXyz must have a length of 3.");
378        }
379
380        double sr = r / 255.0;
381        sr = sr < 0.04045 ? sr / 12.92 : Math.pow((sr + 0.055) / 1.055, 2.4);
382        double sg = g / 255.0;
383        sg = sg < 0.04045 ? sg / 12.92 : Math.pow((sg + 0.055) / 1.055, 2.4);
384        double sb = b / 255.0;
385        sb = sb < 0.04045 ? sb / 12.92 : Math.pow((sb + 0.055) / 1.055, 2.4);
386
387        outXyz[0] = 100 * (sr * 0.4124 + sg * 0.3576 + sb * 0.1805);
388        outXyz[1] = 100 * (sr * 0.2126 + sg * 0.7152 + sb * 0.0722);
389        outXyz[2] = 100 * (sr * 0.0193 + sg * 0.1192 + sb * 0.9505);
390    }
391
392    /**
393     * Converts a color from CIE XYZ to CIE Lab representation.
394     *
395     * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
396     * 2° Standard Observer (1931).</p>
397     *
398     * <ul>
399     * <li>outLab[0] is L [0 ...1)</li>
400     * <li>outLab[1] is a [-128...127)</li>
401     * <li>outLab[2] is b [-128...127)</li>
402     * </ul>
403     *
404     * @param x      X component value [0...95.047)
405     * @param y      Y component value [0...100)
406     * @param z      Z component value [0...108.883)
407     * @param outLab 3-element array which holds the resulting Lab components
408     */
409    public static void XYZToLAB(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
410            @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
411            @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z,
412            @NonNull double[] outLab) {
413        if (outLab.length != 3) {
414            throw new IllegalArgumentException("outLab must have a length of 3.");
415        }
416        x = pivotXyzComponent(x / XYZ_WHITE_REFERENCE_X);
417        y = pivotXyzComponent(y / XYZ_WHITE_REFERENCE_Y);
418        z = pivotXyzComponent(z / XYZ_WHITE_REFERENCE_Z);
419        outLab[0] = Math.max(0, 116 * y - 16);
420        outLab[1] = 500 * (x - y);
421        outLab[2] = 200 * (y - z);
422    }
423
424    /**
425     * Converts a color from CIE Lab to CIE XYZ representation.
426     *
427     * <p>The resulting XYZ representation will use the D65 illuminant and the CIE
428     * 2° Standard Observer (1931).</p>
429     *
430     * <ul>
431     * <li>outXyz[0] is X [0 ...95.047)</li>
432     * <li>outXyz[1] is Y [0...100)</li>
433     * <li>outXyz[2] is Z [0...108.883)</li>
434     * </ul>
435     *
436     * @param l      L component value [0...100)
437     * @param a      A component value [-128...127)
438     * @param b      B component value [-128...127)
439     * @param outXyz 3-element array which holds the resulting XYZ components
440     */
441    public static void LABToXYZ(@FloatRange(from = 0f, to = 100) final double l,
442            @FloatRange(from = -128, to = 127) final double a,
443            @FloatRange(from = -128, to = 127) final double b,
444            @NonNull double[] outXyz) {
445        final double fy = (l + 16) / 116;
446        final double fx = a / 500 + fy;
447        final double fz = fy - b / 200;
448
449        double tmp = Math.pow(fx, 3);
450        final double xr = tmp > XYZ_EPSILON ? tmp : (116 * fx - 16) / XYZ_KAPPA;
451        final double yr = l > XYZ_KAPPA * XYZ_EPSILON ? Math.pow(fy, 3) : l / XYZ_KAPPA;
452
453        tmp = Math.pow(fz, 3);
454        final double zr = tmp > XYZ_EPSILON ? tmp : (116 * fz - 16) / XYZ_KAPPA;
455
456        outXyz[0] = xr * XYZ_WHITE_REFERENCE_X;
457        outXyz[1] = yr * XYZ_WHITE_REFERENCE_Y;
458        outXyz[2] = zr * XYZ_WHITE_REFERENCE_Z;
459    }
460
461    /**
462     * Converts a color from CIE XYZ to its RGB representation.
463     *
464     * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
465     * 2° Standard Observer (1931).</p>
466     *
467     * @param x X component value [0...95.047)
468     * @param y Y component value [0...100)
469     * @param z Z component value [0...108.883)
470     * @return int containing the RGB representation
471     */
472    @ColorInt
473    public static int XYZToColor(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
474            @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
475            @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z) {
476        double r = (x * 3.2406 + y * -1.5372 + z * -0.4986) / 100;
477        double g = (x * -0.9689 + y * 1.8758 + z * 0.0415) / 100;
478        double b = (x * 0.0557 + y * -0.2040 + z * 1.0570) / 100;
479
480        r = r > 0.0031308 ? 1.055 * Math.pow(r, 1 / 2.4) - 0.055 : 12.92 * r;
481        g = g > 0.0031308 ? 1.055 * Math.pow(g, 1 / 2.4) - 0.055 : 12.92 * g;
482        b = b > 0.0031308 ? 1.055 * Math.pow(b, 1 / 2.4) - 0.055 : 12.92 * b;
483
484        return Color.rgb(
485                constrain((int) Math.round(r * 255), 0, 255),
486                constrain((int) Math.round(g * 255), 0, 255),
487                constrain((int) Math.round(b * 255), 0, 255));
488    }
489
490    /**
491     * Converts a color from CIE Lab to its RGB representation.
492     *
493     * @param l L component value [0...100]
494     * @param a A component value [-128...127]
495     * @param b B component value [-128...127]
496     * @return int containing the RGB representation
497     */
498    @ColorInt
499    public static int LABToColor(@FloatRange(from = 0f, to = 100) final double l,
500            @FloatRange(from = -128, to = 127) final double a,
501            @FloatRange(from = -128, to = 127) final double b) {
502        final double[] result = getTempDouble3Array();
503        LABToXYZ(l, a, b, result);
504        return XYZToColor(result[0], result[1], result[2]);
505    }
506
507    /**
508     * Returns the euclidean distance between two LAB colors.
509     */
510    public static double distanceEuclidean(@NonNull double[] labX, @NonNull double[] labY) {
511        return Math.sqrt(Math.pow(labX[0] - labY[0], 2)
512                + Math.pow(labX[1] - labY[1], 2)
513                + Math.pow(labX[2] - labY[2], 2));
514    }
515
516    private static float constrain(float amount, float low, float high) {
517        return amount < low ? low : (amount > high ? high : amount);
518    }
519
520    private static int constrain(int amount, int low, int high) {
521        return amount < low ? low : (amount > high ? high : amount);
522    }
523
524    private static double pivotXyzComponent(double component) {
525        return component > XYZ_EPSILON
526                ? Math.pow(component, 1 / 3.0)
527                : (XYZ_KAPPA * component + 16) / 116;
528    }
529
530    /**
531     * Blend between two ARGB colors using the given ratio.
532     *
533     * <p>A blend ratio of 0.0 will result in {@code color1}, 0.5 will give an even blend,
534     * 1.0 will result in {@code color2}.</p>
535     *
536     * @param color1 the first ARGB color
537     * @param color2 the second ARGB color
538     * @param ratio  the blend ratio of {@code color1} to {@code color2}
539     */
540    @ColorInt
541    public static int blendARGB(@ColorInt int color1, @ColorInt int color2,
542            @FloatRange(from = 0.0, to = 1.0) float ratio) {
543        final float inverseRatio = 1 - ratio;
544        float a = Color.alpha(color1) * inverseRatio + Color.alpha(color2) * ratio;
545        float r = Color.red(color1) * inverseRatio + Color.red(color2) * ratio;
546        float g = Color.green(color1) * inverseRatio + Color.green(color2) * ratio;
547        float b = Color.blue(color1) * inverseRatio + Color.blue(color2) * ratio;
548        return Color.argb((int) a, (int) r, (int) g, (int) b);
549    }
550
551    /**
552     * Blend between {@code hsl1} and {@code hsl2} using the given ratio. This will interpolate
553     * the hue using the shortest angle.
554     *
555     * <p>A blend ratio of 0.0 will result in {@code hsl1}, 0.5 will give an even blend,
556     * 1.0 will result in {@code hsl2}.</p>
557     *
558     * @param hsl1      3-element array which holds the first HSL color
559     * @param hsl2      3-element array which holds the second HSL color
560     * @param ratio     the blend ratio of {@code hsl1} to {@code hsl2}
561     * @param outResult 3-element array which holds the resulting HSL components
562     */
563    public static void blendHSL(@NonNull float[] hsl1, @NonNull float[] hsl2,
564            @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult) {
565        if (outResult.length != 3) {
566            throw new IllegalArgumentException("result must have a length of 3.");
567        }
568        final float inverseRatio = 1 - ratio;
569        // Since hue is circular we will need to interpolate carefully
570        outResult[0] = circularInterpolate(hsl1[0], hsl2[0], ratio);
571        outResult[1] = hsl1[1] * inverseRatio + hsl2[1] * ratio;
572        outResult[2] = hsl1[2] * inverseRatio + hsl2[2] * ratio;
573    }
574
575    /**
576     * Blend between two CIE-LAB colors using the given ratio.
577     *
578     * <p>A blend ratio of 0.0 will result in {@code lab1}, 0.5 will give an even blend,
579     * 1.0 will result in {@code lab2}.</p>
580     *
581     * @param lab1      3-element array which holds the first LAB color
582     * @param lab2      3-element array which holds the second LAB color
583     * @param ratio     the blend ratio of {@code lab1} to {@code lab2}
584     * @param outResult 3-element array which holds the resulting LAB components
585     */
586    public static void blendLAB(@NonNull double[] lab1, @NonNull double[] lab2,
587            @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult) {
588        if (outResult.length != 3) {
589            throw new IllegalArgumentException("outResult must have a length of 3.");
590        }
591        final double inverseRatio = 1 - ratio;
592        outResult[0] = lab1[0] * inverseRatio + lab2[0] * ratio;
593        outResult[1] = lab1[1] * inverseRatio + lab2[1] * ratio;
594        outResult[2] = lab1[2] * inverseRatio + lab2[2] * ratio;
595    }
596
597    @VisibleForTesting
598    static float circularInterpolate(float a, float b, float f) {
599        if (Math.abs(b - a) > 180) {
600            if (b > a) {
601                a += 360;
602            } else {
603                b += 360;
604            }
605        }
606        return (a + ((b - a) * f)) % 360;
607    }
608
609    private static double[] getTempDouble3Array() {
610        double[] result = TEMP_ARRAY.get();
611        if (result == null) {
612            result = new double[3];
613            TEMP_ARRAY.set(result);
614        }
615        return result;
616    }
617
618}
619