1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.net;
28
29import java.io.IOException;
30import java.io.InvalidObjectException;
31import java.io.ObjectInputStream;
32import java.io.ObjectOutputStream;
33import java.io.Serializable;
34import java.nio.ByteBuffer;
35import java.nio.CharBuffer;
36import java.nio.charset.CharsetDecoder;
37import java.nio.charset.CoderResult;
38import java.nio.charset.CodingErrorAction;
39import java.nio.charset.CharacterCodingException;
40import java.text.Normalizer;
41import sun.nio.cs.ThreadLocalCoders;
42
43import java.lang.Character;             // for javadoc
44import java.lang.NullPointerException;  // for javadoc
45
46
47/**
48 * Represents a Uniform Resource Identifier (URI) reference.
49 *
50 * <p> Aside from some minor deviations noted below, an instance of this
51 * class represents a URI reference as defined by
52 * <a href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC&nbsp;2396: Uniform
53 * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a
54 * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
55 * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format
56 * also supports scope_ids. The syntax and usage of scope_ids is described
57 * <a href="Inet6Address.html#scoped">here</a>.
58 * This class provides constructors for creating URI instances from
59 * their components or by parsing their string forms, methods for accessing the
60 * various components of an instance, and methods for normalizing, resolving,
61 * and relativizing URI instances.  Instances of this class are immutable.
62 *
63 *
64 * <h3> URI syntax and components </h3>
65 *
66 * At the highest level a URI reference (hereinafter simply "URI") in string
67 * form has the syntax
68 *
69 * <blockquote>
70 * [<i>scheme</i><b>{@code :}</b>]<i>scheme-specific-part</i>[<b>{@code #}</b><i>fragment</i>]
71 * </blockquote>
72 *
73 * where square brackets [...] delineate optional components and the characters
74 * <b>{@code :}</b> and <b>{@code #}</b> stand for themselves.
75 *
76 * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is
77 * said to be <i>relative</i>.  URIs are also classified according to whether
78 * they are <i>opaque</i> or <i>hierarchical</i>.
79 *
80 * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does
81 * not begin with a slash character ({@code '/'}).  Opaque URIs are not
82 * subject to further parsing.  Some examples of opaque URIs are:
83 *
84 * <blockquote><table cellpadding=0 cellspacing=0 summary="layout">
85 * <tr><td>{@code mailto:java-net@java.sun.com}<td></tr>
86 * <tr><td>{@code news:comp.lang.java}<td></tr>
87 * <tr><td>{@code urn:isbn:096139210x}</td></tr>
88 * </table></blockquote>
89 *
90 * <p> A <i>hierarchical</i> URI is either an absolute URI whose
91 * scheme-specific part begins with a slash character, or a relative URI, that
92 * is, a URI that does not specify a scheme.  Some examples of hierarchical
93 * URIs are:
94 *
95 * <blockquote>
96 * {@code http://java.sun.com/j2se/1.3/}<br>
97 * {@code docs/guide/collections/designfaq.html#28}<br>
98 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java}<br>
99 * {@code file:///~/calendar}
100 * </blockquote>
101 *
102 * <p> A hierarchical URI is subject to further parsing according to the syntax
103 *
104 * <blockquote>
105 * [<i>scheme</i><b>{@code :}</b>][<b>{@code //}</b><i>authority</i>][<i>path</i>][<b>{@code ?}</b><i>query</i>][<b>{@code #}</b><i>fragment</i>]
106 * </blockquote>
107 *
108 * where the characters <b>{@code :}</b>, <b>{@code /}</b>,
109 * <b>{@code ?}</b>, and <b>{@code #}</b> stand for themselves.  The
110 * scheme-specific part of a hierarchical URI consists of the characters
111 * between the scheme and fragment components.
112 *
113 * <p> The authority component of a hierarchical URI is, if specified, either
114 * <i>server-based</i> or <i>registry-based</i>.  A server-based authority
115 * parses according to the familiar syntax
116 *
117 * <blockquote>
118 * [<i>user-info</i><b>{@code @}</b>]<i>host</i>[<b>{@code :}</b><i>port</i>]
119 * </blockquote>
120 *
121 * where the characters <b>{@code @}</b> and <b>{@code :}</b> stand for
122 * themselves.  Nearly all URI schemes currently in use are server-based.  An
123 * authority component that does not parse in this way is considered to be
124 * registry-based.
125 *
126 * <p> The path component of a hierarchical URI is itself said to be absolute
127 * if it begins with a slash character ({@code '/'}); otherwise it is
128 * relative.  The path of a hierarchical URI that is either absolute or
129 * specifies an authority is always absolute.
130 *
131 * <p> All told, then, a URI instance has the following nine components:
132 *
133 * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment">
134 * <tr><th><i>Component</i></th><th><i>Type</i></th></tr>
135 * <tr><td>scheme</td><td>{@code String}</td></tr>
136 * <tr><td>scheme-specific-part&nbsp;&nbsp;&nbsp;&nbsp;</td><td>{@code String}</td></tr>
137 * <tr><td>authority</td><td>{@code String}</td></tr>
138 * <tr><td>user-info</td><td>{@code String}</td></tr>
139 * <tr><td>host</td><td>{@code String}</td></tr>
140 * <tr><td>port</td><td>{@code int}</td></tr>
141 * <tr><td>path</td><td>{@code String}</td></tr>
142 * <tr><td>query</td><td>{@code String}</td></tr>
143 * <tr><td>fragment</td><td>{@code String}</td></tr>
144 * </table></blockquote>
145 *
146 * In a given instance any particular component is either <i>undefined</i> or
147 * <i>defined</i> with a distinct value.  Undefined string components are
148 * represented by {@code null}, while undefined integer components are
149 * represented by {@code -1}.  A string component may be defined to have the
150 * empty string as its value; this is not equivalent to that component being
151 * undefined.
152 *
153 * <p> Whether a particular component is or is not defined in an instance
154 * depends upon the type of the URI being represented.  An absolute URI has a
155 * scheme component.  An opaque URI has a scheme, a scheme-specific part, and
156 * possibly a fragment, but has no other components.  A hierarchical URI always
157 * has a path (though it may be empty) and a scheme-specific-part (which at
158 * least contains the path), and may have any of the other components.  If the
159 * authority component is present and is server-based then the host component
160 * will be defined and the user-information and port components may be defined.
161 *
162 *
163 * <h4> Operations on URI instances </h4>
164 *
165 * The key operations supported by this class are those of
166 * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>.
167 *
168 * <p> <i>Normalization</i> is the process of removing unnecessary {@code "."}
169 * and {@code ".."} segments from the path component of a hierarchical URI.
170 * Each {@code "."} segment is simply removed.  A {@code ".."} segment is
171 * removed only if it is preceded by a non-{@code ".."} segment.
172 * Normalization has no effect upon opaque URIs.
173 *
174 * <p> <i>Resolution</i> is the process of resolving one URI against another,
175 * <i>base</i> URI.  The resulting URI is constructed from components of both
176 * URIs in the manner specified by RFC&nbsp;2396, taking components from the
177 * base URI for those not specified in the original.  For hierarchical URIs,
178 * the path of the original is resolved against the path of the base and then
179 * normalized.  The result, for example, of resolving
180 *
181 * <blockquote>
182 * {@code docs/guide/collections/designfaq.html#28}
183 * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
184 * &nbsp;&nbsp;&nbsp;&nbsp;(1)
185 * </blockquote>
186 *
187 * against the base URI {@code http://java.sun.com/j2se/1.3/} is the result
188 * URI
189 *
190 * <blockquote>
191 * {@code http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28}
192 * </blockquote>
193 *
194 * Resolving the relative URI
195 *
196 * <blockquote>
197 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java&nbsp;&nbsp;&nbsp;&nbsp;}(2)
198 * </blockquote>
199 *
200 * against this result yields, in turn,
201 *
202 * <blockquote>
203 * {@code http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java}
204 * </blockquote>
205 *
206 * Resolution of both absolute and relative URIs, and of both absolute and
207 * relative paths in the case of hierarchical URIs, is supported.  Resolving
208 * the URI {@code file:///~calendar} against any other URI simply yields the
209 * original URI, since it is absolute.  Resolving the relative URI (2) above
210 * against the relative base URI (1) yields the normalized, but still relative,
211 * URI
212 *
213 * <blockquote>
214 * {@code demo/jfc/SwingSet2/src/SwingSet2.java}
215 * </blockquote>
216 *
217 * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any
218 * two normalized URIs <i>u</i> and&nbsp;<i>v</i>,
219 *
220 * <blockquote>
221 *   <i>u</i>{@code .relativize(}<i>u</i>{@code .resolve(}<i>v</i>{@code )).equals(}<i>v</i>{@code )}&nbsp;&nbsp;and<br>
222 *   <i>u</i>{@code .resolve(}<i>u</i>{@code .relativize(}<i>v</i>{@code )).equals(}<i>v</i>{@code )}&nbsp;&nbsp;.<br>
223 * </blockquote>
224 *
225 * This operation is often useful when constructing a document containing URIs
226 * that must be made relative to the base URI of the document wherever
227 * possible.  For example, relativizing the URI
228 *
229 * <blockquote>
230 * {@code http://java.sun.com/j2se/1.3/docs/guide/index.html}
231 * </blockquote>
232 *
233 * against the base URI
234 *
235 * <blockquote>
236 * {@code http://java.sun.com/j2se/1.3}
237 * </blockquote>
238 *
239 * yields the relative URI {@code docs/guide/index.html}.
240 *
241 *
242 * <h4> Character categories </h4>
243 *
244 * RFC&nbsp;2396 specifies precisely which characters are permitted in the
245 * various components of a URI reference.  The following categories, most of
246 * which are taken from that specification, are used below to describe these
247 * constraints:
248 *
249 * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other">
250 *   <tr><th valign=top><i>alpha</i></th>
251 *       <td>The US-ASCII alphabetic characters,
252 *        {@code 'A'}&nbsp;through&nbsp;{@code 'Z'}
253 *        and {@code 'a'}&nbsp;through&nbsp;{@code 'z'}</td></tr>
254 *   <tr><th valign=top><i>digit</i></th>
255 *       <td>The US-ASCII decimal digit characters,
256 *       {@code '0'}&nbsp;through&nbsp;{@code '9'}</td></tr>
257 *   <tr><th valign=top><i>alphanum</i></th>
258 *       <td>All <i>alpha</i> and <i>digit</i> characters</td></tr>
259 *   <tr><th valign=top><i>unreserved</i>&nbsp;&nbsp;&nbsp;&nbsp;</th>
260 *       <td>All <i>alphanum</i> characters together with those in the string
261 *        {@code "_-!.~'()*"}</td></tr>
262 *   <tr><th valign=top><i>punct</i></th>
263 *       <td>The characters in the string {@code ",;:$&+="}</td></tr>
264 *   <tr><th valign=top><i>reserved</i></th>
265 *       <td>All <i>punct</i> characters together with those in the string
266 *        {@code "?/[]@"}</td></tr>
267 *   <tr><th valign=top><i>escaped</i></th>
268 *       <td>Escaped octets, that is, triplets consisting of the percent
269 *           character ({@code '%'}) followed by two hexadecimal digits
270 *           ({@code '0'}-{@code '9'}, {@code 'A'}-{@code 'F'}, and
271 *           {@code 'a'}-{@code 'f'})</td></tr>
272 *   <tr><th valign=top><i>other</i></th>
273 *       <td>The Unicode characters that are not in the US-ASCII character set,
274 *           are not control characters (according to the {@link
275 *           java.lang.Character#isISOControl(char) Character.isISOControl}
276 *           method), and are not space characters (according to the {@link
277 *           java.lang.Character#isSpaceChar(char) Character.isSpaceChar}
278 *           method)&nbsp;&nbsp;<i>(<b>Deviation from RFC 2396</b>, which is
279 *           limited to US-ASCII)</i></td></tr>
280 * </table></blockquote>
281 *
282 * <p><a name="legal-chars"></a> The set of all legal URI characters consists of
283 * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i>
284 * characters.
285 *
286 *
287 * <h4> Escaped octets, quotation, encoding, and decoding </h4>
288 *
289 * RFC 2396 allows escaped octets to appear in the user-info, path, query, and
290 * fragment components.  Escaping serves two purposes in URIs:
291 *
292 * <ul>
293 *
294 *   <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to
295 *   conform strictly to RFC&nbsp;2396 by not containing any <i>other</i>
296 *   characters.  </p></li>
297 *
298 *   <li><p> To <i>quote</i> characters that are otherwise illegal in a
299 *   component.  The user-info, path, query, and fragment components differ
300 *   slightly in terms of which characters are considered legal and illegal.
301 *   </p></li>
302 *
303 * </ul>
304 *
305 * These purposes are served in this class by three related operations:
306 *
307 * <ul>
308 *
309 *   <li><p><a name="encode"></a> A character is <i>encoded</i> by replacing it
310 *   with the sequence of escaped octets that represent that character in the
311 *   UTF-8 character set.  The Euro currency symbol ({@code '&#92;u20AC'}),
312 *   for example, is encoded as {@code "%E2%82%AC"}.  <i>(<b>Deviation from
313 *   RFC&nbsp;2396</b>, which does not specify any particular character
314 *   set.)</i> </p></li>
315 *
316 *   <li><p><a name="quote"></a> An illegal character is <i>quoted</i> simply by
317 *   encoding it.  The space character, for example, is quoted by replacing it
318 *   with {@code "%20"}.  UTF-8 contains US-ASCII, hence for US-ASCII
319 *   characters this transformation has exactly the effect required by
320 *   RFC&nbsp;2396. </p></li>
321 *
322 *   <li><p><a name="decode"></a>
323 *   A sequence of escaped octets is <i>decoded</i> by
324 *   replacing it with the sequence of characters that it represents in the
325 *   UTF-8 character set.  UTF-8 contains US-ASCII, hence decoding has the
326 *   effect of de-quoting any quoted US-ASCII characters as well as that of
327 *   decoding any encoded non-US-ASCII characters.  If a <a
328 *   href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs
329 *   when decoding the escaped octets then the erroneous octets are replaced by
330 *   {@code '&#92;uFFFD'}, the Unicode replacement character.  </p></li>
331 *
332 * </ul>
333 *
334 * These operations are exposed in the constructors and methods of this class
335 * as follows:
336 *
337 * <ul>
338 *
339 *   <li><p> The {@linkplain #URI(java.lang.String) single-argument
340 *   constructor} requires any illegal characters in its argument to be
341 *   quoted and preserves any escaped octets and <i>other</i> characters that
342 *   are present.  </p></li>
343 *
344 *   <li><p> The {@linkplain
345 *   #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String)
346 *   multi-argument constructors} quote illegal characters as
347 *   required by the components in which they appear.  The percent character
348 *   ({@code '%'}) is always quoted by these constructors.  Any <i>other</i>
349 *   characters are preserved.  </p></li>
350 *
351 *   <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath()
352 *   getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment()
353 *   getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link
354 *   #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the
355 *   values of their corresponding components in raw form, without interpreting
356 *   any escaped octets.  The strings returned by these methods may contain
357 *   both escaped octets and <i>other</i> characters, and will not contain any
358 *   illegal characters.  </p></li>
359 *
360 *   <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath()
361 *   getPath}, {@link #getQuery() getQuery}, {@link #getFragment()
362 *   getFragment}, {@link #getAuthority() getAuthority}, and {@link
363 *   #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped
364 *   octets in their corresponding components.  The strings returned by these
365 *   methods may contain both <i>other</i> characters and illegal characters,
366 *   and will not contain any escaped octets.  </p></li>
367 *
368 *   <li><p> The {@link #toString() toString} method returns a URI string with
369 *   all necessary quotation but which may contain <i>other</i> characters.
370 *   </p></li>
371 *
372 *   <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully
373 *   quoted and encoded URI string that does not contain any <i>other</i>
374 *   characters.  </p></li>
375 *
376 * </ul>
377 *
378 *
379 * <h4> Identities </h4>
380 *
381 * For any URI <i>u</i>, it is always the case that
382 *
383 * <blockquote>
384 * {@code new URI(}<i>u</i>{@code .toString()).equals(}<i>u</i>{@code )}&nbsp;.
385 * </blockquote>
386 *
387 * For any URI <i>u</i> that does not contain redundant syntax such as two
388 * slashes before an empty authority (as in {@code file:///tmp/}&nbsp;) or a
389 * colon following a host name but no port (as in
390 * {@code http://java.sun.com:}&nbsp;), and that does not encode characters
391 * except those that must be quoted, the following identities also hold:
392 * <pre>
393 *     new URI(<i>u</i>.getScheme(),
394 *             <i>u</i>.getSchemeSpecificPart(),
395 *             <i>u</i>.getFragment())
396 *     .equals(<i>u</i>)</pre>
397 * in all cases,
398 * <pre>
399 *     new URI(<i>u</i>.getScheme(),
400 *             <i>u</i>.getUserInfo(), <i>u</i>.getAuthority(),
401 *             <i>u</i>.getPath(), <i>u</i>.getQuery(),
402 *             <i>u</i>.getFragment())
403 *     .equals(<i>u</i>)</pre>
404 * if <i>u</i> is hierarchical, and
405 * <pre>
406 *     new URI(<i>u</i>.getScheme(),
407 *             <i>u</i>.getUserInfo(), <i>u</i>.getHost(), <i>u</i>.getPort(),
408 *             <i>u</i>.getPath(), <i>u</i>.getQuery(),
409 *             <i>u</i>.getFragment())
410 *     .equals(<i>u</i>)</pre>
411 * if <i>u</i> is hierarchical and has either no authority or a server-based
412 * authority.
413 *
414 *
415 * <h4> URIs, URLs, and URNs </h4>
416 *
417 * A URI is a uniform resource <i>identifier</i> while a URL is a uniform
418 * resource <i>locator</i>.  Hence every URL is a URI, abstractly speaking, but
419 * not every URI is a URL.  This is because there is another subcategory of
420 * URIs, uniform resource <i>names</i> (URNs), which name resources but do not
421 * specify how to locate them.  The {@code mailto}, {@code news}, and
422 * {@code isbn} URIs shown above are examples of URNs.
423 *
424 * <p> The conceptual distinction between URIs and URLs is reflected in the
425 * differences between this class and the {@link URL} class.
426 *
427 * <p> An instance of this class represents a URI reference in the syntactic
428 * sense defined by RFC&nbsp;2396.  A URI may be either absolute or relative.
429 * A URI string is parsed according to the generic syntax without regard to the
430 * scheme, if any, that it specifies.  No lookup of the host, if any, is
431 * performed, and no scheme-dependent stream handler is constructed.  Equality,
432 * hashing, and comparison are defined strictly in terms of the character
433 * content of the instance.  In other words, a URI instance is little more than
434 * a structured string that supports the syntactic, scheme-independent
435 * operations of comparison, normalization, resolution, and relativization.
436 *
437 * <p> An instance of the {@link URL} class, by contrast, represents the
438 * syntactic components of a URL together with some of the information required
439 * to access the resource that it describes.  A URL must be absolute, that is,
440 * it must always specify a scheme.  A URL string is parsed according to its
441 * scheme.  A stream handler is always established for a URL, and in fact it is
442 * impossible to create a URL instance for a scheme for which no handler is
443 * available.  Equality and hashing depend upon both the scheme and the
444 * Internet address of the host, if any; comparison is not defined.  In other
445 * words, a URL is a structured string that supports the syntactic operation of
446 * resolution as well as the network I/O operations of looking up the host and
447 * opening a connection to the specified resource.
448 *
449 *
450 * @author Mark Reinhold
451 * @since 1.4
452 *
453 * @see <a href="http://www.ietf.org/rfc/rfc2279.txt">RFC&nbsp;2279: UTF-8, a transformation format of ISO 10646</a>
454 * @see <a href="http://www.ietf.org/rfc/rfc2373.txt">RFC&nbsp;2373: IPv6 Addressing Architecture</a>
455 * @see <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396: Uniform Resource Identifiers (URI): Generic Syntax</a>
456 * @see <a href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732: Format for Literal IPv6 Addresses in URLs</a>
457 */
458// Android-changed: Reformat @see links.
459public final class URI
460    implements Comparable<URI>, Serializable
461{
462
463    // Note: Comments containing the word "ASSERT" indicate places where a
464    // throw of an InternalError should be replaced by an appropriate assertion
465    // statement once asserts are enabled in the build.
466
467    static final long serialVersionUID = -6052424284110960213L;
468
469
470    // -- Properties and components of this instance --
471
472    // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>]
473    private transient String scheme;            // null ==> relative URI
474    private transient String fragment;
475
476    // Hierarchical URI components: [//<authority>]<path>[?<query>]
477    private transient String authority;         // Registry or server
478
479    // Server-based authority: [<userInfo>@]<host>[:<port>]
480    private transient String userInfo;
481    private transient String host;              // null ==> registry-based
482    private transient int port = -1;            // -1 ==> undefined
483
484    // Remaining components of hierarchical URIs
485    private transient String path;              // null ==> opaque
486    private transient String query;
487
488    // The remaining fields may be computed on demand
489
490    private volatile transient String schemeSpecificPart;
491    private volatile transient int hash;        // Zero ==> undefined
492
493    private volatile transient String decodedUserInfo = null;
494    private volatile transient String decodedAuthority = null;
495    private volatile transient String decodedPath = null;
496    private volatile transient String decodedQuery = null;
497    private volatile transient String decodedFragment = null;
498    private volatile transient String decodedSchemeSpecificPart = null;
499
500    /**
501     * The string form of this URI.
502     *
503     * @serial
504     */
505    private volatile String string;             // The only serializable field
506
507
508
509    // -- Constructors and factories --
510
511    private URI() { }                           // Used internally
512
513    /**
514     * Constructs a URI by parsing the given string.
515     *
516     * <p> This constructor parses the given string exactly as specified by the
517     * grammar in <a
518     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
519     * Appendix&nbsp;A, <b><i>except for the following deviations:</i></b> </p>
520     *
521     * <ul>
522     *
523     *   <li><p> An empty authority component is permitted as long as it is
524     *   followed by a non-empty path, a query component, or a fragment
525     *   component.  This allows the parsing of URIs such as
526     *   {@code "file:///foo/bar"}, which seems to be the intent of
527     *   RFC&nbsp;2396 although the grammar does not permit it.  If the
528     *   authority component is empty then the user-information, host, and port
529     *   components are undefined. </p></li>
530     *
531     *   <li><p> Empty relative paths are permitted; this seems to be the
532     *   intent of RFC&nbsp;2396 although the grammar does not permit it.  The
533     *   primary consequence of this deviation is that a standalone fragment
534     *   such as {@code "#foo"} parses as a relative URI with an empty path
535     *   and the given fragment, and can be usefully <a
536     *   href="#resolve-frag">resolved</a> against a base URI.
537     *
538     *   <li><p> IPv4 addresses in host components are parsed rigorously, as
539     *   specified by <a
540     *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>: Each
541     *   element of a dotted-quad address must contain no more than three
542     *   decimal digits.  Each element is further constrained to have a value
543     *   no greater than 255. </p></li>
544     *
545     *   <li> <p> Hostnames in host components that comprise only a single
546     *   domain label are permitted to start with an <i>alphanum</i>
547     *   character. This seems to be the intent of <a
548     *   href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
549     *   section&nbsp;3.2.2 although the grammar does not permit it. The
550     *   consequence of this deviation is that the authority component of a
551     *   hierarchical URI such as {@code s://123}, will parse as a server-based
552     *   authority. </p></li>
553     *
554     *   <li><p> IPv6 addresses are permitted for the host component.  An IPv6
555     *   address must be enclosed in square brackets ({@code '['} and
556     *   {@code ']'}) as specified by <a
557     *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>.  The
558     *   IPv6 address itself must parse according to <a
559     *   href="http://www.ietf.org/rfc/rfc2373.txt">RFC&nbsp;2373</a>.  IPv6
560     *   addresses are further constrained to describe no more than sixteen
561     *   bytes of address information, a constraint implicit in RFC&nbsp;2373
562     *   but not expressible in the grammar. </p></li>
563     *
564     *   <li><p> Characters in the <i>other</i> category are permitted wherever
565     *   RFC&nbsp;2396 permits <i>escaped</i> octets, that is, in the
566     *   user-information, path, query, and fragment components, as well as in
567     *   the authority component if the authority is registry-based.  This
568     *   allows URIs to contain Unicode characters beyond those in the US-ASCII
569     *   character set. </p></li>
570     *
571     * </ul>
572     *
573     * @param  str   The string to be parsed into a URI
574     *
575     * @throws  NullPointerException
576     *          If {@code str} is {@code null}
577     *
578     * @throws  URISyntaxException
579     *          If the given string violates RFC&nbsp;2396, as augmented
580     *          by the above deviations
581     */
582    public URI(String str) throws URISyntaxException {
583        new Parser(str).parse(false);
584    }
585
586    /**
587     * Constructs a hierarchical URI from the given components.
588     *
589     * <p> If a scheme is given then the path, if also given, must either be
590     * empty or begin with a slash character ({@code '/'}).  Otherwise a
591     * component of the new URI may be left undefined by passing {@code null}
592     * for the corresponding parameter or, in the case of the {@code port}
593     * parameter, by passing {@code -1}.
594     *
595     * <p> This constructor first builds a URI string from the given components
596     * according to the rules specified in <a
597     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
598     * section&nbsp;5.2, step&nbsp;7: </p>
599     *
600     * <ol>
601     *
602     *   <li><p> Initially, the result string is empty. </p></li>
603     *
604     *   <li><p> If a scheme is given then it is appended to the result,
605     *   followed by a colon character ({@code ':'}).  </p></li>
606     *
607     *   <li><p> If user information, a host, or a port are given then the
608     *   string {@code "//"} is appended.  </p></li>
609     *
610     *   <li><p> If user information is given then it is appended, followed by
611     *   a commercial-at character ({@code '@'}).  Any character not in the
612     *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
613     *   categories is <a href="#quote">quoted</a>.  </p></li>
614     *
615     *   <li><p> If a host is given then it is appended.  If the host is a
616     *   literal IPv6 address but is not enclosed in square brackets
617     *   ({@code '['} and {@code ']'}) then the square brackets are added.
618     *   </p></li>
619     *
620     *   <li><p> If a port number is given then a colon character
621     *   ({@code ':'}) is appended, followed by the port number in decimal.
622     *   </p></li>
623     *
624     *   <li><p> If a path is given then it is appended.  Any character not in
625     *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
626     *   categories, and not equal to the slash character ({@code '/'}) or the
627     *   commercial-at character ({@code '@'}), is quoted.  </p></li>
628     *
629     *   <li><p> If a query is given then a question-mark character
630     *   ({@code '?'}) is appended, followed by the query.  Any character that
631     *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
632     *   </p></li>
633     *
634     *   <li><p> Finally, if a fragment is given then a hash character
635     *   ({@code '#'}) is appended, followed by the fragment.  Any character
636     *   that is not a legal URI character is quoted.  </p></li>
637     *
638     * </ol>
639     *
640     * <p> The resulting URI string is then parsed as if by invoking the {@link
641     * #URI(String)} constructor and then invoking the {@link
642     * #parseServerAuthority()} method upon the result; this may cause a {@link
643     * URISyntaxException} to be thrown.  </p>
644     *
645     * @param   scheme    Scheme name
646     * @param   userInfo  User name and authorization information
647     * @param   host      Host name
648     * @param   port      Port number
649     * @param   path      Path
650     * @param   query     Query
651     * @param   fragment  Fragment
652     *
653     * @throws URISyntaxException
654     *         If both a scheme and a path are given but the path is relative,
655     *         if the URI string constructed from the given components violates
656     *         RFC&nbsp;2396, or if the authority component of the string is
657     *         present but cannot be parsed as a server-based authority
658     */
659    public URI(String scheme,
660               String userInfo, String host, int port,
661               String path, String query, String fragment)
662        throws URISyntaxException
663    {
664        String s = toString(scheme, null,
665                            null, userInfo, host, port,
666                            path, query, fragment);
667        checkPath(s, scheme, path);
668        new Parser(s).parse(true);
669    }
670
671    /**
672     * Constructs a hierarchical URI from the given components.
673     *
674     * <p> If a scheme is given then the path, if also given, must either be
675     * empty or begin with a slash character ({@code '/'}).  Otherwise a
676     * component of the new URI may be left undefined by passing {@code null}
677     * for the corresponding parameter.
678     *
679     * <p> This constructor first builds a URI string from the given components
680     * according to the rules specified in <a
681     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
682     * section&nbsp;5.2, step&nbsp;7: </p>
683     *
684     * <ol>
685     *
686     *   <li><p> Initially, the result string is empty.  </p></li>
687     *
688     *   <li><p> If a scheme is given then it is appended to the result,
689     *   followed by a colon character ({@code ':'}).  </p></li>
690     *
691     *   <li><p> If an authority is given then the string {@code "//"} is
692     *   appended, followed by the authority.  If the authority contains a
693     *   literal IPv6 address then the address must be enclosed in square
694     *   brackets ({@code '['} and {@code ']'}).  Any character not in the
695     *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
696     *   categories, and not equal to the commercial-at character
697     *   ({@code '@'}), is <a href="#quote">quoted</a>.  </p></li>
698     *
699     *   <li><p> If a path is given then it is appended.  Any character not in
700     *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
701     *   categories, and not equal to the slash character ({@code '/'}) or the
702     *   commercial-at character ({@code '@'}), is quoted.  </p></li>
703     *
704     *   <li><p> If a query is given then a question-mark character
705     *   ({@code '?'}) is appended, followed by the query.  Any character that
706     *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
707     *   </p></li>
708     *
709     *   <li><p> Finally, if a fragment is given then a hash character
710     *   ({@code '#'}) is appended, followed by the fragment.  Any character
711     *   that is not a legal URI character is quoted.  </p></li>
712     *
713     * </ol>
714     *
715     * <p> The resulting URI string is then parsed as if by invoking the {@link
716     * #URI(String)} constructor and then invoking the {@link
717     * #parseServerAuthority()} method upon the result; this may cause a {@link
718     * URISyntaxException} to be thrown.  </p>
719     *
720     * @param   scheme     Scheme name
721     * @param   authority  Authority
722     * @param   path       Path
723     * @param   query      Query
724     * @param   fragment   Fragment
725     *
726     * @throws URISyntaxException
727     *         If both a scheme and a path are given but the path is relative,
728     *         if the URI string constructed from the given components violates
729     *         RFC&nbsp;2396, or if the authority component of the string is
730     *         present but cannot be parsed as a server-based authority
731     */
732    public URI(String scheme,
733               String authority,
734               String path, String query, String fragment)
735        throws URISyntaxException
736    {
737        String s = toString(scheme, null,
738                            authority, null, null, -1,
739                            path, query, fragment);
740        checkPath(s, scheme, path);
741        new Parser(s).parse(false);
742    }
743
744    /**
745     * Constructs a hierarchical URI from the given components.
746     *
747     * <p> A component may be left undefined by passing {@code null}.
748     *
749     * <p> This convenience constructor works as if by invoking the
750     * seven-argument constructor as follows:
751     *
752     * <blockquote>
753     * {@code new} {@link #URI(String, String, String, int, String, String, String)
754     * URI}{@code (scheme, null, host, -1, path, null, fragment);}
755     * </blockquote>
756     *
757     * @param   scheme    Scheme name
758     * @param   host      Host name
759     * @param   path      Path
760     * @param   fragment  Fragment
761     *
762     * @throws  URISyntaxException
763     *          If the URI string constructed from the given components
764     *          violates RFC&nbsp;2396
765     */
766    public URI(String scheme, String host, String path, String fragment)
767        throws URISyntaxException
768    {
769        this(scheme, null, host, -1, path, null, fragment);
770    }
771
772    /**
773     * Constructs a URI from the given components.
774     *
775     * <p> A component may be left undefined by passing {@code null}.
776     *
777     * <p> This constructor first builds a URI in string form using the given
778     * components as follows:  </p>
779     *
780     * <ol>
781     *
782     *   <li><p> Initially, the result string is empty.  </p></li>
783     *
784     *   <li><p> If a scheme is given then it is appended to the result,
785     *   followed by a colon character ({@code ':'}).  </p></li>
786     *
787     *   <li><p> If a scheme-specific part is given then it is appended.  Any
788     *   character that is not a <a href="#legal-chars">legal URI character</a>
789     *   is <a href="#quote">quoted</a>.  </p></li>
790     *
791     *   <li><p> Finally, if a fragment is given then a hash character
792     *   ({@code '#'}) is appended to the string, followed by the fragment.
793     *   Any character that is not a legal URI character is quoted.  </p></li>
794     *
795     * </ol>
796     *
797     * <p> The resulting URI string is then parsed in order to create the new
798     * URI instance as if by invoking the {@link #URI(String)} constructor;
799     * this may cause a {@link URISyntaxException} to be thrown.  </p>
800     *
801     * @param   scheme    Scheme name
802     * @param   ssp       Scheme-specific part
803     * @param   fragment  Fragment
804     *
805     * @throws  URISyntaxException
806     *          If the URI string constructed from the given components
807     *          violates RFC&nbsp;2396
808     */
809    public URI(String scheme, String ssp, String fragment)
810        throws URISyntaxException
811    {
812        new Parser(toString(scheme, ssp,
813                            null, null, null, -1,
814                            null, null, fragment))
815            .parse(false);
816    }
817
818    /**
819     * Creates a URI by parsing the given string.
820     *
821     * <p> This convenience factory method works as if by invoking the {@link
822     * #URI(String)} constructor; any {@link URISyntaxException} thrown by the
823     * constructor is caught and wrapped in a new {@link
824     * IllegalArgumentException} object, which is then thrown.
825     *
826     * <p> This method is provided for use in situations where it is known that
827     * the given string is a legal URI, for example for URI constants declared
828     * within in a program, and so it would be considered a programming error
829     * for the string not to parse as such.  The constructors, which throw
830     * {@link URISyntaxException} directly, should be used situations where a
831     * URI is being constructed from user input or from some other source that
832     * may be prone to errors.  </p>
833     *
834     * @param  str   The string to be parsed into a URI
835     * @return The new URI
836     *
837     * @throws  NullPointerException
838     *          If {@code str} is {@code null}
839     *
840     * @throws  IllegalArgumentException
841     *          If the given string violates RFC&nbsp;2396
842     */
843    public static URI create(String str) {
844        try {
845            return new URI(str);
846        } catch (URISyntaxException x) {
847            throw new IllegalArgumentException(x.getMessage(), x);
848        }
849    }
850
851
852    // -- Operations --
853
854    /**
855     * Attempts to parse this URI's authority component, if defined, into
856     * user-information, host, and port components.
857     *
858     * <p> If this URI's authority component has already been recognized as
859     * being server-based then it will already have been parsed into
860     * user-information, host, and port components.  In this case, or if this
861     * URI has no authority component, this method simply returns this URI.
862     *
863     * <p> Otherwise this method attempts once more to parse the authority
864     * component into user-information, host, and port components, and throws
865     * an exception describing why the authority component could not be parsed
866     * in that way.
867     *
868     * <p> This method is provided because the generic URI syntax specified in
869     * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
870     * cannot always distinguish a malformed server-based authority from a
871     * legitimate registry-based authority.  It must therefore treat some
872     * instances of the former as instances of the latter.  The authority
873     * component in the URI string {@code "//foo:bar"}, for example, is not a
874     * legal server-based authority but it is legal as a registry-based
875     * authority.
876     *
877     * <p> In many common situations, for example when working URIs that are
878     * known to be either URNs or URLs, the hierarchical URIs being used will
879     * always be server-based.  They therefore must either be parsed as such or
880     * treated as an error.  In these cases a statement such as
881     *
882     * <blockquote>
883     * {@code URI }<i>u</i>{@code  = new URI(str).parseServerAuthority();}
884     * </blockquote>
885     *
886     * <p> can be used to ensure that <i>u</i> always refers to a URI that, if
887     * it has an authority component, has a server-based authority with proper
888     * user-information, host, and port components.  Invoking this method also
889     * ensures that if the authority could not be parsed in that way then an
890     * appropriate diagnostic message can be issued based upon the exception
891     * that is thrown. </p>
892     *
893     * @return  A URI whose authority field has been parsed
894     *          as a server-based authority
895     *
896     * @throws  URISyntaxException
897     *          If the authority component of this URI is defined
898     *          but cannot be parsed as a server-based authority
899     *          according to RFC&nbsp;2396
900     */
901    public URI parseServerAuthority()
902        throws URISyntaxException
903    {
904        // We could be clever and cache the error message and index from the
905        // exception thrown during the original parse, but that would require
906        // either more fields or a more-obscure representation.
907        if ((host != null) || (authority == null))
908            return this;
909        defineString();
910        new Parser(string).parse(true);
911        return this;
912    }
913
914    /**
915     * Normalizes this URI's path.
916     *
917     * <p> If this URI is opaque, or if its path is already in normal form,
918     * then this URI is returned.  Otherwise a new URI is constructed that is
919     * identical to this URI except that its path is computed by normalizing
920     * this URI's path in a manner consistent with <a
921     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
922     * section&nbsp;5.2, step&nbsp;6, sub-steps&nbsp;c through&nbsp;f; that is:
923     * </p>
924     *
925     * <ol>
926     *
927     *   <li><p> All {@code "."} segments are removed. </p></li>
928     *
929     *   <li><p> If a {@code ".."} segment is preceded by a non-{@code ".."}
930     *   segment then both of these segments are removed.  This step is
931     *   repeated until it is no longer applicable. </p></li>
932     *
933     *   <li><p> If the path is relative, and if its first segment contains a
934     *   colon character ({@code ':'}), then a {@code "."} segment is
935     *   prepended.  This prevents a relative URI with a path such as
936     *   {@code "a:b/c/d"} from later being re-parsed as an opaque URI with a
937     *   scheme of {@code "a"} and a scheme-specific part of {@code "b/c/d"}.
938     *   <b><i>(Deviation from RFC&nbsp;2396)</i></b> </p></li>
939     *
940     * </ol>
941     *
942     * <p> A normalized path will begin with one or more {@code ".."} segments
943     * if there were insufficient non-{@code ".."} segments preceding them to
944     * allow their removal.  A normalized path will begin with a {@code "."}
945     * segment if one was inserted by step 3 above.  Otherwise, a normalized
946     * path will not contain any {@code "."} or {@code ".."} segments. </p>
947     *
948     * @return  A URI equivalent to this URI,
949     *          but whose path is in normal form
950     */
951    public URI normalize() {
952        return normalize(this);
953    }
954
955    /**
956     * Resolves the given URI against this URI.
957     *
958     * <p> If the given URI is already absolute, or if this URI is opaque, then
959     * the given URI is returned.
960     *
961     * <p><a name="resolve-frag"></a> If the given URI's fragment component is
962     * defined, its path component is empty, and its scheme, authority, and
963     * query components are undefined, then a URI with the given fragment but
964     * with all other components equal to those of this URI is returned.  This
965     * allows a URI representing a standalone fragment reference, such as
966     * {@code "#foo"}, to be usefully resolved against a base URI.
967     *
968     * <p> Otherwise this method constructs a new hierarchical URI in a manner
969     * consistent with <a
970     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
971     * section&nbsp;5.2; that is: </p>
972     *
973     * <ol>
974     *
975     *   <li><p> A new URI is constructed with this URI's scheme and the given
976     *   URI's query and fragment components. </p></li>
977     *
978     *   <li><p> If the given URI has an authority component then the new URI's
979     *   authority and path are taken from the given URI. </p></li>
980     *
981     *   <li><p> Otherwise the new URI's authority component is copied from
982     *   this URI, and its path is computed as follows: </p>
983     *
984     *   <ol>
985     *
986     *     <li><p> If the given URI's path is absolute then the new URI's path
987     *     is taken from the given URI. </p></li>
988     *
989     *     <li><p> Otherwise the given URI's path is relative, and so the new
990     *     URI's path is computed by resolving the path of the given URI
991     *     against the path of this URI.  This is done by concatenating all but
992     *     the last segment of this URI's path, if any, with the given URI's
993     *     path and then normalizing the result as if by invoking the {@link
994     *     #normalize() normalize} method. </p></li>
995     *
996     *   </ol></li>
997     *
998     * </ol>
999     *
1000     * <p> The result of this method is absolute if, and only if, either this
1001     * URI is absolute or the given URI is absolute.  </p>
1002     *
1003     * @param  uri  The URI to be resolved against this URI
1004     * @return The resulting URI
1005     *
1006     * @throws  NullPointerException
1007     *          If {@code uri} is {@code null}
1008     */
1009    public URI resolve(URI uri) {
1010        return resolve(this, uri);
1011    }
1012
1013    /**
1014     * Constructs a new URI by parsing the given string and then resolving it
1015     * against this URI.
1016     *
1017     * <p> This convenience method works as if invoking it were equivalent to
1018     * evaluating the expression {@link #resolve(java.net.URI)
1019     * resolve}{@code (URI.}{@link #create(String) create}{@code (str))}. </p>
1020     *
1021     * @param  str   The string to be parsed into a URI
1022     * @return The resulting URI
1023     *
1024     * @throws  NullPointerException
1025     *          If {@code str} is {@code null}
1026     *
1027     * @throws  IllegalArgumentException
1028     *          If the given string violates RFC&nbsp;2396
1029     */
1030    public URI resolve(String str) {
1031        return resolve(URI.create(str));
1032    }
1033
1034    /**
1035     * Relativizes the given URI against this URI.
1036     *
1037     * <p> The relativization of the given URI against this URI is computed as
1038     * follows: </p>
1039     *
1040     * <ol>
1041     *
1042     *   <li><p> If either this URI or the given URI are opaque, or if the
1043     *   scheme and authority components of the two URIs are not identical, or
1044     *   if the path of this URI is not a prefix of the path of the given URI,
1045     *   then the given URI is returned. </p></li>
1046     *
1047     *   <li><p> Otherwise a new relative hierarchical URI is constructed with
1048     *   query and fragment components taken from the given URI and with a path
1049     *   component computed by removing this URI's path from the beginning of
1050     *   the given URI's path. </p></li>
1051     *
1052     * </ol>
1053     *
1054     * @param  uri  The URI to be relativized against this URI
1055     * @return The resulting URI
1056     *
1057     * @throws  NullPointerException
1058     *          If {@code uri} is {@code null}
1059     */
1060    public URI relativize(URI uri) {
1061        return relativize(this, uri);
1062    }
1063
1064    /**
1065     * Constructs a URL from this URI.
1066     *
1067     * <p> This convenience method works as if invoking it were equivalent to
1068     * evaluating the expression {@code new&nbsp;URL(this.toString())} after
1069     * first checking that this URI is absolute. </p>
1070     *
1071     * @return  A URL constructed from this URI
1072     *
1073     * @throws  IllegalArgumentException
1074     *          If this URL is not absolute
1075     *
1076     * @throws  MalformedURLException
1077     *          If a protocol handler for the URL could not be found,
1078     *          or if some other error occurred while constructing the URL
1079     */
1080    public URL toURL()
1081        throws MalformedURLException {
1082        if (!isAbsolute())
1083            throw new IllegalArgumentException("URI is not absolute");
1084        return new URL(toString());
1085    }
1086
1087    // -- Component access methods --
1088
1089    /**
1090     * Returns the scheme component of this URI.
1091     *
1092     * <p> The scheme component of a URI, if defined, only contains characters
1093     * in the <i>alphanum</i> category and in the string {@code "-.+"}.  A
1094     * scheme always starts with an <i>alpha</i> character. <p>
1095     *
1096     * The scheme component of a URI cannot contain escaped octets, hence this
1097     * method does not perform any decoding.
1098     *
1099     * @return  The scheme component of this URI,
1100     *          or {@code null} if the scheme is undefined
1101     */
1102    public String getScheme() {
1103        return scheme;
1104    }
1105
1106    /**
1107     * Tells whether or not this URI is absolute.
1108     *
1109     * <p> A URI is absolute if, and only if, it has a scheme component. </p>
1110     *
1111     * @return  {@code true} if, and only if, this URI is absolute
1112     */
1113    public boolean isAbsolute() {
1114        return scheme != null;
1115    }
1116
1117    /**
1118     * Tells whether or not this URI is opaque.
1119     *
1120     * <p> A URI is opaque if, and only if, it is absolute and its
1121     * scheme-specific part does not begin with a slash character ('/').
1122     * An opaque URI has a scheme, a scheme-specific part, and possibly
1123     * a fragment; all other components are undefined. </p>
1124     *
1125     * @return  {@code true} if, and only if, this URI is opaque
1126     */
1127    public boolean isOpaque() {
1128        return path == null;
1129    }
1130
1131    /**
1132     * Returns the raw scheme-specific part of this URI.  The scheme-specific
1133     * part is never undefined, though it may be empty.
1134     *
1135     * <p> The scheme-specific part of a URI only contains legal URI
1136     * characters. </p>
1137     *
1138     * @return  The raw scheme-specific part of this URI
1139     *          (never {@code null})
1140     */
1141    public String getRawSchemeSpecificPart() {
1142        defineSchemeSpecificPart();
1143        return schemeSpecificPart;
1144    }
1145
1146    /**
1147     * Returns the decoded scheme-specific part of this URI.
1148     *
1149     * <p> The string returned by this method is equal to that returned by the
1150     * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method
1151     * except that all sequences of escaped octets are <a
1152     * href="#decode">decoded</a>.  </p>
1153     *
1154     * @return  The decoded scheme-specific part of this URI
1155     *          (never {@code null})
1156     */
1157    public String getSchemeSpecificPart() {
1158        if (decodedSchemeSpecificPart == null)
1159            decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart());
1160        return decodedSchemeSpecificPart;
1161    }
1162
1163    /**
1164     * Returns the raw authority component of this URI.
1165     *
1166     * <p> The authority component of a URI, if defined, only contains the
1167     * commercial-at character ({@code '@'}) and characters in the
1168     * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i>
1169     * categories.  If the authority is server-based then it is further
1170     * constrained to have valid user-information, host, and port
1171     * components. </p>
1172     *
1173     * @return  The raw authority component of this URI,
1174     *          or {@code null} if the authority is undefined
1175     */
1176    public String getRawAuthority() {
1177        return authority;
1178    }
1179
1180    /**
1181     * Returns the decoded authority component of this URI.
1182     *
1183     * <p> The string returned by this method is equal to that returned by the
1184     * {@link #getRawAuthority() getRawAuthority} method except that all
1185     * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1186     *
1187     * @return  The decoded authority component of this URI,
1188     *          or {@code null} if the authority is undefined
1189     */
1190    public String getAuthority() {
1191        if (decodedAuthority == null)
1192            decodedAuthority = decode(authority);
1193        return decodedAuthority;
1194    }
1195
1196    /**
1197     * Returns the raw user-information component of this URI.
1198     *
1199     * <p> The user-information component of a URI, if defined, only contains
1200     * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and
1201     * <i>other</i> categories. </p>
1202     *
1203     * @return  The raw user-information component of this URI,
1204     *          or {@code null} if the user information is undefined
1205     */
1206    public String getRawUserInfo() {
1207        return userInfo;
1208    }
1209
1210    /**
1211     * Returns the decoded user-information component of this URI.
1212     *
1213     * <p> The string returned by this method is equal to that returned by the
1214     * {@link #getRawUserInfo() getRawUserInfo} method except that all
1215     * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1216     *
1217     * @return  The decoded user-information component of this URI,
1218     *          or {@code null} if the user information is undefined
1219     */
1220    public String getUserInfo() {
1221        if ((decodedUserInfo == null) && (userInfo != null))
1222            decodedUserInfo = decode(userInfo);
1223        return decodedUserInfo;
1224    }
1225
1226    /**
1227     * Returns the host component of this URI.
1228     *
1229     * <p> The host component of a URI, if defined, will have one of the
1230     * following forms: </p>
1231     *
1232     * <ul>
1233     *
1234     *   <li><p> A domain name consisting of one or more <i>labels</i>
1235     *   separated by period characters ({@code '.'}), optionally followed by
1236     *   a period character.  Each label consists of <i>alphanum</i> characters
1237     *   as well as hyphen characters ({@code '-'}), though hyphens never
1238     *   occur as the first or last characters in a label. The rightmost
1239     *   label of a domain name consisting of two or more labels, begins
1240     *   with an <i>alpha</i> character. </li>
1241     *
1242     *   <li><p> A dotted-quad IPv4 address of the form
1243     *   <i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +},
1244     *   where no <i>digit</i> sequence is longer than three characters and no
1245     *   sequence has a value larger than 255. </p></li>
1246     *
1247     *   <li><p> An IPv6 address enclosed in square brackets ({@code '['} and
1248     *   {@code ']'}) and consisting of hexadecimal digits, colon characters
1249     *   ({@code ':'}), and possibly an embedded IPv4 address.  The full
1250     *   syntax of IPv6 addresses is specified in <a
1251     *   href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6
1252     *   Addressing Architecture</i></a>.  </p></li>
1253     *
1254     * </ul>
1255     *
1256     * The host component of a URI cannot contain escaped octets, hence this
1257     * method does not perform any decoding.
1258     *
1259     * @return  The host component of this URI,
1260     *          or {@code null} if the host is undefined
1261     */
1262    public String getHost() {
1263        return host;
1264    }
1265
1266    /**
1267     * Returns the port number of this URI.
1268     *
1269     * <p> The port component of a URI, if defined, is a non-negative
1270     * integer. </p>
1271     *
1272     * @return  The port component of this URI,
1273     *          or {@code -1} if the port is undefined
1274     */
1275    public int getPort() {
1276        return port;
1277    }
1278
1279    /**
1280     * Returns the raw path component of this URI.
1281     *
1282     * <p> The path component of a URI, if defined, only contains the slash
1283     * character ({@code '/'}), the commercial-at character ({@code '@'}),
1284     * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>,
1285     * and <i>other</i> categories. </p>
1286     *
1287     * @return  The path component of this URI,
1288     *          or {@code null} if the path is undefined
1289     */
1290    public String getRawPath() {
1291        return path;
1292    }
1293
1294    /**
1295     * Returns the decoded path component of this URI.
1296     *
1297     * <p> The string returned by this method is equal to that returned by the
1298     * {@link #getRawPath() getRawPath} method except that all sequences of
1299     * escaped octets are <a href="#decode">decoded</a>.  </p>
1300     *
1301     * @return  The decoded path component of this URI,
1302     *          or {@code null} if the path is undefined
1303     */
1304    public String getPath() {
1305        if ((decodedPath == null) && (path != null))
1306            decodedPath = decode(path);
1307        return decodedPath;
1308    }
1309
1310    /**
1311     * Returns the raw query component of this URI.
1312     *
1313     * <p> The query component of a URI, if defined, only contains legal URI
1314     * characters. </p>
1315     *
1316     * @return  The raw query component of this URI,
1317     *          or {@code null} if the query is undefined
1318     */
1319    public String getRawQuery() {
1320        return query;
1321    }
1322
1323    /**
1324     * Returns the decoded query component of this URI.
1325     *
1326     * <p> The string returned by this method is equal to that returned by the
1327     * {@link #getRawQuery() getRawQuery} method except that all sequences of
1328     * escaped octets are <a href="#decode">decoded</a>.  </p>
1329     *
1330     * @return  The decoded query component of this URI,
1331     *          or {@code null} if the query is undefined
1332     */
1333    public String getQuery() {
1334        if ((decodedQuery == null) && (query != null))
1335            decodedQuery = decode(query);
1336        return decodedQuery;
1337    }
1338
1339    /**
1340     * Returns the raw fragment component of this URI.
1341     *
1342     * <p> The fragment component of a URI, if defined, only contains legal URI
1343     * characters. </p>
1344     *
1345     * @return  The raw fragment component of this URI,
1346     *          or {@code null} if the fragment is undefined
1347     */
1348    public String getRawFragment() {
1349        return fragment;
1350    }
1351
1352    /**
1353     * Returns the decoded fragment component of this URI.
1354     *
1355     * <p> The string returned by this method is equal to that returned by the
1356     * {@link #getRawFragment() getRawFragment} method except that all
1357     * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1358     *
1359     * @return  The decoded fragment component of this URI,
1360     *          or {@code null} if the fragment is undefined
1361     */
1362    public String getFragment() {
1363        if ((decodedFragment == null) && (fragment != null))
1364            decodedFragment = decode(fragment);
1365        return decodedFragment;
1366    }
1367
1368
1369    // -- Equality, comparison, hash code, toString, and serialization --
1370
1371    /**
1372     * Tests this URI for equality with another object.
1373     *
1374     * <p> If the given object is not a URI then this method immediately
1375     * returns {@code false}.
1376     *
1377     * <p> For two URIs to be considered equal requires that either both are
1378     * opaque or both are hierarchical.  Their schemes must either both be
1379     * undefined or else be equal without regard to case. Their fragments
1380     * must either both be undefined or else be equal.
1381     *
1382     * <p> For two opaque URIs to be considered equal, their scheme-specific
1383     * parts must be equal.
1384     *
1385     * <p> For two hierarchical URIs to be considered equal, their paths must
1386     * be equal and their queries must either both be undefined or else be
1387     * equal.  Their authorities must either both be undefined, or both be
1388     * registry-based, or both be server-based.  If their authorities are
1389     * defined and are registry-based, then they must be equal.  If their
1390     * authorities are defined and are server-based, then their hosts must be
1391     * equal without regard to case, their port numbers must be equal, and
1392     * their user-information components must be equal.
1393     *
1394     * <p> When testing the user-information, path, query, fragment, authority,
1395     * or scheme-specific parts of two URIs for equality, the raw forms rather
1396     * than the encoded forms of these components are compared and the
1397     * hexadecimal digits of escaped octets are compared without regard to
1398     * case.
1399     *
1400     * <p> This method satisfies the general contract of the {@link
1401     * java.lang.Object#equals(Object) Object.equals} method. </p>
1402     *
1403     * @param   ob   The object to which this object is to be compared
1404     *
1405     * @return  {@code true} if, and only if, the given object is a URI that
1406     *          is identical to this URI
1407     */
1408    public boolean equals(Object ob) {
1409        if (ob == this)
1410            return true;
1411        if (!(ob instanceof URI))
1412            return false;
1413        URI that = (URI)ob;
1414        if (this.isOpaque() != that.isOpaque()) return false;
1415        if (!equalIgnoringCase(this.scheme, that.scheme)) return false;
1416        if (!equal(this.fragment, that.fragment)) return false;
1417
1418        // Opaque
1419        if (this.isOpaque())
1420            return equal(this.schemeSpecificPart, that.schemeSpecificPart);
1421
1422        // Hierarchical
1423        if (!equal(this.path, that.path)) return false;
1424        if (!equal(this.query, that.query)) return false;
1425
1426        // Authorities
1427        if (this.authority == that.authority) return true;
1428        if (this.host != null) {
1429            // Server-based
1430            if (!equal(this.userInfo, that.userInfo)) return false;
1431            if (!equalIgnoringCase(this.host, that.host)) return false;
1432            if (this.port != that.port) return false;
1433        } else if (this.authority != null) {
1434            // Registry-based
1435            if (!equal(this.authority, that.authority)) return false;
1436        } else if (this.authority != that.authority) {
1437            return false;
1438        }
1439
1440        return true;
1441    }
1442
1443    /**
1444     * Returns a hash-code value for this URI.  The hash code is based upon all
1445     * of the URI's components, and satisfies the general contract of the
1446     * {@link java.lang.Object#hashCode() Object.hashCode} method.
1447     *
1448     * @return  A hash-code value for this URI
1449     */
1450    public int hashCode() {
1451        if (hash != 0)
1452            return hash;
1453        int h = hashIgnoringCase(0, scheme);
1454        h = hash(h, fragment);
1455        if (isOpaque()) {
1456            h = hash(h, schemeSpecificPart);
1457        } else {
1458            h = hash(h, path);
1459            h = hash(h, query);
1460            if (host != null) {
1461                h = hash(h, userInfo);
1462                h = hashIgnoringCase(h, host);
1463                h += 1949 * port;
1464            } else {
1465                h = hash(h, authority);
1466            }
1467        }
1468        hash = h;
1469        return h;
1470    }
1471
1472    /**
1473     * Compares this URI to another object, which must be a URI.
1474     *
1475     * <p> When comparing corresponding components of two URIs, if one
1476     * component is undefined but the other is defined then the first is
1477     * considered to be less than the second.  Unless otherwise noted, string
1478     * components are ordered according to their natural, case-sensitive
1479     * ordering as defined by the {@link java.lang.String#compareTo(Object)
1480     * String.compareTo} method.  String components that are subject to
1481     * encoding are compared by comparing their raw forms rather than their
1482     * encoded forms.
1483     *
1484     * <p> The ordering of URIs is defined as follows: </p>
1485     *
1486     * <ul type=disc>
1487     *
1488     *   <li><p> Two URIs with different schemes are ordered according the
1489     *   ordering of their schemes, without regard to case. </p></li>
1490     *
1491     *   <li><p> A hierarchical URI is considered to be less than an opaque URI
1492     *   with an identical scheme. </p></li>
1493     *
1494     *   <li><p> Two opaque URIs with identical schemes are ordered according
1495     *   to the ordering of their scheme-specific parts. </p></li>
1496     *
1497     *   <li><p> Two opaque URIs with identical schemes and scheme-specific
1498     *   parts are ordered according to the ordering of their
1499     *   fragments. </p></li>
1500     *
1501     *   <li><p> Two hierarchical URIs with identical schemes are ordered
1502     *   according to the ordering of their authority components: </p>
1503     *
1504     *   <ul type=disc>
1505     *
1506     *     <li><p> If both authority components are server-based then the URIs
1507     *     are ordered according to their user-information components; if these
1508     *     components are identical then the URIs are ordered according to the
1509     *     ordering of their hosts, without regard to case; if the hosts are
1510     *     identical then the URIs are ordered according to the ordering of
1511     *     their ports. </p></li>
1512     *
1513     *     <li><p> If one or both authority components are registry-based then
1514     *     the URIs are ordered according to the ordering of their authority
1515     *     components. </p></li>
1516     *
1517     *   </ul></li>
1518     *
1519     *   <li><p> Finally, two hierarchical URIs with identical schemes and
1520     *   authority components are ordered according to the ordering of their
1521     *   paths; if their paths are identical then they are ordered according to
1522     *   the ordering of their queries; if the queries are identical then they
1523     *   are ordered according to the order of their fragments. </p></li>
1524     *
1525     * </ul>
1526     *
1527     * <p> This method satisfies the general contract of the {@link
1528     * java.lang.Comparable#compareTo(Object) Comparable.compareTo}
1529     * method. </p>
1530     *
1531     * @param   that
1532     *          The object to which this URI is to be compared
1533     *
1534     * @return  A negative integer, zero, or a positive integer as this URI is
1535     *          less than, equal to, or greater than the given URI
1536     *
1537     * @throws  ClassCastException
1538     *          If the given object is not a URI
1539     */
1540    public int compareTo(URI that) {
1541        int c;
1542
1543        if ((c = compareIgnoringCase(this.scheme, that.scheme)) != 0)
1544            return c;
1545
1546        if (this.isOpaque()) {
1547            if (that.isOpaque()) {
1548                // Both opaque
1549                if ((c = compare(this.schemeSpecificPart,
1550                                 that.schemeSpecificPart)) != 0)
1551                    return c;
1552                return compare(this.fragment, that.fragment);
1553            }
1554            return +1;                  // Opaque > hierarchical
1555        } else if (that.isOpaque()) {
1556            return -1;                  // Hierarchical < opaque
1557        }
1558
1559        // Hierarchical
1560        if ((this.host != null) && (that.host != null)) {
1561            // Both server-based
1562            if ((c = compare(this.userInfo, that.userInfo)) != 0)
1563                return c;
1564            if ((c = compareIgnoringCase(this.host, that.host)) != 0)
1565                return c;
1566            if ((c = this.port - that.port) != 0)
1567                return c;
1568        } else {
1569            // If one or both authorities are registry-based then we simply
1570            // compare them in the usual, case-sensitive way.  If one is
1571            // registry-based and one is server-based then the strings are
1572            // guaranteed to be unequal, hence the comparison will never return
1573            // zero and the compareTo and equals methods will remain
1574            // consistent.
1575            if ((c = compare(this.authority, that.authority)) != 0) return c;
1576        }
1577
1578        if ((c = compare(this.path, that.path)) != 0) return c;
1579        if ((c = compare(this.query, that.query)) != 0) return c;
1580        return compare(this.fragment, that.fragment);
1581    }
1582
1583    /**
1584     * Returns the content of this URI as a string.
1585     *
1586     * <p> If this URI was created by invoking one of the constructors in this
1587     * class then a string equivalent to the original input string, or to the
1588     * string computed from the originally-given components, as appropriate, is
1589     * returned.  Otherwise this URI was created by normalization, resolution,
1590     * or relativization, and so a string is constructed from this URI's
1591     * components according to the rules specified in <a
1592     * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
1593     * section&nbsp;5.2, step&nbsp;7. </p>
1594     *
1595     * @return  The string form of this URI
1596     */
1597    public String toString() {
1598        defineString();
1599        return string;
1600    }
1601
1602    /**
1603     * Returns the content of this URI as a US-ASCII string.
1604     *
1605     * <p> If this URI does not contain any characters in the <i>other</i>
1606     * category then an invocation of this method will return the same value as
1607     * an invocation of the {@link #toString() toString} method.  Otherwise
1608     * this method works as if by invoking that method and then <a
1609     * href="#encode">encoding</a> the result.  </p>
1610     *
1611     * @return  The string form of this URI, encoded as needed
1612     *          so that it only contains characters in the US-ASCII
1613     *          charset
1614     */
1615    public String toASCIIString() {
1616        defineString();
1617        return encode(string);
1618    }
1619
1620
1621    // -- Serialization support --
1622
1623    /**
1624     * Saves the content of this URI to the given serial stream.
1625     *
1626     * <p> The only serializable field of a URI instance is its {@code string}
1627     * field.  That field is given a value, if it does not have one already,
1628     * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()}
1629     * method of the given object-output stream is invoked. </p>
1630     *
1631     * @param  os  The object-output stream to which this object
1632     *             is to be written
1633     */
1634    private void writeObject(ObjectOutputStream os)
1635        throws IOException
1636    {
1637        defineString();
1638        os.defaultWriteObject();        // Writes the string field only
1639    }
1640
1641    /**
1642     * Reconstitutes a URI from the given serial stream.
1643     *
1644     * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is
1645     * invoked to read the value of the {@code string} field.  The result is
1646     * then parsed in the usual way.
1647     *
1648     * @param  is  The object-input stream from which this object
1649     *             is being read
1650     */
1651    private void readObject(ObjectInputStream is)
1652        throws ClassNotFoundException, IOException
1653    {
1654        port = -1;                      // Argh
1655        is.defaultReadObject();
1656        try {
1657            new Parser(string).parse(false);
1658        } catch (URISyntaxException x) {
1659            IOException y = new InvalidObjectException("Invalid URI");
1660            y.initCause(x);
1661            throw y;
1662        }
1663    }
1664
1665
1666    // -- End of public methods --
1667
1668
1669    // -- Utility methods for string-field comparison and hashing --
1670
1671    // These methods return appropriate values for null string arguments,
1672    // thereby simplifying the equals, hashCode, and compareTo methods.
1673    //
1674    // The case-ignoring methods should only be applied to strings whose
1675    // characters are all known to be US-ASCII.  Because of this restriction,
1676    // these methods are faster than the similar methods in the String class.
1677
1678    // US-ASCII only
1679    private static int toLower(char c) {
1680        if ((c >= 'A') && (c <= 'Z'))
1681            return c + ('a' - 'A');
1682        return c;
1683    }
1684
1685    // US-ASCII only
1686    private static int toUpper(char c) {
1687        if ((c >= 'a') && (c <= 'z'))
1688            return c - ('a' - 'A');
1689        return c;
1690    }
1691
1692    private static boolean equal(String s, String t) {
1693        if (s == t) return true;
1694        if ((s != null) && (t != null)) {
1695            if (s.length() != t.length())
1696                return false;
1697            if (s.indexOf('%') < 0)
1698                return s.equals(t);
1699            int n = s.length();
1700            for (int i = 0; i < n;) {
1701                char c = s.charAt(i);
1702                char d = t.charAt(i);
1703                if (c != '%') {
1704                    if (c != d)
1705                        return false;
1706                    i++;
1707                    continue;
1708                }
1709                if (d != '%')
1710                    return false;
1711                i++;
1712                if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1713                    return false;
1714                i++;
1715                if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1716                    return false;
1717                i++;
1718            }
1719            return true;
1720        }
1721        return false;
1722    }
1723
1724    // US-ASCII only
1725    private static boolean equalIgnoringCase(String s, String t) {
1726        if (s == t) return true;
1727        if ((s != null) && (t != null)) {
1728            int n = s.length();
1729            if (t.length() != n)
1730                return false;
1731            for (int i = 0; i < n; i++) {
1732                if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1733                    return false;
1734            }
1735            return true;
1736        }
1737        return false;
1738    }
1739
1740    private static int hash(int hash, String s) {
1741        if (s == null) return hash;
1742        return s.indexOf('%') < 0 ? hash * 127 + s.hashCode()
1743                                  : normalizedHash(hash, s);
1744    }
1745
1746
1747    private static int normalizedHash(int hash, String s) {
1748        int h = 0;
1749        for (int index = 0; index < s.length(); index++) {
1750            char ch = s.charAt(index);
1751            h = 31 * h + ch;
1752            if (ch == '%') {
1753                /*
1754                 * Process the next two encoded characters
1755                 */
1756                for (int i = index + 1; i < index + 3; i++)
1757                    h = 31 * h + toUpper(s.charAt(i));
1758                index += 2;
1759            }
1760        }
1761        return hash * 127 + h;
1762    }
1763
1764    // US-ASCII only
1765    private static int hashIgnoringCase(int hash, String s) {
1766        if (s == null) return hash;
1767        int h = hash;
1768        int n = s.length();
1769        for (int i = 0; i < n; i++)
1770            h = 31 * h + toLower(s.charAt(i));
1771        return h;
1772    }
1773
1774    private static int compare(String s, String t) {
1775        if (s == t) return 0;
1776        if (s != null) {
1777            if (t != null)
1778                return s.compareTo(t);
1779            else
1780                return +1;
1781        } else {
1782            return -1;
1783        }
1784    }
1785
1786    // US-ASCII only
1787    private static int compareIgnoringCase(String s, String t) {
1788        if (s == t) return 0;
1789        if (s != null) {
1790            if (t != null) {
1791                int sn = s.length();
1792                int tn = t.length();
1793                int n = sn < tn ? sn : tn;
1794                for (int i = 0; i < n; i++) {
1795                    int c = toLower(s.charAt(i)) - toLower(t.charAt(i));
1796                    if (c != 0)
1797                        return c;
1798                }
1799                return sn - tn;
1800            }
1801            return +1;
1802        } else {
1803            return -1;
1804        }
1805    }
1806
1807
1808    // -- String construction --
1809
1810    // If a scheme is given then the path, if given, must be absolute
1811    //
1812    private static void checkPath(String s, String scheme, String path)
1813        throws URISyntaxException
1814    {
1815        if (scheme != null) {
1816            if ((path != null)
1817                && ((path.length() > 0) && (path.charAt(0) != '/')))
1818                throw new URISyntaxException(s,
1819                                             "Relative path in absolute URI");
1820        }
1821    }
1822
1823    private void appendAuthority(StringBuffer sb,
1824                                 String authority,
1825                                 String userInfo,
1826                                 String host,
1827                                 int port)
1828    {
1829        if (host != null) {
1830            sb.append("//");
1831            if (userInfo != null) {
1832                sb.append(quote(userInfo, L_USERINFO, H_USERINFO));
1833                sb.append('@');
1834            }
1835            boolean needBrackets = ((host.indexOf(':') >= 0)
1836                                    && !host.startsWith("[")
1837                                    && !host.endsWith("]"));
1838            if (needBrackets) sb.append('[');
1839            sb.append(host);
1840            if (needBrackets) sb.append(']');
1841            if (port != -1) {
1842                sb.append(':');
1843                sb.append(port);
1844            }
1845        } else if (authority != null) {
1846            sb.append("//");
1847            if (authority.startsWith("[")) {
1848                // authority should (but may not) contain an embedded IPv6 address
1849                int end = authority.indexOf("]");
1850                String doquote = authority, dontquote = "";
1851                if (end != -1 && authority.indexOf(":") != -1) {
1852                    // the authority contains an IPv6 address
1853                    if (end == authority.length()) {
1854                        dontquote = authority;
1855                        doquote = "";
1856                    } else {
1857                        dontquote = authority.substring(0 , end + 1);
1858                        doquote = authority.substring(end + 1);
1859                    }
1860                }
1861                sb.append(dontquote);
1862                sb.append(quote(doquote,
1863                            L_REG_NAME | L_SERVER,
1864                            H_REG_NAME | H_SERVER));
1865            } else {
1866                sb.append(quote(authority,
1867                            L_REG_NAME | L_SERVER,
1868                            H_REG_NAME | H_SERVER));
1869            }
1870        }
1871    }
1872
1873    private void appendSchemeSpecificPart(StringBuffer sb,
1874                                          String opaquePart,
1875                                          String authority,
1876                                          String userInfo,
1877                                          String host,
1878                                          int port,
1879                                          String path,
1880                                          String query)
1881    {
1882        if (opaquePart != null) {
1883            /* check if SSP begins with an IPv6 address
1884             * because we must not quote a literal IPv6 address
1885             */
1886            if (opaquePart.startsWith("//[")) {
1887                int end =  opaquePart.indexOf("]");
1888                if (end != -1 && opaquePart.indexOf(":")!=-1) {
1889                    String doquote, dontquote;
1890                    if (end == opaquePart.length()) {
1891                        dontquote = opaquePart;
1892                        doquote = "";
1893                    } else {
1894                        dontquote = opaquePart.substring(0,end+1);
1895                        doquote = opaquePart.substring(end+1);
1896                    }
1897                    sb.append (dontquote);
1898                    sb.append(quote(doquote, L_URIC, H_URIC));
1899                }
1900            } else {
1901                sb.append(quote(opaquePart, L_URIC, H_URIC));
1902            }
1903        } else {
1904            appendAuthority(sb, authority, userInfo, host, port);
1905            if (path != null)
1906                sb.append(quote(path, L_PATH, H_PATH));
1907            if (query != null) {
1908                sb.append('?');
1909                sb.append(quote(query, L_URIC, H_URIC));
1910            }
1911        }
1912    }
1913
1914    private void appendFragment(StringBuffer sb, String fragment) {
1915        if (fragment != null) {
1916            sb.append('#');
1917            sb.append(quote(fragment, L_URIC, H_URIC));
1918        }
1919    }
1920
1921    private String toString(String scheme,
1922                            String opaquePart,
1923                            String authority,
1924                            String userInfo,
1925                            String host,
1926                            int port,
1927                            String path,
1928                            String query,
1929                            String fragment)
1930    {
1931        StringBuffer sb = new StringBuffer();
1932        if (scheme != null) {
1933            sb.append(scheme);
1934            sb.append(':');
1935        }
1936        appendSchemeSpecificPart(sb, opaquePart,
1937                                 authority, userInfo, host, port,
1938                                 path, query);
1939        appendFragment(sb, fragment);
1940        return sb.toString();
1941    }
1942
1943    private void defineSchemeSpecificPart() {
1944        if (schemeSpecificPart != null) return;
1945        StringBuffer sb = new StringBuffer();
1946        appendSchemeSpecificPart(sb, null, getAuthority(), getUserInfo(),
1947                                 host, port, getPath(), getQuery());
1948        if (sb.length() == 0) return;
1949        schemeSpecificPart = sb.toString();
1950    }
1951
1952    private void defineString() {
1953        if (string != null) return;
1954
1955        StringBuffer sb = new StringBuffer();
1956        if (scheme != null) {
1957            sb.append(scheme);
1958            sb.append(':');
1959        }
1960        if (isOpaque()) {
1961            sb.append(schemeSpecificPart);
1962        } else {
1963            if (host != null) {
1964                sb.append("//");
1965                if (userInfo != null) {
1966                    sb.append(userInfo);
1967                    sb.append('@');
1968                }
1969                boolean needBrackets = ((host.indexOf(':') >= 0)
1970                                    && !host.startsWith("[")
1971                                    && !host.endsWith("]"));
1972                if (needBrackets) sb.append('[');
1973                sb.append(host);
1974                if (needBrackets) sb.append(']');
1975                if (port != -1) {
1976                    sb.append(':');
1977                    sb.append(port);
1978                }
1979            } else if (authority != null) {
1980                sb.append("//");
1981                sb.append(authority);
1982            }
1983            if (path != null)
1984                sb.append(path);
1985            if (query != null) {
1986                sb.append('?');
1987                sb.append(query);
1988            }
1989        }
1990        if (fragment != null) {
1991            sb.append('#');
1992            sb.append(fragment);
1993        }
1994        string = sb.toString();
1995    }
1996
1997
1998    // -- Normalization, resolution, and relativization --
1999
2000    // RFC2396 5.2 (6)
2001    private static String resolvePath(String base, String child,
2002                                      boolean absolute)
2003    {
2004        int i = base.lastIndexOf('/');
2005        int cn = child.length();
2006        String path = "";
2007
2008        if (cn == 0) {
2009            // 5.2 (6a)
2010            if (i >= 0)
2011                path = base.substring(0, i + 1);
2012        } else {
2013            StringBuffer sb = new StringBuffer(base.length() + cn);
2014            // 5.2 (6a)
2015            if (i >= 0)
2016                sb.append(base.substring(0, i + 1));
2017            // 5.2 (6b)
2018            sb.append(child);
2019            path = sb.toString();
2020        }
2021
2022        // 5.2 (6c-f)
2023        String np = normalize(path, true);
2024
2025        // 5.2 (6g): If the result is absolute but the path begins with "../",
2026        // then we simply leave the path as-is
2027
2028        return np;
2029    }
2030
2031    // RFC2396 5.2
2032    private static URI resolve(URI base, URI child) {
2033        // check if child if opaque first so that NPE is thrown
2034        // if child is null.
2035        if (child.isOpaque() || base.isOpaque())
2036            return child;
2037
2038        // 5.2 (2): Reference to current document (lone fragment)
2039        if ((child.scheme == null) && (child.authority == null)
2040            && child.path.equals("") && (child.fragment != null)
2041            && (child.query == null)) {
2042            if ((base.fragment != null)
2043                && child.fragment.equals(base.fragment)) {
2044                return base;
2045            }
2046            URI ru = new URI();
2047            ru.scheme = base.scheme;
2048            ru.authority = base.authority;
2049            ru.userInfo = base.userInfo;
2050            ru.host = base.host;
2051            ru.port = base.port;
2052            ru.path = base.path;
2053            ru.fragment = child.fragment;
2054            ru.query = base.query;
2055            return ru;
2056        }
2057
2058        // 5.2 (3): Child is absolute
2059        if (child.scheme != null)
2060            return child;
2061
2062        URI ru = new URI();             // Resolved URI
2063        ru.scheme = base.scheme;
2064        ru.query = child.query;
2065        ru.fragment = child.fragment;
2066
2067        // 5.2 (4): Authority
2068        if (child.authority == null) {
2069            ru.authority = base.authority;
2070            ru.host = base.host;
2071            ru.userInfo = base.userInfo;
2072            ru.port = base.port;
2073
2074            if (child.path == null || child.path.isEmpty()) {
2075                // This is an addtional path from RFC 3986 RI, which fixes following RFC 2396
2076                // "normal" examples:
2077                // Base: http://a/b/c/d;p?q
2078                //   "?y" = "http://a/b/c/d;p?y"
2079                //   ""   = "http://a/b/c/d;p?q"
2080                // http://b/25897693
2081                ru.path = base.path;
2082                ru.query = child.query != null ? child.query : base.query;
2083            } else if ((child.path.length() > 0) && (child.path.charAt(0) == '/')) {
2084                // 5.2 (5): Child path is absolute
2085                //
2086                // There is an additional step from RFC 3986 RI, requiring to remove dots for
2087                // absolute path as well.
2088                // http://b/25897693
2089                ru.path = normalize(child.path, true);
2090            } else {
2091                // 5.2 (6): Resolve relative path
2092                ru.path = resolvePath(base.path, child.path, base.isAbsolute());
2093            }
2094        } else {
2095            ru.authority = child.authority;
2096            ru.host = child.host;
2097            ru.userInfo = child.userInfo;
2098            ru.host = child.host;
2099            ru.port = child.port;
2100            ru.path = child.path;
2101        }
2102
2103        // 5.2 (7): Recombine (nothing to do here)
2104        return ru;
2105    }
2106
2107    // If the given URI's path is normal then return the URI;
2108    // o.w., return a new URI containing the normalized path.
2109    //
2110    private static URI normalize(URI u) {
2111        if (u.isOpaque() || (u.path == null) || (u.path.length() == 0))
2112            return u;
2113
2114        String np = normalize(u.path);
2115        if (np == u.path)
2116            return u;
2117
2118        URI v = new URI();
2119        v.scheme = u.scheme;
2120        v.fragment = u.fragment;
2121        v.authority = u.authority;
2122        v.userInfo = u.userInfo;
2123        v.host = u.host;
2124        v.port = u.port;
2125        v.path = np;
2126        v.query = u.query;
2127        return v;
2128    }
2129
2130    // If both URIs are hierarchical, their scheme and authority components are
2131    // identical, and the base path is a prefix of the child's path, then
2132    // return a relative URI that, when resolved against the base, yields the
2133    // child; otherwise, return the child.
2134    //
2135    private static URI relativize(URI base, URI child) {
2136        // check if child if opaque first so that NPE is thrown
2137        // if child is null.
2138        if (child.isOpaque() || base.isOpaque())
2139            return child;
2140        if (!equalIgnoringCase(base.scheme, child.scheme)
2141            || !equal(base.authority, child.authority))
2142            return child;
2143
2144        String bp = normalize(base.path);
2145        String cp = normalize(child.path);
2146        if (!bp.equals(cp)) {
2147            // Android-changed: The original OpenJdk implementation would append a trailing slash
2148            // to paths like "/a/b" before relativizing them. This would relativize /a/b/c to
2149            // "/c" against "/a/b" the android implementation did not do this. It would assume that
2150            // "b" wasn't a directory and relativize the path to "/b/c". The spec is pretty vague
2151            // about this but this change is being made because we have several tests that expect
2152            // this behaviour.
2153            if (bp.indexOf('/') != -1) {
2154                bp = bp.substring(0, bp.lastIndexOf('/') + 1);
2155            }
2156
2157            if (!cp.startsWith(bp))
2158                return child;
2159        }
2160
2161        URI v = new URI();
2162        v.path = cp.substring(bp.length());
2163        v.query = child.query;
2164        v.fragment = child.fragment;
2165        return v;
2166    }
2167
2168
2169
2170    // -- Path normalization --
2171
2172    // The following algorithm for path normalization avoids the creation of a
2173    // string object for each segment, as well as the use of a string buffer to
2174    // compute the final result, by using a single char array and editing it in
2175    // place.  The array is first split into segments, replacing each slash
2176    // with '\0' and creating a segment-index array, each element of which is
2177    // the index of the first char in the corresponding segment.  We then walk
2178    // through both arrays, removing ".", "..", and other segments as necessary
2179    // by setting their entries in the index array to -1.  Finally, the two
2180    // arrays are used to rejoin the segments and compute the final result.
2181    //
2182    // This code is based upon src/solaris/native/java/io/canonicalize_md.c
2183
2184
2185    // Check the given path to see if it might need normalization.  A path
2186    // might need normalization if it contains duplicate slashes, a "."
2187    // segment, or a ".." segment.  Return -1 if no further normalization is
2188    // possible, otherwise return the number of segments found.
2189    //
2190    // This method takes a string argument rather than a char array so that
2191    // this test can be performed without invoking path.toCharArray().
2192    //
2193    static private int needsNormalization(String path) {
2194        boolean normal = true;
2195        int ns = 0;                     // Number of segments
2196        int end = path.length() - 1;    // Index of last char in path
2197        int p = 0;                      // Index of next char in path
2198
2199        // Skip initial slashes
2200        while (p <= end) {
2201            if (path.charAt(p) != '/') break;
2202            p++;
2203        }
2204        if (p > 1) normal = false;
2205
2206        // Scan segments
2207        while (p <= end) {
2208
2209            // Looking at "." or ".." ?
2210            if ((path.charAt(p) == '.')
2211                && ((p == end)
2212                    || ((path.charAt(p + 1) == '/')
2213                        || ((path.charAt(p + 1) == '.')
2214                            && ((p + 1 == end)
2215                                || (path.charAt(p + 2) == '/')))))) {
2216                normal = false;
2217            }
2218            ns++;
2219
2220            // Find beginning of next segment
2221            while (p <= end) {
2222                if (path.charAt(p++) != '/')
2223                    continue;
2224
2225                // Skip redundant slashes
2226                while (p <= end) {
2227                    if (path.charAt(p) != '/') break;
2228                    normal = false;
2229                    p++;
2230                }
2231
2232                break;
2233            }
2234        }
2235
2236        return normal ? -1 : ns;
2237    }
2238
2239
2240    // Split the given path into segments, replacing slashes with nulls and
2241    // filling in the given segment-index array.
2242    //
2243    // Preconditions:
2244    //   segs.length == Number of segments in path
2245    //
2246    // Postconditions:
2247    //   All slashes in path replaced by '\0'
2248    //   segs[i] == Index of first char in segment i (0 <= i < segs.length)
2249    //
2250    static private void split(char[] path, int[] segs) {
2251        int end = path.length - 1;      // Index of last char in path
2252        int p = 0;                      // Index of next char in path
2253        int i = 0;                      // Index of current segment
2254
2255        // Skip initial slashes
2256        while (p <= end) {
2257            if (path[p] != '/') break;
2258            path[p] = '\0';
2259            p++;
2260        }
2261
2262        while (p <= end) {
2263
2264            // Note start of segment
2265            segs[i++] = p++;
2266
2267            // Find beginning of next segment
2268            while (p <= end) {
2269                if (path[p++] != '/')
2270                    continue;
2271                path[p - 1] = '\0';
2272
2273                // Skip redundant slashes
2274                while (p <= end) {
2275                    if (path[p] != '/') break;
2276                    path[p++] = '\0';
2277                }
2278                break;
2279            }
2280        }
2281
2282        if (i != segs.length)
2283            throw new InternalError();  // ASSERT
2284    }
2285
2286
2287    // Join the segments in the given path according to the given segment-index
2288    // array, ignoring those segments whose index entries have been set to -1,
2289    // and inserting slashes as needed.  Return the length of the resulting
2290    // path.
2291    //
2292    // Preconditions:
2293    //   segs[i] == -1 implies segment i is to be ignored
2294    //   path computed by split, as above, with '\0' having replaced '/'
2295    //
2296    // Postconditions:
2297    //   path[0] .. path[return value] == Resulting path
2298    //
2299    static private int join(char[] path, int[] segs) {
2300        int ns = segs.length;           // Number of segments
2301        int end = path.length - 1;      // Index of last char in path
2302        int p = 0;                      // Index of next path char to write
2303
2304        if (path[p] == '\0') {
2305            // Restore initial slash for absolute paths
2306            path[p++] = '/';
2307        }
2308
2309        for (int i = 0; i < ns; i++) {
2310            int q = segs[i];            // Current segment
2311            if (q == -1)
2312                // Ignore this segment
2313                continue;
2314
2315            if (p == q) {
2316                // We're already at this segment, so just skip to its end
2317                while ((p <= end) && (path[p] != '\0'))
2318                    p++;
2319                if (p <= end) {
2320                    // Preserve trailing slash
2321                    path[p++] = '/';
2322                }
2323            } else if (p < q) {
2324                // Copy q down to p
2325                while ((q <= end) && (path[q] != '\0'))
2326                    path[p++] = path[q++];
2327                if (q <= end) {
2328                    // Preserve trailing slash
2329                    path[p++] = '/';
2330                }
2331            } else
2332                throw new InternalError(); // ASSERT false
2333        }
2334
2335        return p;
2336    }
2337
2338
2339    // Remove "." segments from the given path, and remove segment pairs
2340    // consisting of a non-".." segment followed by a ".." segment.
2341    //
2342    private static void removeDots(char[] path, int[] segs, boolean removeLeading) {
2343        int ns = segs.length;
2344        int end = path.length - 1;
2345
2346        for (int i = 0; i < ns; i++) {
2347            int dots = 0;               // Number of dots found (0, 1, or 2)
2348
2349            // Find next occurrence of "." or ".."
2350            do {
2351                int p = segs[i];
2352                if (path[p] == '.') {
2353                    if (p == end) {
2354                        dots = 1;
2355                        break;
2356                    } else if (path[p + 1] == '\0') {
2357                        dots = 1;
2358                        break;
2359                    } else if ((path[p + 1] == '.')
2360                               && ((p + 1 == end)
2361                                   || (path[p + 2] == '\0'))) {
2362                        dots = 2;
2363                        break;
2364                    }
2365                }
2366                i++;
2367            } while (i < ns);
2368            if ((i > ns) || (dots == 0))
2369                break;
2370
2371            if (dots == 1) {
2372                // Remove this occurrence of "."
2373                segs[i] = -1;
2374            } else {
2375                // If there is a preceding non-".." segment, remove both that
2376                // segment and this occurrence of ".."
2377                int j;
2378                for (j = i - 1; j >= 0; j--) {
2379                    if (segs[j] != -1) break;
2380                }
2381                if (j >= 0) {
2382                    int q = segs[j];
2383                    if (!((path[q] == '.')
2384                          && (path[q + 1] == '.')
2385                          && (path[q + 2] == '\0'))) {
2386                        segs[i] = -1;
2387                        segs[j] = -1;
2388                    }
2389                } else if (removeLeading) {
2390                    // This is a leading ".." segment. Per RFC 3986 RI, this should be removed as
2391                    // well. This fixes RFC 2396 "abnormal" examples.
2392                    // http://b/25897693
2393                    segs[i] = -1;
2394                }
2395            }
2396        }
2397    }
2398
2399
2400    // DEVIATION: If the normalized path is relative, and if the first
2401    // segment could be parsed as a scheme name, then prepend a "." segment
2402    //
2403    private static void maybeAddLeadingDot(char[] path, int[] segs) {
2404
2405        if (path[0] == '\0')
2406            // The path is absolute
2407            return;
2408
2409        int ns = segs.length;
2410        int f = 0;                      // Index of first segment
2411        while (f < ns) {
2412            if (segs[f] >= 0)
2413                break;
2414            f++;
2415        }
2416        if ((f >= ns) || (f == 0))
2417            // The path is empty, or else the original first segment survived,
2418            // in which case we already know that no leading "." is needed
2419            return;
2420
2421        int p = segs[f];
2422        while ((p < path.length) && (path[p] != ':') && (path[p] != '\0')) p++;
2423        if (p >= path.length || path[p] == '\0')
2424            // No colon in first segment, so no "." needed
2425            return;
2426
2427        // At this point we know that the first segment is unused,
2428        // hence we can insert a "." segment at that position
2429        path[0] = '.';
2430        path[1] = '\0';
2431        segs[0] = 0;
2432    }
2433
2434
2435    // Normalize the given path string.  A normal path string has no empty
2436    // segments (i.e., occurrences of "//"), no segments equal to ".", and no
2437    // segments equal to ".." that are preceded by a segment not equal to "..".
2438    // In contrast to Unix-style pathname normalization, for URI paths we
2439    // always retain trailing slashes.
2440    //
2441    private static String normalize(String ps) {
2442        return normalize(ps, false);
2443    }
2444
2445    private static String normalize(String ps, boolean removeLeading) {
2446
2447        // Does this path need normalization?
2448        int ns = needsNormalization(ps);        // Number of segments
2449        if (ns < 0)
2450            // Nope -- just return it
2451            return ps;
2452
2453        char[] path = ps.toCharArray();         // Path in char-array form
2454
2455        // Split path into segments
2456        int[] segs = new int[ns];               // Segment-index array
2457        split(path, segs);
2458
2459        // Remove dots
2460        removeDots(path, segs, removeLeading);
2461
2462        // Prevent scheme-name confusion
2463        maybeAddLeadingDot(path, segs);
2464
2465        // Join the remaining segments and return the result
2466        String s = new String(path, 0, join(path, segs));
2467        if (s.equals(ps)) {
2468            // string was already normalized
2469            return ps;
2470        }
2471        return s;
2472    }
2473
2474
2475
2476    // -- Character classes for parsing --
2477
2478    // RFC2396 precisely specifies which characters in the US-ASCII charset are
2479    // permissible in the various components of a URI reference.  We here
2480    // define a set of mask pairs to aid in enforcing these restrictions.  Each
2481    // mask pair consists of two longs, a low mask and a high mask.  Taken
2482    // together they represent a 128-bit mask, where bit i is set iff the
2483    // character with value i is permitted.
2484    //
2485    // This approach is more efficient than sequentially searching arrays of
2486    // permitted characters.  It could be made still more efficient by
2487    // precompiling the mask information so that a character's presence in a
2488    // given mask could be determined by a single table lookup.
2489
2490    // Compute the low-order mask for the characters in the given string
2491    private static long lowMask(String chars) {
2492        int n = chars.length();
2493        long m = 0;
2494        for (int i = 0; i < n; i++) {
2495            char c = chars.charAt(i);
2496            if (c < 64)
2497                m |= (1L << c);
2498        }
2499        return m;
2500    }
2501
2502    // Compute the high-order mask for the characters in the given string
2503    private static long highMask(String chars) {
2504        int n = chars.length();
2505        long m = 0;
2506        for (int i = 0; i < n; i++) {
2507            char c = chars.charAt(i);
2508            if ((c >= 64) && (c < 128))
2509                m |= (1L << (c - 64));
2510        }
2511        return m;
2512    }
2513
2514    // Compute a low-order mask for the characters
2515    // between first and last, inclusive
2516    private static long lowMask(char first, char last) {
2517        long m = 0;
2518        int f = Math.max(Math.min(first, 63), 0);
2519        int l = Math.max(Math.min(last, 63), 0);
2520        for (int i = f; i <= l; i++)
2521            m |= 1L << i;
2522        return m;
2523    }
2524
2525    // Compute a high-order mask for the characters
2526    // between first and last, inclusive
2527    private static long highMask(char first, char last) {
2528        long m = 0;
2529        int f = Math.max(Math.min(first, 127), 64) - 64;
2530        int l = Math.max(Math.min(last, 127), 64) - 64;
2531        for (int i = f; i <= l; i++)
2532            m |= 1L << i;
2533        return m;
2534    }
2535
2536    // Tell whether the given character is permitted by the given mask pair
2537    private static boolean match(char c, long lowMask, long highMask) {
2538        if (c == 0) // 0 doesn't have a slot in the mask. So, it never matches.
2539            return false;
2540        if (c < 64)
2541            return ((1L << c) & lowMask) != 0;
2542        if (c < 128)
2543            return ((1L << (c - 64)) & highMask) != 0;
2544        return false;
2545    }
2546
2547    // Character-class masks, in reverse order from RFC2396 because
2548    // initializers for static fields cannot make forward references.
2549
2550    // digit    = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
2551    //            "8" | "9"
2552    private static final long L_DIGIT = lowMask('0', '9');
2553    private static final long H_DIGIT = 0L;
2554
2555    // upalpha  = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
2556    //            "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
2557    //            "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
2558    private static final long L_UPALPHA = 0L;
2559    private static final long H_UPALPHA = highMask('A', 'Z');
2560
2561    // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
2562    //            "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
2563    //            "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
2564    private static final long L_LOWALPHA = 0L;
2565    private static final long H_LOWALPHA = highMask('a', 'z');
2566
2567    // alpha         = lowalpha | upalpha
2568    private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA;
2569    private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA;
2570
2571    // alphanum      = alpha | digit
2572    private static final long L_ALPHANUM = L_DIGIT | L_ALPHA;
2573    private static final long H_ALPHANUM = H_DIGIT | H_ALPHA;
2574
2575    // hex           = digit | "A" | "B" | "C" | "D" | "E" | "F" |
2576    //                         "a" | "b" | "c" | "d" | "e" | "f"
2577    private static final long L_HEX = L_DIGIT;
2578    private static final long H_HEX = highMask('A', 'F') | highMask('a', 'f');
2579
2580    // mark          = "-" | "_" | "." | "!" | "~" | "*" | "'" |
2581    //                 "(" | ")"
2582    private static final long L_MARK = lowMask("-_.!~*'()");
2583    private static final long H_MARK = highMask("-_.!~*'()");
2584
2585    // unreserved    = alphanum | mark
2586    private static final long L_UNRESERVED = L_ALPHANUM | L_MARK;
2587    private static final long H_UNRESERVED = H_ALPHANUM | H_MARK;
2588
2589    // reserved      = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
2590    //                 "$" | "," | "[" | "]"
2591    // Added per RFC2732: "[", "]"
2592    private static final long L_RESERVED = lowMask(";/?:@&=+$,[]");
2593    private static final long H_RESERVED = highMask(";/?:@&=+$,[]");
2594
2595    // The zero'th bit is used to indicate that escape pairs and non-US-ASCII
2596    // characters are allowed; this is handled by the scanEscape method below.
2597    private static final long L_ESCAPED = 1L;
2598    private static final long H_ESCAPED = 0L;
2599
2600    // uric          = reserved | unreserved | escaped
2601    private static final long L_URIC = L_RESERVED | L_UNRESERVED | L_ESCAPED;
2602    private static final long H_URIC = H_RESERVED | H_UNRESERVED | H_ESCAPED;
2603
2604    // pchar         = unreserved | escaped |
2605    //                 ":" | "@" | "&" | "=" | "+" | "$" | ","
2606    private static final long L_PCHAR
2607        = L_UNRESERVED | L_ESCAPED | lowMask(":@&=+$,");
2608    private static final long H_PCHAR
2609        = H_UNRESERVED | H_ESCAPED | highMask(":@&=+$,");
2610
2611    // All valid path characters
2612    private static final long L_PATH = L_PCHAR | lowMask(";/");
2613    private static final long H_PATH = H_PCHAR | highMask(";/");
2614
2615    // Dash, for use in domainlabel and toplabel
2616    private static final long L_DASH = lowMask("-");
2617    private static final long H_DASH = highMask("-");
2618
2619    // UNDERSCORE, for use in domainlabel and toplabel
2620    private static final long L_UNDERSCORE = lowMask("_");
2621    private static final long H_UNDERSCORE = highMask("_");
2622
2623    // Dot, for use in hostnames
2624    private static final long L_DOT = lowMask(".");
2625    private static final long H_DOT = highMask(".");
2626
2627    // userinfo      = *( unreserved | escaped |
2628    //                    ";" | ":" | "&" | "=" | "+" | "$" | "," )
2629    private static final long L_USERINFO
2630        = L_UNRESERVED | L_ESCAPED | lowMask(";:&=+$,");
2631    private static final long H_USERINFO
2632        = H_UNRESERVED | H_ESCAPED | highMask(";:&=+$,");
2633
2634    // reg_name      = 1*( unreserved | escaped | "$" | "," |
2635    //                     ";" | ":" | "@" | "&" | "=" | "+" )
2636    private static final long L_REG_NAME
2637        = L_UNRESERVED | L_ESCAPED | lowMask("$,;:@&=+");
2638    private static final long H_REG_NAME
2639        = H_UNRESERVED | H_ESCAPED | highMask("$,;:@&=+");
2640
2641    // All valid characters for server-based authorities
2642    private static final long L_SERVER
2643        = L_USERINFO | L_ALPHANUM | L_DASH | lowMask(".:@[]");
2644    private static final long H_SERVER
2645        = H_USERINFO | H_ALPHANUM | H_DASH | highMask(".:@[]");
2646
2647    // Special case of server authority that represents an IPv6 address
2648    // In this case, a % does not signify an escape sequence
2649    private static final long L_SERVER_PERCENT
2650        = L_SERVER | lowMask("%");
2651    private static final long H_SERVER_PERCENT
2652        = H_SERVER | highMask("%");
2653    private static final long L_LEFT_BRACKET = lowMask("[");
2654    private static final long H_LEFT_BRACKET = highMask("[");
2655
2656    // scheme        = alpha *( alpha | digit | "+" | "-" | "." )
2657    private static final long L_SCHEME = L_ALPHA | L_DIGIT | lowMask("+-.");
2658    private static final long H_SCHEME = H_ALPHA | H_DIGIT | highMask("+-.");
2659
2660    // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
2661    //                 "&" | "=" | "+" | "$" | ","
2662    private static final long L_URIC_NO_SLASH
2663        = L_UNRESERVED | L_ESCAPED | lowMask(";?:@&=+$,");
2664    private static final long H_URIC_NO_SLASH
2665        = H_UNRESERVED | H_ESCAPED | highMask(";?:@&=+$,");
2666
2667
2668    // -- Escaping and encoding --
2669
2670    private final static char[] hexDigits = {
2671        '0', '1', '2', '3', '4', '5', '6', '7',
2672        '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
2673    };
2674
2675    private static void appendEscape(StringBuffer sb, byte b) {
2676        sb.append('%');
2677        sb.append(hexDigits[(b >> 4) & 0x0f]);
2678        sb.append(hexDigits[(b >> 0) & 0x0f]);
2679    }
2680
2681    private static void appendEncoded(StringBuffer sb, char c) {
2682        ByteBuffer bb = null;
2683        try {
2684            bb = ThreadLocalCoders.encoderFor("UTF-8")
2685                .encode(CharBuffer.wrap("" + c));
2686        } catch (CharacterCodingException x) {
2687            assert false;
2688        }
2689        while (bb.hasRemaining()) {
2690            int b = bb.get() & 0xff;
2691            if (b >= 0x80)
2692                appendEscape(sb, (byte)b);
2693            else
2694                sb.append((char)b);
2695        }
2696    }
2697
2698    // Quote any characters in s that are not permitted
2699    // by the given mask pair
2700    //
2701    private static String quote(String s, long lowMask, long highMask) {
2702        int n = s.length();
2703        StringBuffer sb = null;
2704        boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0);
2705        for (int i = 0; i < s.length(); i++) {
2706            char c = s.charAt(i);
2707            if (c < '\u0080') {
2708                if (!match(c, lowMask, highMask)) {
2709                    if (sb == null) {
2710                        sb = new StringBuffer();
2711                        sb.append(s.substring(0, i));
2712                    }
2713                    appendEscape(sb, (byte)c);
2714                } else {
2715                    if (sb != null)
2716                        sb.append(c);
2717                }
2718            } else if (allowNonASCII
2719                       && (Character.isSpaceChar(c)
2720                           || Character.isISOControl(c))) {
2721                if (sb == null) {
2722                    sb = new StringBuffer();
2723                    sb.append(s.substring(0, i));
2724                }
2725                appendEncoded(sb, c);
2726            } else {
2727                if (sb != null)
2728                    sb.append(c);
2729            }
2730        }
2731        return (sb == null) ? s : sb.toString();
2732    }
2733
2734    // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets,
2735    // assuming that s is otherwise legal
2736    //
2737    private static String encode(String s) {
2738        int n = s.length();
2739        if (n == 0)
2740            return s;
2741
2742        // First check whether we actually need to encode
2743        for (int i = 0;;) {
2744            if (s.charAt(i) >= '\u0080')
2745                break;
2746            if (++i >= n)
2747                return s;
2748        }
2749
2750        String ns = Normalizer.normalize(s, Normalizer.Form.NFC);
2751        ByteBuffer bb = null;
2752        try {
2753            bb = ThreadLocalCoders.encoderFor("UTF-8")
2754                .encode(CharBuffer.wrap(ns));
2755        } catch (CharacterCodingException x) {
2756            assert false;
2757        }
2758
2759        StringBuffer sb = new StringBuffer();
2760        while (bb.hasRemaining()) {
2761            int b = bb.get() & 0xff;
2762            if (b >= 0x80)
2763                appendEscape(sb, (byte)b);
2764            else
2765                sb.append((char)b);
2766        }
2767        return sb.toString();
2768    }
2769
2770    private static int decode(char c) {
2771        if ((c >= '0') && (c <= '9'))
2772            return c - '0';
2773        if ((c >= 'a') && (c <= 'f'))
2774            return c - 'a' + 10;
2775        if ((c >= 'A') && (c <= 'F'))
2776            return c - 'A' + 10;
2777        assert false;
2778        return -1;
2779    }
2780
2781    private static byte decode(char c1, char c2) {
2782        return (byte)(  ((decode(c1) & 0xf) << 4)
2783                      | ((decode(c2) & 0xf) << 0));
2784    }
2785
2786    // Evaluates all escapes in s, applying UTF-8 decoding if needed.  Assumes
2787    // that escapes are well-formed syntactically, i.e., of the form %XX.  If a
2788    // sequence of escaped octets is not valid UTF-8 then the erroneous octets
2789    // are replaced with '\uFFFD'.
2790    // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal
2791    //            with a scope_id
2792    //
2793    private static String decode(String s) {
2794        if (s == null)
2795            return s;
2796        int n = s.length();
2797        if (n == 0)
2798            return s;
2799        if (s.indexOf('%') < 0)
2800            return s;
2801
2802        StringBuffer sb = new StringBuffer(n);
2803        ByteBuffer bb = ByteBuffer.allocate(n);
2804        CharBuffer cb = CharBuffer.allocate(n);
2805        CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8")
2806            .onMalformedInput(CodingErrorAction.REPLACE)
2807            .onUnmappableCharacter(CodingErrorAction.REPLACE);
2808
2809        // This is not horribly efficient, but it will do for now
2810        char c = s.charAt(0);
2811        boolean betweenBrackets = false;
2812
2813        for (int i = 0; i < n;) {
2814            assert c == s.charAt(i);    // Loop invariant
2815            if (c == '[') {
2816                betweenBrackets = true;
2817            } else if (betweenBrackets && c == ']') {
2818                betweenBrackets = false;
2819            }
2820            if (c != '%' || betweenBrackets) {
2821                sb.append(c);
2822                if (++i >= n)
2823                    break;
2824                c = s.charAt(i);
2825                continue;
2826            }
2827            bb.clear();
2828            int ui = i;
2829            for (;;) {
2830                assert (n - i >= 2);
2831                bb.put(decode(s.charAt(++i), s.charAt(++i)));
2832                if (++i >= n)
2833                    break;
2834                c = s.charAt(i);
2835                if (c != '%')
2836                    break;
2837            }
2838            bb.flip();
2839            cb.clear();
2840            dec.reset();
2841            CoderResult cr = dec.decode(bb, cb, true);
2842            assert cr.isUnderflow();
2843            cr = dec.flush(cb);
2844            assert cr.isUnderflow();
2845            sb.append(cb.flip().toString());
2846        }
2847
2848        return sb.toString();
2849    }
2850
2851
2852    // -- Parsing --
2853
2854    // For convenience we wrap the input URI string in a new instance of the
2855    // following internal class.  This saves always having to pass the input
2856    // string as an argument to each internal scan/parse method.
2857
2858    private class Parser {
2859
2860        private String input;           // URI input string
2861        private boolean requireServerAuthority = false;
2862
2863        Parser(String s) {
2864            input = s;
2865            string = s;
2866        }
2867
2868        // -- Methods for throwing URISyntaxException in various ways --
2869
2870        private void fail(String reason) throws URISyntaxException {
2871            throw new URISyntaxException(input, reason);
2872        }
2873
2874        private void fail(String reason, int p) throws URISyntaxException {
2875            throw new URISyntaxException(input, reason, p);
2876        }
2877
2878        private void failExpecting(String expected, int p)
2879            throws URISyntaxException
2880        {
2881            fail("Expected " + expected, p);
2882        }
2883
2884        private void failExpecting(String expected, String prior, int p)
2885            throws URISyntaxException
2886        {
2887            fail("Expected " + expected + " following " + prior, p);
2888        }
2889
2890
2891        // -- Simple access to the input string --
2892
2893        // Return a substring of the input string
2894        //
2895        private String substring(int start, int end) {
2896            return input.substring(start, end);
2897        }
2898
2899        // Return the char at position p,
2900        // assuming that p < input.length()
2901        //
2902        private char charAt(int p) {
2903            return input.charAt(p);
2904        }
2905
2906        // Tells whether start < end and, if so, whether charAt(start) == c
2907        //
2908        private boolean at(int start, int end, char c) {
2909            return (start < end) && (charAt(start) == c);
2910        }
2911
2912        // Tells whether start + s.length() < end and, if so,
2913        // whether the chars at the start position match s exactly
2914        //
2915        private boolean at(int start, int end, String s) {
2916            int p = start;
2917            int sn = s.length();
2918            if (sn > end - p)
2919                return false;
2920            int i = 0;
2921            while (i < sn) {
2922                if (charAt(p++) != s.charAt(i)) {
2923                    break;
2924                }
2925                i++;
2926            }
2927            return (i == sn);
2928        }
2929
2930
2931        // -- Scanning --
2932
2933        // The various scan and parse methods that follow use a uniform
2934        // convention of taking the current start position and end index as
2935        // their first two arguments.  The start is inclusive while the end is
2936        // exclusive, just as in the String class, i.e., a start/end pair
2937        // denotes the left-open interval [start, end) of the input string.
2938        //
2939        // These methods never proceed past the end position.  They may return
2940        // -1 to indicate outright failure, but more often they simply return
2941        // the position of the first char after the last char scanned.  Thus
2942        // a typical idiom is
2943        //
2944        //     int p = start;
2945        //     int q = scan(p, end, ...);
2946        //     if (q > p)
2947        //         // We scanned something
2948        //         ...;
2949        //     else if (q == p)
2950        //         // We scanned nothing
2951        //         ...;
2952        //     else if (q == -1)
2953        //         // Something went wrong
2954        //         ...;
2955
2956
2957        // Scan a specific char: If the char at the given start position is
2958        // equal to c, return the index of the next char; otherwise, return the
2959        // start position.
2960        //
2961        private int scan(int start, int end, char c) {
2962            if ((start < end) && (charAt(start) == c))
2963                return start + 1;
2964            return start;
2965        }
2966
2967        // Scan forward from the given start position.  Stop at the first char
2968        // in the err string (in which case -1 is returned), or the first char
2969        // in the stop string (in which case the index of the preceding char is
2970        // returned), or the end of the input string (in which case the length
2971        // of the input string is returned).  May return the start position if
2972        // nothing matches.
2973        //
2974        private int scan(int start, int end, String err, String stop) {
2975            int p = start;
2976            while (p < end) {
2977                char c = charAt(p);
2978                if (err.indexOf(c) >= 0)
2979                    return -1;
2980                if (stop.indexOf(c) >= 0)
2981                    break;
2982                p++;
2983            }
2984            return p;
2985        }
2986
2987        // Scan a potential escape sequence, starting at the given position,
2988        // with the given first char (i.e., charAt(start) == c).
2989        //
2990        // This method assumes that if escapes are allowed then visible
2991        // non-US-ASCII chars are also allowed.
2992        //
2993        private int scanEscape(int start, int n, char first)
2994            throws URISyntaxException
2995        {
2996            int p = start;
2997            char c = first;
2998            if (c == '%') {
2999                // Process escape pair
3000                if ((p + 3 <= n)
3001                    && match(charAt(p + 1), L_HEX, H_HEX)
3002                    && match(charAt(p + 2), L_HEX, H_HEX)) {
3003                    return p + 3;
3004                }
3005                fail("Malformed escape pair", p);
3006            } else if ((c > 128)
3007                       && !Character.isSpaceChar(c)
3008                       && !Character.isISOControl(c)) {
3009                // Allow unescaped but visible non-US-ASCII chars
3010                return p + 1;
3011            }
3012            return p;
3013        }
3014
3015        // Scan chars that match the given mask pair
3016        //
3017        private int scan(int start, int n, long lowMask, long highMask)
3018            throws URISyntaxException
3019        {
3020            int p = start;
3021            while (p < n) {
3022                char c = charAt(p);
3023                if (match(c, lowMask, highMask)) {
3024                    p++;
3025                    continue;
3026                }
3027                if ((lowMask & L_ESCAPED) != 0) {
3028                    int q = scanEscape(p, n, c);
3029                    if (q > p) {
3030                        p = q;
3031                        continue;
3032                    }
3033                }
3034                break;
3035            }
3036            return p;
3037        }
3038
3039        // Check that each of the chars in [start, end) matches the given mask
3040        //
3041        private void checkChars(int start, int end,
3042                                long lowMask, long highMask,
3043                                String what)
3044            throws URISyntaxException
3045        {
3046            int p = scan(start, end, lowMask, highMask);
3047            if (p < end)
3048                fail("Illegal character in " + what, p);
3049        }
3050
3051        // Check that the char at position p matches the given mask
3052        //
3053        private void checkChar(int p,
3054                               long lowMask, long highMask,
3055                               String what)
3056            throws URISyntaxException
3057        {
3058            checkChars(p, p + 1, lowMask, highMask, what);
3059        }
3060
3061
3062        // -- Parsing --
3063
3064        // [<scheme>:]<scheme-specific-part>[#<fragment>]
3065        //
3066        void parse(boolean rsa) throws URISyntaxException {
3067            requireServerAuthority = rsa;
3068            int ssp;                    // Start of scheme-specific part
3069            int n = input.length();
3070            int p = scan(0, n, "/?#", ":");
3071            if ((p >= 0) && at(p, n, ':')) {
3072                if (p == 0)
3073                    failExpecting("scheme name", 0);
3074                checkChar(0, L_ALPHA, H_ALPHA, "scheme name");
3075                checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name");
3076                scheme = substring(0, p);
3077                p++;                    // Skip ':'
3078                ssp = p;
3079                if (at(p, n, '/')) {
3080                    p = parseHierarchical(p, n);
3081                } else {
3082                    int q = scan(p, n, "", "#");
3083                    if (q <= p)
3084                        failExpecting("scheme-specific part", p);
3085                    checkChars(p, q, L_URIC, H_URIC, "opaque part");
3086                    p = q;
3087                }
3088            } else {
3089                ssp = 0;
3090                p = parseHierarchical(0, n);
3091            }
3092            schemeSpecificPart = substring(ssp, p);
3093            if (at(p, n, '#')) {
3094                checkChars(p + 1, n, L_URIC, H_URIC, "fragment");
3095                fragment = substring(p + 1, n);
3096                p = n;
3097            }
3098            if (p < n)
3099                fail("end of URI", p);
3100        }
3101
3102        // [//authority]<path>[?<query>]
3103        //
3104        // DEVIATION from RFC2396: We allow an empty authority component as
3105        // long as it's followed by a non-empty path, query component, or
3106        // fragment component.  This is so that URIs such as "file:///foo/bar"
3107        // will parse.  This seems to be the intent of RFC2396, though the
3108        // grammar does not permit it.  If the authority is empty then the
3109        // userInfo, host, and port components are undefined.
3110        //
3111        // DEVIATION from RFC2396: We allow empty relative paths.  This seems
3112        // to be the intent of RFC2396, but the grammar does not permit it.
3113        // The primary consequence of this deviation is that "#f" parses as a
3114        // relative URI with an empty path.
3115        //
3116        private int parseHierarchical(int start, int n)
3117            throws URISyntaxException
3118        {
3119            int p = start;
3120            if (at(p, n, '/') && at(p + 1, n, '/')) {
3121                p += 2;
3122                int q = scan(p, n, "", "/?#");
3123                if (q > p) {
3124                    p = parseAuthority(p, q);
3125                } else if (q < n) {
3126                    // DEVIATION: Allow empty authority prior to non-empty
3127                    // path, query component or fragment identifier
3128                } else
3129                    failExpecting("authority", p);
3130            }
3131            int q = scan(p, n, "", "?#"); // DEVIATION: May be empty
3132            checkChars(p, q, L_PATH, H_PATH, "path");
3133            path = substring(p, q);
3134            p = q;
3135            if (at(p, n, '?')) {
3136                p++;
3137                q = scan(p, n, "", "#");
3138                checkChars(p, q, L_URIC, H_URIC, "query");
3139                query = substring(p, q);
3140                p = q;
3141            }
3142            return p;
3143        }
3144
3145        // authority     = server | reg_name
3146        //
3147        // Ambiguity: An authority that is a registry name rather than a server
3148        // might have a prefix that parses as a server.  We use the fact that
3149        // the authority component is always followed by '/' or the end of the
3150        // input string to resolve this: If the complete authority did not
3151        // parse as a server then we try to parse it as a registry name.
3152        //
3153        private int parseAuthority(int start, int n)
3154            throws URISyntaxException
3155        {
3156            int p = start;
3157            int q = p;
3158            URISyntaxException ex = null;
3159
3160            boolean serverChars;
3161            boolean regChars;
3162
3163            if (scan(p, n, "", "]") > p) {
3164                // contains a literal IPv6 address, therefore % is allowed
3165                serverChars = (scan(p, n, L_SERVER_PERCENT, H_SERVER_PERCENT) == n);
3166            } else {
3167                serverChars = (scan(p, n, L_SERVER, H_SERVER) == n);
3168            }
3169            regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n);
3170
3171            if (regChars && !serverChars) {
3172                // Must be a registry-based authority
3173                authority = substring(p, n);
3174                return n;
3175            }
3176
3177            if (serverChars) {
3178                // Might be (probably is) a server-based authority, so attempt
3179                // to parse it as such.  If the attempt fails, try to treat it
3180                // as a registry-based authority.
3181                try {
3182                    q = parseServer(p, n);
3183                    if (q < n)
3184                        failExpecting("end of authority", q);
3185                    authority = substring(p, n);
3186                } catch (URISyntaxException x) {
3187                    // Undo results of failed parse
3188                    userInfo = null;
3189                    host = null;
3190                    port = -1;
3191                    if (requireServerAuthority) {
3192                        // If we're insisting upon a server-based authority,
3193                        // then just re-throw the exception
3194                        throw x;
3195                    } else {
3196                        // Save the exception in case it doesn't parse as a
3197                        // registry either
3198                        ex = x;
3199                        q = p;
3200                    }
3201                }
3202            }
3203
3204            if (q < n) {
3205                if (regChars) {
3206                    // Registry-based authority
3207                    authority = substring(p, n);
3208                } else if (ex != null) {
3209                    // Re-throw exception; it was probably due to
3210                    // a malformed IPv6 address
3211                    throw ex;
3212                } else {
3213                    fail("Illegal character in authority", q);
3214                }
3215            }
3216
3217            return n;
3218        }
3219
3220
3221        // [<userinfo>@]<host>[:<port>]
3222        //
3223        private int parseServer(int start, int n)
3224            throws URISyntaxException
3225        {
3226            int p = start;
3227            int q;
3228
3229            // userinfo
3230            q = scan(p, n, "/?#", "@");
3231            if ((q >= p) && at(q, n, '@')) {
3232                checkChars(p, q, L_USERINFO, H_USERINFO, "user info");
3233                userInfo = substring(p, q);
3234                p = q + 1;              // Skip '@'
3235            }
3236
3237            // hostname, IPv4 address, or IPv6 address
3238            if (at(p, n, '[')) {
3239                // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732
3240                p++;
3241                q = scan(p, n, "/?#", "]");
3242                if ((q > p) && at(q, n, ']')) {
3243                    // look for a "%" scope id
3244                    int r = scan (p, q, "", "%");
3245                    if (r > p) {
3246                        parseIPv6Reference(p, r);
3247                        if (r+1 == q) {
3248                            fail ("scope id expected");
3249                        }
3250                        checkChars (r+1, q, L_ALPHANUM, H_ALPHANUM,
3251                                                "scope id");
3252                    } else {
3253                        parseIPv6Reference(p, q);
3254                    }
3255                    host = substring(p-1, q+1);
3256                    p = q + 1;
3257                } else {
3258                    failExpecting("closing bracket for IPv6 address", q);
3259                }
3260            } else {
3261                q = parseIPv4Address(p, n);
3262                if (q <= p)
3263                    q = parseHostname(p, n);
3264                p = q;
3265            }
3266
3267            // port
3268            if (at(p, n, ':')) {
3269                p++;
3270                q = scan(p, n, "", "/");
3271                if (q > p) {
3272                    checkChars(p, q, L_DIGIT, H_DIGIT, "port number");
3273                    try {
3274                        port = Integer.parseInt(substring(p, q));
3275                    } catch (NumberFormatException x) {
3276                        fail("Malformed port number", p);
3277                    }
3278                    p = q;
3279                }
3280            }
3281            if (p < n)
3282                failExpecting("port number", p);
3283
3284            return p;
3285        }
3286
3287        // Scan a string of decimal digits whose value fits in a byte
3288        //
3289        private int scanByte(int start, int n)
3290            throws URISyntaxException
3291        {
3292            int p = start;
3293            int q = scan(p, n, L_DIGIT, H_DIGIT);
3294            if (q <= p) return q;
3295            if (Integer.parseInt(substring(p, q)) > 255) return p;
3296            return q;
3297        }
3298
3299        // Scan an IPv4 address.
3300        //
3301        // If the strict argument is true then we require that the given
3302        // interval contain nothing besides an IPv4 address; if it is false
3303        // then we only require that it start with an IPv4 address.
3304        //
3305        // If the interval does not contain or start with (depending upon the
3306        // strict argument) a legal IPv4 address characters then we return -1
3307        // immediately; otherwise we insist that these characters parse as a
3308        // legal IPv4 address and throw an exception on failure.
3309        //
3310        // We assume that any string of decimal digits and dots must be an IPv4
3311        // address.  It won't parse as a hostname anyway, so making that
3312        // assumption here allows more meaningful exceptions to be thrown.
3313        //
3314        private int scanIPv4Address(int start, int n, boolean strict)
3315            throws URISyntaxException
3316        {
3317            int p = start;
3318            int q;
3319            int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT);
3320            if ((m <= p) || (strict && (m != n)))
3321                return -1;
3322            for (;;) {
3323                // Per RFC2732: At most three digits per byte
3324                // Further constraint: Each element fits in a byte
3325                if ((q = scanByte(p, m)) <= p) break;   p = q;
3326                if ((q = scan(p, m, '.')) <= p) break;  p = q;
3327                if ((q = scanByte(p, m)) <= p) break;   p = q;
3328                if ((q = scan(p, m, '.')) <= p) break;  p = q;
3329                if ((q = scanByte(p, m)) <= p) break;   p = q;
3330                if ((q = scan(p, m, '.')) <= p) break;  p = q;
3331                if ((q = scanByte(p, m)) <= p) break;   p = q;
3332                if (q < m) break;
3333                return q;
3334            }
3335            fail("Malformed IPv4 address", q);
3336            return -1;
3337        }
3338
3339        // Take an IPv4 address: Throw an exception if the given interval
3340        // contains anything except an IPv4 address
3341        //
3342        private int takeIPv4Address(int start, int n, String expected)
3343            throws URISyntaxException
3344        {
3345            int p = scanIPv4Address(start, n, true);
3346            if (p <= start)
3347                failExpecting(expected, start);
3348            return p;
3349        }
3350
3351        // Attempt to parse an IPv4 address, returning -1 on failure but
3352        // allowing the given interval to contain [:<characters>] after
3353        // the IPv4 address.
3354        //
3355        private int parseIPv4Address(int start, int n) {
3356            int p;
3357
3358            try {
3359                p = scanIPv4Address(start, n, false);
3360            } catch (URISyntaxException x) {
3361                return -1;
3362            } catch (NumberFormatException nfe) {
3363                return -1;
3364            }
3365
3366            if (p > start && p < n) {
3367                // IPv4 address is followed by something - check that
3368                // it's a ":" as this is the only valid character to
3369                // follow an address.
3370                if (charAt(p) != ':') {
3371                    p = -1;
3372                }
3373            }
3374
3375            if (p > start)
3376                host = substring(start, p);
3377
3378            return p;
3379        }
3380
3381        // hostname      = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ]
3382        // domainlabel   = alphanum | alphanum *( alphanum | "-" | "_" ) alphanum
3383        // toplabel      = alpha | alpha *( alphanum | "-" | "_" ) alphanum
3384        //
3385        private int parseHostname(int start, int n)
3386            throws URISyntaxException
3387        {
3388            int p = start;
3389            int q;
3390            int l = -1;                 // Start of last parsed label
3391
3392            do {
3393                // domainlabel = alphanum [ *( alphanum | "-" | "_" ) alphanum ]
3394                //
3395                // The RFCs don't permit underscores in hostnames, but URI has to because a certain
3396                // large website doesn't seem to care about standards and specs.
3397                // http://code.google.com/p/android/issues/detail?id=37577
3398                // http://b/17579865
3399                // http://b/18016625
3400                // http://b/18023709
3401                q = scan(p, n, L_ALPHANUM, H_ALPHANUM);
3402                if (q <= p)
3403                    break;
3404                l = p;
3405                if (q > p) {
3406                    p = q;
3407                    q = scan(p, n, L_ALPHANUM | L_DASH | L_UNDERSCORE, H_ALPHANUM | H_DASH | H_UNDERSCORE);
3408                    if (q > p) {
3409                        if (charAt(q - 1) == '-')
3410                            fail("Illegal character in hostname", q - 1);
3411                        p = q;
3412                    }
3413                }
3414                q = scan(p, n, '.');
3415                if (q <= p)
3416                    break;
3417                p = q;
3418            } while (p < n);
3419
3420            if ((p < n) && !at(p, n, ':'))
3421                fail("Illegal character in hostname", p);
3422
3423            if (l < 0)
3424                failExpecting("hostname", start);
3425
3426            // for a fully qualified hostname check that the rightmost
3427            // label starts with an alpha character.
3428            if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) {
3429                fail("Illegal character in hostname", l);
3430            }
3431
3432            host = substring(start, p);
3433            return p;
3434        }
3435
3436
3437        // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture
3438        //
3439        // Bug: The grammar in RFC2373 Appendix B does not allow addresses of
3440        // the form ::12.34.56.78, which are clearly shown in the examples
3441        // earlier in the document.  Here is the original grammar:
3442        //
3443        //   IPv6address = hexpart [ ":" IPv4address ]
3444        //   hexpart     = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ]
3445        //   hexseq      = hex4 *( ":" hex4)
3446        //   hex4        = 1*4HEXDIG
3447        //
3448        // We therefore use the following revised grammar:
3449        //
3450        //   IPv6address = hexseq [ ":" IPv4address ]
3451        //                 | hexseq [ "::" [ hexpost ] ]
3452        //                 | "::" [ hexpost ]
3453        //   hexpost     = hexseq | hexseq ":" IPv4address | IPv4address
3454        //   hexseq      = hex4 *( ":" hex4)
3455        //   hex4        = 1*4HEXDIG
3456        //
3457        // This covers all and only the following cases:
3458        //
3459        //   hexseq
3460        //   hexseq : IPv4address
3461        //   hexseq ::
3462        //   hexseq :: hexseq
3463        //   hexseq :: hexseq : IPv4address
3464        //   hexseq :: IPv4address
3465        //   :: hexseq
3466        //   :: hexseq : IPv4address
3467        //   :: IPv4address
3468        //   ::
3469        //
3470        // Additionally we constrain the IPv6 address as follows :-
3471        //
3472        //  i.  IPv6 addresses without compressed zeros should contain
3473        //      exactly 16 bytes.
3474        //
3475        //  ii. IPv6 addresses with compressed zeros should contain
3476        //      less than 16 bytes.
3477
3478        private int ipv6byteCount = 0;
3479
3480        private int parseIPv6Reference(int start, int n)
3481            throws URISyntaxException
3482        {
3483            int p = start;
3484            int q;
3485            boolean compressedZeros = false;
3486
3487            q = scanHexSeq(p, n);
3488
3489            if (q > p) {
3490                p = q;
3491                if (at(p, n, "::")) {
3492                    compressedZeros = true;
3493                    p = scanHexPost(p + 2, n);
3494                } else if (at(p, n, ':')) {
3495                    p = takeIPv4Address(p + 1,  n, "IPv4 address");
3496                    ipv6byteCount += 4;
3497                }
3498            } else if (at(p, n, "::")) {
3499                compressedZeros = true;
3500                p = scanHexPost(p + 2, n);
3501            }
3502            if (p < n)
3503                fail("Malformed IPv6 address", start);
3504            if (ipv6byteCount > 16)
3505                fail("IPv6 address too long", start);
3506            if (!compressedZeros && ipv6byteCount < 16)
3507                fail("IPv6 address too short", start);
3508            if (compressedZeros && ipv6byteCount == 16)
3509                fail("Malformed IPv6 address", start);
3510
3511            return p;
3512        }
3513
3514        private int scanHexPost(int start, int n)
3515            throws URISyntaxException
3516        {
3517            int p = start;
3518            int q;
3519
3520            if (p == n)
3521                return p;
3522
3523            q = scanHexSeq(p, n);
3524            if (q > p) {
3525                p = q;
3526                if (at(p, n, ':')) {
3527                    p++;
3528                    p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3529                    ipv6byteCount += 4;
3530                }
3531            } else {
3532                p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3533                ipv6byteCount += 4;
3534            }
3535            return p;
3536        }
3537
3538        // Scan a hex sequence; return -1 if one could not be scanned
3539        //
3540        private int scanHexSeq(int start, int n)
3541            throws URISyntaxException
3542        {
3543            int p = start;
3544            int q;
3545
3546            q = scan(p, n, L_HEX, H_HEX);
3547            if (q <= p)
3548                return -1;
3549            if (at(q, n, '.'))          // Beginning of IPv4 address
3550                return -1;
3551            if (q > p + 4)
3552                fail("IPv6 hexadecimal digit sequence too long", p);
3553            ipv6byteCount += 2;
3554            p = q;
3555            while (p < n) {
3556                if (!at(p, n, ':'))
3557                    break;
3558                if (at(p + 1, n, ':'))
3559                    break;              // "::"
3560                p++;
3561                q = scan(p, n, L_HEX, H_HEX);
3562                if (q <= p)
3563                    failExpecting("digits for an IPv6 address", p);
3564                if (at(q, n, '.')) {    // Beginning of IPv4 address
3565                    p--;
3566                    break;
3567                }
3568                if (q > p + 4)
3569                    fail("IPv6 hexadecimal digit sequence too long", p);
3570                ipv6byteCount += 2;
3571                p = q;
3572            }
3573
3574            return p;
3575        }
3576
3577    }
3578
3579}
3580