1/*
2 * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26/*
27 * This file is available under and governed by the GNU General Public
28 * License version 2 only, as published by the Free Software Foundation.
29 * However, the following notice accompanied the original version of this
30 * file:
31 *
32 * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
33 *
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions are met:
38 *
39 *  * Redistributions of source code must retain the above copyright notice,
40 *    this list of conditions and the following disclaimer.
41 *
42 *  * Redistributions in binary form must reproduce the above copyright notice,
43 *    this list of conditions and the following disclaimer in the documentation
44 *    and/or other materials provided with the distribution.
45 *
46 *  * Neither the name of JSR-310 nor the names of its contributors
47 *    may be used to endorse or promote products derived from this software
48 *    without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
54 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
55 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
56 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
57 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
58 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
59 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
60 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 */
62package java.time;
63
64import static java.time.LocalTime.NANOS_PER_SECOND;
65import static java.time.LocalTime.SECONDS_PER_DAY;
66import static java.time.LocalTime.SECONDS_PER_HOUR;
67import static java.time.LocalTime.SECONDS_PER_MINUTE;
68import static java.time.temporal.ChronoField.INSTANT_SECONDS;
69import static java.time.temporal.ChronoField.MICRO_OF_SECOND;
70import static java.time.temporal.ChronoField.MILLI_OF_SECOND;
71import static java.time.temporal.ChronoField.NANO_OF_SECOND;
72import static java.time.temporal.ChronoUnit.DAYS;
73import static java.time.temporal.ChronoUnit.NANOS;
74
75import java.io.DataInput;
76import java.io.DataOutput;
77import java.io.IOException;
78import java.io.InvalidObjectException;
79import java.io.ObjectInputStream;
80import java.io.Serializable;
81import java.time.format.DateTimeFormatter;
82import java.time.format.DateTimeParseException;
83import java.time.temporal.ChronoField;
84import java.time.temporal.ChronoUnit;
85import java.time.temporal.Temporal;
86import java.time.temporal.TemporalAccessor;
87import java.time.temporal.TemporalAdjuster;
88import java.time.temporal.TemporalAmount;
89import java.time.temporal.TemporalField;
90import java.time.temporal.TemporalQueries;
91import java.time.temporal.TemporalQuery;
92import java.time.temporal.TemporalUnit;
93import java.time.temporal.UnsupportedTemporalTypeException;
94import java.time.temporal.ValueRange;
95import java.util.Objects;
96
97// Android-changed: removed ValueBased paragraph.
98/**
99 * An instantaneous point on the time-line.
100 * <p>
101 * This class models a single instantaneous point on the time-line.
102 * This might be used to record event time-stamps in the application.
103 * <p>
104 * The range of an instant requires the storage of a number larger than a {@code long}.
105 * To achieve this, the class stores a {@code long} representing epoch-seconds and an
106 * {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999.
107 * The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z}
108 * where instants after the epoch have positive values, and earlier instants have negative values.
109 * For both the epoch-second and nanosecond parts, a larger value is always later on the time-line
110 * than a smaller value.
111 *
112 * <h3>Time-scale</h3>
113 * <p>
114 * The length of the solar day is the standard way that humans measure time.
115 * This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds,
116 * forming a 86400 second day.
117 * <p>
118 * Modern timekeeping is based on atomic clocks which precisely define an SI second
119 * relative to the transitions of a Caesium atom. The length of an SI second was defined
120 * to be very close to the 86400th fraction of a day.
121 * <p>
122 * Unfortunately, as the Earth rotates the length of the day varies.
123 * In addition, over time the average length of the day is getting longer as the Earth slows.
124 * As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds.
125 * The actual length of any given day and the amount by which the Earth is slowing
126 * are not predictable and can only be determined by measurement.
127 * The UT1 time-scale captures the accurate length of day, but is only available some
128 * time after the day has completed.
129 * <p>
130 * The UTC time-scale is a standard approach to bundle up all the additional fractions
131 * of a second from UT1 into whole seconds, known as <i>leap-seconds</i>.
132 * A leap-second may be added or removed depending on the Earth's rotational changes.
133 * As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where
134 * necessary in order to keep the day aligned with the Sun.
135 * <p>
136 * The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds.
137 * Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and
138 * alterations to the length of the notional second. As of 2012, discussions are underway
139 * to change the definition of UTC again, with the potential to remove leap seconds or
140 * introduce other changes.
141 * <p>
142 * Given the complexity of accurate timekeeping described above, this Java API defines
143 * its own time-scale, the <i>Java Time-Scale</i>.
144 * <p>
145 * The Java Time-Scale divides each calendar day into exactly 86400
146 * subdivisions, known as seconds.  These seconds may differ from the
147 * SI second.  It closely matches the de facto international civil time
148 * scale, the definition of which changes from time to time.
149 * <p>
150 * The Java Time-Scale has slightly different definitions for different
151 * segments of the time-line, each based on the consensus international
152 * time scale that is used as the basis for civil time. Whenever the
153 * internationally-agreed time scale is modified or replaced, a new
154 * segment of the Java Time-Scale must be defined for it.  Each segment
155 * must meet these requirements:
156 * <ul>
157 * <li>the Java Time-Scale shall closely match the underlying international
158 *  civil time scale;</li>
159 * <li>the Java Time-Scale shall exactly match the international civil
160 *  time scale at noon each day;</li>
161 * <li>the Java Time-Scale shall have a precisely-defined relationship to
162 *  the international civil time scale.</li>
163 * </ul>
164 * There are currently, as of 2013, two segments in the Java time-scale.
165 * <p>
166 * For the segment from 1972-11-03 (exact boundary discussed below) until
167 * further notice, the consensus international time scale is UTC (with
168 * leap seconds).  In this segment, the Java Time-Scale is identical to
169 * <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a>.
170 * This is identical to UTC on days that do not have a leap second.
171 * On days that do have a leap second, the leap second is spread equally
172 * over the last 1000 seconds of the day, maintaining the appearance of
173 * exactly 86400 seconds per day.
174 * <p>
175 * For the segment prior to 1972-11-03, extending back arbitrarily far,
176 * the consensus international time scale is defined to be UT1, applied
177 * proleptically, which is equivalent to the (mean) solar time on the
178 * prime meridian (Greenwich). In this segment, the Java Time-Scale is
179 * identical to the consensus international time scale. The exact
180 * boundary between the two segments is the instant where UT1 = UTC
181 * between 1972-11-03T00:00 and 1972-11-04T12:00.
182 * <p>
183 * Implementations of the Java time-scale using the JSR-310 API are not
184 * required to provide any clock that is sub-second accurate, or that
185 * progresses monotonically or smoothly. Implementations are therefore
186 * not required to actually perform the UTC-SLS slew or to otherwise be
187 * aware of leap seconds. JSR-310 does, however, require that
188 * implementations must document the approach they use when defining a
189 * clock representing the current instant.
190 * See {@link Clock} for details on the available clocks.
191 * <p>
192 * The Java time-scale is used for all date-time classes.
193 * This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime},
194 * {@code ZonedDateTime} and {@code Duration}.
195 *
196 * @implSpec
197 * This class is immutable and thread-safe.
198 *
199 * @since 1.8
200 */
201public final class Instant
202        implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable {
203
204    /**
205     * Constant for the 1970-01-01T00:00:00Z epoch instant.
206     */
207    public static final Instant EPOCH = new Instant(0, 0);
208    /**
209     * The minimum supported epoch second.
210     */
211    private static final long MIN_SECOND = -31557014167219200L;
212    /**
213     * The maximum supported epoch second.
214     */
215    private static final long MAX_SECOND = 31556889864403199L;
216    /**
217     * The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'.
218     * This could be used by an application as a "far past" instant.
219     * <p>
220     * This is one year earlier than the minimum {@code LocalDateTime}.
221     * This provides sufficient values to handle the range of {@code ZoneOffset}
222     * which affect the instant in addition to the local date-time.
223     * The value is also chosen such that the value of the year fits in
224     * an {@code int}.
225     */
226    public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0);
227    /**
228     * The maximum supported {@code Instant}, '1000000000-12-31T23:59:59.999999999Z'.
229     * This could be used by an application as a "far future" instant.
230     * <p>
231     * This is one year later than the maximum {@code LocalDateTime}.
232     * This provides sufficient values to handle the range of {@code ZoneOffset}
233     * which affect the instant in addition to the local date-time.
234     * The value is also chosen such that the value of the year fits in
235     * an {@code int}.
236     */
237    public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999);
238
239    /**
240     * Serialization version.
241     */
242    private static final long serialVersionUID = -665713676816604388L;
243
244    /**
245     * The number of seconds from the epoch of 1970-01-01T00:00:00Z.
246     */
247    private final long seconds;
248    /**
249     * The number of nanoseconds, later along the time-line, from the seconds field.
250     * This is always positive, and never exceeds 999,999,999.
251     */
252    private final int nanos;
253
254    //-----------------------------------------------------------------------
255    /**
256     * Obtains the current instant from the system clock.
257     * <p>
258     * This will query the {@link Clock#systemUTC() system UTC clock} to
259     * obtain the current instant.
260     * <p>
261     * Using this method will prevent the ability to use an alternate time-source for
262     * testing because the clock is effectively hard-coded.
263     *
264     * @return the current instant using the system clock, not null
265     */
266    public static Instant now() {
267        return Clock.systemUTC().instant();
268    }
269
270    /**
271     * Obtains the current instant from the specified clock.
272     * <p>
273     * This will query the specified clock to obtain the current time.
274     * <p>
275     * Using this method allows the use of an alternate clock for testing.
276     * The alternate clock may be introduced using {@link Clock dependency injection}.
277     *
278     * @param clock  the clock to use, not null
279     * @return the current instant, not null
280     */
281    public static Instant now(Clock clock) {
282        Objects.requireNonNull(clock, "clock");
283        return clock.instant();
284    }
285
286    //-----------------------------------------------------------------------
287    /**
288     * Obtains an instance of {@code Instant} using seconds from the
289     * epoch of 1970-01-01T00:00:00Z.
290     * <p>
291     * The nanosecond field is set to zero.
292     *
293     * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
294     * @return an instant, not null
295     * @throws DateTimeException if the instant exceeds the maximum or minimum instant
296     */
297    public static Instant ofEpochSecond(long epochSecond) {
298        return create(epochSecond, 0);
299    }
300
301    /**
302     * Obtains an instance of {@code Instant} using seconds from the
303     * epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second.
304     * <p>
305     * This method allows an arbitrary number of nanoseconds to be passed in.
306     * The factory will alter the values of the second and nanosecond in order
307     * to ensure that the stored nanosecond is in the range 0 to 999,999,999.
308     * For example, the following will result in the exactly the same instant:
309     * <pre>
310     *  Instant.ofEpochSecond(3, 1);
311     *  Instant.ofEpochSecond(4, -999_999_999);
312     *  Instant.ofEpochSecond(2, 1000_000_001);
313     * </pre>
314     *
315     * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
316     * @param nanoAdjustment  the nanosecond adjustment to the number of seconds, positive or negative
317     * @return an instant, not null
318     * @throws DateTimeException if the instant exceeds the maximum or minimum instant
319     * @throws ArithmeticException if numeric overflow occurs
320     */
321    public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) {
322        long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND));
323        int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND);
324        return create(secs, nos);
325    }
326
327    /**
328     * Obtains an instance of {@code Instant} using milliseconds from the
329     * epoch of 1970-01-01T00:00:00Z.
330     * <p>
331     * The seconds and nanoseconds are extracted from the specified milliseconds.
332     *
333     * @param epochMilli  the number of milliseconds from 1970-01-01T00:00:00Z
334     * @return an instant, not null
335     * @throws DateTimeException if the instant exceeds the maximum or minimum instant
336     */
337    public static Instant ofEpochMilli(long epochMilli) {
338        long secs = Math.floorDiv(epochMilli, 1000);
339        int mos = (int)Math.floorMod(epochMilli, 1000);
340        return create(secs, mos * 1000_000);
341    }
342
343    //-----------------------------------------------------------------------
344    /**
345     * Obtains an instance of {@code Instant} from a temporal object.
346     * <p>
347     * This obtains an instant based on the specified temporal.
348     * A {@code TemporalAccessor} represents an arbitrary set of date and time information,
349     * which this factory converts to an instance of {@code Instant}.
350     * <p>
351     * The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
352     * and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields.
353     * <p>
354     * This method matches the signature of the functional interface {@link TemporalQuery}
355     * allowing it to be used as a query via method reference, {@code Instant::from}.
356     *
357     * @param temporal  the temporal object to convert, not null
358     * @return the instant, not null
359     * @throws DateTimeException if unable to convert to an {@code Instant}
360     */
361    public static Instant from(TemporalAccessor temporal) {
362        if (temporal instanceof Instant) {
363            return (Instant) temporal;
364        }
365        Objects.requireNonNull(temporal, "temporal");
366        try {
367            long instantSecs = temporal.getLong(INSTANT_SECONDS);
368            int nanoOfSecond = temporal.get(NANO_OF_SECOND);
369            return Instant.ofEpochSecond(instantSecs, nanoOfSecond);
370        } catch (DateTimeException ex) {
371            throw new DateTimeException("Unable to obtain Instant from TemporalAccessor: " +
372                    temporal + " of type " + temporal.getClass().getName(), ex);
373        }
374    }
375
376    //-----------------------------------------------------------------------
377    /**
378     * Obtains an instance of {@code Instant} from a text string such as
379     * {@code 2007-12-03T10:15:30.00Z}.
380     * <p>
381     * The string must represent a valid instant in UTC and is parsed using
382     * {@link DateTimeFormatter#ISO_INSTANT}.
383     *
384     * @param text  the text to parse, not null
385     * @return the parsed instant, not null
386     * @throws DateTimeParseException if the text cannot be parsed
387     */
388    public static Instant parse(final CharSequence text) {
389        return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from);
390    }
391
392    //-----------------------------------------------------------------------
393    /**
394     * Obtains an instance of {@code Instant} using seconds and nanoseconds.
395     *
396     * @param seconds  the length of the duration in seconds
397     * @param nanoOfSecond  the nano-of-second, from 0 to 999,999,999
398     * @throws DateTimeException if the instant exceeds the maximum or minimum instant
399     */
400    private static Instant create(long seconds, int nanoOfSecond) {
401        if ((seconds | nanoOfSecond) == 0) {
402            return EPOCH;
403        }
404        if (seconds < MIN_SECOND || seconds > MAX_SECOND) {
405            throw new DateTimeException("Instant exceeds minimum or maximum instant");
406        }
407        return new Instant(seconds, nanoOfSecond);
408    }
409
410    /**
411     * Constructs an instance of {@code Instant} using seconds from the epoch of
412     * 1970-01-01T00:00:00Z and nanosecond fraction of second.
413     *
414     * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
415     * @param nanos  the nanoseconds within the second, must be positive
416     */
417    private Instant(long epochSecond, int nanos) {
418        super();
419        this.seconds = epochSecond;
420        this.nanos = nanos;
421    }
422
423    //-----------------------------------------------------------------------
424    /**
425     * Checks if the specified field is supported.
426     * <p>
427     * This checks if this instant can be queried for the specified field.
428     * If false, then calling the {@link #range(TemporalField) range},
429     * {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
430     * methods will throw an exception.
431     * <p>
432     * If the field is a {@link ChronoField} then the query is implemented here.
433     * The supported fields are:
434     * <ul>
435     * <li>{@code NANO_OF_SECOND}
436     * <li>{@code MICRO_OF_SECOND}
437     * <li>{@code MILLI_OF_SECOND}
438     * <li>{@code INSTANT_SECONDS}
439     * </ul>
440     * All other {@code ChronoField} instances will return false.
441     * <p>
442     * If the field is not a {@code ChronoField}, then the result of this method
443     * is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
444     * passing {@code this} as the argument.
445     * Whether the field is supported is determined by the field.
446     *
447     * @param field  the field to check, null returns false
448     * @return true if the field is supported on this instant, false if not
449     */
450    @Override
451    public boolean isSupported(TemporalField field) {
452        if (field instanceof ChronoField) {
453            return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND;
454        }
455        return field != null && field.isSupportedBy(this);
456    }
457
458    /**
459     * Checks if the specified unit is supported.
460     * <p>
461     * This checks if the specified unit can be added to, or subtracted from, this date-time.
462     * If false, then calling the {@link #plus(long, TemporalUnit)} and
463     * {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
464     * <p>
465     * If the unit is a {@link ChronoUnit} then the query is implemented here.
466     * The supported units are:
467     * <ul>
468     * <li>{@code NANOS}
469     * <li>{@code MICROS}
470     * <li>{@code MILLIS}
471     * <li>{@code SECONDS}
472     * <li>{@code MINUTES}
473     * <li>{@code HOURS}
474     * <li>{@code HALF_DAYS}
475     * <li>{@code DAYS}
476     * </ul>
477     * All other {@code ChronoUnit} instances will return false.
478     * <p>
479     * If the unit is not a {@code ChronoUnit}, then the result of this method
480     * is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
481     * passing {@code this} as the argument.
482     * Whether the unit is supported is determined by the unit.
483     *
484     * @param unit  the unit to check, null returns false
485     * @return true if the unit can be added/subtracted, false if not
486     */
487    @Override
488    public boolean isSupported(TemporalUnit unit) {
489        if (unit instanceof ChronoUnit) {
490            return unit.isTimeBased() || unit == DAYS;
491        }
492        return unit != null && unit.isSupportedBy(this);
493    }
494
495    //-----------------------------------------------------------------------
496    /**
497     * Gets the range of valid values for the specified field.
498     * <p>
499     * The range object expresses the minimum and maximum valid values for a field.
500     * This instant is used to enhance the accuracy of the returned range.
501     * If it is not possible to return the range, because the field is not supported
502     * or for some other reason, an exception is thrown.
503     * <p>
504     * If the field is a {@link ChronoField} then the query is implemented here.
505     * The {@link #isSupported(TemporalField) supported fields} will return
506     * appropriate range instances.
507     * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
508     * <p>
509     * If the field is not a {@code ChronoField}, then the result of this method
510     * is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
511     * passing {@code this} as the argument.
512     * Whether the range can be obtained is determined by the field.
513     *
514     * @param field  the field to query the range for, not null
515     * @return the range of valid values for the field, not null
516     * @throws DateTimeException if the range for the field cannot be obtained
517     * @throws UnsupportedTemporalTypeException if the field is not supported
518     */
519    @Override  // override for Javadoc
520    public ValueRange range(TemporalField field) {
521        return Temporal.super.range(field);
522    }
523
524    /**
525     * Gets the value of the specified field from this instant as an {@code int}.
526     * <p>
527     * This queries this instant for the value of the specified field.
528     * The returned value will always be within the valid range of values for the field.
529     * If it is not possible to return the value, because the field is not supported
530     * or for some other reason, an exception is thrown.
531     * <p>
532     * If the field is a {@link ChronoField} then the query is implemented here.
533     * The {@link #isSupported(TemporalField) supported fields} will return valid
534     * values based on this date-time, except {@code INSTANT_SECONDS} which is too
535     * large to fit in an {@code int} and throws a {@code DateTimeException}.
536     * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
537     * <p>
538     * If the field is not a {@code ChronoField}, then the result of this method
539     * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
540     * passing {@code this} as the argument. Whether the value can be obtained,
541     * and what the value represents, is determined by the field.
542     *
543     * @param field  the field to get, not null
544     * @return the value for the field
545     * @throws DateTimeException if a value for the field cannot be obtained or
546     *         the value is outside the range of valid values for the field
547     * @throws UnsupportedTemporalTypeException if the field is not supported or
548     *         the range of values exceeds an {@code int}
549     * @throws ArithmeticException if numeric overflow occurs
550     */
551    @Override  // override for Javadoc and performance
552    public int get(TemporalField field) {
553        if (field instanceof ChronoField) {
554            switch ((ChronoField) field) {
555                case NANO_OF_SECOND: return nanos;
556                case MICRO_OF_SECOND: return nanos / 1000;
557                case MILLI_OF_SECOND: return nanos / 1000_000;
558                case INSTANT_SECONDS: INSTANT_SECONDS.checkValidIntValue(seconds);
559            }
560            throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
561        }
562        return range(field).checkValidIntValue(field.getFrom(this), field);
563    }
564
565    /**
566     * Gets the value of the specified field from this instant as a {@code long}.
567     * <p>
568     * This queries this instant for the value of the specified field.
569     * If it is not possible to return the value, because the field is not supported
570     * or for some other reason, an exception is thrown.
571     * <p>
572     * If the field is a {@link ChronoField} then the query is implemented here.
573     * The {@link #isSupported(TemporalField) supported fields} will return valid
574     * values based on this date-time.
575     * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
576     * <p>
577     * If the field is not a {@code ChronoField}, then the result of this method
578     * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
579     * passing {@code this} as the argument. Whether the value can be obtained,
580     * and what the value represents, is determined by the field.
581     *
582     * @param field  the field to get, not null
583     * @return the value for the field
584     * @throws DateTimeException if a value for the field cannot be obtained
585     * @throws UnsupportedTemporalTypeException if the field is not supported
586     * @throws ArithmeticException if numeric overflow occurs
587     */
588    @Override
589    public long getLong(TemporalField field) {
590        if (field instanceof ChronoField) {
591            switch ((ChronoField) field) {
592                case NANO_OF_SECOND: return nanos;
593                case MICRO_OF_SECOND: return nanos / 1000;
594                case MILLI_OF_SECOND: return nanos / 1000_000;
595                case INSTANT_SECONDS: return seconds;
596            }
597            throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
598        }
599        return field.getFrom(this);
600    }
601
602    //-----------------------------------------------------------------------
603    /**
604     * Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z.
605     * <p>
606     * The epoch second count is a simple incrementing count of seconds where
607     * second 0 is 1970-01-01T00:00:00Z.
608     * The nanosecond part of the day is returned by {@code getNanosOfSecond}.
609     *
610     * @return the seconds from the epoch of 1970-01-01T00:00:00Z
611     */
612    public long getEpochSecond() {
613        return seconds;
614    }
615
616    /**
617     * Gets the number of nanoseconds, later along the time-line, from the start
618     * of the second.
619     * <p>
620     * The nanosecond-of-second value measures the total number of nanoseconds from
621     * the second returned by {@code getEpochSecond}.
622     *
623     * @return the nanoseconds within the second, always positive, never exceeds 999,999,999
624     */
625    public int getNano() {
626        return nanos;
627    }
628
629    //-------------------------------------------------------------------------
630    /**
631     * Returns an adjusted copy of this instant.
632     * <p>
633     * This returns an {@code Instant}, based on this one, with the instant adjusted.
634     * The adjustment takes place using the specified adjuster strategy object.
635     * Read the documentation of the adjuster to understand what adjustment will be made.
636     * <p>
637     * The result of this method is obtained by invoking the
638     * {@link TemporalAdjuster#adjustInto(Temporal)} method on the
639     * specified adjuster passing {@code this} as the argument.
640     * <p>
641     * This instance is immutable and unaffected by this method call.
642     *
643     * @param adjuster the adjuster to use, not null
644     * @return an {@code Instant} based on {@code this} with the adjustment made, not null
645     * @throws DateTimeException if the adjustment cannot be made
646     * @throws ArithmeticException if numeric overflow occurs
647     */
648    @Override
649    public Instant with(TemporalAdjuster adjuster) {
650        return (Instant) adjuster.adjustInto(this);
651    }
652
653    /**
654     * Returns a copy of this instant with the specified field set to a new value.
655     * <p>
656     * This returns an {@code Instant}, based on this one, with the value
657     * for the specified field changed.
658     * If it is not possible to set the value, because the field is not supported or for
659     * some other reason, an exception is thrown.
660     * <p>
661     * If the field is a {@link ChronoField} then the adjustment is implemented here.
662     * The supported fields behave as follows:
663     * <ul>
664     * <li>{@code NANO_OF_SECOND} -
665     *  Returns an {@code Instant} with the specified nano-of-second.
666     *  The epoch-second will be unchanged.
667     * <li>{@code MICRO_OF_SECOND} -
668     *  Returns an {@code Instant} with the nano-of-second replaced by the specified
669     *  micro-of-second multiplied by 1,000. The epoch-second will be unchanged.
670     * <li>{@code MILLI_OF_SECOND} -
671     *  Returns an {@code Instant} with the nano-of-second replaced by the specified
672     *  milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged.
673     * <li>{@code INSTANT_SECONDS} -
674     *  Returns an {@code Instant} with the specified epoch-second.
675     *  The nano-of-second will be unchanged.
676     * </ul>
677     * <p>
678     * In all cases, if the new value is outside the valid range of values for the field
679     * then a {@code DateTimeException} will be thrown.
680     * <p>
681     * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
682     * <p>
683     * If the field is not a {@code ChronoField}, then the result of this method
684     * is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
685     * passing {@code this} as the argument. In this case, the field determines
686     * whether and how to adjust the instant.
687     * <p>
688     * This instance is immutable and unaffected by this method call.
689     *
690     * @param field  the field to set in the result, not null
691     * @param newValue  the new value of the field in the result
692     * @return an {@code Instant} based on {@code this} with the specified field set, not null
693     * @throws DateTimeException if the field cannot be set
694     * @throws UnsupportedTemporalTypeException if the field is not supported
695     * @throws ArithmeticException if numeric overflow occurs
696     */
697    @Override
698    public Instant with(TemporalField field, long newValue) {
699        if (field instanceof ChronoField) {
700            ChronoField f = (ChronoField) field;
701            f.checkValidValue(newValue);
702            switch (f) {
703                case MILLI_OF_SECOND: {
704                    int nval = (int) newValue * 1000_000;
705                    return (nval != nanos ? create(seconds, nval) : this);
706                }
707                case MICRO_OF_SECOND: {
708                    int nval = (int) newValue * 1000;
709                    return (nval != nanos ? create(seconds, nval) : this);
710                }
711                case NANO_OF_SECOND: return (newValue != nanos ? create(seconds, (int) newValue) : this);
712                case INSTANT_SECONDS: return (newValue != seconds ? create(newValue, nanos) : this);
713            }
714            throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
715        }
716        return field.adjustInto(this, newValue);
717    }
718
719    //-----------------------------------------------------------------------
720    /**
721     * Returns a copy of this {@code Instant} truncated to the specified unit.
722     * <p>
723     * Truncating the instant returns a copy of the original with fields
724     * smaller than the specified unit set to zero.
725     * The fields are calculated on the basis of using a UTC offset as seen
726     * in {@code toString}.
727     * For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will
728     * round down to the nearest minute, setting the seconds and nanoseconds to zero.
729     * <p>
730     * The unit must have a {@linkplain TemporalUnit#getDuration() duration}
731     * that divides into the length of a standard day without remainder.
732     * This includes all supplied time units on {@link ChronoUnit} and
733     * {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
734     * <p>
735     * This instance is immutable and unaffected by this method call.
736     *
737     * @param unit  the unit to truncate to, not null
738     * @return an {@code Instant} based on this instant with the time truncated, not null
739     * @throws DateTimeException if the unit is invalid for truncation
740     * @throws UnsupportedTemporalTypeException if the unit is not supported
741     */
742    public Instant truncatedTo(TemporalUnit unit) {
743        if (unit == ChronoUnit.NANOS) {
744            return this;
745        }
746        Duration unitDur = unit.getDuration();
747        if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) {
748            throw new UnsupportedTemporalTypeException("Unit is too large to be used for truncation");
749        }
750        long dur = unitDur.toNanos();
751        if ((LocalTime.NANOS_PER_DAY % dur) != 0) {
752            throw new UnsupportedTemporalTypeException("Unit must divide into a standard day without remainder");
753        }
754        long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos;
755        long result = (nod / dur) * dur;
756        return plusNanos(result - nod);
757    }
758
759    //-----------------------------------------------------------------------
760    /**
761     * Returns a copy of this instant with the specified amount added.
762     * <p>
763     * This returns an {@code Instant}, based on this one, with the specified amount added.
764     * The amount is typically {@link Duration} but may be any other type implementing
765     * the {@link TemporalAmount} interface.
766     * <p>
767     * The calculation is delegated to the amount object by calling
768     * {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
769     * to implement the addition in any way it wishes, however it typically
770     * calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
771     * of the amount implementation to determine if it can be successfully added.
772     * <p>
773     * This instance is immutable and unaffected by this method call.
774     *
775     * @param amountToAdd  the amount to add, not null
776     * @return an {@code Instant} based on this instant with the addition made, not null
777     * @throws DateTimeException if the addition cannot be made
778     * @throws ArithmeticException if numeric overflow occurs
779     */
780    @Override
781    public Instant plus(TemporalAmount amountToAdd) {
782        return (Instant) amountToAdd.addTo(this);
783    }
784
785    /**
786     * Returns a copy of this instant with the specified amount added.
787     * <p>
788     * This returns an {@code Instant}, based on this one, with the amount
789     * in terms of the unit added. If it is not possible to add the amount, because the
790     * unit is not supported or for some other reason, an exception is thrown.
791     * <p>
792     * If the field is a {@link ChronoUnit} then the addition is implemented here.
793     * The supported fields behave as follows:
794     * <ul>
795     * <li>{@code NANOS} -
796     *  Returns a {@code Instant} with the specified number of nanoseconds added.
797     *  This is equivalent to {@link #plusNanos(long)}.
798     * <li>{@code MICROS} -
799     *  Returns a {@code Instant} with the specified number of microseconds added.
800     *  This is equivalent to {@link #plusNanos(long)} with the amount
801     *  multiplied by 1,000.
802     * <li>{@code MILLIS} -
803     *  Returns a {@code Instant} with the specified number of milliseconds added.
804     *  This is equivalent to {@link #plusNanos(long)} with the amount
805     *  multiplied by 1,000,000.
806     * <li>{@code SECONDS} -
807     *  Returns a {@code Instant} with the specified number of seconds added.
808     *  This is equivalent to {@link #plusSeconds(long)}.
809     * <li>{@code MINUTES} -
810     *  Returns a {@code Instant} with the specified number of minutes added.
811     *  This is equivalent to {@link #plusSeconds(long)} with the amount
812     *  multiplied by 60.
813     * <li>{@code HOURS} -
814     *  Returns a {@code Instant} with the specified number of hours added.
815     *  This is equivalent to {@link #plusSeconds(long)} with the amount
816     *  multiplied by 3,600.
817     * <li>{@code HALF_DAYS} -
818     *  Returns a {@code Instant} with the specified number of half-days added.
819     *  This is equivalent to {@link #plusSeconds(long)} with the amount
820     *  multiplied by 43,200 (12 hours).
821     * <li>{@code DAYS} -
822     *  Returns a {@code Instant} with the specified number of days added.
823     *  This is equivalent to {@link #plusSeconds(long)} with the amount
824     *  multiplied by 86,400 (24 hours).
825     * </ul>
826     * <p>
827     * All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}.
828     * <p>
829     * If the field is not a {@code ChronoUnit}, then the result of this method
830     * is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
831     * passing {@code this} as the argument. In this case, the unit determines
832     * whether and how to perform the addition.
833     * <p>
834     * This instance is immutable and unaffected by this method call.
835     *
836     * @param amountToAdd  the amount of the unit to add to the result, may be negative
837     * @param unit  the unit of the amount to add, not null
838     * @return an {@code Instant} based on this instant with the specified amount added, not null
839     * @throws DateTimeException if the addition cannot be made
840     * @throws UnsupportedTemporalTypeException if the unit is not supported
841     * @throws ArithmeticException if numeric overflow occurs
842     */
843    @Override
844    public Instant plus(long amountToAdd, TemporalUnit unit) {
845        if (unit instanceof ChronoUnit) {
846            switch ((ChronoUnit) unit) {
847                case NANOS: return plusNanos(amountToAdd);
848                case MICROS: return plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000);
849                case MILLIS: return plusMillis(amountToAdd);
850                case SECONDS: return plusSeconds(amountToAdd);
851                case MINUTES: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE));
852                case HOURS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR));
853                case HALF_DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2));
854                case DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY));
855            }
856            throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
857        }
858        return unit.addTo(this, amountToAdd);
859    }
860
861    //-----------------------------------------------------------------------
862    /**
863     * Returns a copy of this instant with the specified duration in seconds added.
864     * <p>
865     * This instance is immutable and unaffected by this method call.
866     *
867     * @param secondsToAdd  the seconds to add, positive or negative
868     * @return an {@code Instant} based on this instant with the specified seconds added, not null
869     * @throws DateTimeException if the result exceeds the maximum or minimum instant
870     * @throws ArithmeticException if numeric overflow occurs
871     */
872    public Instant plusSeconds(long secondsToAdd) {
873        return plus(secondsToAdd, 0);
874    }
875
876    /**
877     * Returns a copy of this instant with the specified duration in milliseconds added.
878     * <p>
879     * This instance is immutable and unaffected by this method call.
880     *
881     * @param millisToAdd  the milliseconds to add, positive or negative
882     * @return an {@code Instant} based on this instant with the specified milliseconds added, not null
883     * @throws DateTimeException if the result exceeds the maximum or minimum instant
884     * @throws ArithmeticException if numeric overflow occurs
885     */
886    public Instant plusMillis(long millisToAdd) {
887        return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000);
888    }
889
890    /**
891     * Returns a copy of this instant with the specified duration in nanoseconds added.
892     * <p>
893     * This instance is immutable and unaffected by this method call.
894     *
895     * @param nanosToAdd  the nanoseconds to add, positive or negative
896     * @return an {@code Instant} based on this instant with the specified nanoseconds added, not null
897     * @throws DateTimeException if the result exceeds the maximum or minimum instant
898     * @throws ArithmeticException if numeric overflow occurs
899     */
900    public Instant plusNanos(long nanosToAdd) {
901        return plus(0, nanosToAdd);
902    }
903
904    /**
905     * Returns a copy of this instant with the specified duration added.
906     * <p>
907     * This instance is immutable and unaffected by this method call.
908     *
909     * @param secondsToAdd  the seconds to add, positive or negative
910     * @param nanosToAdd  the nanos to add, positive or negative
911     * @return an {@code Instant} based on this instant with the specified seconds added, not null
912     * @throws DateTimeException if the result exceeds the maximum or minimum instant
913     * @throws ArithmeticException if numeric overflow occurs
914     */
915    private Instant plus(long secondsToAdd, long nanosToAdd) {
916        if ((secondsToAdd | nanosToAdd) == 0) {
917            return this;
918        }
919        long epochSec = Math.addExact(seconds, secondsToAdd);
920        epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND);
921        nanosToAdd = nanosToAdd % NANOS_PER_SECOND;
922        long nanoAdjustment = nanos + nanosToAdd;  // safe int+NANOS_PER_SECOND
923        return ofEpochSecond(epochSec, nanoAdjustment);
924    }
925
926    //-----------------------------------------------------------------------
927    /**
928     * Returns a copy of this instant with the specified amount subtracted.
929     * <p>
930     * This returns an {@code Instant}, based on this one, with the specified amount subtracted.
931     * The amount is typically {@link Duration} but may be any other type implementing
932     * the {@link TemporalAmount} interface.
933     * <p>
934     * The calculation is delegated to the amount object by calling
935     * {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
936     * to implement the subtraction in any way it wishes, however it typically
937     * calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
938     * of the amount implementation to determine if it can be successfully subtracted.
939     * <p>
940     * This instance is immutable and unaffected by this method call.
941     *
942     * @param amountToSubtract  the amount to subtract, not null
943     * @return an {@code Instant} based on this instant with the subtraction made, not null
944     * @throws DateTimeException if the subtraction cannot be made
945     * @throws ArithmeticException if numeric overflow occurs
946     */
947    @Override
948    public Instant minus(TemporalAmount amountToSubtract) {
949        return (Instant) amountToSubtract.subtractFrom(this);
950    }
951
952    /**
953     * Returns a copy of this instant with the specified amount subtracted.
954     * <p>
955     * This returns a {@code Instant}, based on this one, with the amount
956     * in terms of the unit subtracted. If it is not possible to subtract the amount,
957     * because the unit is not supported or for some other reason, an exception is thrown.
958     * <p>
959     * This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
960     * See that method for a full description of how addition, and thus subtraction, works.
961     * <p>
962     * This instance is immutable and unaffected by this method call.
963     *
964     * @param amountToSubtract  the amount of the unit to subtract from the result, may be negative
965     * @param unit  the unit of the amount to subtract, not null
966     * @return an {@code Instant} based on this instant with the specified amount subtracted, not null
967     * @throws DateTimeException if the subtraction cannot be made
968     * @throws UnsupportedTemporalTypeException if the unit is not supported
969     * @throws ArithmeticException if numeric overflow occurs
970     */
971    @Override
972    public Instant minus(long amountToSubtract, TemporalUnit unit) {
973        return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
974    }
975
976    //-----------------------------------------------------------------------
977    /**
978     * Returns a copy of this instant with the specified duration in seconds subtracted.
979     * <p>
980     * This instance is immutable and unaffected by this method call.
981     *
982     * @param secondsToSubtract  the seconds to subtract, positive or negative
983     * @return an {@code Instant} based on this instant with the specified seconds subtracted, not null
984     * @throws DateTimeException if the result exceeds the maximum or minimum instant
985     * @throws ArithmeticException if numeric overflow occurs
986     */
987    public Instant minusSeconds(long secondsToSubtract) {
988        if (secondsToSubtract == Long.MIN_VALUE) {
989            return plusSeconds(Long.MAX_VALUE).plusSeconds(1);
990        }
991        return plusSeconds(-secondsToSubtract);
992    }
993
994    /**
995     * Returns a copy of this instant with the specified duration in milliseconds subtracted.
996     * <p>
997     * This instance is immutable and unaffected by this method call.
998     *
999     * @param millisToSubtract  the milliseconds to subtract, positive or negative
1000     * @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null
1001     * @throws DateTimeException if the result exceeds the maximum or minimum instant
1002     * @throws ArithmeticException if numeric overflow occurs
1003     */
1004    public Instant minusMillis(long millisToSubtract) {
1005        if (millisToSubtract == Long.MIN_VALUE) {
1006            return plusMillis(Long.MAX_VALUE).plusMillis(1);
1007        }
1008        return plusMillis(-millisToSubtract);
1009    }
1010
1011    /**
1012     * Returns a copy of this instant with the specified duration in nanoseconds subtracted.
1013     * <p>
1014     * This instance is immutable and unaffected by this method call.
1015     *
1016     * @param nanosToSubtract  the nanoseconds to subtract, positive or negative
1017     * @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null
1018     * @throws DateTimeException if the result exceeds the maximum or minimum instant
1019     * @throws ArithmeticException if numeric overflow occurs
1020     */
1021    public Instant minusNanos(long nanosToSubtract) {
1022        if (nanosToSubtract == Long.MIN_VALUE) {
1023            return plusNanos(Long.MAX_VALUE).plusNanos(1);
1024        }
1025        return plusNanos(-nanosToSubtract);
1026    }
1027
1028    //-------------------------------------------------------------------------
1029    /**
1030     * Queries this instant using the specified query.
1031     * <p>
1032     * This queries this instant using the specified query strategy object.
1033     * The {@code TemporalQuery} object defines the logic to be used to
1034     * obtain the result. Read the documentation of the query to understand
1035     * what the result of this method will be.
1036     * <p>
1037     * The result of this method is obtained by invoking the
1038     * {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
1039     * specified query passing {@code this} as the argument.
1040     *
1041     * @param <R> the type of the result
1042     * @param query  the query to invoke, not null
1043     * @return the query result, null may be returned (defined by the query)
1044     * @throws DateTimeException if unable to query (defined by the query)
1045     * @throws ArithmeticException if numeric overflow occurs (defined by the query)
1046     */
1047    @SuppressWarnings("unchecked")
1048    @Override
1049    public <R> R query(TemporalQuery<R> query) {
1050        if (query == TemporalQueries.precision()) {
1051            return (R) NANOS;
1052        }
1053        // inline TemporalAccessor.super.query(query) as an optimization
1054        if (query == TemporalQueries.chronology() || query == TemporalQueries.zoneId() ||
1055                query == TemporalQueries.zone() || query == TemporalQueries.offset() ||
1056                query == TemporalQueries.localDate() || query == TemporalQueries.localTime()) {
1057            return null;
1058        }
1059        return query.queryFrom(this);
1060    }
1061
1062    /**
1063     * Adjusts the specified temporal object to have this instant.
1064     * <p>
1065     * This returns a temporal object of the same observable type as the input
1066     * with the instant changed to be the same as this.
1067     * <p>
1068     * The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)}
1069     * twice, passing {@link ChronoField#INSTANT_SECONDS} and
1070     * {@link ChronoField#NANO_OF_SECOND} as the fields.
1071     * <p>
1072     * In most cases, it is clearer to reverse the calling pattern by using
1073     * {@link Temporal#with(TemporalAdjuster)}:
1074     * <pre>
1075     *   // these two lines are equivalent, but the second approach is recommended
1076     *   temporal = thisInstant.adjustInto(temporal);
1077     *   temporal = temporal.with(thisInstant);
1078     * </pre>
1079     * <p>
1080     * This instance is immutable and unaffected by this method call.
1081     *
1082     * @param temporal  the target object to be adjusted, not null
1083     * @return the adjusted object, not null
1084     * @throws DateTimeException if unable to make the adjustment
1085     * @throws ArithmeticException if numeric overflow occurs
1086     */
1087    @Override
1088    public Temporal adjustInto(Temporal temporal) {
1089        return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos);
1090    }
1091
1092    /**
1093     * Calculates the amount of time until another instant in terms of the specified unit.
1094     * <p>
1095     * This calculates the amount of time between two {@code Instant}
1096     * objects in terms of a single {@code TemporalUnit}.
1097     * The start and end points are {@code this} and the specified instant.
1098     * The result will be negative if the end is before the start.
1099     * The calculation returns a whole number, representing the number of
1100     * complete units between the two instants.
1101     * The {@code Temporal} passed to this method is converted to a
1102     * {@code Instant} using {@link #from(TemporalAccessor)}.
1103     * For example, the amount in days between two dates can be calculated
1104     * using {@code startInstant.until(endInstant, SECONDS)}.
1105     * <p>
1106     * There are two equivalent ways of using this method.
1107     * The first is to invoke this method.
1108     * The second is to use {@link TemporalUnit#between(Temporal, Temporal)}:
1109     * <pre>
1110     *   // these two lines are equivalent
1111     *   amount = start.until(end, SECONDS);
1112     *   amount = SECONDS.between(start, end);
1113     * </pre>
1114     * The choice should be made based on which makes the code more readable.
1115     * <p>
1116     * The calculation is implemented in this method for {@link ChronoUnit}.
1117     * The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
1118     * {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS}
1119     * are supported. Other {@code ChronoUnit} values will throw an exception.
1120     * <p>
1121     * If the unit is not a {@code ChronoUnit}, then the result of this method
1122     * is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
1123     * passing {@code this} as the first argument and the converted input temporal
1124     * as the second argument.
1125     * <p>
1126     * This instance is immutable and unaffected by this method call.
1127     *
1128     * @param endExclusive  the end date, exclusive, which is converted to an {@code Instant}, not null
1129     * @param unit  the unit to measure the amount in, not null
1130     * @return the amount of time between this instant and the end instant
1131     * @throws DateTimeException if the amount cannot be calculated, or the end
1132     *  temporal cannot be converted to an {@code Instant}
1133     * @throws UnsupportedTemporalTypeException if the unit is not supported
1134     * @throws ArithmeticException if numeric overflow occurs
1135     */
1136    @Override
1137    public long until(Temporal endExclusive, TemporalUnit unit) {
1138        Instant end = Instant.from(endExclusive);
1139        if (unit instanceof ChronoUnit) {
1140            ChronoUnit f = (ChronoUnit) unit;
1141            switch (f) {
1142                case NANOS: return nanosUntil(end);
1143                case MICROS: return nanosUntil(end) / 1000;
1144                case MILLIS: return Math.subtractExact(end.toEpochMilli(), toEpochMilli());
1145                case SECONDS: return secondsUntil(end);
1146                case MINUTES: return secondsUntil(end) / SECONDS_PER_MINUTE;
1147                case HOURS: return secondsUntil(end) / SECONDS_PER_HOUR;
1148                case HALF_DAYS: return secondsUntil(end) / (12 * SECONDS_PER_HOUR);
1149                case DAYS: return secondsUntil(end) / (SECONDS_PER_DAY);
1150            }
1151            throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
1152        }
1153        return unit.between(this, end);
1154    }
1155
1156    private long nanosUntil(Instant end) {
1157        long secsDiff = Math.subtractExact(end.seconds, seconds);
1158        long totalNanos = Math.multiplyExact(secsDiff, NANOS_PER_SECOND);
1159        return Math.addExact(totalNanos, end.nanos - nanos);
1160    }
1161
1162    private long secondsUntil(Instant end) {
1163        long secsDiff = Math.subtractExact(end.seconds, seconds);
1164        long nanosDiff = end.nanos - nanos;
1165        if (secsDiff > 0 && nanosDiff < 0) {
1166            secsDiff--;
1167        } else if (secsDiff < 0 && nanosDiff > 0) {
1168            secsDiff++;
1169        }
1170        return secsDiff;
1171    }
1172
1173    //-----------------------------------------------------------------------
1174    /**
1175     * Combines this instant with an offset to create an {@code OffsetDateTime}.
1176     * <p>
1177     * This returns an {@code OffsetDateTime} formed from this instant at the
1178     * specified offset from UTC/Greenwich. An exception will be thrown if the
1179     * instant is too large to fit into an offset date-time.
1180     * <p>
1181     * This method is equivalent to
1182     * {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}.
1183     *
1184     * @param offset  the offset to combine with, not null
1185     * @return the offset date-time formed from this instant and the specified offset, not null
1186     * @throws DateTimeException if the result exceeds the supported range
1187     */
1188    public OffsetDateTime atOffset(ZoneOffset offset) {
1189        return OffsetDateTime.ofInstant(this, offset);
1190    }
1191
1192    /**
1193     * Combines this instant with a time-zone to create a {@code ZonedDateTime}.
1194     * <p>
1195     * This returns an {@code ZonedDateTime} formed from this instant at the
1196     * specified time-zone. An exception will be thrown if the instant is too
1197     * large to fit into a zoned date-time.
1198     * <p>
1199     * This method is equivalent to
1200     * {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}.
1201     *
1202     * @param zone  the zone to combine with, not null
1203     * @return the zoned date-time formed from this instant and the specified zone, not null
1204     * @throws DateTimeException if the result exceeds the supported range
1205     */
1206    public ZonedDateTime atZone(ZoneId zone) {
1207        return ZonedDateTime.ofInstant(this, zone);
1208    }
1209
1210    //-----------------------------------------------------------------------
1211    /**
1212     * Converts this instant to the number of milliseconds from the epoch
1213     * of 1970-01-01T00:00:00Z.
1214     * <p>
1215     * If this instant represents a point on the time-line too far in the future
1216     * or past to fit in a {@code long} milliseconds, then an exception is thrown.
1217     * <p>
1218     * If this instant has greater than millisecond precision, then the conversion
1219     * will drop any excess precision information as though the amount in nanoseconds
1220     * was subject to integer division by one million.
1221     *
1222     * @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z
1223     * @throws ArithmeticException if numeric overflow occurs
1224     */
1225    public long toEpochMilli() {
1226        if (seconds < 0 && nanos > 0) {
1227            long millis = Math.multiplyExact(seconds+1, 1000);
1228            long adjustment = nanos / 1000_000 - 1000;
1229            return Math.addExact(millis, adjustment);
1230        } else {
1231            long millis = Math.multiplyExact(seconds, 1000);
1232            return Math.addExact(millis, nanos / 1000_000);
1233        }
1234    }
1235
1236    //-----------------------------------------------------------------------
1237    /**
1238     * Compares this instant to the specified instant.
1239     * <p>
1240     * The comparison is based on the time-line position of the instants.
1241     * It is "consistent with equals", as defined by {@link Comparable}.
1242     *
1243     * @param otherInstant  the other instant to compare to, not null
1244     * @return the comparator value, negative if less, positive if greater
1245     * @throws NullPointerException if otherInstant is null
1246     */
1247    @Override
1248    public int compareTo(Instant otherInstant) {
1249        int cmp = Long.compare(seconds, otherInstant.seconds);
1250        if (cmp != 0) {
1251            return cmp;
1252        }
1253        return nanos - otherInstant.nanos;
1254    }
1255
1256    /**
1257     * Checks if this instant is after the specified instant.
1258     * <p>
1259     * The comparison is based on the time-line position of the instants.
1260     *
1261     * @param otherInstant  the other instant to compare to, not null
1262     * @return true if this instant is after the specified instant
1263     * @throws NullPointerException if otherInstant is null
1264     */
1265    public boolean isAfter(Instant otherInstant) {
1266        return compareTo(otherInstant) > 0;
1267    }
1268
1269    /**
1270     * Checks if this instant is before the specified instant.
1271     * <p>
1272     * The comparison is based on the time-line position of the instants.
1273     *
1274     * @param otherInstant  the other instant to compare to, not null
1275     * @return true if this instant is before the specified instant
1276     * @throws NullPointerException if otherInstant is null
1277     */
1278    public boolean isBefore(Instant otherInstant) {
1279        return compareTo(otherInstant) < 0;
1280    }
1281
1282    //-----------------------------------------------------------------------
1283    /**
1284     * Checks if this instant is equal to the specified instant.
1285     * <p>
1286     * The comparison is based on the time-line position of the instants.
1287     *
1288     * @param otherInstant  the other instant, null returns false
1289     * @return true if the other instant is equal to this one
1290     */
1291    @Override
1292    public boolean equals(Object otherInstant) {
1293        if (this == otherInstant) {
1294            return true;
1295        }
1296        if (otherInstant instanceof Instant) {
1297            Instant other = (Instant) otherInstant;
1298            return this.seconds == other.seconds &&
1299                   this.nanos == other.nanos;
1300        }
1301        return false;
1302    }
1303
1304    /**
1305     * Returns a hash code for this instant.
1306     *
1307     * @return a suitable hash code
1308     */
1309    @Override
1310    public int hashCode() {
1311        return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos;
1312    }
1313
1314    //-----------------------------------------------------------------------
1315    /**
1316     * A string representation of this instant using ISO-8601 representation.
1317     * <p>
1318     * The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}.
1319     *
1320     * @return an ISO-8601 representation of this instant, not null
1321     */
1322    @Override
1323    public String toString() {
1324        return DateTimeFormatter.ISO_INSTANT.format(this);
1325    }
1326
1327    // -----------------------------------------------------------------------
1328    /**
1329     * Writes the object using a
1330     * <a href="../../serialized-form.html#java.time.Ser">dedicated serialized form</a>.
1331     * @serialData
1332     * <pre>
1333     *  out.writeByte(2);  // identifies an Instant
1334     *  out.writeLong(seconds);
1335     *  out.writeInt(nanos);
1336     * </pre>
1337     *
1338     * @return the instance of {@code Ser}, not null
1339     */
1340    private Object writeReplace() {
1341        return new Ser(Ser.INSTANT_TYPE, this);
1342    }
1343
1344    /**
1345     * Defend against malicious streams.
1346     *
1347     * @param s the stream to read
1348     * @throws InvalidObjectException always
1349     */
1350    private void readObject(ObjectInputStream s) throws InvalidObjectException {
1351        throw new InvalidObjectException("Deserialization via serialization delegate");
1352    }
1353
1354    void writeExternal(DataOutput out) throws IOException {
1355        out.writeLong(seconds);
1356        out.writeInt(nanos);
1357    }
1358
1359    static Instant readExternal(DataInput in) throws IOException {
1360        long seconds = in.readLong();
1361        int nanos = in.readInt();
1362        return Instant.ofEpochSecond(seconds, nanos);
1363    }
1364
1365}
1366