1// Deque implementation -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation.  Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose.  It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation.  Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose.  It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_deque.h
52 *  This is an internal header file, included by other library headers.
53 *  Do not attempt to use it directly. @headername{deque}
54 */
55
56#ifndef _STL_DEQUE_H
57#define _STL_DEQUE_H 1
58
59#include <bits/concept_check.h>
60#include <bits/stl_iterator_base_types.h>
61#include <bits/stl_iterator_base_funcs.h>
62#if __cplusplus >= 201103L
63#include <initializer_list>
64#endif
65
66namespace std _GLIBCXX_VISIBILITY(default)
67{
68_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
70  /**
71   *  @brief This function controls the size of memory nodes.
72   *  @param  __size  The size of an element.
73   *  @return   The number (not byte size) of elements per node.
74   *
75   *  This function started off as a compiler kludge from SGI, but
76   *  seems to be a useful wrapper around a repeated constant
77   *  expression.  The @b 512 is tunable (and no other code needs to
78   *  change), but no investigation has been done since inheriting the
79   *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
80   *  you are doing, however: changing it breaks the binary
81   *  compatibility!!
82  */
83
84#ifndef _GLIBCXX_DEQUE_BUF_SIZE
85#define _GLIBCXX_DEQUE_BUF_SIZE 512
86#endif
87
88  inline size_t
89  __deque_buf_size(size_t __size)
90  { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
91	    ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
92
93
94  /**
95   *  @brief A deque::iterator.
96   *
97   *  Quite a bit of intelligence here.  Much of the functionality of
98   *  deque is actually passed off to this class.  A deque holds two
99   *  of these internally, marking its valid range.  Access to
100   *  elements is done as offsets of either of those two, relying on
101   *  operator overloading in this class.
102   *
103   *  All the functions are op overloads except for _M_set_node.
104  */
105  template<typename _Tp, typename _Ref, typename _Ptr>
106    struct _Deque_iterator
107    {
108      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
109      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
110
111      static size_t _S_buffer_size()
112      { return __deque_buf_size(sizeof(_Tp)); }
113
114      typedef std::random_access_iterator_tag iterator_category;
115      typedef _Tp                             value_type;
116      typedef _Ptr                            pointer;
117      typedef _Ref                            reference;
118      typedef size_t                          size_type;
119      typedef ptrdiff_t                       difference_type;
120      typedef _Tp**                           _Map_pointer;
121      typedef _Deque_iterator                 _Self;
122
123      _Tp* _M_cur;
124      _Tp* _M_first;
125      _Tp* _M_last;
126      _Map_pointer _M_node;
127
128      _Deque_iterator(_Tp* __x, _Map_pointer __y)
129      : _M_cur(__x), _M_first(*__y),
130        _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
131
132      _Deque_iterator()
133      : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
134
135      _Deque_iterator(const iterator& __x)
136      : _M_cur(__x._M_cur), _M_first(__x._M_first),
137        _M_last(__x._M_last), _M_node(__x._M_node) { }
138
139      reference
140      operator*() const
141      { return *_M_cur; }
142
143      pointer
144      operator->() const
145      { return _M_cur; }
146
147      _Self&
148      operator++()
149      {
150	++_M_cur;
151	if (_M_cur == _M_last)
152	  {
153	    _M_set_node(_M_node + 1);
154	    _M_cur = _M_first;
155	  }
156	return *this;
157      }
158
159      _Self
160      operator++(int)
161      {
162	_Self __tmp = *this;
163	++*this;
164	return __tmp;
165      }
166
167      _Self&
168      operator--()
169      {
170	if (_M_cur == _M_first)
171	  {
172	    _M_set_node(_M_node - 1);
173	    _M_cur = _M_last;
174	  }
175	--_M_cur;
176	return *this;
177      }
178
179      _Self
180      operator--(int)
181      {
182	_Self __tmp = *this;
183	--*this;
184	return __tmp;
185      }
186
187      _Self&
188      operator+=(difference_type __n)
189      {
190	const difference_type __offset = __n + (_M_cur - _M_first);
191	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
192	  _M_cur += __n;
193	else
194	  {
195	    const difference_type __node_offset =
196	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
197	                   : -difference_type((-__offset - 1)
198					      / _S_buffer_size()) - 1;
199	    _M_set_node(_M_node + __node_offset);
200	    _M_cur = _M_first + (__offset - __node_offset
201				 * difference_type(_S_buffer_size()));
202	  }
203	return *this;
204      }
205
206      _Self
207      operator+(difference_type __n) const
208      {
209	_Self __tmp = *this;
210	return __tmp += __n;
211      }
212
213      _Self&
214      operator-=(difference_type __n)
215      { return *this += -__n; }
216
217      _Self
218      operator-(difference_type __n) const
219      {
220	_Self __tmp = *this;
221	return __tmp -= __n;
222      }
223
224      reference
225      operator[](difference_type __n) const
226      { return *(*this + __n); }
227
228      /**
229       *  Prepares to traverse new_node.  Sets everything except
230       *  _M_cur, which should therefore be set by the caller
231       *  immediately afterwards, based on _M_first and _M_last.
232       */
233      void
234      _M_set_node(_Map_pointer __new_node)
235      {
236	_M_node = __new_node;
237	_M_first = *__new_node;
238	_M_last = _M_first + difference_type(_S_buffer_size());
239      }
240    };
241
242  // Note: we also provide overloads whose operands are of the same type in
243  // order to avoid ambiguous overload resolution when std::rel_ops operators
244  // are in scope (for additional details, see libstdc++/3628)
245  template<typename _Tp, typename _Ref, typename _Ptr>
246    inline bool
247    operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
248	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
249    { return __x._M_cur == __y._M_cur; }
250
251  template<typename _Tp, typename _RefL, typename _PtrL,
252	   typename _RefR, typename _PtrR>
253    inline bool
254    operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
255	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
256    { return __x._M_cur == __y._M_cur; }
257
258  template<typename _Tp, typename _Ref, typename _Ptr>
259    inline bool
260    operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
261	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
262    { return !(__x == __y); }
263
264  template<typename _Tp, typename _RefL, typename _PtrL,
265	   typename _RefR, typename _PtrR>
266    inline bool
267    operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
268	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
269    { return !(__x == __y); }
270
271  template<typename _Tp, typename _Ref, typename _Ptr>
272    inline bool
273    operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
274	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
275    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
276                                          : (__x._M_node < __y._M_node); }
277
278  template<typename _Tp, typename _RefL, typename _PtrL,
279	   typename _RefR, typename _PtrR>
280    inline bool
281    operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
282	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
283    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
284	                                  : (__x._M_node < __y._M_node); }
285
286  template<typename _Tp, typename _Ref, typename _Ptr>
287    inline bool
288    operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
289	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
290    { return __y < __x; }
291
292  template<typename _Tp, typename _RefL, typename _PtrL,
293	   typename _RefR, typename _PtrR>
294    inline bool
295    operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
296	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
297    { return __y < __x; }
298
299  template<typename _Tp, typename _Ref, typename _Ptr>
300    inline bool
301    operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
302	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
303    { return !(__y < __x); }
304
305  template<typename _Tp, typename _RefL, typename _PtrL,
306	   typename _RefR, typename _PtrR>
307    inline bool
308    operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
309	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
310    { return !(__y < __x); }
311
312  template<typename _Tp, typename _Ref, typename _Ptr>
313    inline bool
314    operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
315	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
316    { return !(__x < __y); }
317
318  template<typename _Tp, typename _RefL, typename _PtrL,
319	   typename _RefR, typename _PtrR>
320    inline bool
321    operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
322	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
323    { return !(__x < __y); }
324
325  // _GLIBCXX_RESOLVE_LIB_DEFECTS
326  // According to the resolution of DR179 not only the various comparison
327  // operators but also operator- must accept mixed iterator/const_iterator
328  // parameters.
329  template<typename _Tp, typename _Ref, typename _Ptr>
330    inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
331    operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
332	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
333    {
334      return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
335	(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
336	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
337	+ (__y._M_last - __y._M_cur);
338    }
339
340  template<typename _Tp, typename _RefL, typename _PtrL,
341	   typename _RefR, typename _PtrR>
342    inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
343    operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
344	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
345    {
346      return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
347	(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
348	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
349	+ (__y._M_last - __y._M_cur);
350    }
351
352  template<typename _Tp, typename _Ref, typename _Ptr>
353    inline _Deque_iterator<_Tp, _Ref, _Ptr>
354    operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
355    { return __x + __n; }
356
357  template<typename _Tp>
358    void
359    fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
360	 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
361
362  template<typename _Tp>
363    _Deque_iterator<_Tp, _Tp&, _Tp*>
364    copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
365	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
366	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
367
368  template<typename _Tp>
369    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
370    copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
371	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
372	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
373    { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
374		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
375		       __result); }
376
377  template<typename _Tp>
378    _Deque_iterator<_Tp, _Tp&, _Tp*>
379    copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
380		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
381		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
382
383  template<typename _Tp>
384    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
385    copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
386		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
387		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
388    { return std::copy_backward(_Deque_iterator<_Tp,
389				const _Tp&, const _Tp*>(__first),
390				_Deque_iterator<_Tp,
391				const _Tp&, const _Tp*>(__last),
392				__result); }
393
394#if __cplusplus >= 201103L
395  template<typename _Tp>
396    _Deque_iterator<_Tp, _Tp&, _Tp*>
397    move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
398	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
399	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
400
401  template<typename _Tp>
402    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
403    move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
404	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
405	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
406    { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
407		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
408		       __result); }
409
410  template<typename _Tp>
411    _Deque_iterator<_Tp, _Tp&, _Tp*>
412    move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
413		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
414		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
415
416  template<typename _Tp>
417    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
418    move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
419		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
420		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
421    { return std::move_backward(_Deque_iterator<_Tp,
422				const _Tp&, const _Tp*>(__first),
423				_Deque_iterator<_Tp,
424				const _Tp&, const _Tp*>(__last),
425				__result); }
426#endif
427
428  /**
429   *  Deque base class.  This class provides the unified face for %deque's
430   *  allocation.  This class's constructor and destructor allocate and
431   *  deallocate (but do not initialize) storage.  This makes %exception
432   *  safety easier.
433   *
434   *  Nothing in this class ever constructs or destroys an actual Tp element.
435   *  (Deque handles that itself.)  Only/All memory management is performed
436   *  here.
437  */
438  template<typename _Tp, typename _Alloc>
439    class _Deque_base
440    {
441    public:
442      typedef _Alloc                  allocator_type;
443
444      allocator_type
445      get_allocator() const _GLIBCXX_NOEXCEPT
446      { return allocator_type(_M_get_Tp_allocator()); }
447
448      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
449      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
450
451      _Deque_base()
452      : _M_impl()
453      { _M_initialize_map(0); }
454
455      _Deque_base(size_t __num_elements)
456      : _M_impl()
457      { _M_initialize_map(__num_elements); }
458
459      _Deque_base(const allocator_type& __a, size_t __num_elements)
460      : _M_impl(__a)
461      { _M_initialize_map(__num_elements); }
462
463      _Deque_base(const allocator_type& __a)
464      : _M_impl(__a)
465      { }
466
467#if __cplusplus >= 201103L
468      _Deque_base(_Deque_base&& __x)
469      : _M_impl(std::move(__x._M_get_Tp_allocator()))
470      {
471	_M_initialize_map(0);
472	if (__x._M_impl._M_map)
473	  {
474	    std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
475	    std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
476	    std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
477	    std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
478	  }
479      }
480#endif
481
482      ~_Deque_base();
483
484    protected:
485      //This struct encapsulates the implementation of the std::deque
486      //standard container and at the same time makes use of the EBO
487      //for empty allocators.
488      typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
489
490      typedef typename _Alloc::template rebind<_Tp>::other  _Tp_alloc_type;
491
492      struct _Deque_impl
493      : public _Tp_alloc_type
494      {
495	_Tp** _M_map;
496	size_t _M_map_size;
497	iterator _M_start;
498	iterator _M_finish;
499
500	_Deque_impl()
501	: _Tp_alloc_type(), _M_map(0), _M_map_size(0),
502	  _M_start(), _M_finish()
503	{ }
504
505	_Deque_impl(const _Tp_alloc_type& __a)
506	: _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
507	  _M_start(), _M_finish()
508	{ }
509
510#if __cplusplus >= 201103L
511	_Deque_impl(_Tp_alloc_type&& __a)
512	: _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0),
513	  _M_start(), _M_finish()
514	{ }
515#endif
516      };
517
518      _Tp_alloc_type&
519      _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
520      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
521
522      const _Tp_alloc_type&
523      _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
524      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
525
526      _Map_alloc_type
527      _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
528      { return _Map_alloc_type(_M_get_Tp_allocator()); }
529
530      _Tp*
531      _M_allocate_node()
532      {
533	return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
534      }
535
536      void
537      _M_deallocate_node(_Tp* __p)
538      {
539	_M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
540      }
541
542      _Tp**
543      _M_allocate_map(size_t __n)
544      { return _M_get_map_allocator().allocate(__n); }
545
546      void
547      _M_deallocate_map(_Tp** __p, size_t __n)
548      { _M_get_map_allocator().deallocate(__p, __n); }
549
550    protected:
551      void _M_initialize_map(size_t);
552      void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
553      void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
554      enum { _S_initial_map_size = 8 };
555
556      _Deque_impl _M_impl;
557    };
558
559  template<typename _Tp, typename _Alloc>
560    _Deque_base<_Tp, _Alloc>::
561    ~_Deque_base()
562    {
563      if (this->_M_impl._M_map)
564	{
565	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
566			   this->_M_impl._M_finish._M_node + 1);
567	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
568	}
569    }
570
571  /**
572   *  @brief Layout storage.
573   *  @param  __num_elements  The count of T's for which to allocate space
574   *                        at first.
575   *  @return   Nothing.
576   *
577   *  The initial underlying memory layout is a bit complicated...
578  */
579  template<typename _Tp, typename _Alloc>
580    void
581    _Deque_base<_Tp, _Alloc>::
582    _M_initialize_map(size_t __num_elements)
583    {
584      const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
585				  + 1);
586
587      this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
588					   size_t(__num_nodes + 2));
589      this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
590
591      // For "small" maps (needing less than _M_map_size nodes), allocation
592      // starts in the middle elements and grows outwards.  So nstart may be
593      // the beginning of _M_map, but for small maps it may be as far in as
594      // _M_map+3.
595
596      _Tp** __nstart = (this->_M_impl._M_map
597			+ (this->_M_impl._M_map_size - __num_nodes) / 2);
598      _Tp** __nfinish = __nstart + __num_nodes;
599
600      __try
601	{ _M_create_nodes(__nstart, __nfinish); }
602      __catch(...)
603	{
604	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
605	  this->_M_impl._M_map = 0;
606	  this->_M_impl._M_map_size = 0;
607	  __throw_exception_again;
608	}
609
610      this->_M_impl._M_start._M_set_node(__nstart);
611      this->_M_impl._M_finish._M_set_node(__nfinish - 1);
612      this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
613      this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
614					+ __num_elements
615					% __deque_buf_size(sizeof(_Tp)));
616    }
617
618  template<typename _Tp, typename _Alloc>
619    void
620    _Deque_base<_Tp, _Alloc>::
621    _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
622    {
623      _Tp** __cur;
624      __try
625	{
626	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
627	    *__cur = this->_M_allocate_node();
628	}
629      __catch(...)
630	{
631	  _M_destroy_nodes(__nstart, __cur);
632	  __throw_exception_again;
633	}
634    }
635
636  template<typename _Tp, typename _Alloc>
637    void
638    _Deque_base<_Tp, _Alloc>::
639    _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
640    {
641      for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
642	_M_deallocate_node(*__n);
643    }
644
645  /**
646   *  @brief  A standard container using fixed-size memory allocation and
647   *  constant-time manipulation of elements at either end.
648   *
649   *  @ingroup sequences
650   *
651   *  @tparam _Tp  Type of element.
652   *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
653   *
654   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
655   *  <a href="tables.html#66">reversible container</a>, and a
656   *  <a href="tables.html#67">sequence</a>, including the
657   *  <a href="tables.html#68">optional sequence requirements</a>.
658   *
659   *  In previous HP/SGI versions of deque, there was an extra template
660   *  parameter so users could control the node size.  This extension turned
661   *  out to violate the C++ standard (it can be detected using template
662   *  template parameters), and it was removed.
663   *
664   *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
665   *
666   *  - Tp**        _M_map
667   *  - size_t      _M_map_size
668   *  - iterator    _M_start, _M_finish
669   *
670   *  map_size is at least 8.  %map is an array of map_size
671   *  pointers-to-@a nodes.  (The name %map has nothing to do with the
672   *  std::map class, and @b nodes should not be confused with
673   *  std::list's usage of @a node.)
674   *
675   *  A @a node has no specific type name as such, but it is referred
676   *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
677   *  is very large, there will be one Tp element per node (i.e., an
678   *  @a array of one).  For non-huge Tp's, node size is inversely
679   *  related to Tp size: the larger the Tp, the fewer Tp's will fit
680   *  in a node.  The goal here is to keep the total size of a node
681   *  relatively small and constant over different Tp's, to improve
682   *  allocator efficiency.
683   *
684   *  Not every pointer in the %map array will point to a node.  If
685   *  the initial number of elements in the deque is small, the
686   *  /middle/ %map pointers will be valid, and the ones at the edges
687   *  will be unused.  This same situation will arise as the %map
688   *  grows: available %map pointers, if any, will be on the ends.  As
689   *  new nodes are created, only a subset of the %map's pointers need
690   *  to be copied @a outward.
691   *
692   *  Class invariants:
693   * - For any nonsingular iterator i:
694   *    - i.node points to a member of the %map array.  (Yes, you read that
695   *      correctly:  i.node does not actually point to a node.)  The member of
696   *      the %map array is what actually points to the node.
697   *    - i.first == *(i.node)    (This points to the node (first Tp element).)
698   *    - i.last  == i.first + node_size
699   *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
700   *      the implication of this is that i.cur is always a dereferenceable
701   *      pointer, even if i is a past-the-end iterator.
702   * - Start and Finish are always nonsingular iterators.  NOTE: this
703   * means that an empty deque must have one node, a deque with <N
704   * elements (where N is the node buffer size) must have one node, a
705   * deque with N through (2N-1) elements must have two nodes, etc.
706   * - For every node other than start.node and finish.node, every
707   * element in the node is an initialized object.  If start.node ==
708   * finish.node, then [start.cur, finish.cur) are initialized
709   * objects, and the elements outside that range are uninitialized
710   * storage.  Otherwise, [start.cur, start.last) and [finish.first,
711   * finish.cur) are initialized objects, and [start.first, start.cur)
712   * and [finish.cur, finish.last) are uninitialized storage.
713   * - [%map, %map + map_size) is a valid, non-empty range.
714   * - [start.node, finish.node] is a valid range contained within
715   *   [%map, %map + map_size).
716   * - A pointer in the range [%map, %map + map_size) points to an allocated
717   *   node if and only if the pointer is in the range
718   *   [start.node, finish.node].
719   *
720   *  Here's the magic:  nothing in deque is @b aware of the discontiguous
721   *  storage!
722   *
723   *  The memory setup and layout occurs in the parent, _Base, and the iterator
724   *  class is entirely responsible for @a leaping from one node to the next.
725   *  All the implementation routines for deque itself work only through the
726   *  start and finish iterators.  This keeps the routines simple and sane,
727   *  and we can use other standard algorithms as well.
728  */
729  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
730    class deque : protected _Deque_base<_Tp, _Alloc>
731    {
732      // concept requirements
733      typedef typename _Alloc::value_type        _Alloc_value_type;
734      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
735      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
736
737      typedef _Deque_base<_Tp, _Alloc>           _Base;
738      typedef typename _Base::_Tp_alloc_type	 _Tp_alloc_type;
739
740    public:
741      typedef _Tp                                        value_type;
742      typedef typename _Tp_alloc_type::pointer           pointer;
743      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
744      typedef typename _Tp_alloc_type::reference         reference;
745      typedef typename _Tp_alloc_type::const_reference   const_reference;
746      typedef typename _Base::iterator                   iterator;
747      typedef typename _Base::const_iterator             const_iterator;
748      typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
749      typedef std::reverse_iterator<iterator>            reverse_iterator;
750      typedef size_t                             size_type;
751      typedef ptrdiff_t                          difference_type;
752      typedef _Alloc                             allocator_type;
753
754    protected:
755      typedef pointer*                           _Map_pointer;
756
757      static size_t _S_buffer_size()
758      { return __deque_buf_size(sizeof(_Tp)); }
759
760      // Functions controlling memory layout, and nothing else.
761      using _Base::_M_initialize_map;
762      using _Base::_M_create_nodes;
763      using _Base::_M_destroy_nodes;
764      using _Base::_M_allocate_node;
765      using _Base::_M_deallocate_node;
766      using _Base::_M_allocate_map;
767      using _Base::_M_deallocate_map;
768      using _Base::_M_get_Tp_allocator;
769
770      /**
771       *  A total of four data members accumulated down the hierarchy.
772       *  May be accessed via _M_impl.*
773       */
774      using _Base::_M_impl;
775
776    public:
777      // [23.2.1.1] construct/copy/destroy
778      // (assign() and get_allocator() are also listed in this section)
779      /**
780       *  @brief  Default constructor creates no elements.
781       */
782      deque()
783      : _Base() { }
784
785      /**
786       *  @brief  Creates a %deque with no elements.
787       *  @param  __a  An allocator object.
788       */
789      explicit
790      deque(const allocator_type& __a)
791      : _Base(__a, 0) { }
792
793#if __cplusplus >= 201103L
794      /**
795       *  @brief  Creates a %deque with default constructed elements.
796       *  @param  __n  The number of elements to initially create.
797       *
798       *  This constructor fills the %deque with @a n default
799       *  constructed elements.
800       */
801      explicit
802      deque(size_type __n)
803      : _Base(__n)
804      { _M_default_initialize(); }
805
806      /**
807       *  @brief  Creates a %deque with copies of an exemplar element.
808       *  @param  __n  The number of elements to initially create.
809       *  @param  __value  An element to copy.
810       *  @param  __a  An allocator.
811       *
812       *  This constructor fills the %deque with @a __n copies of @a __value.
813       */
814      deque(size_type __n, const value_type& __value,
815	    const allocator_type& __a = allocator_type())
816      : _Base(__a, __n)
817      { _M_fill_initialize(__value); }
818#else
819      /**
820       *  @brief  Creates a %deque with copies of an exemplar element.
821       *  @param  __n  The number of elements to initially create.
822       *  @param  __value  An element to copy.
823       *  @param  __a  An allocator.
824       *
825       *  This constructor fills the %deque with @a __n copies of @a __value.
826       */
827      explicit
828      deque(size_type __n, const value_type& __value = value_type(),
829	    const allocator_type& __a = allocator_type())
830      : _Base(__a, __n)
831      { _M_fill_initialize(__value); }
832#endif
833
834      /**
835       *  @brief  %Deque copy constructor.
836       *  @param  __x  A %deque of identical element and allocator types.
837       *
838       *  The newly-created %deque uses a copy of the allocation object used
839       *  by @a __x.
840       */
841      deque(const deque& __x)
842      : _Base(__x._M_get_Tp_allocator(), __x.size())
843      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
844				    this->_M_impl._M_start,
845				    _M_get_Tp_allocator()); }
846
847#if __cplusplus >= 201103L
848      /**
849       *  @brief  %Deque move constructor.
850       *  @param  __x  A %deque of identical element and allocator types.
851       *
852       *  The newly-created %deque contains the exact contents of @a __x.
853       *  The contents of @a __x are a valid, but unspecified %deque.
854       */
855      deque(deque&& __x)
856      : _Base(std::move(__x)) { }
857
858      /**
859       *  @brief  Builds a %deque from an initializer list.
860       *  @param  __l  An initializer_list.
861       *  @param  __a  An allocator object.
862       *
863       *  Create a %deque consisting of copies of the elements in the
864       *  initializer_list @a __l.
865       *
866       *  This will call the element type's copy constructor N times
867       *  (where N is __l.size()) and do no memory reallocation.
868       */
869      deque(initializer_list<value_type> __l,
870	    const allocator_type& __a = allocator_type())
871      : _Base(__a)
872      {
873	_M_range_initialize(__l.begin(), __l.end(),
874			    random_access_iterator_tag());
875      }
876#endif
877
878      /**
879       *  @brief  Builds a %deque from a range.
880       *  @param  __first  An input iterator.
881       *  @param  __last  An input iterator.
882       *  @param  __a  An allocator object.
883       *
884       *  Create a %deque consisting of copies of the elements from [__first,
885       *  __last).
886       *
887       *  If the iterators are forward, bidirectional, or random-access, then
888       *  this will call the elements' copy constructor N times (where N is
889       *  distance(__first,__last)) and do no memory reallocation.  But if only
890       *  input iterators are used, then this will do at most 2N calls to the
891       *  copy constructor, and logN memory reallocations.
892       */
893#if __cplusplus >= 201103L
894      template<typename _InputIterator,
895	       typename = std::_RequireInputIter<_InputIterator>>
896        deque(_InputIterator __first, _InputIterator __last,
897	      const allocator_type& __a = allocator_type())
898	: _Base(__a)
899        { _M_initialize_dispatch(__first, __last, __false_type()); }
900#else
901      template<typename _InputIterator>
902        deque(_InputIterator __first, _InputIterator __last,
903	      const allocator_type& __a = allocator_type())
904	: _Base(__a)
905        {
906	  // Check whether it's an integral type.  If so, it's not an iterator.
907	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
908	  _M_initialize_dispatch(__first, __last, _Integral());
909	}
910#endif
911
912      /**
913       *  The dtor only erases the elements, and note that if the elements
914       *  themselves are pointers, the pointed-to memory is not touched in any
915       *  way.  Managing the pointer is the user's responsibility.
916       */
917      ~deque() _GLIBCXX_NOEXCEPT
918      { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
919
920      /**
921       *  @brief  %Deque assignment operator.
922       *  @param  __x  A %deque of identical element and allocator types.
923       *
924       *  All the elements of @a x are copied, but unlike the copy constructor,
925       *  the allocator object is not copied.
926       */
927      deque&
928      operator=(const deque& __x);
929
930#if __cplusplus >= 201103L
931      /**
932       *  @brief  %Deque move assignment operator.
933       *  @param  __x  A %deque of identical element and allocator types.
934       *
935       *  The contents of @a __x are moved into this deque (without copying).
936       *  @a __x is a valid, but unspecified %deque.
937       */
938      deque&
939      operator=(deque&& __x)
940      {
941	// NB: DR 1204.
942	// NB: DR 675.
943	this->clear();
944	this->swap(__x);
945	return *this;
946      }
947
948      /**
949       *  @brief  Assigns an initializer list to a %deque.
950       *  @param  __l  An initializer_list.
951       *
952       *  This function fills a %deque with copies of the elements in the
953       *  initializer_list @a __l.
954       *
955       *  Note that the assignment completely changes the %deque and that the
956       *  resulting %deque's size is the same as the number of elements
957       *  assigned.  Old data may be lost.
958       */
959      deque&
960      operator=(initializer_list<value_type> __l)
961      {
962	this->assign(__l.begin(), __l.end());
963	return *this;
964      }
965#endif
966
967      /**
968       *  @brief  Assigns a given value to a %deque.
969       *  @param  __n  Number of elements to be assigned.
970       *  @param  __val  Value to be assigned.
971       *
972       *  This function fills a %deque with @a n copies of the given
973       *  value.  Note that the assignment completely changes the
974       *  %deque and that the resulting %deque's size is the same as
975       *  the number of elements assigned.  Old data may be lost.
976       */
977      void
978      assign(size_type __n, const value_type& __val)
979      { _M_fill_assign(__n, __val); }
980
981      /**
982       *  @brief  Assigns a range to a %deque.
983       *  @param  __first  An input iterator.
984       *  @param  __last   An input iterator.
985       *
986       *  This function fills a %deque with copies of the elements in the
987       *  range [__first,__last).
988       *
989       *  Note that the assignment completely changes the %deque and that the
990       *  resulting %deque's size is the same as the number of elements
991       *  assigned.  Old data may be lost.
992       */
993#if __cplusplus >= 201103L
994      template<typename _InputIterator,
995	       typename = std::_RequireInputIter<_InputIterator>>
996        void
997        assign(_InputIterator __first, _InputIterator __last)
998        { _M_assign_dispatch(__first, __last, __false_type()); }
999#else
1000      template<typename _InputIterator>
1001        void
1002        assign(_InputIterator __first, _InputIterator __last)
1003        {
1004	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1005	  _M_assign_dispatch(__first, __last, _Integral());
1006	}
1007#endif
1008
1009#if __cplusplus >= 201103L
1010      /**
1011       *  @brief  Assigns an initializer list to a %deque.
1012       *  @param  __l  An initializer_list.
1013       *
1014       *  This function fills a %deque with copies of the elements in the
1015       *  initializer_list @a __l.
1016       *
1017       *  Note that the assignment completely changes the %deque and that the
1018       *  resulting %deque's size is the same as the number of elements
1019       *  assigned.  Old data may be lost.
1020       */
1021      void
1022      assign(initializer_list<value_type> __l)
1023      { this->assign(__l.begin(), __l.end()); }
1024#endif
1025
1026      /// Get a copy of the memory allocation object.
1027      allocator_type
1028      get_allocator() const _GLIBCXX_NOEXCEPT
1029      { return _Base::get_allocator(); }
1030
1031      // iterators
1032      /**
1033       *  Returns a read/write iterator that points to the first element in the
1034       *  %deque.  Iteration is done in ordinary element order.
1035       */
1036      iterator
1037      begin() _GLIBCXX_NOEXCEPT
1038      { return this->_M_impl._M_start; }
1039
1040      /**
1041       *  Returns a read-only (constant) iterator that points to the first
1042       *  element in the %deque.  Iteration is done in ordinary element order.
1043       */
1044      const_iterator
1045      begin() const _GLIBCXX_NOEXCEPT
1046      { return this->_M_impl._M_start; }
1047
1048      /**
1049       *  Returns a read/write iterator that points one past the last
1050       *  element in the %deque.  Iteration is done in ordinary
1051       *  element order.
1052       */
1053      iterator
1054      end() _GLIBCXX_NOEXCEPT
1055      { return this->_M_impl._M_finish; }
1056
1057      /**
1058       *  Returns a read-only (constant) iterator that points one past
1059       *  the last element in the %deque.  Iteration is done in
1060       *  ordinary element order.
1061       */
1062      const_iterator
1063      end() const _GLIBCXX_NOEXCEPT
1064      { return this->_M_impl._M_finish; }
1065
1066      /**
1067       *  Returns a read/write reverse iterator that points to the
1068       *  last element in the %deque.  Iteration is done in reverse
1069       *  element order.
1070       */
1071      reverse_iterator
1072      rbegin() _GLIBCXX_NOEXCEPT
1073      { return reverse_iterator(this->_M_impl._M_finish); }
1074
1075      /**
1076       *  Returns a read-only (constant) reverse iterator that points
1077       *  to the last element in the %deque.  Iteration is done in
1078       *  reverse element order.
1079       */
1080      const_reverse_iterator
1081      rbegin() const _GLIBCXX_NOEXCEPT
1082      { return const_reverse_iterator(this->_M_impl._M_finish); }
1083
1084      /**
1085       *  Returns a read/write reverse iterator that points to one
1086       *  before the first element in the %deque.  Iteration is done
1087       *  in reverse element order.
1088       */
1089      reverse_iterator
1090      rend() _GLIBCXX_NOEXCEPT
1091      { return reverse_iterator(this->_M_impl._M_start); }
1092
1093      /**
1094       *  Returns a read-only (constant) reverse iterator that points
1095       *  to one before the first element in the %deque.  Iteration is
1096       *  done in reverse element order.
1097       */
1098      const_reverse_iterator
1099      rend() const _GLIBCXX_NOEXCEPT
1100      { return const_reverse_iterator(this->_M_impl._M_start); }
1101
1102#if __cplusplus >= 201103L
1103      /**
1104       *  Returns a read-only (constant) iterator that points to the first
1105       *  element in the %deque.  Iteration is done in ordinary element order.
1106       */
1107      const_iterator
1108      cbegin() const noexcept
1109      { return this->_M_impl._M_start; }
1110
1111      /**
1112       *  Returns a read-only (constant) iterator that points one past
1113       *  the last element in the %deque.  Iteration is done in
1114       *  ordinary element order.
1115       */
1116      const_iterator
1117      cend() const noexcept
1118      { return this->_M_impl._M_finish; }
1119
1120      /**
1121       *  Returns a read-only (constant) reverse iterator that points
1122       *  to the last element in the %deque.  Iteration is done in
1123       *  reverse element order.
1124       */
1125      const_reverse_iterator
1126      crbegin() const noexcept
1127      { return const_reverse_iterator(this->_M_impl._M_finish); }
1128
1129      /**
1130       *  Returns a read-only (constant) reverse iterator that points
1131       *  to one before the first element in the %deque.  Iteration is
1132       *  done in reverse element order.
1133       */
1134      const_reverse_iterator
1135      crend() const noexcept
1136      { return const_reverse_iterator(this->_M_impl._M_start); }
1137#endif
1138
1139      // [23.2.1.2] capacity
1140      /**  Returns the number of elements in the %deque.  */
1141      size_type
1142      size() const _GLIBCXX_NOEXCEPT
1143      { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1144
1145      /**  Returns the size() of the largest possible %deque.  */
1146      size_type
1147      max_size() const _GLIBCXX_NOEXCEPT
1148      { return _M_get_Tp_allocator().max_size(); }
1149
1150#if __cplusplus >= 201103L
1151      /**
1152       *  @brief  Resizes the %deque to the specified number of elements.
1153       *  @param  __new_size  Number of elements the %deque should contain.
1154       *
1155       *  This function will %resize the %deque to the specified
1156       *  number of elements.  If the number is smaller than the
1157       *  %deque's current size the %deque is truncated, otherwise
1158       *  default constructed elements are appended.
1159       */
1160      void
1161      resize(size_type __new_size)
1162      {
1163	const size_type __len = size();
1164	if (__new_size > __len)
1165	  _M_default_append(__new_size - __len);
1166	else if (__new_size < __len)
1167	  _M_erase_at_end(this->_M_impl._M_start
1168			  + difference_type(__new_size));
1169      }
1170
1171      /**
1172       *  @brief  Resizes the %deque to the specified number of elements.
1173       *  @param  __new_size  Number of elements the %deque should contain.
1174       *  @param  __x  Data with which new elements should be populated.
1175       *
1176       *  This function will %resize the %deque to the specified
1177       *  number of elements.  If the number is smaller than the
1178       *  %deque's current size the %deque is truncated, otherwise the
1179       *  %deque is extended and new elements are populated with given
1180       *  data.
1181       */
1182      void
1183      resize(size_type __new_size, const value_type& __x)
1184      {
1185	const size_type __len = size();
1186	if (__new_size > __len)
1187	  insert(this->_M_impl._M_finish, __new_size - __len, __x);
1188	else if (__new_size < __len)
1189	  _M_erase_at_end(this->_M_impl._M_start
1190			  + difference_type(__new_size));
1191      }
1192#else
1193      /**
1194       *  @brief  Resizes the %deque to the specified number of elements.
1195       *  @param  __new_size  Number of elements the %deque should contain.
1196       *  @param  __x  Data with which new elements should be populated.
1197       *
1198       *  This function will %resize the %deque to the specified
1199       *  number of elements.  If the number is smaller than the
1200       *  %deque's current size the %deque is truncated, otherwise the
1201       *  %deque is extended and new elements are populated with given
1202       *  data.
1203       */
1204      void
1205      resize(size_type __new_size, value_type __x = value_type())
1206      {
1207	const size_type __len = size();
1208	if (__new_size > __len)
1209	  insert(this->_M_impl._M_finish, __new_size - __len, __x);
1210	else if (__new_size < __len)
1211	  _M_erase_at_end(this->_M_impl._M_start
1212			  + difference_type(__new_size));
1213      }
1214#endif
1215
1216#if __cplusplus >= 201103L
1217      /**  A non-binding request to reduce memory use.  */
1218      void
1219      shrink_to_fit()
1220      { _M_shrink_to_fit(); }
1221#endif
1222
1223      /**
1224       *  Returns true if the %deque is empty.  (Thus begin() would
1225       *  equal end().)
1226       */
1227      bool
1228      empty() const _GLIBCXX_NOEXCEPT
1229      { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1230
1231      // element access
1232      /**
1233       *  @brief Subscript access to the data contained in the %deque.
1234       *  @param __n The index of the element for which data should be
1235       *  accessed.
1236       *  @return  Read/write reference to data.
1237       *
1238       *  This operator allows for easy, array-style, data access.
1239       *  Note that data access with this operator is unchecked and
1240       *  out_of_range lookups are not defined. (For checked lookups
1241       *  see at().)
1242       */
1243      reference
1244      operator[](size_type __n)
1245      { return this->_M_impl._M_start[difference_type(__n)]; }
1246
1247      /**
1248       *  @brief Subscript access to the data contained in the %deque.
1249       *  @param __n The index of the element for which data should be
1250       *  accessed.
1251       *  @return  Read-only (constant) reference to data.
1252       *
1253       *  This operator allows for easy, array-style, data access.
1254       *  Note that data access with this operator is unchecked and
1255       *  out_of_range lookups are not defined. (For checked lookups
1256       *  see at().)
1257       */
1258      const_reference
1259      operator[](size_type __n) const
1260      { return this->_M_impl._M_start[difference_type(__n)]; }
1261
1262    protected:
1263      /// Safety check used only from at().
1264      void
1265      _M_range_check(size_type __n) const
1266      {
1267	if (__n >= this->size())
1268	  __throw_out_of_range(__N("deque::_M_range_check"));
1269      }
1270
1271    public:
1272      /**
1273       *  @brief  Provides access to the data contained in the %deque.
1274       *  @param __n The index of the element for which data should be
1275       *  accessed.
1276       *  @return  Read/write reference to data.
1277       *  @throw  std::out_of_range  If @a __n is an invalid index.
1278       *
1279       *  This function provides for safer data access.  The parameter
1280       *  is first checked that it is in the range of the deque.  The
1281       *  function throws out_of_range if the check fails.
1282       */
1283      reference
1284      at(size_type __n)
1285      {
1286	_M_range_check(__n);
1287	return (*this)[__n];
1288      }
1289
1290      /**
1291       *  @brief  Provides access to the data contained in the %deque.
1292       *  @param __n The index of the element for which data should be
1293       *  accessed.
1294       *  @return  Read-only (constant) reference to data.
1295       *  @throw  std::out_of_range  If @a __n is an invalid index.
1296       *
1297       *  This function provides for safer data access.  The parameter is first
1298       *  checked that it is in the range of the deque.  The function throws
1299       *  out_of_range if the check fails.
1300       */
1301      const_reference
1302      at(size_type __n) const
1303      {
1304	_M_range_check(__n);
1305	return (*this)[__n];
1306      }
1307
1308      /**
1309       *  Returns a read/write reference to the data at the first
1310       *  element of the %deque.
1311       */
1312      reference
1313      front()
1314      { return *begin(); }
1315
1316      /**
1317       *  Returns a read-only (constant) reference to the data at the first
1318       *  element of the %deque.
1319       */
1320      const_reference
1321      front() const
1322      { return *begin(); }
1323
1324      /**
1325       *  Returns a read/write reference to the data at the last element of the
1326       *  %deque.
1327       */
1328      reference
1329      back()
1330      {
1331	iterator __tmp = end();
1332	--__tmp;
1333	return *__tmp;
1334      }
1335
1336      /**
1337       *  Returns a read-only (constant) reference to the data at the last
1338       *  element of the %deque.
1339       */
1340      const_reference
1341      back() const
1342      {
1343	const_iterator __tmp = end();
1344	--__tmp;
1345	return *__tmp;
1346      }
1347
1348      // [23.2.1.2] modifiers
1349      /**
1350       *  @brief  Add data to the front of the %deque.
1351       *  @param  __x  Data to be added.
1352       *
1353       *  This is a typical stack operation.  The function creates an
1354       *  element at the front of the %deque and assigns the given
1355       *  data to it.  Due to the nature of a %deque this operation
1356       *  can be done in constant time.
1357       */
1358      void
1359      push_front(const value_type& __x)
1360      {
1361	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1362	  {
1363	    this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1364	    --this->_M_impl._M_start._M_cur;
1365	  }
1366	else
1367	  _M_push_front_aux(__x);
1368      }
1369
1370#if __cplusplus >= 201103L
1371      void
1372      push_front(value_type&& __x)
1373      { emplace_front(std::move(__x)); }
1374
1375      template<typename... _Args>
1376        void
1377        emplace_front(_Args&&... __args);
1378#endif
1379
1380      /**
1381       *  @brief  Add data to the end of the %deque.
1382       *  @param  __x  Data to be added.
1383       *
1384       *  This is a typical stack operation.  The function creates an
1385       *  element at the end of the %deque and assigns the given data
1386       *  to it.  Due to the nature of a %deque this operation can be
1387       *  done in constant time.
1388       */
1389      void
1390      push_back(const value_type& __x)
1391      {
1392	if (this->_M_impl._M_finish._M_cur
1393	    != this->_M_impl._M_finish._M_last - 1)
1394	  {
1395	    this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1396	    ++this->_M_impl._M_finish._M_cur;
1397	  }
1398	else
1399	  _M_push_back_aux(__x);
1400      }
1401
1402#if __cplusplus >= 201103L
1403      void
1404      push_back(value_type&& __x)
1405      { emplace_back(std::move(__x)); }
1406
1407      template<typename... _Args>
1408        void
1409        emplace_back(_Args&&... __args);
1410#endif
1411
1412      /**
1413       *  @brief  Removes first element.
1414       *
1415       *  This is a typical stack operation.  It shrinks the %deque by one.
1416       *
1417       *  Note that no data is returned, and if the first element's data is
1418       *  needed, it should be retrieved before pop_front() is called.
1419       */
1420      void
1421      pop_front()
1422      {
1423	if (this->_M_impl._M_start._M_cur
1424	    != this->_M_impl._M_start._M_last - 1)
1425	  {
1426	    this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1427	    ++this->_M_impl._M_start._M_cur;
1428	  }
1429	else
1430	  _M_pop_front_aux();
1431      }
1432
1433      /**
1434       *  @brief  Removes last element.
1435       *
1436       *  This is a typical stack operation.  It shrinks the %deque by one.
1437       *
1438       *  Note that no data is returned, and if the last element's data is
1439       *  needed, it should be retrieved before pop_back() is called.
1440       */
1441      void
1442      pop_back()
1443      {
1444	if (this->_M_impl._M_finish._M_cur
1445	    != this->_M_impl._M_finish._M_first)
1446	  {
1447	    --this->_M_impl._M_finish._M_cur;
1448	    this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1449	  }
1450	else
1451	  _M_pop_back_aux();
1452      }
1453
1454#if __cplusplus >= 201103L
1455      /**
1456       *  @brief  Inserts an object in %deque before specified iterator.
1457       *  @param  __position  An iterator into the %deque.
1458       *  @param  __args  Arguments.
1459       *  @return  An iterator that points to the inserted data.
1460       *
1461       *  This function will insert an object of type T constructed
1462       *  with T(std::forward<Args>(args)...) before the specified location.
1463       */
1464      template<typename... _Args>
1465        iterator
1466        emplace(iterator __position, _Args&&... __args);
1467#endif
1468
1469      /**
1470       *  @brief  Inserts given value into %deque before specified iterator.
1471       *  @param  __position  An iterator into the %deque.
1472       *  @param  __x  Data to be inserted.
1473       *  @return  An iterator that points to the inserted data.
1474       *
1475       *  This function will insert a copy of the given value before the
1476       *  specified location.
1477       */
1478      iterator
1479      insert(iterator __position, const value_type& __x);
1480
1481#if __cplusplus >= 201103L
1482      /**
1483       *  @brief  Inserts given rvalue into %deque before specified iterator.
1484       *  @param  __position  An iterator into the %deque.
1485       *  @param  __x  Data to be inserted.
1486       *  @return  An iterator that points to the inserted data.
1487       *
1488       *  This function will insert a copy of the given rvalue before the
1489       *  specified location.
1490       */
1491      iterator
1492      insert(iterator __position, value_type&& __x)
1493      { return emplace(__position, std::move(__x)); }
1494
1495      /**
1496       *  @brief  Inserts an initializer list into the %deque.
1497       *  @param  __p  An iterator into the %deque.
1498       *  @param  __l  An initializer_list.
1499       *
1500       *  This function will insert copies of the data in the
1501       *  initializer_list @a __l into the %deque before the location
1502       *  specified by @a __p.  This is known as <em>list insert</em>.
1503       */
1504      void
1505      insert(iterator __p, initializer_list<value_type> __l)
1506      { this->insert(__p, __l.begin(), __l.end()); }
1507#endif
1508
1509      /**
1510       *  @brief  Inserts a number of copies of given data into the %deque.
1511       *  @param  __position  An iterator into the %deque.
1512       *  @param  __n  Number of elements to be inserted.
1513       *  @param  __x  Data to be inserted.
1514       *
1515       *  This function will insert a specified number of copies of the given
1516       *  data before the location specified by @a __position.
1517       */
1518      void
1519      insert(iterator __position, size_type __n, const value_type& __x)
1520      { _M_fill_insert(__position, __n, __x); }
1521
1522      /**
1523       *  @brief  Inserts a range into the %deque.
1524       *  @param  __position  An iterator into the %deque.
1525       *  @param  __first  An input iterator.
1526       *  @param  __last   An input iterator.
1527       *
1528       *  This function will insert copies of the data in the range
1529       *  [__first,__last) into the %deque before the location specified
1530       *  by @a __position.  This is known as <em>range insert</em>.
1531       */
1532#if __cplusplus >= 201103L
1533      template<typename _InputIterator,
1534	       typename = std::_RequireInputIter<_InputIterator>>
1535        void
1536        insert(iterator __position, _InputIterator __first,
1537	       _InputIterator __last)
1538        { _M_insert_dispatch(__position, __first, __last, __false_type()); }
1539#else
1540      template<typename _InputIterator>
1541        void
1542        insert(iterator __position, _InputIterator __first,
1543	       _InputIterator __last)
1544        {
1545	  // Check whether it's an integral type.  If so, it's not an iterator.
1546	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1547	  _M_insert_dispatch(__position, __first, __last, _Integral());
1548	}
1549#endif
1550
1551      /**
1552       *  @brief  Remove element at given position.
1553       *  @param  __position  Iterator pointing to element to be erased.
1554       *  @return  An iterator pointing to the next element (or end()).
1555       *
1556       *  This function will erase the element at the given position and thus
1557       *  shorten the %deque by one.
1558       *
1559       *  The user is cautioned that
1560       *  this function only erases the element, and that if the element is
1561       *  itself a pointer, the pointed-to memory is not touched in any way.
1562       *  Managing the pointer is the user's responsibility.
1563       */
1564      iterator
1565      erase(iterator __position);
1566
1567      /**
1568       *  @brief  Remove a range of elements.
1569       *  @param  __first  Iterator pointing to the first element to be erased.
1570       *  @param  __last  Iterator pointing to one past the last element to be
1571       *                erased.
1572       *  @return  An iterator pointing to the element pointed to by @a last
1573       *           prior to erasing (or end()).
1574       *
1575       *  This function will erase the elements in the range
1576       *  [__first,__last) and shorten the %deque accordingly.
1577       *
1578       *  The user is cautioned that
1579       *  this function only erases the elements, and that if the elements
1580       *  themselves are pointers, the pointed-to memory is not touched in any
1581       *  way.  Managing the pointer is the user's responsibility.
1582       */
1583      iterator
1584      erase(iterator __first, iterator __last);
1585
1586      /**
1587       *  @brief  Swaps data with another %deque.
1588       *  @param  __x  A %deque of the same element and allocator types.
1589       *
1590       *  This exchanges the elements between two deques in constant time.
1591       *  (Four pointers, so it should be quite fast.)
1592       *  Note that the global std::swap() function is specialized such that
1593       *  std::swap(d1,d2) will feed to this function.
1594       */
1595      void
1596      swap(deque& __x)
1597      {
1598	std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1599	std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1600	std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1601	std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1602
1603	// _GLIBCXX_RESOLVE_LIB_DEFECTS
1604	// 431. Swapping containers with unequal allocators.
1605	std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1606						    __x._M_get_Tp_allocator());
1607      }
1608
1609      /**
1610       *  Erases all the elements.  Note that this function only erases the
1611       *  elements, and that if the elements themselves are pointers, the
1612       *  pointed-to memory is not touched in any way.  Managing the pointer is
1613       *  the user's responsibility.
1614       */
1615      void
1616      clear() _GLIBCXX_NOEXCEPT
1617      { _M_erase_at_end(begin()); }
1618
1619    protected:
1620      // Internal constructor functions follow.
1621
1622      // called by the range constructor to implement [23.1.1]/9
1623
1624      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1625      // 438. Ambiguity in the "do the right thing" clause
1626      template<typename _Integer>
1627        void
1628        _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1629        {
1630	  _M_initialize_map(static_cast<size_type>(__n));
1631	  _M_fill_initialize(__x);
1632	}
1633
1634      // called by the range constructor to implement [23.1.1]/9
1635      template<typename _InputIterator>
1636        void
1637        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1638			       __false_type)
1639        {
1640	  typedef typename std::iterator_traits<_InputIterator>::
1641	    iterator_category _IterCategory;
1642	  _M_range_initialize(__first, __last, _IterCategory());
1643	}
1644
1645      // called by the second initialize_dispatch above
1646      //@{
1647      /**
1648       *  @brief Fills the deque with whatever is in [first,last).
1649       *  @param  __first  An input iterator.
1650       *  @param  __last  An input iterator.
1651       *  @return   Nothing.
1652       *
1653       *  If the iterators are actually forward iterators (or better), then the
1654       *  memory layout can be done all at once.  Else we move forward using
1655       *  push_back on each value from the iterator.
1656       */
1657      template<typename _InputIterator>
1658        void
1659        _M_range_initialize(_InputIterator __first, _InputIterator __last,
1660			    std::input_iterator_tag);
1661
1662      // called by the second initialize_dispatch above
1663      template<typename _ForwardIterator>
1664        void
1665        _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1666			    std::forward_iterator_tag);
1667      //@}
1668
1669      /**
1670       *  @brief Fills the %deque with copies of value.
1671       *  @param  __value  Initial value.
1672       *  @return   Nothing.
1673       *  @pre _M_start and _M_finish have already been initialized,
1674       *  but none of the %deque's elements have yet been constructed.
1675       *
1676       *  This function is called only when the user provides an explicit size
1677       *  (with or without an explicit exemplar value).
1678       */
1679      void
1680      _M_fill_initialize(const value_type& __value);
1681
1682#if __cplusplus >= 201103L
1683      // called by deque(n).
1684      void
1685      _M_default_initialize();
1686#endif
1687
1688      // Internal assign functions follow.  The *_aux functions do the actual
1689      // assignment work for the range versions.
1690
1691      // called by the range assign to implement [23.1.1]/9
1692
1693      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1694      // 438. Ambiguity in the "do the right thing" clause
1695      template<typename _Integer>
1696        void
1697        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1698        { _M_fill_assign(__n, __val); }
1699
1700      // called by the range assign to implement [23.1.1]/9
1701      template<typename _InputIterator>
1702        void
1703        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1704			   __false_type)
1705        {
1706	  typedef typename std::iterator_traits<_InputIterator>::
1707	    iterator_category _IterCategory;
1708	  _M_assign_aux(__first, __last, _IterCategory());
1709	}
1710
1711      // called by the second assign_dispatch above
1712      template<typename _InputIterator>
1713        void
1714        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1715		      std::input_iterator_tag);
1716
1717      // called by the second assign_dispatch above
1718      template<typename _ForwardIterator>
1719        void
1720        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1721		      std::forward_iterator_tag)
1722        {
1723	  const size_type __len = std::distance(__first, __last);
1724	  if (__len > size())
1725	    {
1726	      _ForwardIterator __mid = __first;
1727	      std::advance(__mid, size());
1728	      std::copy(__first, __mid, begin());
1729	      insert(end(), __mid, __last);
1730	    }
1731	  else
1732	    _M_erase_at_end(std::copy(__first, __last, begin()));
1733	}
1734
1735      // Called by assign(n,t), and the range assign when it turns out
1736      // to be the same thing.
1737      void
1738      _M_fill_assign(size_type __n, const value_type& __val)
1739      {
1740	if (__n > size())
1741	  {
1742	    std::fill(begin(), end(), __val);
1743	    insert(end(), __n - size(), __val);
1744	  }
1745	else
1746	  {
1747	    _M_erase_at_end(begin() + difference_type(__n));
1748	    std::fill(begin(), end(), __val);
1749	  }
1750      }
1751
1752      //@{
1753      /// Helper functions for push_* and pop_*.
1754#if __cplusplus < 201103L
1755      void _M_push_back_aux(const value_type&);
1756
1757      void _M_push_front_aux(const value_type&);
1758#else
1759      template<typename... _Args>
1760        void _M_push_back_aux(_Args&&... __args);
1761
1762      template<typename... _Args>
1763        void _M_push_front_aux(_Args&&... __args);
1764#endif
1765
1766      void _M_pop_back_aux();
1767
1768      void _M_pop_front_aux();
1769      //@}
1770
1771      // Internal insert functions follow.  The *_aux functions do the actual
1772      // insertion work when all shortcuts fail.
1773
1774      // called by the range insert to implement [23.1.1]/9
1775
1776      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1777      // 438. Ambiguity in the "do the right thing" clause
1778      template<typename _Integer>
1779        void
1780        _M_insert_dispatch(iterator __pos,
1781			   _Integer __n, _Integer __x, __true_type)
1782        { _M_fill_insert(__pos, __n, __x); }
1783
1784      // called by the range insert to implement [23.1.1]/9
1785      template<typename _InputIterator>
1786        void
1787        _M_insert_dispatch(iterator __pos,
1788			   _InputIterator __first, _InputIterator __last,
1789			   __false_type)
1790        {
1791	  typedef typename std::iterator_traits<_InputIterator>::
1792	    iterator_category _IterCategory;
1793          _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1794	}
1795
1796      // called by the second insert_dispatch above
1797      template<typename _InputIterator>
1798        void
1799        _M_range_insert_aux(iterator __pos, _InputIterator __first,
1800			    _InputIterator __last, std::input_iterator_tag);
1801
1802      // called by the second insert_dispatch above
1803      template<typename _ForwardIterator>
1804        void
1805        _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1806			    _ForwardIterator __last, std::forward_iterator_tag);
1807
1808      // Called by insert(p,n,x), and the range insert when it turns out to be
1809      // the same thing.  Can use fill functions in optimal situations,
1810      // otherwise passes off to insert_aux(p,n,x).
1811      void
1812      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1813
1814      // called by insert(p,x)
1815#if __cplusplus < 201103L
1816      iterator
1817      _M_insert_aux(iterator __pos, const value_type& __x);
1818#else
1819      template<typename... _Args>
1820        iterator
1821        _M_insert_aux(iterator __pos, _Args&&... __args);
1822#endif
1823
1824      // called by insert(p,n,x) via fill_insert
1825      void
1826      _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1827
1828      // called by range_insert_aux for forward iterators
1829      template<typename _ForwardIterator>
1830        void
1831        _M_insert_aux(iterator __pos,
1832		      _ForwardIterator __first, _ForwardIterator __last,
1833		      size_type __n);
1834
1835
1836      // Internal erase functions follow.
1837
1838      void
1839      _M_destroy_data_aux(iterator __first, iterator __last);
1840
1841      // Called by ~deque().
1842      // NB: Doesn't deallocate the nodes.
1843      template<typename _Alloc1>
1844        void
1845        _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1846        { _M_destroy_data_aux(__first, __last); }
1847
1848      void
1849      _M_destroy_data(iterator __first, iterator __last,
1850		      const std::allocator<_Tp>&)
1851      {
1852	if (!__has_trivial_destructor(value_type))
1853	  _M_destroy_data_aux(__first, __last);
1854      }
1855
1856      // Called by erase(q1, q2).
1857      void
1858      _M_erase_at_begin(iterator __pos)
1859      {
1860	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1861	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1862	this->_M_impl._M_start = __pos;
1863      }
1864
1865      // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1866      // _M_fill_assign, operator=.
1867      void
1868      _M_erase_at_end(iterator __pos)
1869      {
1870	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1871	_M_destroy_nodes(__pos._M_node + 1,
1872			 this->_M_impl._M_finish._M_node + 1);
1873	this->_M_impl._M_finish = __pos;
1874      }
1875
1876#if __cplusplus >= 201103L
1877      // Called by resize(sz).
1878      void
1879      _M_default_append(size_type __n);
1880
1881      bool
1882      _M_shrink_to_fit();
1883#endif
1884
1885      //@{
1886      /// Memory-handling helpers for the previous internal insert functions.
1887      iterator
1888      _M_reserve_elements_at_front(size_type __n)
1889      {
1890	const size_type __vacancies = this->_M_impl._M_start._M_cur
1891	                              - this->_M_impl._M_start._M_first;
1892	if (__n > __vacancies)
1893	  _M_new_elements_at_front(__n - __vacancies);
1894	return this->_M_impl._M_start - difference_type(__n);
1895      }
1896
1897      iterator
1898      _M_reserve_elements_at_back(size_type __n)
1899      {
1900	const size_type __vacancies = (this->_M_impl._M_finish._M_last
1901				       - this->_M_impl._M_finish._M_cur) - 1;
1902	if (__n > __vacancies)
1903	  _M_new_elements_at_back(__n - __vacancies);
1904	return this->_M_impl._M_finish + difference_type(__n);
1905      }
1906
1907      void
1908      _M_new_elements_at_front(size_type __new_elements);
1909
1910      void
1911      _M_new_elements_at_back(size_type __new_elements);
1912      //@}
1913
1914
1915      //@{
1916      /**
1917       *  @brief Memory-handling helpers for the major %map.
1918       *
1919       *  Makes sure the _M_map has space for new nodes.  Does not
1920       *  actually add the nodes.  Can invalidate _M_map pointers.
1921       *  (And consequently, %deque iterators.)
1922       */
1923      void
1924      _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1925      {
1926	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1927	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1928	  _M_reallocate_map(__nodes_to_add, false);
1929      }
1930
1931      void
1932      _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1933      {
1934	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1935				       - this->_M_impl._M_map))
1936	  _M_reallocate_map(__nodes_to_add, true);
1937      }
1938
1939      void
1940      _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1941      //@}
1942    };
1943
1944
1945  /**
1946   *  @brief  Deque equality comparison.
1947   *  @param  __x  A %deque.
1948   *  @param  __y  A %deque of the same type as @a __x.
1949   *  @return  True iff the size and elements of the deques are equal.
1950   *
1951   *  This is an equivalence relation.  It is linear in the size of the
1952   *  deques.  Deques are considered equivalent if their sizes are equal,
1953   *  and if corresponding elements compare equal.
1954  */
1955  template<typename _Tp, typename _Alloc>
1956    inline bool
1957    operator==(const deque<_Tp, _Alloc>& __x,
1958                         const deque<_Tp, _Alloc>& __y)
1959    { return __x.size() == __y.size()
1960             && std::equal(__x.begin(), __x.end(), __y.begin()); }
1961
1962  /**
1963   *  @brief  Deque ordering relation.
1964   *  @param  __x  A %deque.
1965   *  @param  __y  A %deque of the same type as @a __x.
1966   *  @return  True iff @a x is lexicographically less than @a __y.
1967   *
1968   *  This is a total ordering relation.  It is linear in the size of the
1969   *  deques.  The elements must be comparable with @c <.
1970   *
1971   *  See std::lexicographical_compare() for how the determination is made.
1972  */
1973  template<typename _Tp, typename _Alloc>
1974    inline bool
1975    operator<(const deque<_Tp, _Alloc>& __x,
1976	      const deque<_Tp, _Alloc>& __y)
1977    { return std::lexicographical_compare(__x.begin(), __x.end(),
1978					  __y.begin(), __y.end()); }
1979
1980  /// Based on operator==
1981  template<typename _Tp, typename _Alloc>
1982    inline bool
1983    operator!=(const deque<_Tp, _Alloc>& __x,
1984	       const deque<_Tp, _Alloc>& __y)
1985    { return !(__x == __y); }
1986
1987  /// Based on operator<
1988  template<typename _Tp, typename _Alloc>
1989    inline bool
1990    operator>(const deque<_Tp, _Alloc>& __x,
1991	      const deque<_Tp, _Alloc>& __y)
1992    { return __y < __x; }
1993
1994  /// Based on operator<
1995  template<typename _Tp, typename _Alloc>
1996    inline bool
1997    operator<=(const deque<_Tp, _Alloc>& __x,
1998	       const deque<_Tp, _Alloc>& __y)
1999    { return !(__y < __x); }
2000
2001  /// Based on operator<
2002  template<typename _Tp, typename _Alloc>
2003    inline bool
2004    operator>=(const deque<_Tp, _Alloc>& __x,
2005	       const deque<_Tp, _Alloc>& __y)
2006    { return !(__x < __y); }
2007
2008  /// See std::deque::swap().
2009  template<typename _Tp, typename _Alloc>
2010    inline void
2011    swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
2012    { __x.swap(__y); }
2013
2014#undef _GLIBCXX_DEQUE_BUF_SIZE
2015
2016_GLIBCXX_END_NAMESPACE_CONTAINER
2017} // namespace std
2018
2019#endif /* _STL_DEQUE_H */
2020