1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# March, May, June 2010
11#
12# The module implements "4-bit" GCM GHASH function and underlying
13# single multiplication operation in GF(2^128). "4-bit" means that it
14# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
15# code paths: vanilla x86 and vanilla SSE. Former will be executed on
16# 486 and Pentium, latter on all others. SSE GHASH features so called
17# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
18# of per-key storage [+512 bytes shared table]. Performance results
19# are for streamed GHASH subroutine and are expressed in cycles per
20# processed byte, less is better:
21#
22#		gcc 2.95.3(*)	SSE assembler	x86 assembler
23#
24# Pentium	105/111(**)	-		50
25# PIII		68 /75		12.2		24
26# P4		125/125		17.8		84(***)
27# Opteron	66 /70		10.1		30
28# Core2		54 /67		8.4		18
29# Atom		105/105		16.8		53
30# VIA Nano	69 /71		13.0		27
31#
32# (*)	gcc 3.4.x was observed to generate few percent slower code,
33#	which is one of reasons why 2.95.3 results were chosen,
34#	another reason is lack of 3.4.x results for older CPUs;
35#	comparison with SSE results is not completely fair, because C
36#	results are for vanilla "256B" implementation, while
37#	assembler results are for "528B";-)
38# (**)	second number is result for code compiled with -fPIC flag,
39#	which is actually more relevant, because assembler code is
40#	position-independent;
41# (***)	see comment in non-MMX routine for further details;
42#
43# To summarize, it's >2-5 times faster than gcc-generated code. To
44# anchor it to something else SHA1 assembler processes one byte in
45# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
46# in particular, see comment at the end of the file...
47
48# May 2010
49#
50# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
51# The question is how close is it to theoretical limit? The pclmulqdq
52# instruction latency appears to be 14 cycles and there can't be more
53# than 2 of them executing at any given time. This means that single
54# Karatsuba multiplication would take 28 cycles *plus* few cycles for
55# pre- and post-processing. Then multiplication has to be followed by
56# modulo-reduction. Given that aggregated reduction method [see
57# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
58# white paper by Intel] allows you to perform reduction only once in
59# a while we can assume that asymptotic performance can be estimated
60# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
61# and Naggr is the aggregation factor.
62#
63# Before we proceed to this implementation let's have closer look at
64# the best-performing code suggested by Intel in their white paper.
65# By tracing inter-register dependencies Tmod is estimated as ~19
66# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
67# processed byte. As implied, this is quite optimistic estimate,
68# because it does not account for Karatsuba pre- and post-processing,
69# which for a single multiplication is ~5 cycles. Unfortunately Intel
70# does not provide performance data for GHASH alone. But benchmarking
71# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
72# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
73# the result accounts even for pre-computing of degrees of the hash
74# key H, but its portion is negligible at 16KB buffer size.
75#
76# Moving on to the implementation in question. Tmod is estimated as
77# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
78# 2.16. How is it possible that measured performance is better than
79# optimistic theoretical estimate? There is one thing Intel failed
80# to recognize. By serializing GHASH with CTR in same subroutine
81# former's performance is really limited to above (Tmul + Tmod/Naggr)
82# equation. But if GHASH procedure is detached, the modulo-reduction
83# can be interleaved with Naggr-1 multiplications at instruction level
84# and under ideal conditions even disappear from the equation. So that
85# optimistic theoretical estimate for this implementation is ...
86# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
87# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
88# where Tproc is time required for Karatsuba pre- and post-processing,
89# is more realistic estimate. In this case it gives ... 1.91 cycles.
90# Or in other words, depending on how well we can interleave reduction
91# and one of the two multiplications the performance should be between
92# 1.91 and 2.16. As already mentioned, this implementation processes
93# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
94# - in 2.02. x86_64 performance is better, because larger register
95# bank allows to interleave reduction and multiplication better.
96#
97# Does it make sense to increase Naggr? To start with it's virtually
98# impossible in 32-bit mode, because of limited register bank
99# capacity. Otherwise improvement has to be weighed agiainst slower
100# setup, as well as code size and complexity increase. As even
101# optimistic estimate doesn't promise 30% performance improvement,
102# there are currently no plans to increase Naggr.
103#
104# Special thanks to David Woodhouse <dwmw2@infradead.org> for
105# providing access to a Westmere-based system on behalf of Intel
106# Open Source Technology Centre.
107
108# January 2010
109#
110# Tweaked to optimize transitions between integer and FP operations
111# on same XMM register, PCLMULQDQ subroutine was measured to process
112# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
113# The minor regression on Westmere is outweighed by ~15% improvement
114# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
115# similar manner resulted in almost 20% degradation on Sandy Bridge,
116# where original 64-bit code processes one byte in 1.95 cycles.
117
118#####################################################################
119# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
120# 32-bit mode and 1.89 in 64-bit.
121
122# February 2013
123#
124# Overhaul: aggregate Karatsuba post-processing, improve ILP in
125# reduction_alg9. Resulting performance is 1.96 cycles per byte on
126# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
127
128$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
129push(@INC,"${dir}","${dir}../../../perlasm");
130require "x86asm.pl";
131
132$output=pop;
133open STDOUT,">$output";
134
135&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
136
137$sse2=0;
138for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
139
140($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
141$inp  = "edi";
142$Htbl = "esi";
143
144$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
145		# than unrolled, which has to be weighted against
146		# 2.5x x86-specific code size reduction.
147
148sub x86_loop {
149    my $off = shift;
150    my $rem = "eax";
151
152	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
153	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
154	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
155	&mov	($Zll,&DWP(8,$Htbl,$Zll));
156	&xor	($rem,$rem);	# avoid partial register stalls on PIII
157
158	# shrd practically kills P4, 2.5x deterioration, but P4 has
159	# MMX code-path to execute. shrd runs tad faster [than twice
160	# the shifts, move's and or's] on pre-MMX Pentium (as well as
161	# PIII and Core2), *but* minimizes code size, spares register
162	# and thus allows to fold the loop...
163	if (!$unroll) {
164	my $cnt = $inp;
165	&mov	($cnt,15);
166	&jmp	(&label("x86_loop"));
167	&set_label("x86_loop",16);
168	    for($i=1;$i<=2;$i++) {
169		&mov	(&LB($rem),&LB($Zll));
170		&shrd	($Zll,$Zlh,4);
171		&and	(&LB($rem),0xf);
172		&shrd	($Zlh,$Zhl,4);
173		&shrd	($Zhl,$Zhh,4);
174		&shr	($Zhh,4);
175		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
176
177		&mov	(&LB($rem),&BP($off,"esp",$cnt));
178		if ($i&1) {
179			&and	(&LB($rem),0xf0);
180		} else {
181			&shl	(&LB($rem),4);
182		}
183
184		&xor	($Zll,&DWP(8,$Htbl,$rem));
185		&xor	($Zlh,&DWP(12,$Htbl,$rem));
186		&xor	($Zhl,&DWP(0,$Htbl,$rem));
187		&xor	($Zhh,&DWP(4,$Htbl,$rem));
188
189		if ($i&1) {
190			&dec	($cnt);
191			&js	(&label("x86_break"));
192		} else {
193			&jmp	(&label("x86_loop"));
194		}
195	    }
196	&set_label("x86_break",16);
197	} else {
198	    for($i=1;$i<32;$i++) {
199		&comment($i);
200		&mov	(&LB($rem),&LB($Zll));
201		&shrd	($Zll,$Zlh,4);
202		&and	(&LB($rem),0xf);
203		&shrd	($Zlh,$Zhl,4);
204		&shrd	($Zhl,$Zhh,4);
205		&shr	($Zhh,4);
206		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
207
208		if ($i&1) {
209			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
210			&and	(&LB($rem),0xf0);
211		} else {
212			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
213			&shl	(&LB($rem),4);
214		}
215
216		&xor	($Zll,&DWP(8,$Htbl,$rem));
217		&xor	($Zlh,&DWP(12,$Htbl,$rem));
218		&xor	($Zhl,&DWP(0,$Htbl,$rem));
219		&xor	($Zhh,&DWP(4,$Htbl,$rem));
220	    }
221	}
222	&bswap	($Zll);
223	&bswap	($Zlh);
224	&bswap	($Zhl);
225	if (!$x86only) {
226		&bswap	($Zhh);
227	} else {
228		&mov	("eax",$Zhh);
229		&bswap	("eax");
230		&mov	($Zhh,"eax");
231	}
232}
233
234if ($unroll) {
235    &function_begin_B("_x86_gmult_4bit_inner");
236	&x86_loop(4);
237	&ret	();
238    &function_end_B("_x86_gmult_4bit_inner");
239}
240
241sub deposit_rem_4bit {
242    my $bias = shift;
243
244	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
245	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
246	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
247	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
248	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
249	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
250	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
251	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
252	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
253	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
254	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
255	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
256	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
257	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
258	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
259	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
260}
261
262if (!$x86only) {{{
263
264&static_label("rem_4bit");
265
266if (!$sse2) {{	# pure-MMX "May" version...
267
268    # This code was removed since SSE2 is required for BoringSSL. The
269    # outer structure of the code was retained to minimize future merge
270    # conflicts.
271
272}} else {{	# "June" MMX version...
273		# ... has slower "April" gcm_gmult_4bit_mmx with folded
274		# loop. This is done to conserve code size...
275$S=16;		# shift factor for rem_4bit
276
277sub mmx_loop() {
278# MMX version performs 2.8 times better on P4 (see comment in non-MMX
279# routine for further details), 40% better on Opteron and Core2, 50%
280# better on PIII... In other words effort is considered to be well
281# spent...
282    my $inp = shift;
283    my $rem_4bit = shift;
284    my $cnt = $Zhh;
285    my $nhi = $Zhl;
286    my $nlo = $Zlh;
287    my $rem = $Zll;
288
289    my ($Zlo,$Zhi) = ("mm0","mm1");
290    my $tmp = "mm2";
291
292	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
293	&mov	($nhi,$Zll);
294	&mov	(&LB($nlo),&LB($nhi));
295	&mov	($cnt,14);
296	&shl	(&LB($nlo),4);
297	&and	($nhi,0xf0);
298	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
299	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
300	&movd	($rem,$Zlo);
301	&jmp	(&label("mmx_loop"));
302
303    &set_label("mmx_loop",16);
304	&psrlq	($Zlo,4);
305	&and	($rem,0xf);
306	&movq	($tmp,$Zhi);
307	&psrlq	($Zhi,4);
308	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
309	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
310	&psllq	($tmp,60);
311	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
312	&dec	($cnt);
313	&movd	($rem,$Zlo);
314	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
315	&mov	($nhi,$nlo);
316	&pxor	($Zlo,$tmp);
317	&js	(&label("mmx_break"));
318
319	&shl	(&LB($nlo),4);
320	&and	($rem,0xf);
321	&psrlq	($Zlo,4);
322	&and	($nhi,0xf0);
323	&movq	($tmp,$Zhi);
324	&psrlq	($Zhi,4);
325	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
326	&psllq	($tmp,60);
327	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
328	&movd	($rem,$Zlo);
329	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
330	&pxor	($Zlo,$tmp);
331	&jmp	(&label("mmx_loop"));
332
333    &set_label("mmx_break",16);
334	&shl	(&LB($nlo),4);
335	&and	($rem,0xf);
336	&psrlq	($Zlo,4);
337	&and	($nhi,0xf0);
338	&movq	($tmp,$Zhi);
339	&psrlq	($Zhi,4);
340	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
341	&psllq	($tmp,60);
342	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
343	&movd	($rem,$Zlo);
344	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
345	&pxor	($Zlo,$tmp);
346
347	&psrlq	($Zlo,4);
348	&and	($rem,0xf);
349	&movq	($tmp,$Zhi);
350	&psrlq	($Zhi,4);
351	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
352	&psllq	($tmp,60);
353	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
354	&movd	($rem,$Zlo);
355	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
356	&pxor	($Zlo,$tmp);
357
358	&psrlq	($Zlo,32);	# lower part of Zlo is already there
359	&movd	($Zhl,$Zhi);
360	&psrlq	($Zhi,32);
361	&movd	($Zlh,$Zlo);
362	&movd	($Zhh,$Zhi);
363
364	&bswap	($Zll);
365	&bswap	($Zhl);
366	&bswap	($Zlh);
367	&bswap	($Zhh);
368}
369
370&function_begin("gcm_gmult_4bit_mmx");
371	&mov	($inp,&wparam(0));	# load Xi
372	&mov	($Htbl,&wparam(1));	# load Htable
373
374	&call	(&label("pic_point"));
375	&set_label("pic_point");
376	&blindpop("eax");
377	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
378
379	&movz	($Zll,&BP(15,$inp));
380
381	&mmx_loop($inp,"eax");
382
383	&emms	();
384	&mov	(&DWP(12,$inp),$Zll);
385	&mov	(&DWP(4,$inp),$Zhl);
386	&mov	(&DWP(8,$inp),$Zlh);
387	&mov	(&DWP(0,$inp),$Zhh);
388&function_end("gcm_gmult_4bit_mmx");
389
390######################################################################
391# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
392# (see gcm128.c for details). It provides further 20-40% performance
393# improvement over above mentioned "May" version.
394
395&static_label("rem_8bit");
396
397&function_begin("gcm_ghash_4bit_mmx");
398{ my ($Zlo,$Zhi) = ("mm7","mm6");
399  my $rem_8bit = "esi";
400  my $Htbl = "ebx";
401
402    # parameter block
403    &mov	("eax",&wparam(0));		# Xi
404    &mov	("ebx",&wparam(1));		# Htable
405    &mov	("ecx",&wparam(2));		# inp
406    &mov	("edx",&wparam(3));		# len
407    &mov	("ebp","esp");			# original %esp
408    &call	(&label("pic_point"));
409    &set_label	("pic_point");
410    &blindpop	($rem_8bit);
411    &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
412
413    &sub	("esp",512+16+16);		# allocate stack frame...
414    &and	("esp",-64);			# ...and align it
415    &sub	("esp",16);			# place for (u8)(H[]<<4)
416
417    &add	("edx","ecx");			# pointer to the end of input
418    &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
419    &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
420    &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp
421
422    { my @lo  = ("mm0","mm1","mm2");
423      my @hi  = ("mm3","mm4","mm5");
424      my @tmp = ("mm6","mm7");
425      my ($off1,$off2,$i) = (0,0,);
426
427      &add	($Htbl,128);			# optimize for size
428      &lea	("edi",&DWP(16+128,"esp"));
429      &lea	("ebp",&DWP(16+256+128,"esp"));
430
431      # decompose Htable (low and high parts are kept separately),
432      # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
433      for ($i=0;$i<18;$i++) {
434
435	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
436	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
437	&psllq	($tmp[1],60)				if ($i>1);
438	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
439	&por	($lo[2],$tmp[1])			if ($i>1);
440	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
441	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
442	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
443	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
444	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
445	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
446	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
447	&shl	("edx",4)				if ($i<16);
448	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);
449
450	unshift	(@lo,pop(@lo));			# "rotate" registers
451	unshift	(@hi,pop(@hi));
452	unshift	(@tmp,pop(@tmp));
453	$off1 += 8	if ($i>0);
454	$off2 += 8	if ($i>1);
455      }
456    }
457
458    &movq	($Zhi,&QWP(0,"eax"));
459    &mov	("ebx",&DWP(8,"eax"));
460    &mov	("edx",&DWP(12,"eax"));		# load Xi
461
462&set_label("outer",16);
463  { my $nlo = "eax";
464    my $dat = "edx";
465    my @nhi = ("edi","ebp");
466    my @rem = ("ebx","ecx");
467    my @red = ("mm0","mm1","mm2");
468    my $tmp = "mm3";
469
470    &xor	($dat,&DWP(12,"ecx"));		# merge input data
471    &xor	("ebx",&DWP(8,"ecx"));
472    &pxor	($Zhi,&QWP(0,"ecx"));
473    &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
474    #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
475    &mov	(&DWP(528+8,"esp"),"ebx");
476    &movq	(&QWP(528+0,"esp"),$Zhi);
477    &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp
478
479    &xor	($nlo,$nlo);
480    &rol	($dat,8);
481    &mov	(&LB($nlo),&LB($dat));
482    &mov	($nhi[1],$nlo);
483    &and	(&LB($nlo),0x0f);
484    &shr	($nhi[1],4);
485    &pxor	($red[0],$red[0]);
486    &rol	($dat,8);			# next byte
487    &pxor	($red[1],$red[1]);
488    &pxor	($red[2],$red[2]);
489
490    # Just like in "May" version modulo-schedule for critical path in
491    # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
492    # is scheduled so late that rem_8bit[] has to be shifted *right*
493    # by 16, which is why last argument to pinsrw is 2, which
494    # corresponds to <<32=<<48>>16...
495    for ($j=11,$i=0;$i<15;$i++) {
496
497      if ($i>0) {
498	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
499	&rol	($dat,8);				# next byte
500	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
501
502	&pxor	($Zlo,$tmp);
503	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
504	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
505      } else {
506	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
507	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
508      }
509
510	&mov	(&LB($nlo),&LB($dat));
511	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);
512
513	&movd	($rem[0],$Zlo);
514	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
515	&psrlq	($Zlo,8);				# Z>>=8
516
517	&movq	($tmp,$Zhi);
518	&mov	($nhi[0],$nlo);
519	&psrlq	($Zhi,8);
520
521	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
522	&and	(&LB($nlo),0x0f);
523	&psllq	($tmp,56);
524
525	&pxor	($Zhi,$red[1])				if ($i>1);
526	&shr	($nhi[0],4);
527	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);
528
529	unshift	(@red,pop(@red));			# "rotate" registers
530	unshift	(@rem,pop(@rem));
531	unshift	(@nhi,pop(@nhi));
532    }
533
534    &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
535    &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
536    &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
537
538    &pxor	($Zlo,$tmp);
539    &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
540    &movz	($rem[1],&LB($rem[1]));
541
542    &pxor	($red[2],$red[2]);			# clear 2nd word
543    &psllq	($red[1],4);
544
545    &movd	($rem[0],$Zlo);
546    &psrlq	($Zlo,4);				# Z>>=4
547
548    &movq	($tmp,$Zhi);
549    &psrlq	($Zhi,4);
550    &shl	($rem[0],4);				# rem<<4
551
552    &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
553    &psllq	($tmp,60);
554    &movz	($rem[0],&LB($rem[0]));
555
556    &pxor	($Zlo,$tmp);
557    &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));
558
559    &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
560    &pxor	($Zhi,$red[1]);
561
562    &movd	($dat,$Zlo);
563    &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48
564
565    &psllq	($red[0],12);				# correct by <<16>>4
566    &pxor	($Zhi,$red[0]);
567    &psrlq	($Zlo,32);
568    &pxor	($Zhi,$red[2]);
569
570    &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
571    &movd	("ebx",$Zlo);
572    &movq	($tmp,$Zhi);			# 01234567
573    &psllw	($Zhi,8);			# 1.3.5.7.
574    &psrlw	($tmp,8);			# .0.2.4.6
575    &por	($Zhi,$tmp);			# 10325476
576    &bswap	($dat);
577    &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
578    &bswap	("ebx");
579
580    &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
581    &jne	(&label("outer"));
582  }
583
584    &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
585    &mov	(&DWP(12,"eax"),"edx");
586    &mov	(&DWP(8,"eax"),"ebx");
587    &movq	(&QWP(0,"eax"),$Zhi);
588
589    &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
590    &emms	();
591}
592&function_end("gcm_ghash_4bit_mmx");
593}}
594
595if ($sse2) {{
596######################################################################
597# PCLMULQDQ version.
598
599$Xip="eax";
600$Htbl="edx";
601$const="ecx";
602$inp="esi";
603$len="ebx";
604
605($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
606($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
607($Xn,$Xhn)=("xmm6","xmm7");
608
609&static_label("bswap");
610
611sub clmul64x64_T2 {	# minimal "register" pressure
612my ($Xhi,$Xi,$Hkey,$HK)=@_;
613
614	&movdqa		($Xhi,$Xi);		#
615	&pshufd		($T1,$Xi,0b01001110);
616	&pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK));
617	&pxor		($T1,$Xi);		#
618	&pxor		($T2,$Hkey)		if (!defined($HK));
619			$HK=$T2			if (!defined($HK));
620
621	&pclmulqdq	($Xi,$Hkey,0x00);	#######
622	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
623	&pclmulqdq	($T1,$HK,0x00);		#######
624	&xorps		($T1,$Xi);		#
625	&xorps		($T1,$Xhi);		#
626
627	&movdqa		($T2,$T1);		#
628	&psrldq		($T1,8);
629	&pslldq		($T2,8);		#
630	&pxor		($Xhi,$T1);
631	&pxor		($Xi,$T2);		#
632}
633
634sub clmul64x64_T3 {
635# Even though this subroutine offers visually better ILP, it
636# was empirically found to be a tad slower than above version.
637# At least in gcm_ghash_clmul context. But it's just as well,
638# because loop modulo-scheduling is possible only thanks to
639# minimized "register" pressure...
640my ($Xhi,$Xi,$Hkey)=@_;
641
642	&movdqa		($T1,$Xi);		#
643	&movdqa		($Xhi,$Xi);
644	&pclmulqdq	($Xi,$Hkey,0x00);	#######
645	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
646	&pshufd		($T2,$T1,0b01001110);	#
647	&pshufd		($T3,$Hkey,0b01001110);
648	&pxor		($T2,$T1);		#
649	&pxor		($T3,$Hkey);
650	&pclmulqdq	($T2,$T3,0x00);		#######
651	&pxor		($T2,$Xi);		#
652	&pxor		($T2,$Xhi);		#
653
654	&movdqa		($T3,$T2);		#
655	&psrldq		($T2,8);
656	&pslldq		($T3,8);		#
657	&pxor		($Xhi,$T2);
658	&pxor		($Xi,$T3);		#
659}
660
661if (1) {		# Algorithm 9 with <<1 twist.
662			# Reduction is shorter and uses only two
663			# temporary registers, which makes it better
664			# candidate for interleaving with 64x64
665			# multiplication. Pre-modulo-scheduled loop
666			# was found to be ~20% faster than Algorithm 5
667			# below. Algorithm 9 was therefore chosen for
668			# further optimization...
669
670sub reduction_alg9 {	# 17/11 times faster than Intel version
671my ($Xhi,$Xi) = @_;
672
673	# 1st phase
674	&movdqa		($T2,$Xi);		#
675	&movdqa		($T1,$Xi);
676	&psllq		($Xi,5);
677	&pxor		($T1,$Xi);		#
678	&psllq		($Xi,1);
679	&pxor		($Xi,$T1);		#
680	&psllq		($Xi,57);		#
681	&movdqa		($T1,$Xi);		#
682	&pslldq		($Xi,8);
683	&psrldq		($T1,8);		#
684	&pxor		($Xi,$T2);
685	&pxor		($Xhi,$T1);		#
686
687	# 2nd phase
688	&movdqa		($T2,$Xi);
689	&psrlq		($Xi,1);
690	&pxor		($Xhi,$T2);		#
691	&pxor		($T2,$Xi);
692	&psrlq		($Xi,5);
693	&pxor		($Xi,$T2);		#
694	&psrlq		($Xi,1);		#
695	&pxor		($Xi,$Xhi)		#
696}
697
698&function_begin_B("gcm_init_clmul");
699	&mov		($Htbl,&wparam(0));
700	&mov		($Xip,&wparam(1));
701
702	&call		(&label("pic"));
703&set_label("pic");
704	&blindpop	($const);
705	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
706
707	&movdqu		($Hkey,&QWP(0,$Xip));
708	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
709
710	# <<1 twist
711	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
712	&movdqa		($T1,$Hkey);
713	&psllq		($Hkey,1);
714	&pxor		($T3,$T3);		#
715	&psrlq		($T1,63);
716	&pcmpgtd	($T3,$T2);		# broadcast carry bit
717	&pslldq		($T1,8);
718	&por		($Hkey,$T1);		# H<<=1
719
720	# magic reduction
721	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
722	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial
723
724	# calculate H^2
725	&movdqa		($Xi,$Hkey);
726	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
727	&reduction_alg9	($Xhi,$Xi);
728
729	&pshufd		($T1,$Hkey,0b01001110);
730	&pshufd		($T2,$Xi,0b01001110);
731	&pxor		($T1,$Hkey);		# Karatsuba pre-processing
732	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
733	&pxor		($T2,$Xi);		# Karatsuba pre-processing
734	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
735	&palignr	($T2,$T1,8);		# low part is H.lo^H.hi
736	&movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt"
737
738	&ret		();
739&function_end_B("gcm_init_clmul");
740
741&function_begin_B("gcm_gmult_clmul");
742	&mov		($Xip,&wparam(0));
743	&mov		($Htbl,&wparam(1));
744
745	&call		(&label("pic"));
746&set_label("pic");
747	&blindpop	($const);
748	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
749
750	&movdqu		($Xi,&QWP(0,$Xip));
751	&movdqa		($T3,&QWP(0,$const));
752	&movups		($Hkey,&QWP(0,$Htbl));
753	&pshufb		($Xi,$T3);
754	&movups		($T2,&QWP(32,$Htbl));
755
756	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
757	&reduction_alg9	($Xhi,$Xi);
758
759	&pshufb		($Xi,$T3);
760	&movdqu		(&QWP(0,$Xip),$Xi);
761
762	&ret	();
763&function_end_B("gcm_gmult_clmul");
764
765&function_begin("gcm_ghash_clmul");
766	&mov		($Xip,&wparam(0));
767	&mov		($Htbl,&wparam(1));
768	&mov		($inp,&wparam(2));
769	&mov		($len,&wparam(3));
770
771	&call		(&label("pic"));
772&set_label("pic");
773	&blindpop	($const);
774	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
775
776	&movdqu		($Xi,&QWP(0,$Xip));
777	&movdqa		($T3,&QWP(0,$const));
778	&movdqu		($Hkey,&QWP(0,$Htbl));
779	&pshufb		($Xi,$T3);
780
781	&sub		($len,0x10);
782	&jz		(&label("odd_tail"));
783
784	#######
785	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
786	#	[(H*Ii+1) + (H*Xi+1)] mod P =
787	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
788	#
789	&movdqu		($T1,&QWP(0,$inp));	# Ii
790	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
791	&pshufb		($T1,$T3);
792	&pshufb		($Xn,$T3);
793	&movdqu		($T3,&QWP(32,$Htbl));
794	&pxor		($Xi,$T1);		# Ii+Xi
795
796	&pshufd		($T1,$Xn,0b01001110);	# H*Ii+1
797	&movdqa		($Xhn,$Xn);
798	&pxor		($T1,$Xn);		#
799	&lea		($inp,&DWP(32,$inp));	# i+=2
800
801	&pclmulqdq	($Xn,$Hkey,0x00);	#######
802	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
803	&pclmulqdq	($T1,$T3,0x00);		#######
804	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
805	&nop		();
806
807	&sub		($len,0x20);
808	&jbe		(&label("even_tail"));
809	&jmp		(&label("mod_loop"));
810
811&set_label("mod_loop",32);
812	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
813	&movdqa		($Xhi,$Xi);
814	&pxor		($T2,$Xi);		#
815	&nop		();
816
817	&pclmulqdq	($Xi,$Hkey,0x00);	#######
818	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
819	&pclmulqdq	($T2,$T3,0x10);		#######
820	&movups		($Hkey,&QWP(0,$Htbl));	# load H
821
822	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
823	&movdqa		($T3,&QWP(0,$const));
824	&xorps		($Xhi,$Xhn);
825	 &movdqu	($Xhn,&QWP(0,$inp));	# Ii
826	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
827	 &movdqu	($Xn,&QWP(16,$inp));	# Ii+1
828	&pxor		($T1,$Xhi);		#
829
830	 &pshufb	($Xhn,$T3);
831	&pxor		($T2,$T1);		#
832
833	&movdqa		($T1,$T2);		#
834	&psrldq		($T2,8);
835	&pslldq		($T1,8);		#
836	&pxor		($Xhi,$T2);
837	&pxor		($Xi,$T1);		#
838	 &pshufb	($Xn,$T3);
839	 &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early
840
841	&movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
842	  &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
843	  &movdqa	($T1,$Xi);
844	  &psllq	($Xi,5);
845	  &pxor		($T1,$Xi);		#
846	  &psllq	($Xi,1);
847	  &pxor		($Xi,$T1);		#
848	&pclmulqdq	($Xn,$Hkey,0x00);	#######
849	&movups		($T3,&QWP(32,$Htbl));
850	  &psllq	($Xi,57);		#
851	  &movdqa	($T1,$Xi);		#
852	  &pslldq	($Xi,8);
853	  &psrldq	($T1,8);		#
854	  &pxor		($Xi,$T2);
855	  &pxor		($Xhi,$T1);		#
856	&pshufd		($T1,$Xhn,0b01001110);
857	  &movdqa	($T2,$Xi);		# 2nd phase
858	  &psrlq	($Xi,1);
859	&pxor		($T1,$Xhn);
860	  &pxor		($Xhi,$T2);		#
861	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
862	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
863	  &pxor		($T2,$Xi);
864	  &psrlq	($Xi,5);
865	  &pxor		($Xi,$T2);		#
866	  &psrlq	($Xi,1);		#
867	  &pxor		($Xi,$Xhi)		#
868	&pclmulqdq	($T1,$T3,0x00);		#######
869
870	&lea		($inp,&DWP(32,$inp));
871	&sub		($len,0x20);
872	&ja		(&label("mod_loop"));
873
874&set_label("even_tail");
875	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
876	&movdqa		($Xhi,$Xi);
877	&pxor		($T2,$Xi);		#
878
879	&pclmulqdq	($Xi,$Hkey,0x00);	#######
880	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
881	&pclmulqdq	($T2,$T3,0x10);		#######
882	&movdqa		($T3,&QWP(0,$const));
883
884	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
885	&xorps		($Xhi,$Xhn);
886	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
887	&pxor		($T1,$Xhi);		#
888
889	&pxor		($T2,$T1);		#
890
891	&movdqa		($T1,$T2);		#
892	&psrldq		($T2,8);
893	&pslldq		($T1,8);		#
894	&pxor		($Xhi,$T2);
895	&pxor		($Xi,$T1);		#
896
897	&reduction_alg9	($Xhi,$Xi);
898
899	&test		($len,$len);
900	&jnz		(&label("done"));
901
902	&movups		($Hkey,&QWP(0,$Htbl));	# load H
903&set_label("odd_tail");
904	&movdqu		($T1,&QWP(0,$inp));	# Ii
905	&pshufb		($T1,$T3);
906	&pxor		($Xi,$T1);		# Ii+Xi
907
908	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
909	&reduction_alg9	($Xhi,$Xi);
910
911&set_label("done");
912	&pshufb		($Xi,$T3);
913	&movdqu		(&QWP(0,$Xip),$Xi);
914&function_end("gcm_ghash_clmul");
915
916} else {		# Algorithm 5. Kept for reference purposes.
917
918sub reduction_alg5 {	# 19/16 times faster than Intel version
919my ($Xhi,$Xi)=@_;
920
921	# <<1
922	&movdqa		($T1,$Xi);		#
923	&movdqa		($T2,$Xhi);
924	&pslld		($Xi,1);
925	&pslld		($Xhi,1);		#
926	&psrld		($T1,31);
927	&psrld		($T2,31);		#
928	&movdqa		($T3,$T1);
929	&pslldq		($T1,4);
930	&psrldq		($T3,12);		#
931	&pslldq		($T2,4);
932	&por		($Xhi,$T3);		#
933	&por		($Xi,$T1);
934	&por		($Xhi,$T2);		#
935
936	# 1st phase
937	&movdqa		($T1,$Xi);
938	&movdqa		($T2,$Xi);
939	&movdqa		($T3,$Xi);		#
940	&pslld		($T1,31);
941	&pslld		($T2,30);
942	&pslld		($Xi,25);		#
943	&pxor		($T1,$T2);
944	&pxor		($T1,$Xi);		#
945	&movdqa		($T2,$T1);		#
946	&pslldq		($T1,12);
947	&psrldq		($T2,4);		#
948	&pxor		($T3,$T1);
949
950	# 2nd phase
951	&pxor		($Xhi,$T3);		#
952	&movdqa		($Xi,$T3);
953	&movdqa		($T1,$T3);
954	&psrld		($Xi,1);		#
955	&psrld		($T1,2);
956	&psrld		($T3,7);		#
957	&pxor		($Xi,$T1);
958	&pxor		($Xhi,$T2);
959	&pxor		($Xi,$T3);		#
960	&pxor		($Xi,$Xhi);		#
961}
962
963&function_begin_B("gcm_init_clmul");
964	&mov		($Htbl,&wparam(0));
965	&mov		($Xip,&wparam(1));
966
967	&call		(&label("pic"));
968&set_label("pic");
969	&blindpop	($const);
970	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
971
972	&movdqu		($Hkey,&QWP(0,$Xip));
973	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
974
975	# calculate H^2
976	&movdqa		($Xi,$Hkey);
977	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
978	&reduction_alg5	($Xhi,$Xi);
979
980	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
981	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
982
983	&ret		();
984&function_end_B("gcm_init_clmul");
985
986&function_begin_B("gcm_gmult_clmul");
987	&mov		($Xip,&wparam(0));
988	&mov		($Htbl,&wparam(1));
989
990	&call		(&label("pic"));
991&set_label("pic");
992	&blindpop	($const);
993	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
994
995	&movdqu		($Xi,&QWP(0,$Xip));
996	&movdqa		($Xn,&QWP(0,$const));
997	&movdqu		($Hkey,&QWP(0,$Htbl));
998	&pshufb		($Xi,$Xn);
999
1000	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1001	&reduction_alg5	($Xhi,$Xi);
1002
1003	&pshufb		($Xi,$Xn);
1004	&movdqu		(&QWP(0,$Xip),$Xi);
1005
1006	&ret	();
1007&function_end_B("gcm_gmult_clmul");
1008
1009&function_begin("gcm_ghash_clmul");
1010	&mov		($Xip,&wparam(0));
1011	&mov		($Htbl,&wparam(1));
1012	&mov		($inp,&wparam(2));
1013	&mov		($len,&wparam(3));
1014
1015	&call		(&label("pic"));
1016&set_label("pic");
1017	&blindpop	($const);
1018	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1019
1020	&movdqu		($Xi,&QWP(0,$Xip));
1021	&movdqa		($T3,&QWP(0,$const));
1022	&movdqu		($Hkey,&QWP(0,$Htbl));
1023	&pshufb		($Xi,$T3);
1024
1025	&sub		($len,0x10);
1026	&jz		(&label("odd_tail"));
1027
1028	#######
1029	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1030	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1031	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1032	#
1033	&movdqu		($T1,&QWP(0,$inp));	# Ii
1034	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1035	&pshufb		($T1,$T3);
1036	&pshufb		($Xn,$T3);
1037	&pxor		($Xi,$T1);		# Ii+Xi
1038
1039	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1040	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1041
1042	&sub		($len,0x20);
1043	&lea		($inp,&DWP(32,$inp));	# i+=2
1044	&jbe		(&label("even_tail"));
1045
1046&set_label("mod_loop");
1047	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1048	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1049
1050	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1051	&pxor		($Xhi,$Xhn);
1052
1053	&reduction_alg5	($Xhi,$Xi);
1054
1055	#######
1056	&movdqa		($T3,&QWP(0,$const));
1057	&movdqu		($T1,&QWP(0,$inp));	# Ii
1058	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1059	&pshufb		($T1,$T3);
1060	&pshufb		($Xn,$T3);
1061	&pxor		($Xi,$T1);		# Ii+Xi
1062
1063	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1064	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1065
1066	&sub		($len,0x20);
1067	&lea		($inp,&DWP(32,$inp));
1068	&ja		(&label("mod_loop"));
1069
1070&set_label("even_tail");
1071	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1072
1073	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1074	&pxor		($Xhi,$Xhn);
1075
1076	&reduction_alg5	($Xhi,$Xi);
1077
1078	&movdqa		($T3,&QWP(0,$const));
1079	&test		($len,$len);
1080	&jnz		(&label("done"));
1081
1082	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1083&set_label("odd_tail");
1084	&movdqu		($T1,&QWP(0,$inp));	# Ii
1085	&pshufb		($T1,$T3);
1086	&pxor		($Xi,$T1);		# Ii+Xi
1087
1088	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1089	&reduction_alg5	($Xhi,$Xi);
1090
1091	&movdqa		($T3,&QWP(0,$const));
1092&set_label("done");
1093	&pshufb		($Xi,$T3);
1094	&movdqu		(&QWP(0,$Xip),$Xi);
1095&function_end("gcm_ghash_clmul");
1096
1097}
1098
1099&set_label("bswap",64);
1100	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1101	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
1102&set_label("rem_8bit",64);
1103	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1104	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1105	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1106	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1107	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1108	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1109	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1110	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1111	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1112	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1113	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1114	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1115	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1116	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1117	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1118	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1119	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1120	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1121	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1122	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1123	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1124	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1125	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1126	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1127	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1128	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1129	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1130	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1131	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1132	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1133	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1134	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1135}}	# $sse2
1136
1137&set_label("rem_4bit",64);
1138	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1139	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1140	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1141	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1142}}}	# !$x86only
1143
1144&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1145&asm_finish();
1146
1147close STDOUT;
1148
1149# A question was risen about choice of vanilla MMX. Or rather why wasn't
1150# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1151# CPUs such as PIII, "4-bit" MMX version was observed to provide better
1152# performance than *corresponding* SSE2 one even on contemporary CPUs.
1153# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1154# implementation featuring full range of lookup-table sizes, but with
1155# per-invocation lookup table setup. Latter means that table size is
1156# chosen depending on how much data is to be hashed in every given call,
1157# more data - larger table. Best reported result for Core2 is ~4 cycles
1158# per processed byte out of 64KB block. This number accounts even for
1159# 64KB table setup overhead. As discussed in gcm128.c we choose to be
1160# more conservative in respect to lookup table sizes, but how do the
1161# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1162# on same platform. As also discussed in gcm128.c, next in line "8-bit
1163# Shoup's" or "4KB" method should deliver twice the performance of
1164# "256B" one, in other words not worse than ~6 cycles per byte. It
1165# should be also be noted that in SSE2 case improvement can be "super-
1166# linear," i.e. more than twice, mostly because >>8 maps to single
1167# instruction on SSE2 register. This is unlike "4-bit" case when >>4
1168# maps to same amount of instructions in both MMX and SSE2 cases.
1169# Bottom line is that switch to SSE2 is considered to be justifiable
1170# only in case we choose to implement "8-bit" method...
1171