1d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#!/usr/bin/env perl
2d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
3d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ====================================================================
4d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# project. The module is, however, dual licensed under OpenSSL and
6d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# CRYPTOGAMS licenses depending on where you obtain it. For further
7d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# details see http://www.openssl.org/~appro/cryptogams/.
8d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ====================================================================
9d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
10d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# March, May, June 2010
11d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
12d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# The module implements "4-bit" GCM GHASH function and underlying
13d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# single multiplication operation in GF(2^128). "4-bit" means that it
14d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
15d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# code paths: vanilla x86 and vanilla SSE. Former will be executed on
16d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 486 and Pentium, latter on all others. SSE GHASH features so called
17d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
18d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# of per-key storage [+512 bytes shared table]. Performance results
19d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# are for streamed GHASH subroutine and are expressed in cycles per
20d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# processed byte, less is better:
21d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
22d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#		gcc 2.95.3(*)	SSE assembler	x86 assembler
23d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
24d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Pentium	105/111(**)	-		50
25d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# PIII		68 /75		12.2		24
26d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# P4		125/125		17.8		84(***)
27d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Opteron	66 /70		10.1		30
28d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Core2		54 /67		8.4		18
29d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Atom		105/105		16.8		53
30d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# VIA Nano	69 /71		13.0		27
31d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
32d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (*)	gcc 3.4.x was observed to generate few percent slower code,
33d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	which is one of reasons why 2.95.3 results were chosen,
34d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	another reason is lack of 3.4.x results for older CPUs;
35d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	comparison with SSE results is not completely fair, because C
36d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	results are for vanilla "256B" implementation, while
37d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	assembler results are for "528B";-)
38d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (**)	second number is result for code compiled with -fPIC flag,
39d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	which is actually more relevant, because assembler code is
40d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#	position-independent;
41d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (***)	see comment in non-MMX routine for further details;
42d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
43d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# To summarize, it's >2-5 times faster than gcc-generated code. To
44d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# anchor it to something else SHA1 assembler processes one byte in
45d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
46d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# in particular, see comment at the end of the file...
47d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
48d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# May 2010
49d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
50d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
51d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# The question is how close is it to theoretical limit? The pclmulqdq
52d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# instruction latency appears to be 14 cycles and there can't be more
53d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# than 2 of them executing at any given time. This means that single
54d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Karatsuba multiplication would take 28 cycles *plus* few cycles for
55d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# pre- and post-processing. Then multiplication has to be followed by
56d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# modulo-reduction. Given that aggregated reduction method [see
57d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
58d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# white paper by Intel] allows you to perform reduction only once in
59d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# a while we can assume that asymptotic performance can be estimated
60d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
61d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# and Naggr is the aggregation factor.
62d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
63d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Before we proceed to this implementation let's have closer look at
64d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# the best-performing code suggested by Intel in their white paper.
65d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# By tracing inter-register dependencies Tmod is estimated as ~19
66d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
67d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# processed byte. As implied, this is quite optimistic estimate,
68d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# because it does not account for Karatsuba pre- and post-processing,
69d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# which for a single multiplication is ~5 cycles. Unfortunately Intel
70d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# does not provide performance data for GHASH alone. But benchmarking
71d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
72d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
73d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# the result accounts even for pre-computing of degrees of the hash
74d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# key H, but its portion is negligible at 16KB buffer size.
75d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
76d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Moving on to the implementation in question. Tmod is estimated as
77d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
78d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 2.16. How is it possible that measured performance is better than
79d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# optimistic theoretical estimate? There is one thing Intel failed
80d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# to recognize. By serializing GHASH with CTR in same subroutine
81d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# former's performance is really limited to above (Tmul + Tmod/Naggr)
82d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# equation. But if GHASH procedure is detached, the modulo-reduction
83d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# can be interleaved with Naggr-1 multiplications at instruction level
84d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# and under ideal conditions even disappear from the equation. So that
85d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# optimistic theoretical estimate for this implementation is ...
86d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
87d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
88d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# where Tproc is time required for Karatsuba pre- and post-processing,
89d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# is more realistic estimate. In this case it gives ... 1.91 cycles.
90d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Or in other words, depending on how well we can interleave reduction
91a94fe0531b3c196ad078174259af2201b2e3a246Robert Sloan# and one of the two multiplications the performance should be between
92d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 1.91 and 2.16. As already mentioned, this implementation processes
93d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
94d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# - in 2.02. x86_64 performance is better, because larger register
95d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# bank allows to interleave reduction and multiplication better.
96d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
97d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Does it make sense to increase Naggr? To start with it's virtually
98d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# impossible in 32-bit mode, because of limited register bank
99d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# capacity. Otherwise improvement has to be weighed agiainst slower
100d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# setup, as well as code size and complexity increase. As even
101d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# optimistic estimate doesn't promise 30% performance improvement,
102d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# there are currently no plans to increase Naggr.
103d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
104d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Special thanks to David Woodhouse <dwmw2@infradead.org> for
105d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# providing access to a Westmere-based system on behalf of Intel
106d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Open Source Technology Centre.
107d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
108d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# January 2010
109d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
110d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Tweaked to optimize transitions between integer and FP operations
111d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on same XMM register, PCLMULQDQ subroutine was measured to process
112d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
113d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# The minor regression on Westmere is outweighed by ~15% improvement
114d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
115d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# similar manner resulted in almost 20% degradation on Sandy Bridge,
116d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# where original 64-bit code processes one byte in 1.95 cycles.
117d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
118d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#####################################################################
119d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
120d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 32-bit mode and 1.89 in 64-bit.
121d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
122d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# February 2013
123d9e397b599b13d642138480a28c14db7a136bf0Adam Langley#
124d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Overhaul: aggregate Karatsuba post-processing, improve ILP in
125d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# reduction_alg9. Resulting performance is 1.96 cycles per byte on
126d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
127d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
128d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
1299254e681d446a8105bd66f08bae1252d4d89a139Robert Sloanpush(@INC,"${dir}","${dir}../../../perlasm");
130d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyrequire "x86asm.pl";
131d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
132c895d6b1c580258e72e1ed3fcc86d38970ded9e1David Benjamin$output=pop;
133c895d6b1c580258e72e1ed3fcc86d38970ded9e1David Benjaminopen STDOUT,">$output";
134c895d6b1c580258e72e1ed3fcc86d38970ded9e1David Benjamin
1358ff035535f7cf2903f02bbe94d2fa10b7ab855f1Robert Sloan&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
136d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
137e9ada863a7b3e81f5d2b1e3bdd2305da902a87f5Adam Langley$sse2=0;
138e9ada863a7b3e81f5d2b1e3bdd2305da902a87f5Adam Langleyfor (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
139d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
140d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
141d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$inp  = "edi";
142d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$Htbl = "esi";
143d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
144d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
145d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# than unrolled, which has to be weighted against
146d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# 2.5x x86-specific code size reduction.
147d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
148d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub x86_loop {
149d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $off = shift;
150d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $rem = "eax";
151d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
152d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
153d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
154d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
155d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Zll,&DWP(8,$Htbl,$Zll));
156d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($rem,$rem);	# avoid partial register stalls on PIII
157d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
158d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# shrd practically kills P4, 2.5x deterioration, but P4 has
159d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# MMX code-path to execute. shrd runs tad faster [than twice
160d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# the shifts, move's and or's] on pre-MMX Pentium (as well as
161d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# PIII and Core2), *but* minimizes code size, spares register
162d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# and thus allows to fold the loop...
163d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	if (!$unroll) {
164d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	my $cnt = $inp;
165d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($cnt,15);
166d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp	(&label("x86_loop"));
167d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("x86_loop",16);
168d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    for($i=1;$i<=2;$i++) {
169d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	(&LB($rem),&LB($Zll));
170d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zll,$Zlh,4);
171d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&and	(&LB($rem),0xf);
172d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zlh,$Zhl,4);
173d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zhl,$Zhh,4);
174d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shr	($Zhh,4);
175d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
176d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
177d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	(&LB($rem),&BP($off,"esp",$cnt));
178d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		if ($i&1) {
179d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&and	(&LB($rem),0xf0);
180d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		} else {
181d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&shl	(&LB($rem),4);
182d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		}
183d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
184d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zll,&DWP(8,$Htbl,$rem));
185d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zlh,&DWP(12,$Htbl,$rem));
186d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhl,&DWP(0,$Htbl,$rem));
187d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP(4,$Htbl,$rem));
188d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
189d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		if ($i&1) {
190d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&dec	($cnt);
191d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&js	(&label("x86_break"));
192d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		} else {
193d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&jmp	(&label("x86_loop"));
194d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		}
195d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    }
196d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("x86_break",16);
197d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	} else {
198d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    for($i=1;$i<32;$i++) {
199d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&comment($i);
200d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	(&LB($rem),&LB($Zll));
201d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zll,$Zlh,4);
202d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&and	(&LB($rem),0xf);
203d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zlh,$Zhl,4);
204d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shrd	($Zhl,$Zhh,4);
205d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&shr	($Zhh,4);
206d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
207d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
208d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		if ($i&1) {
209d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
210d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&and	(&LB($rem),0xf0);
211d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		} else {
212d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
213d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			&shl	(&LB($rem),4);
214d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		}
215d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
216d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zll,&DWP(8,$Htbl,$rem));
217d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zlh,&DWP(12,$Htbl,$rem));
218d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhl,&DWP(0,$Htbl,$rem));
219d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&xor	($Zhh,&DWP(4,$Htbl,$rem));
220d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	    }
221d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	}
222d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zll);
223d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zlh);
224d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhl);
225d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	if (!$x86only) {
226d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&bswap	($Zhh);
227d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	} else {
228d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	("eax",$Zhh);
229d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&bswap	("eax");
230d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		&mov	($Zhh,"eax");
231d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	}
232d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
233d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
234d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif ($unroll) {
235d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &function_begin_B("_x86_gmult_4bit_inner");
236d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&x86_loop(4);
237d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret	();
238d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &function_end_B("_x86_gmult_4bit_inner");
239d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
240d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
241d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub deposit_rem_4bit {
242d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $bias = shift;
243d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
244d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
245d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
246d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
247d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
248d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
249d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
250d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
251d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
252d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
253d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
254d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
255d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
256d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
257d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
258d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
259d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
260d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
261d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
262d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif (!$x86only) {{{
263d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
264d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&static_label("rem_4bit");
265d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
266d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif (!$sse2) {{	# pure-MMX "May" version...
267d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
268b0b45c63bbbf16b7f5ff3cbe3f1d0905108038aaSteven Valdez    # This code was removed since SSE2 is required for BoringSSL. The
269b0b45c63bbbf16b7f5ff3cbe3f1d0905108038aaSteven Valdez    # outer structure of the code was retained to minimize future merge
270b0b45c63bbbf16b7f5ff3cbe3f1d0905108038aaSteven Valdez    # conflicts.
271d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
272d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}} else {{	# "June" MMX version...
273d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# ... has slower "April" gcm_gmult_4bit_mmx with folded
274d9e397b599b13d642138480a28c14db7a136bf0Adam Langley		# loop. This is done to conserve code size...
275d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$S=16;		# shift factor for rem_4bit
276d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
277d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub mmx_loop() {
278d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# MMX version performs 2.8 times better on P4 (see comment in non-MMX
279d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# routine for further details), 40% better on Opteron and Core2, 50%
280d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# better on PIII... In other words effort is considered to be well
281d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# spent...
282d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $inp = shift;
283d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $rem_4bit = shift;
284d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $cnt = $Zhh;
285d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $nhi = $Zhl;
286d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $nlo = $Zlh;
287d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $rem = $Zll;
288d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
289d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my ($Zlo,$Zhi) = ("mm0","mm1");
290d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $tmp = "mm2";
291d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
292d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
293d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($nhi,$Zll);
294d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&LB($nlo),&LB($nhi));
295d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($cnt,14);
296d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	(&LB($nlo),4);
297d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($nhi,0xf0);
298d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
299d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
300d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
301d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp	(&label("mmx_loop"));
302d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
303d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label("mmx_loop",16);
304d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
305d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
306d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
307d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
308d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
309d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
310d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
311d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
312d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&dec	($cnt);
313d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
314d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
315d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($nhi,$nlo);
316d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
317d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&js	(&label("mmx_break"));
318d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
319d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	(&LB($nlo),4);
320d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
321d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
322d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($nhi,0xf0);
323d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
324d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
325d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
326d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
327d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
328d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
329d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
330d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
331d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp	(&label("mmx_loop"));
332d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
333d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label("mmx_break",16);
334d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	(&LB($nlo),4);
335d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
336d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
337d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($nhi,0xf0);
338d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
339d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
340d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
341d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
342d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
343d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
344d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
345d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
346d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
347d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,4);
348d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	($rem,0xf);
349d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
350d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,4);
351d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
352d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,60);
353d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
354d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem,$Zlo);
355d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
356d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
357d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
358d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,32);	# lower part of Zlo is already there
359d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zhl,$Zhi);
360d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,32);
361d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zlh,$Zlo);
362d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($Zhh,$Zhi);
363d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
364d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zll);
365d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhl);
366d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zlh);
367d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&bswap	($Zhh);
368d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
369d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
370d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_gmult_4bit_mmx");
371d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($inp,&wparam(0));	# load Xi
372d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($Htbl,&wparam(1));	# load Htable
373d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
374d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call	(&label("pic_point"));
375d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&set_label("pic_point");
376d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop("eax");
377d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
378d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
379d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movz	($Zll,&BP(15,$inp));
380d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
381d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mmx_loop($inp,"eax");
382d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
383d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&emms	();
384d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(12,$inp),$Zll);
385d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(4,$inp),$Zhl);
386d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(8,$inp),$Zlh);
387d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&DWP(0,$inp),$Zhh);
388d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_gmult_4bit_mmx");
389d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
390d9e397b599b13d642138480a28c14db7a136bf0Adam Langley######################################################################
391d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
392d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# (see gcm128.c for details). It provides further 20-40% performance
393d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# improvement over above mentioned "May" version.
394d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
395d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&static_label("rem_8bit");
396d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
397d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_4bit_mmx");
398d9e397b599b13d642138480a28c14db7a136bf0Adam Langley{ my ($Zlo,$Zhi) = ("mm7","mm6");
399d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  my $rem_8bit = "esi";
400d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  my $Htbl = "ebx";
401d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
402d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # parameter block
403d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("eax",&wparam(0));		# Xi
404d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ebx",&wparam(1));		# Htable
405d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ecx",&wparam(2));		# inp
406d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("edx",&wparam(3));		# len
407d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ebp","esp");			# original %esp
408d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &call	(&label("pic_point"));
409d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &set_label	("pic_point");
410d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &blindpop	($rem_8bit);
411d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
412d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
413d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &sub	("esp",512+16+16);		# allocate stack frame...
414d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &and	("esp",-64);			# ...and align it
415d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &sub	("esp",16);			# place for (u8)(H[]<<4)
416d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
417d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &add	("edx","ecx");			# pointer to the end of input
418d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
419d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
420d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp
421d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
422d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    { my @lo  = ("mm0","mm1","mm2");
423d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      my @hi  = ("mm3","mm4","mm5");
424d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      my @tmp = ("mm6","mm7");
425d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      my ($off1,$off2,$i) = (0,0,);
426d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
427d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      &add	($Htbl,128);			# optimize for size
428d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      &lea	("edi",&DWP(16+128,"esp"));
429d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      &lea	("ebp",&DWP(16+256+128,"esp"));
430d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
431d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      # decompose Htable (low and high parts are kept separately),
432d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
433d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      for ($i=0;$i<18;$i++) {
434d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
435d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
436d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
437d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp[1],60)				if ($i>1);
438d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
439d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por	($lo[2],$tmp[1])			if ($i>1);
440d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
441d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
442d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
443d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
444d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
445d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
446d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
447d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shl	("edx",4)				if ($i<16);
448d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);
449d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
450d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@lo,pop(@lo));			# "rotate" registers
451d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@hi,pop(@hi));
452d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@tmp,pop(@tmp));
453d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	$off1 += 8	if ($i>0);
454d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	$off2 += 8	if ($i>1);
455d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      }
456d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    }
457d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
458d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	($Zhi,&QWP(0,"eax"));
459d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ebx",&DWP(8,"eax"));
460d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("edx",&DWP(12,"eax"));		# load Xi
461d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
462d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("outer",16);
463d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  { my $nlo = "eax";
464d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $dat = "edx";
465d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my @nhi = ("edi","ebp");
466d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my @rem = ("ebx","ecx");
467d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my @red = ("mm0","mm1","mm2");
468d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    my $tmp = "mm3";
469d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
470d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	($dat,&DWP(12,"ecx"));		# merge input data
471d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	("ebx",&DWP(8,"ecx"));
472d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(0,"ecx"));
473d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
474d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
475d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+8,"esp"),"ebx");
476d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	(&QWP(528+0,"esp"),$Zhi);
477d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp
478d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
479d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	($nlo,$nlo);
480d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &rol	($dat,8);
481d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&LB($nlo),&LB($dat));
482d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	($nhi[1],$nlo);
483d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &and	(&LB($nlo),0x0f);
484d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &shr	($nhi[1],4);
485d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[0],$red[0]);
486d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &rol	($dat,8);			# next byte
487d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[1],$red[1]);
488d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[2],$red[2]);
489d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
490a94fe0531b3c196ad078174259af2201b2e3a246Robert Sloan    # Just like in "May" version modulo-schedule for critical path in
491d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
492d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # is scheduled so late that rem_8bit[] has to be shifted *right*
493d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # by 16, which is why last argument to pinsrw is 2, which
494d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    # corresponds to <<32=<<48>>16...
495d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    for ($j=11,$i=0;$i<15;$i++) {
496d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
497d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      if ($i>0) {
498d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
499d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&rol	($dat,8);				# next byte
500d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
501d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
502d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,$tmp);
503d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
504d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
505d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      } else {
506d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
507d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
508d9e397b599b13d642138480a28c14db7a136bf0Adam Langley      }
509d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
510d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	(&LB($nlo),&LB($dat));
511d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);
512d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
513d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movd	($rem[0],$Zlo);
514d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
515d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zlo,8);				# Z>>=8
516d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
517d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movq	($tmp,$Zhi);
518d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov	($nhi[0],$nlo);
519d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq	($Zhi,8);
520d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
521d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
522d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&and	(&LB($nlo),0x0f);
523d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq	($tmp,56);
524d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
525d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor	($Zhi,$red[1])				if ($i>1);
526d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&shr	($nhi[0],4);
527d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);
528d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
529d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@red,pop(@red));			# "rotate" registers
530d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@rem,pop(@rem));
531d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	unshift	(@nhi,pop(@nhi));
532d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    }
533d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
534d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
535d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
536d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
537d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
538d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,$tmp);
539d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
540d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movz	($rem[1],&LB($rem[1]));
541d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
542d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($red[2],$red[2]);			# clear 2nd word
543d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllq	($red[1],4);
544d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
545d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movd	($rem[0],$Zlo);
546d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlq	($Zlo,4);				# Z>>=4
547d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
548d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	($tmp,$Zhi);
549d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlq	($Zhi,4);
550d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &shl	($rem[0],4);				# rem<<4
551d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
552d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
553d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllq	($tmp,60);
554d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movz	($rem[0],&LB($rem[0]));
555d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
556d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zlo,$tmp);
557d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));
558d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
559d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
560d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,$red[1]);
561d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
562d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movd	($dat,$Zlo);
563d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48
564d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
565d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllq	($red[0],12);				# correct by <<16>>4
566d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,$red[0]);
567d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlq	($Zlo,32);
568d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pxor	($Zhi,$red[2]);
569d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
570d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
571d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movd	("ebx",$Zlo);
572d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	($tmp,$Zhi);			# 01234567
573d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psllw	($Zhi,8);			# 1.3.5.7.
574d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &psrlw	($tmp,8);			# .0.2.4.6
575d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &por	($Zhi,$tmp);			# 10325476
576d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &bswap	($dat);
577d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
578d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &bswap	("ebx");
579a94fe0531b3c196ad078174259af2201b2e3a246Robert Sloan
580d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
581d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &jne	(&label("outer"));
582d9e397b599b13d642138480a28c14db7a136bf0Adam Langley  }
583d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
584d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
585d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(12,"eax"),"edx");
586d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	(&DWP(8,"eax"),"ebx");
587d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &movq	(&QWP(0,"eax"),$Zhi);
588d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
589d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
590d9e397b599b13d642138480a28c14db7a136bf0Adam Langley    &emms	();
591d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
592d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_4bit_mmx");
593d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}}
594d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
595d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif ($sse2) {{
596d9e397b599b13d642138480a28c14db7a136bf0Adam Langley######################################################################
597d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# PCLMULQDQ version.
598d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
599d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$Xip="eax";
600d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$Htbl="edx";
601d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$const="ecx";
602d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$inp="esi";
603d9e397b599b13d642138480a28c14db7a136bf0Adam Langley$len="ebx";
604d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
605d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
606d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
607d9e397b599b13d642138480a28c14db7a136bf0Adam Langley($Xn,$Xhn)=("xmm6","xmm7");
608d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
609d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&static_label("bswap");
610d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
611d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub clmul64x64_T2 {	# minimal "register" pressure
612d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi,$Hkey,$HK)=@_;
613d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
614d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);		#
615d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Xi,0b01001110);
616d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK));
617d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		#
618d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Hkey)		if (!defined($HK));
619d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			$HK=$T2			if (!defined($HK));
620d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
621d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
622d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
623d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T1,$HK,0x00);		#######
624d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($T1,$Xi);		#
625d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($T1,$Xhi);		#
626d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
627d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$T1);		#
628d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T1,8);
629d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T2,8);		#
630d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T1);
631d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T2);		#
632d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
633d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
634d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub clmul64x64_T3 {
635d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Even though this subroutine offers visually better ILP, it
636d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# was empirically found to be a tad slower than above version.
637d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# At least in gcm_ghash_clmul context. But it's just as well,
638d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# because loop modulo-scheduling is possible only thanks to
639d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# minimized "register" pressure...
640d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi,$Hkey)=@_;
641d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
642d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);		#
643d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);
644d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
645d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
646d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$T1,0b01001110);	#
647d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T3,$Hkey,0b01001110);
648d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$T1);		#
649d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T3,$Hkey);
650d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T2,$T3,0x00);		#######
651d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		#
652d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xhi);		#
653d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
654d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,$T2);		#
655d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,8);
656d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T3,8);		#
657d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
658d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T3);		#
659d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
660d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
661d9e397b599b13d642138480a28c14db7a136bf0Adam Langleyif (1) {		# Algorithm 9 with <<1 twist.
662d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# Reduction is shorter and uses only two
663d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# temporary registers, which makes it better
664d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# candidate for interleaving with 64x64
665d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# multiplication. Pre-modulo-scheduled loop
666d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# was found to be ~20% faster than Algorithm 5
667d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# below. Algorithm 9 was therefore chosen for
668d9e397b599b13d642138480a28c14db7a136bf0Adam Langley			# further optimization...
669d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
670d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub reduction_alg9 {	# 17/11 times faster than Intel version
671d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi) = @_;
672d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
673d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 1st phase
674d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xi);		#
675d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);
676d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Xi,5);
677d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		#
678d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Xi,1);
679d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		#
680d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Xi,57);		#
681d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);		#
682d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($Xi,8);
683a94fe0531b3c196ad078174259af2201b2e3a246Robert Sloan	&psrldq		($T1,8);		#
684d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T2);
685d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T1);		#
686d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
687d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 2nd phase
688d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xi);
689d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($Xi,1);
690d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);		#
691d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);
692d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($Xi,5);
693d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T2);		#
694d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($Xi,1);		#
695d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xhi)		#
696d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
697d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
698d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_init_clmul");
699d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(0));
700d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(1));
701d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
702d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
703d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
704d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
705d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
706d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
707d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Xip));
708d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
709d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
710d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# <<1 twist
711d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
712d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Hkey);
713d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psllq		($Hkey,1);
714d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T3,$T3);		#
715d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrlq		($T1,63);
716d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pcmpgtd	($T3,$T2);		# broadcast carry bit
717d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,8);
718d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Hkey,$T1);		# H<<=1
719d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
720d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# magic reduction
721d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
722d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial
723d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
724d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# calculate H^2
725d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xi,$Hkey);
726d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
727d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
728d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
729d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Hkey,0b01001110);
730d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Xi,0b01001110);
731d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Hkey);		# Karatsuba pre-processing
732d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
733d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		# Karatsuba pre-processing
734d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
735d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&palignr	($T2,$T1,8);		# low part is H.lo^H.hi
736d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt"
737d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
738d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret		();
739d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_init_clmul");
740d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
741d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_gmult_clmul");
742d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
743d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
744d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
745d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
746d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
747d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
748d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
749d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
750d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
751d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
752d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(0,$Htbl));
753d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
754d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($T2,&QWP(32,$Htbl));
755d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
756d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
757d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
758d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
759d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
760d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
761d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
762d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret	();
763d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_gmult_clmul");
764d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
765d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_clmul");
766d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
767d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
768d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($inp,&wparam(2));
769d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($len,&wparam(3));
770d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
771d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
772d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
773d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
774d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
775d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
776d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
777d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
778d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));
779d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
780d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
781d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x10);
782d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jz		(&label("odd_tail"));
783d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
784d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#######
785d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
786d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + (H*Xi+1)] mod P =
787d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
788d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#
789d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
790d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
791d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
792d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xn,$T3);
793d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T3,&QWP(32,$Htbl));
794d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
795d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
796d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Xn,0b01001110);	# H*Ii+1
797d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhn,$Xn);
798d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xn);		#
799d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));	# i+=2
800d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
801d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xn,$Hkey,0x00);	#######
802d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
803d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T1,$T3,0x00);		#######
804d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
805d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&nop		();
806d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
807d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
808d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jbe		(&label("even_tail"));
809d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jmp		(&label("mod_loop"));
810d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
811d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("mod_loop",32);
812d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
813d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);
814d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		#
815d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&nop		();
816d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
817d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
818d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
819d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T2,$T3,0x10);		#######
820d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(0,$Htbl));	# load H
821d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
822d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
823d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
824d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xhi,$Xhn);
825d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &movdqu	($Xhn,&QWP(0,$inp));	# Ii
826d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
827d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &movdqu	($Xn,&QWP(16,$inp));	# Ii+1
828d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xhi);		#
829d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
830d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &pshufb	($Xhn,$T3);
831d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$T1);		#
832d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
833d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$T2);		#
834d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,8);
835d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,8);		#
836d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
837d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		#
838d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &pshufb	($Xn,$T3);
839d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	 &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early
840d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
841d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
842d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
843d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T1,$Xi);
844d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psllq	($Xi,5);
845d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($T1,$Xi);		#
846d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psllq	($Xi,1);
847d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$T1);		#
848d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xn,$Hkey,0x00);	#######
849d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($T3,&QWP(32,$Htbl));
850d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psllq	($Xi,57);		#
851d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T1,$Xi);		#
852d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pslldq	($Xi,8);
853a94fe0531b3c196ad078174259af2201b2e3a246Robert Sloan	  &psrldq	($T1,8);		#
854d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$T2);
855d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xhi,$T1);		#
856d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T1,$Xhn,0b01001110);
857d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &movdqa	($T2,$Xi);		# 2nd phase
858d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psrlq	($Xi,1);
859d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xhn);
860d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xhi,$T2);		#
861d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
862d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
863d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($T2,$Xi);
864d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psrlq	($Xi,5);
865d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$T2);		#
866d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &psrlq	($Xi,1);		#
867d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	  &pxor		($Xi,$Xhi)		#
868d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T1,$T3,0x00);		#######
869d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
870d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));
871d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
872d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ja		(&label("mod_loop"));
873d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
874d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("even_tail");
875d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
876d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xhi,$Xi);
877d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$Xi);		#
878d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
879d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xi,$Hkey,0x00);	#######
880d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
881d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pclmulqdq	($T2,$T3,0x10);		#######
882d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
883d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
884d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
885d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&xorps		($Xhi,$Xhn);
886d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
887d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xhi);		#
888d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
889d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T2,$T1);		#
890d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
891d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$T2);		#
892d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,8);
893d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,8);		#
894d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
895d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		#
896d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
897d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
898d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
899d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&test		($len,$len);
900d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jnz		(&label("done"));
901d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
902d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movups		($Hkey,&QWP(0,$Htbl));	# load H
903d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("odd_tail");
904d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
905d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
906d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
907d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
908d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
909d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg9	($Xhi,$Xi);
910d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
911d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("done");
912d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
913d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
914d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_clmul");
915d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
916a94fe0531b3c196ad078174259af2201b2e3a246Robert Sloan} else {		# Algorithm 5. Kept for reference purposes.
917d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
918d9e397b599b13d642138480a28c14db7a136bf0Adam Langleysub reduction_alg5 {	# 19/16 times faster than Intel version
919d9e397b599b13d642138480a28c14db7a136bf0Adam Langleymy ($Xhi,$Xi)=@_;
920d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
921d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# <<1
922d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);		#
923d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xhi);
924d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($Xi,1);
925d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($Xhi,1);		#
926d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T1,31);
927d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T2,31);		#
928d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,$T1);
929d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,4);
930d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T3,12);		#
931d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T2,4);
932d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Xhi,$T3);		#
933d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Xi,$T1);
934d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&por		($Xhi,$T2);		#
935d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
936d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 1st phase
937d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$Xi);
938d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$Xi);
939d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,$Xi);		#
940d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($T1,31);
941d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($T2,30);
942d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslld		($Xi,25);		#
943d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$T2);
944d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T1,$Xi);		#
945d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T2,$T1);		#
946d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pslldq		($T1,12);
947d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrldq		($T2,4);		#
948d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($T3,$T1);
949d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
950d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# 2nd phase
951d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T3);		#
952d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xi,$T3);
953d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T1,$T3);
954d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($Xi,1);		#
955d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T1,2);
956d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&psrld		($T3,7);		#
957d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);
958d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$T2);
959d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T3);		#
960d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xhi);		#
961d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
962d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
963d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_init_clmul");
964d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(0));
965d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(1));
966d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
967d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
968d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
969d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
970d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
971d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
972d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Xip));
973d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
974d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
975d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# calculate H^2
976d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xi,$Hkey);
977d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
978d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
979d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
980d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
981d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
982d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
983d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret		();
984d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_init_clmul");
985d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
986d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin_B("gcm_gmult_clmul");
987d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
988d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
989d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
990d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
991d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
992d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
993d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
994d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
995d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
996d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($Xn,&QWP(0,$const));
997d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));
998d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$Xn);
999d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1000d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1001d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1002d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1003d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$Xn);
1004d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
1005d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1006d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ret	();
1007d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end_B("gcm_gmult_clmul");
1008d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1009d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_begin("gcm_ghash_clmul");
1010d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Xip,&wparam(0));
1011d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($Htbl,&wparam(1));
1012d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($inp,&wparam(2));
1013d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&mov		($len,&wparam(3));
1014d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1015d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&call		(&label("pic"));
1016d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("pic");
1017d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&blindpop	($const);
1018d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1019d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1020d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xi,&QWP(0,$Xip));
1021d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1022d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));
1023d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
1024d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1025d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x10);
1026d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jz		(&label("odd_tail"));
1027d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1028d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#######
1029d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1030d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1031d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1032d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#
1033d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1034d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1035d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1036d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xn,$T3);
1037d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1038d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1039d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1040d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1041d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1042d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
1043d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));	# i+=2
1044d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jbe		(&label("even_tail"));
1045d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1046d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("mod_loop");
1047d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1048d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1049d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1050d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1051d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$Xhn);
1052d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1053d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1054d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1055d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	#######
1056d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1057d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1058d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1059d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1060d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xn,$T3);
1061d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1062d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1063d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1064d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1065d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1066d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&sub		($len,0x20);
1067d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&lea		($inp,&DWP(32,$inp));
1068d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&ja		(&label("mod_loop"));
1069d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1070d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("even_tail");
1071d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1072d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1073d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1074d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xhi,$Xhn);
1075d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1076d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1077d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1078d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1079d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&test		($len,$len);
1080d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&jnz		(&label("done"));
1081d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1082d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1083d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("odd_tail");
1084d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		($T1,&QWP(0,$inp));	# Ii
1085d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($T1,$T3);
1086d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pxor		($Xi,$T1);		# Ii+Xi
1087d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1088d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1089d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&reduction_alg5	($Xhi,$Xi);
1090d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1091d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqa		($T3,&QWP(0,$const));
1092d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("done");
1093d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&pshufb		($Xi,$T3);
1094d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&movdqu		(&QWP(0,$Xip),$Xi);
1095d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&function_end("gcm_ghash_clmul");
1096d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1097d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}
1098d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1099d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("bswap",64);
1100d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1101d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
1102d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("rem_8bit",64);
1103d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1104d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1105d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1106d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1107d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1108d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1109d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1110d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1111d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1112d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1113d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1114d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1115d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1116d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1117d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1118d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1119d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1120d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1121d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1122d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1123d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1124d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1125d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1126d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1127d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1128d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1129d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1130d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1131d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1132d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1133d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1134d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1135d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}}	# $sse2
1136d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1137d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&set_label("rem_4bit",64);
1138d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1139d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1140d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1141d9e397b599b13d642138480a28c14db7a136bf0Adam Langley	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1142d9e397b599b13d642138480a28c14db7a136bf0Adam Langley}}}	# !$x86only
1143d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1144d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1145d9e397b599b13d642138480a28c14db7a136bf0Adam Langley&asm_finish();
1146d9e397b599b13d642138480a28c14db7a136bf0Adam Langley
1147c895d6b1c580258e72e1ed3fcc86d38970ded9e1David Benjaminclose STDOUT;
1148c895d6b1c580258e72e1ed3fcc86d38970ded9e1David Benjamin
1149d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# A question was risen about choice of vanilla MMX. Or rather why wasn't
1150d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1151d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# CPUs such as PIII, "4-bit" MMX version was observed to provide better
1152d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# performance than *corresponding* SSE2 one even on contemporary CPUs.
1153d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1154d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# implementation featuring full range of lookup-table sizes, but with
1155d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# per-invocation lookup table setup. Latter means that table size is
1156d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# chosen depending on how much data is to be hashed in every given call,
1157d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# more data - larger table. Best reported result for Core2 is ~4 cycles
1158d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# per processed byte out of 64KB block. This number accounts even for
1159d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# 64KB table setup overhead. As discussed in gcm128.c we choose to be
1160d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# more conservative in respect to lookup table sizes, but how do the
1161d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1162d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# on same platform. As also discussed in gcm128.c, next in line "8-bit
1163d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Shoup's" or "4KB" method should deliver twice the performance of
1164d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# "256B" one, in other words not worse than ~6 cycles per byte. It
1165d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# should be also be noted that in SSE2 case improvement can be "super-
1166d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# linear," i.e. more than twice, mostly because >>8 maps to single
1167d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# instruction on SSE2 register. This is unlike "4-bit" case when >>4
1168d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# maps to same amount of instructions in both MMX and SSE2 cases.
1169d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# Bottom line is that switch to SSE2 is considered to be justifiable
1170d9e397b599b13d642138480a28c14db7a136bf0Adam Langley# only in case we choose to implement "8-bit" method...
1171