1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclOpenMP.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/ABI.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35
36#define MANGLE_CHECKER 0
37
38#if MANGLE_CHECKER
39#include <cxxabi.h>
40#endif
41
42using namespace clang;
43
44namespace {
45
46/// Retrieve the declaration context that should be used when mangling the given
47/// declaration.
48static const DeclContext *getEffectiveDeclContext(const Decl *D) {
49  // The ABI assumes that lambda closure types that occur within
50  // default arguments live in the context of the function. However, due to
51  // the way in which Clang parses and creates function declarations, this is
52  // not the case: the lambda closure type ends up living in the context
53  // where the function itself resides, because the function declaration itself
54  // had not yet been created. Fix the context here.
55  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
56    if (RD->isLambda())
57      if (ParmVarDecl *ContextParam
58            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
59        return ContextParam->getDeclContext();
60  }
61
62  // Perform the same check for block literals.
63  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
64    if (ParmVarDecl *ContextParam
65          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
66      return ContextParam->getDeclContext();
67  }
68
69  const DeclContext *DC = D->getDeclContext();
70  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
71    return getEffectiveDeclContext(cast<Decl>(DC));
72  }
73
74  if (const auto *VD = dyn_cast<VarDecl>(D))
75    if (VD->isExternC())
76      return VD->getASTContext().getTranslationUnitDecl();
77
78  if (const auto *FD = dyn_cast<FunctionDecl>(D))
79    if (FD->isExternC())
80      return FD->getASTContext().getTranslationUnitDecl();
81
82  return DC->getRedeclContext();
83}
84
85static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
86  return getEffectiveDeclContext(cast<Decl>(DC));
87}
88
89static bool isLocalContainerContext(const DeclContext *DC) {
90  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
91}
92
93static const RecordDecl *GetLocalClassDecl(const Decl *D) {
94  const DeclContext *DC = getEffectiveDeclContext(D);
95  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
96    if (isLocalContainerContext(DC))
97      return dyn_cast<RecordDecl>(D);
98    D = cast<Decl>(DC);
99    DC = getEffectiveDeclContext(D);
100  }
101  return nullptr;
102}
103
104static const FunctionDecl *getStructor(const FunctionDecl *fn) {
105  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
106    return ftd->getTemplatedDecl();
107
108  return fn;
109}
110
111static const NamedDecl *getStructor(const NamedDecl *decl) {
112  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
113  return (fn ? getStructor(fn) : decl);
114}
115
116static bool isLambda(const NamedDecl *ND) {
117  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
118  if (!Record)
119    return false;
120
121  return Record->isLambda();
122}
123
124static const unsigned UnknownArity = ~0U;
125
126class ItaniumMangleContextImpl : public ItaniumMangleContext {
127  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
128  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
129  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
130
131public:
132  explicit ItaniumMangleContextImpl(ASTContext &Context,
133                                    DiagnosticsEngine &Diags)
134      : ItaniumMangleContext(Context, Diags) {}
135
136  /// @name Mangler Entry Points
137  /// @{
138
139  bool shouldMangleCXXName(const NamedDecl *D) override;
140  bool shouldMangleStringLiteral(const StringLiteral *) override {
141    return false;
142  }
143  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
144  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
145                   raw_ostream &) override;
146  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
147                          const ThisAdjustment &ThisAdjustment,
148                          raw_ostream &) override;
149  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
150                                raw_ostream &) override;
151  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
152  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
153  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
154                           const CXXRecordDecl *Type, raw_ostream &) override;
155  void mangleCXXRTTI(QualType T, raw_ostream &) override;
156  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
157  void mangleTypeName(QualType T, raw_ostream &) override;
158  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
159                     raw_ostream &) override;
160  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
161                     raw_ostream &) override;
162
163  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
164  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
165  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
166  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
167  void mangleDynamicAtExitDestructor(const VarDecl *D,
168                                     raw_ostream &Out) override;
169  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
170                                 raw_ostream &Out) override;
171  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
172                             raw_ostream &Out) override;
173  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
174  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
175                                       raw_ostream &) override;
176
177  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
178
179  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
180    // Lambda closure types are already numbered.
181    if (isLambda(ND))
182      return false;
183
184    // Anonymous tags are already numbered.
185    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
186      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
187        return false;
188    }
189
190    // Use the canonical number for externally visible decls.
191    if (ND->isExternallyVisible()) {
192      unsigned discriminator = getASTContext().getManglingNumber(ND);
193      if (discriminator == 1)
194        return false;
195      disc = discriminator - 2;
196      return true;
197    }
198
199    // Make up a reasonable number for internal decls.
200    unsigned &discriminator = Uniquifier[ND];
201    if (!discriminator) {
202      const DeclContext *DC = getEffectiveDeclContext(ND);
203      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
204    }
205    if (discriminator == 1)
206      return false;
207    disc = discriminator-2;
208    return true;
209  }
210  /// @}
211};
212
213/// Manage the mangling of a single name.
214class CXXNameMangler {
215  ItaniumMangleContextImpl &Context;
216  raw_ostream &Out;
217  bool NullOut = false;
218  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
219  /// This mode is used when mangler creates another mangler recursively to
220  /// calculate ABI tags for the function return value or the variable type.
221  /// Also it is required to avoid infinite recursion in some cases.
222  bool DisableDerivedAbiTags = false;
223
224  /// The "structor" is the top-level declaration being mangled, if
225  /// that's not a template specialization; otherwise it's the pattern
226  /// for that specialization.
227  const NamedDecl *Structor;
228  unsigned StructorType;
229
230  /// The next substitution sequence number.
231  unsigned SeqID;
232
233  class FunctionTypeDepthState {
234    unsigned Bits;
235
236    enum { InResultTypeMask = 1 };
237
238  public:
239    FunctionTypeDepthState() : Bits(0) {}
240
241    /// The number of function types we're inside.
242    unsigned getDepth() const {
243      return Bits >> 1;
244    }
245
246    /// True if we're in the return type of the innermost function type.
247    bool isInResultType() const {
248      return Bits & InResultTypeMask;
249    }
250
251    FunctionTypeDepthState push() {
252      FunctionTypeDepthState tmp = *this;
253      Bits = (Bits & ~InResultTypeMask) + 2;
254      return tmp;
255    }
256
257    void enterResultType() {
258      Bits |= InResultTypeMask;
259    }
260
261    void leaveResultType() {
262      Bits &= ~InResultTypeMask;
263    }
264
265    void pop(FunctionTypeDepthState saved) {
266      assert(getDepth() == saved.getDepth() + 1);
267      Bits = saved.Bits;
268    }
269
270  } FunctionTypeDepth;
271
272  // abi_tag is a gcc attribute, taking one or more strings called "tags".
273  // The goal is to annotate against which version of a library an object was
274  // built and to be able to provide backwards compatibility ("dual abi").
275  // For more information see docs/ItaniumMangleAbiTags.rst.
276  typedef SmallVector<StringRef, 4> AbiTagList;
277
278  // State to gather all implicit and explicit tags used in a mangled name.
279  // Must always have an instance of this while emitting any name to keep
280  // track.
281  class AbiTagState final {
282  public:
283    explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
284      Parent = LinkHead;
285      LinkHead = this;
286    }
287
288    // No copy, no move.
289    AbiTagState(const AbiTagState &) = delete;
290    AbiTagState &operator=(const AbiTagState &) = delete;
291
292    ~AbiTagState() { pop(); }
293
294    void write(raw_ostream &Out, const NamedDecl *ND,
295               const AbiTagList *AdditionalAbiTags) {
296      ND = cast<NamedDecl>(ND->getCanonicalDecl());
297      if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
298        assert(
299            !AdditionalAbiTags &&
300            "only function and variables need a list of additional abi tags");
301        if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
302          if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
303            UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
304                               AbiTag->tags().end());
305          }
306          // Don't emit abi tags for namespaces.
307          return;
308        }
309      }
310
311      AbiTagList TagList;
312      if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
313        UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
314                           AbiTag->tags().end());
315        TagList.insert(TagList.end(), AbiTag->tags().begin(),
316                       AbiTag->tags().end());
317      }
318
319      if (AdditionalAbiTags) {
320        UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
321                           AdditionalAbiTags->end());
322        TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
323                       AdditionalAbiTags->end());
324      }
325
326      std::sort(TagList.begin(), TagList.end());
327      TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
328
329      writeSortedUniqueAbiTags(Out, TagList);
330    }
331
332    const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
333    void setUsedAbiTags(const AbiTagList &AbiTags) {
334      UsedAbiTags = AbiTags;
335    }
336
337    const AbiTagList &getEmittedAbiTags() const {
338      return EmittedAbiTags;
339    }
340
341    const AbiTagList &getSortedUniqueUsedAbiTags() {
342      std::sort(UsedAbiTags.begin(), UsedAbiTags.end());
343      UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
344                        UsedAbiTags.end());
345      return UsedAbiTags;
346    }
347
348  private:
349    //! All abi tags used implicitly or explicitly.
350    AbiTagList UsedAbiTags;
351    //! All explicit abi tags (i.e. not from namespace).
352    AbiTagList EmittedAbiTags;
353
354    AbiTagState *&LinkHead;
355    AbiTagState *Parent = nullptr;
356
357    void pop() {
358      assert(LinkHead == this &&
359             "abi tag link head must point to us on destruction");
360      if (Parent) {
361        Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
362                                   UsedAbiTags.begin(), UsedAbiTags.end());
363        Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
364                                      EmittedAbiTags.begin(),
365                                      EmittedAbiTags.end());
366      }
367      LinkHead = Parent;
368    }
369
370    void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
371      for (const auto &Tag : AbiTags) {
372        EmittedAbiTags.push_back(Tag);
373        Out << "B";
374        Out << Tag.size();
375        Out << Tag;
376      }
377    }
378  };
379
380  AbiTagState *AbiTags = nullptr;
381  AbiTagState AbiTagsRoot;
382
383  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
384
385  ASTContext &getASTContext() const { return Context.getASTContext(); }
386
387public:
388  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
389                 const NamedDecl *D = nullptr, bool NullOut_ = false)
390    : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
391      StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
392    // These can't be mangled without a ctor type or dtor type.
393    assert(!D || (!isa<CXXDestructorDecl>(D) &&
394                  !isa<CXXConstructorDecl>(D)));
395  }
396  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
397                 const CXXConstructorDecl *D, CXXCtorType Type)
398    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
399      SeqID(0), AbiTagsRoot(AbiTags) { }
400  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
401                 const CXXDestructorDecl *D, CXXDtorType Type)
402    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
403      SeqID(0), AbiTagsRoot(AbiTags) { }
404
405  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
406      : Context(Outer.Context), Out(Out_), NullOut(false),
407        Structor(Outer.Structor), StructorType(Outer.StructorType),
408        SeqID(Outer.SeqID), AbiTagsRoot(AbiTags) {}
409
410  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
411      : Context(Outer.Context), Out(Out_), NullOut(true),
412        Structor(Outer.Structor), StructorType(Outer.StructorType),
413        SeqID(Outer.SeqID), AbiTagsRoot(AbiTags) {}
414
415#if MANGLE_CHECKER
416  ~CXXNameMangler() {
417    if (Out.str()[0] == '\01')
418      return;
419
420    int status = 0;
421    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
422    assert(status == 0 && "Could not demangle mangled name!");
423    free(result);
424  }
425#endif
426  raw_ostream &getStream() { return Out; }
427
428  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
429  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
430
431  void mangle(const NamedDecl *D);
432  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
433  void mangleNumber(const llvm::APSInt &I);
434  void mangleNumber(int64_t Number);
435  void mangleFloat(const llvm::APFloat &F);
436  void mangleFunctionEncoding(const FunctionDecl *FD);
437  void mangleSeqID(unsigned SeqID);
438  void mangleName(const NamedDecl *ND);
439  void mangleType(QualType T);
440  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
441
442private:
443
444  bool mangleSubstitution(const NamedDecl *ND);
445  bool mangleSubstitution(QualType T);
446  bool mangleSubstitution(TemplateName Template);
447  bool mangleSubstitution(uintptr_t Ptr);
448
449  void mangleExistingSubstitution(TemplateName name);
450
451  bool mangleStandardSubstitution(const NamedDecl *ND);
452
453  void addSubstitution(const NamedDecl *ND) {
454    ND = cast<NamedDecl>(ND->getCanonicalDecl());
455
456    addSubstitution(reinterpret_cast<uintptr_t>(ND));
457  }
458  void addSubstitution(QualType T);
459  void addSubstitution(TemplateName Template);
460  void addSubstitution(uintptr_t Ptr);
461
462  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
463                              bool recursive = false);
464  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
465                            DeclarationName name,
466                            unsigned KnownArity = UnknownArity);
467
468  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
469
470  void mangleNameWithAbiTags(const NamedDecl *ND,
471                             const AbiTagList *AdditionalAbiTags);
472  void mangleTemplateName(const TemplateDecl *TD,
473                          const TemplateArgument *TemplateArgs,
474                          unsigned NumTemplateArgs);
475  void mangleUnqualifiedName(const NamedDecl *ND,
476                             const AbiTagList *AdditionalAbiTags) {
477    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
478                          AdditionalAbiTags);
479  }
480  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
481                             unsigned KnownArity,
482                             const AbiTagList *AdditionalAbiTags);
483  void mangleUnscopedName(const NamedDecl *ND,
484                          const AbiTagList *AdditionalAbiTags);
485  void mangleUnscopedTemplateName(const TemplateDecl *ND,
486                                  const AbiTagList *AdditionalAbiTags);
487  void mangleUnscopedTemplateName(TemplateName,
488                                  const AbiTagList *AdditionalAbiTags);
489  void mangleSourceName(const IdentifierInfo *II);
490  void mangleSourceNameWithAbiTags(
491      const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
492  void mangleLocalName(const Decl *D,
493                       const AbiTagList *AdditionalAbiTags);
494  void mangleBlockForPrefix(const BlockDecl *Block);
495  void mangleUnqualifiedBlock(const BlockDecl *Block);
496  void mangleLambda(const CXXRecordDecl *Lambda);
497  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
498                        const AbiTagList *AdditionalAbiTags,
499                        bool NoFunction=false);
500  void mangleNestedName(const TemplateDecl *TD,
501                        const TemplateArgument *TemplateArgs,
502                        unsigned NumTemplateArgs);
503  void manglePrefix(NestedNameSpecifier *qualifier);
504  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
505  void manglePrefix(QualType type);
506  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
507  void mangleTemplatePrefix(TemplateName Template);
508  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
509                                      StringRef Prefix = "");
510  void mangleOperatorName(DeclarationName Name, unsigned Arity);
511  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
512  void mangleVendorQualifier(StringRef qualifier);
513  void mangleQualifiers(Qualifiers Quals);
514  void mangleRefQualifier(RefQualifierKind RefQualifier);
515
516  void mangleObjCMethodName(const ObjCMethodDecl *MD);
517
518  // Declare manglers for every type class.
519#define ABSTRACT_TYPE(CLASS, PARENT)
520#define NON_CANONICAL_TYPE(CLASS, PARENT)
521#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
522#include "clang/AST/TypeNodes.def"
523
524  void mangleType(const TagType*);
525  void mangleType(TemplateName);
526  static StringRef getCallingConvQualifierName(CallingConv CC);
527  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
528  void mangleExtFunctionInfo(const FunctionType *T);
529  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
530                              const FunctionDecl *FD = nullptr);
531  void mangleNeonVectorType(const VectorType *T);
532  void mangleAArch64NeonVectorType(const VectorType *T);
533
534  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
535  void mangleMemberExprBase(const Expr *base, bool isArrow);
536  void mangleMemberExpr(const Expr *base, bool isArrow,
537                        NestedNameSpecifier *qualifier,
538                        NamedDecl *firstQualifierLookup,
539                        DeclarationName name,
540                        unsigned knownArity);
541  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
542  void mangleInitListElements(const InitListExpr *InitList);
543  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
544  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
545  void mangleCXXDtorType(CXXDtorType T);
546
547  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
548                          unsigned NumTemplateArgs);
549  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
550                          unsigned NumTemplateArgs);
551  void mangleTemplateArgs(const TemplateArgumentList &AL);
552  void mangleTemplateArg(TemplateArgument A);
553
554  void mangleTemplateParameter(unsigned Index);
555
556  void mangleFunctionParam(const ParmVarDecl *parm);
557
558  void writeAbiTags(const NamedDecl *ND,
559                    const AbiTagList *AdditionalAbiTags);
560
561  // Returns sorted unique list of ABI tags.
562  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
563  // Returns sorted unique list of ABI tags.
564  AbiTagList makeVariableTypeTags(const VarDecl *VD);
565};
566
567}
568
569bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
570  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
571  if (FD) {
572    LanguageLinkage L = FD->getLanguageLinkage();
573    // Overloadable functions need mangling.
574    if (FD->hasAttr<OverloadableAttr>())
575      return true;
576
577    // "main" is not mangled.
578    if (FD->isMain())
579      return false;
580
581    // C++ functions and those whose names are not a simple identifier need
582    // mangling.
583    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
584      return true;
585
586    // C functions are not mangled.
587    if (L == CLanguageLinkage)
588      return false;
589  }
590
591  // Otherwise, no mangling is done outside C++ mode.
592  if (!getASTContext().getLangOpts().CPlusPlus)
593    return false;
594
595  const VarDecl *VD = dyn_cast<VarDecl>(D);
596  if (VD) {
597    // C variables are not mangled.
598    if (VD->isExternC())
599      return false;
600
601    // Variables at global scope with non-internal linkage are not mangled
602    const DeclContext *DC = getEffectiveDeclContext(D);
603    // Check for extern variable declared locally.
604    if (DC->isFunctionOrMethod() && D->hasLinkage())
605      while (!DC->isNamespace() && !DC->isTranslationUnit())
606        DC = getEffectiveParentContext(DC);
607    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
608        !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
609        !isa<VarTemplateSpecializationDecl>(D))
610      return false;
611  }
612
613  return true;
614}
615
616void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
617                                  const AbiTagList *AdditionalAbiTags) {
618  assert(AbiTags && "require AbiTagState");
619  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
620}
621
622void CXXNameMangler::mangleSourceNameWithAbiTags(
623    const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
624  mangleSourceName(ND->getIdentifier());
625  writeAbiTags(ND, AdditionalAbiTags);
626}
627
628void CXXNameMangler::mangle(const NamedDecl *D) {
629  // <mangled-name> ::= _Z <encoding>
630  //            ::= <data name>
631  //            ::= <special-name>
632  Out << "_Z";
633  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
634    mangleFunctionEncoding(FD);
635  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
636    mangleName(VD);
637  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
638    mangleName(IFD->getAnonField());
639  else
640    mangleName(cast<FieldDecl>(D));
641}
642
643void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
644  // <encoding> ::= <function name> <bare-function-type>
645
646  // Don't mangle in the type if this isn't a decl we should typically mangle.
647  if (!Context.shouldMangleDeclName(FD)) {
648    mangleName(FD);
649    return;
650  }
651
652  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
653  if (ReturnTypeAbiTags.empty()) {
654    // There are no tags for return type, the simplest case.
655    mangleName(FD);
656    mangleFunctionEncodingBareType(FD);
657    return;
658  }
659
660  // Mangle function name and encoding to temporary buffer.
661  // We have to output name and encoding to the same mangler to get the same
662  // substitution as it will be in final mangling.
663  SmallString<256> FunctionEncodingBuf;
664  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
665  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
666  // Output name of the function.
667  FunctionEncodingMangler.disableDerivedAbiTags();
668  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
669
670  // Remember length of the function name in the buffer.
671  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
672  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
673
674  // Get tags from return type that are not present in function name or
675  // encoding.
676  const AbiTagList &UsedAbiTags =
677      FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
678  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
679  AdditionalAbiTags.erase(
680      std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
681                          UsedAbiTags.begin(), UsedAbiTags.end(),
682                          AdditionalAbiTags.begin()),
683      AdditionalAbiTags.end());
684
685  // Output name with implicit tags and function encoding from temporary buffer.
686  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
687  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
688}
689
690void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
691  if (FD->hasAttr<EnableIfAttr>()) {
692    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
693    Out << "Ua9enable_ifI";
694    // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
695    // it here.
696    for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
697                                         E = FD->getAttrs().rend();
698         I != E; ++I) {
699      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
700      if (!EIA)
701        continue;
702      Out << 'X';
703      mangleExpression(EIA->getCond());
704      Out << 'E';
705    }
706    Out << 'E';
707    FunctionTypeDepth.pop(Saved);
708  }
709
710  // When mangling an inheriting constructor, the bare function type used is
711  // that of the inherited constructor.
712  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
713    if (auto Inherited = CD->getInheritedConstructor())
714      FD = Inherited.getConstructor();
715
716  // Whether the mangling of a function type includes the return type depends on
717  // the context and the nature of the function. The rules for deciding whether
718  // the return type is included are:
719  //
720  //   1. Template functions (names or types) have return types encoded, with
721  //   the exceptions listed below.
722  //   2. Function types not appearing as part of a function name mangling,
723  //   e.g. parameters, pointer types, etc., have return type encoded, with the
724  //   exceptions listed below.
725  //   3. Non-template function names do not have return types encoded.
726  //
727  // The exceptions mentioned in (1) and (2) above, for which the return type is
728  // never included, are
729  //   1. Constructors.
730  //   2. Destructors.
731  //   3. Conversion operator functions, e.g. operator int.
732  bool MangleReturnType = false;
733  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
734    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
735          isa<CXXConversionDecl>(FD)))
736      MangleReturnType = true;
737
738    // Mangle the type of the primary template.
739    FD = PrimaryTemplate->getTemplatedDecl();
740  }
741
742  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
743                         MangleReturnType, FD);
744}
745
746static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
747  while (isa<LinkageSpecDecl>(DC)) {
748    DC = getEffectiveParentContext(DC);
749  }
750
751  return DC;
752}
753
754/// Return whether a given namespace is the 'std' namespace.
755static bool isStd(const NamespaceDecl *NS) {
756  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
757                                ->isTranslationUnit())
758    return false;
759
760  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
761  return II && II->isStr("std");
762}
763
764// isStdNamespace - Return whether a given decl context is a toplevel 'std'
765// namespace.
766static bool isStdNamespace(const DeclContext *DC) {
767  if (!DC->isNamespace())
768    return false;
769
770  return isStd(cast<NamespaceDecl>(DC));
771}
772
773static const TemplateDecl *
774isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
775  // Check if we have a function template.
776  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
777    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
778      TemplateArgs = FD->getTemplateSpecializationArgs();
779      return TD;
780    }
781  }
782
783  // Check if we have a class template.
784  if (const ClassTemplateSpecializationDecl *Spec =
785        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
786    TemplateArgs = &Spec->getTemplateArgs();
787    return Spec->getSpecializedTemplate();
788  }
789
790  // Check if we have a variable template.
791  if (const VarTemplateSpecializationDecl *Spec =
792          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
793    TemplateArgs = &Spec->getTemplateArgs();
794    return Spec->getSpecializedTemplate();
795  }
796
797  return nullptr;
798}
799
800void CXXNameMangler::mangleName(const NamedDecl *ND) {
801  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
802    // Variables should have implicit tags from its type.
803    AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
804    if (VariableTypeAbiTags.empty()) {
805      // Simple case no variable type tags.
806      mangleNameWithAbiTags(VD, nullptr);
807      return;
808    }
809
810    // Mangle variable name to null stream to collect tags.
811    llvm::raw_null_ostream NullOutStream;
812    CXXNameMangler VariableNameMangler(*this, NullOutStream);
813    VariableNameMangler.disableDerivedAbiTags();
814    VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
815
816    // Get tags from variable type that are not present in its name.
817    const AbiTagList &UsedAbiTags =
818        VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
819    AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
820    AdditionalAbiTags.erase(
821        std::set_difference(VariableTypeAbiTags.begin(),
822                            VariableTypeAbiTags.end(), UsedAbiTags.begin(),
823                            UsedAbiTags.end(), AdditionalAbiTags.begin()),
824        AdditionalAbiTags.end());
825
826    // Output name with implicit tags.
827    mangleNameWithAbiTags(VD, &AdditionalAbiTags);
828  } else {
829    mangleNameWithAbiTags(ND, nullptr);
830  }
831}
832
833void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
834                                           const AbiTagList *AdditionalAbiTags) {
835  //  <name> ::= <nested-name>
836  //         ::= <unscoped-name>
837  //         ::= <unscoped-template-name> <template-args>
838  //         ::= <local-name>
839  //
840  const DeclContext *DC = getEffectiveDeclContext(ND);
841
842  // If this is an extern variable declared locally, the relevant DeclContext
843  // is that of the containing namespace, or the translation unit.
844  // FIXME: This is a hack; extern variables declared locally should have
845  // a proper semantic declaration context!
846  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
847    while (!DC->isNamespace() && !DC->isTranslationUnit())
848      DC = getEffectiveParentContext(DC);
849  else if (GetLocalClassDecl(ND)) {
850    mangleLocalName(ND, AdditionalAbiTags);
851    return;
852  }
853
854  DC = IgnoreLinkageSpecDecls(DC);
855
856  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
857    // Check if we have a template.
858    const TemplateArgumentList *TemplateArgs = nullptr;
859    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
860      mangleUnscopedTemplateName(TD, AdditionalAbiTags);
861      mangleTemplateArgs(*TemplateArgs);
862      return;
863    }
864
865    mangleUnscopedName(ND, AdditionalAbiTags);
866    return;
867  }
868
869  if (isLocalContainerContext(DC)) {
870    mangleLocalName(ND, AdditionalAbiTags);
871    return;
872  }
873
874  mangleNestedName(ND, DC, AdditionalAbiTags);
875}
876
877void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
878                                        const TemplateArgument *TemplateArgs,
879                                        unsigned NumTemplateArgs) {
880  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
881
882  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
883    mangleUnscopedTemplateName(TD, nullptr);
884    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
885  } else {
886    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
887  }
888}
889
890void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
891                                        const AbiTagList *AdditionalAbiTags) {
892  //  <unscoped-name> ::= <unqualified-name>
893  //                  ::= St <unqualified-name>   # ::std::
894
895  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
896    Out << "St";
897
898  mangleUnqualifiedName(ND, AdditionalAbiTags);
899}
900
901void CXXNameMangler::mangleUnscopedTemplateName(
902    const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
903  //     <unscoped-template-name> ::= <unscoped-name>
904  //                              ::= <substitution>
905  if (mangleSubstitution(ND))
906    return;
907
908  // <template-template-param> ::= <template-param>
909  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
910    assert(!AdditionalAbiTags &&
911           "template template param cannot have abi tags");
912    mangleTemplateParameter(TTP->getIndex());
913  } else if (isa<BuiltinTemplateDecl>(ND)) {
914    mangleUnscopedName(ND, AdditionalAbiTags);
915  } else {
916    mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
917  }
918
919  addSubstitution(ND);
920}
921
922void CXXNameMangler::mangleUnscopedTemplateName(
923    TemplateName Template, const AbiTagList *AdditionalAbiTags) {
924  //     <unscoped-template-name> ::= <unscoped-name>
925  //                              ::= <substitution>
926  if (TemplateDecl *TD = Template.getAsTemplateDecl())
927    return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
928
929  if (mangleSubstitution(Template))
930    return;
931
932  assert(!AdditionalAbiTags &&
933         "dependent template name cannot have abi tags");
934
935  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
936  assert(Dependent && "Not a dependent template name?");
937  if (const IdentifierInfo *Id = Dependent->getIdentifier())
938    mangleSourceName(Id);
939  else
940    mangleOperatorName(Dependent->getOperator(), UnknownArity);
941
942  addSubstitution(Template);
943}
944
945void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
946  // ABI:
947  //   Floating-point literals are encoded using a fixed-length
948  //   lowercase hexadecimal string corresponding to the internal
949  //   representation (IEEE on Itanium), high-order bytes first,
950  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
951  //   on Itanium.
952  // The 'without leading zeroes' thing seems to be an editorial
953  // mistake; see the discussion on cxx-abi-dev beginning on
954  // 2012-01-16.
955
956  // Our requirements here are just barely weird enough to justify
957  // using a custom algorithm instead of post-processing APInt::toString().
958
959  llvm::APInt valueBits = f.bitcastToAPInt();
960  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
961  assert(numCharacters != 0);
962
963  // Allocate a buffer of the right number of characters.
964  SmallVector<char, 20> buffer(numCharacters);
965
966  // Fill the buffer left-to-right.
967  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
968    // The bit-index of the next hex digit.
969    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
970
971    // Project out 4 bits starting at 'digitIndex'.
972    llvm::integerPart hexDigit
973      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
974    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
975    hexDigit &= 0xF;
976
977    // Map that over to a lowercase hex digit.
978    static const char charForHex[16] = {
979      '0', '1', '2', '3', '4', '5', '6', '7',
980      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
981    };
982    buffer[stringIndex] = charForHex[hexDigit];
983  }
984
985  Out.write(buffer.data(), numCharacters);
986}
987
988void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
989  if (Value.isSigned() && Value.isNegative()) {
990    Out << 'n';
991    Value.abs().print(Out, /*signed*/ false);
992  } else {
993    Value.print(Out, /*signed*/ false);
994  }
995}
996
997void CXXNameMangler::mangleNumber(int64_t Number) {
998  //  <number> ::= [n] <non-negative decimal integer>
999  if (Number < 0) {
1000    Out << 'n';
1001    Number = -Number;
1002  }
1003
1004  Out << Number;
1005}
1006
1007void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1008  //  <call-offset>  ::= h <nv-offset> _
1009  //                 ::= v <v-offset> _
1010  //  <nv-offset>    ::= <offset number>        # non-virtual base override
1011  //  <v-offset>     ::= <offset number> _ <virtual offset number>
1012  //                      # virtual base override, with vcall offset
1013  if (!Virtual) {
1014    Out << 'h';
1015    mangleNumber(NonVirtual);
1016    Out << '_';
1017    return;
1018  }
1019
1020  Out << 'v';
1021  mangleNumber(NonVirtual);
1022  Out << '_';
1023  mangleNumber(Virtual);
1024  Out << '_';
1025}
1026
1027void CXXNameMangler::manglePrefix(QualType type) {
1028  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1029    if (!mangleSubstitution(QualType(TST, 0))) {
1030      mangleTemplatePrefix(TST->getTemplateName());
1031
1032      // FIXME: GCC does not appear to mangle the template arguments when
1033      // the template in question is a dependent template name. Should we
1034      // emulate that badness?
1035      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1036      addSubstitution(QualType(TST, 0));
1037    }
1038  } else if (const auto *DTST =
1039                 type->getAs<DependentTemplateSpecializationType>()) {
1040    if (!mangleSubstitution(QualType(DTST, 0))) {
1041      TemplateName Template = getASTContext().getDependentTemplateName(
1042          DTST->getQualifier(), DTST->getIdentifier());
1043      mangleTemplatePrefix(Template);
1044
1045      // FIXME: GCC does not appear to mangle the template arguments when
1046      // the template in question is a dependent template name. Should we
1047      // emulate that badness?
1048      mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1049      addSubstitution(QualType(DTST, 0));
1050    }
1051  } else {
1052    // We use the QualType mangle type variant here because it handles
1053    // substitutions.
1054    mangleType(type);
1055  }
1056}
1057
1058/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1059///
1060/// \param recursive - true if this is being called recursively,
1061///   i.e. if there is more prefix "to the right".
1062void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1063                                            bool recursive) {
1064
1065  // x, ::x
1066  // <unresolved-name> ::= [gs] <base-unresolved-name>
1067
1068  // T::x / decltype(p)::x
1069  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1070
1071  // T::N::x /decltype(p)::N::x
1072  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1073  //                       <base-unresolved-name>
1074
1075  // A::x, N::y, A<T>::z; "gs" means leading "::"
1076  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1077  //                       <base-unresolved-name>
1078
1079  switch (qualifier->getKind()) {
1080  case NestedNameSpecifier::Global:
1081    Out << "gs";
1082
1083    // We want an 'sr' unless this is the entire NNS.
1084    if (recursive)
1085      Out << "sr";
1086
1087    // We never want an 'E' here.
1088    return;
1089
1090  case NestedNameSpecifier::Super:
1091    llvm_unreachable("Can't mangle __super specifier");
1092
1093  case NestedNameSpecifier::Namespace:
1094    if (qualifier->getPrefix())
1095      mangleUnresolvedPrefix(qualifier->getPrefix(),
1096                             /*recursive*/ true);
1097    else
1098      Out << "sr";
1099    mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1100    break;
1101  case NestedNameSpecifier::NamespaceAlias:
1102    if (qualifier->getPrefix())
1103      mangleUnresolvedPrefix(qualifier->getPrefix(),
1104                             /*recursive*/ true);
1105    else
1106      Out << "sr";
1107    mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1108    break;
1109
1110  case NestedNameSpecifier::TypeSpec:
1111  case NestedNameSpecifier::TypeSpecWithTemplate: {
1112    const Type *type = qualifier->getAsType();
1113
1114    // We only want to use an unresolved-type encoding if this is one of:
1115    //   - a decltype
1116    //   - a template type parameter
1117    //   - a template template parameter with arguments
1118    // In all of these cases, we should have no prefix.
1119    if (qualifier->getPrefix()) {
1120      mangleUnresolvedPrefix(qualifier->getPrefix(),
1121                             /*recursive*/ true);
1122    } else {
1123      // Otherwise, all the cases want this.
1124      Out << "sr";
1125    }
1126
1127    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1128      return;
1129
1130    break;
1131  }
1132
1133  case NestedNameSpecifier::Identifier:
1134    // Member expressions can have these without prefixes.
1135    if (qualifier->getPrefix())
1136      mangleUnresolvedPrefix(qualifier->getPrefix(),
1137                             /*recursive*/ true);
1138    else
1139      Out << "sr";
1140
1141    mangleSourceName(qualifier->getAsIdentifier());
1142    // An Identifier has no type information, so we can't emit abi tags for it.
1143    break;
1144  }
1145
1146  // If this was the innermost part of the NNS, and we fell out to
1147  // here, append an 'E'.
1148  if (!recursive)
1149    Out << 'E';
1150}
1151
1152/// Mangle an unresolved-name, which is generally used for names which
1153/// weren't resolved to specific entities.
1154void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1155                                          DeclarationName name,
1156                                          unsigned knownArity) {
1157  if (qualifier) mangleUnresolvedPrefix(qualifier);
1158  switch (name.getNameKind()) {
1159    // <base-unresolved-name> ::= <simple-id>
1160    case DeclarationName::Identifier:
1161      mangleSourceName(name.getAsIdentifierInfo());
1162      break;
1163    // <base-unresolved-name> ::= dn <destructor-name>
1164    case DeclarationName::CXXDestructorName:
1165      Out << "dn";
1166      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1167      break;
1168    // <base-unresolved-name> ::= on <operator-name>
1169    case DeclarationName::CXXConversionFunctionName:
1170    case DeclarationName::CXXLiteralOperatorName:
1171    case DeclarationName::CXXOperatorName:
1172      Out << "on";
1173      mangleOperatorName(name, knownArity);
1174      break;
1175    case DeclarationName::CXXConstructorName:
1176      llvm_unreachable("Can't mangle a constructor name!");
1177    case DeclarationName::CXXUsingDirective:
1178      llvm_unreachable("Can't mangle a using directive name!");
1179    case DeclarationName::ObjCMultiArgSelector:
1180    case DeclarationName::ObjCOneArgSelector:
1181    case DeclarationName::ObjCZeroArgSelector:
1182      llvm_unreachable("Can't mangle Objective-C selector names here!");
1183  }
1184}
1185
1186void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1187                                           DeclarationName Name,
1188                                           unsigned KnownArity,
1189                                           const AbiTagList *AdditionalAbiTags) {
1190  unsigned Arity = KnownArity;
1191  //  <unqualified-name> ::= <operator-name>
1192  //                     ::= <ctor-dtor-name>
1193  //                     ::= <source-name>
1194  switch (Name.getNameKind()) {
1195  case DeclarationName::Identifier: {
1196    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1197      // We must avoid conflicts between internally- and externally-
1198      // linked variable and function declaration names in the same TU:
1199      //   void test() { extern void foo(); }
1200      //   static void foo();
1201      // This naming convention is the same as that followed by GCC,
1202      // though it shouldn't actually matter.
1203      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1204          getEffectiveDeclContext(ND)->isFileContext())
1205        Out << 'L';
1206
1207      mangleSourceName(II);
1208      writeAbiTags(ND, AdditionalAbiTags);
1209      break;
1210    }
1211
1212    // Otherwise, an anonymous entity.  We must have a declaration.
1213    assert(ND && "mangling empty name without declaration");
1214
1215    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1216      if (NS->isAnonymousNamespace()) {
1217        // This is how gcc mangles these names.
1218        Out << "12_GLOBAL__N_1";
1219        break;
1220      }
1221    }
1222
1223    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1224      // We must have an anonymous union or struct declaration.
1225      const RecordDecl *RD =
1226        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1227
1228      // Itanium C++ ABI 5.1.2:
1229      //
1230      //   For the purposes of mangling, the name of an anonymous union is
1231      //   considered to be the name of the first named data member found by a
1232      //   pre-order, depth-first, declaration-order walk of the data members of
1233      //   the anonymous union. If there is no such data member (i.e., if all of
1234      //   the data members in the union are unnamed), then there is no way for
1235      //   a program to refer to the anonymous union, and there is therefore no
1236      //   need to mangle its name.
1237      assert(RD->isAnonymousStructOrUnion()
1238             && "Expected anonymous struct or union!");
1239      const FieldDecl *FD = RD->findFirstNamedDataMember();
1240
1241      // It's actually possible for various reasons for us to get here
1242      // with an empty anonymous struct / union.  Fortunately, it
1243      // doesn't really matter what name we generate.
1244      if (!FD) break;
1245      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1246
1247      mangleSourceName(FD->getIdentifier());
1248      // Not emitting abi tags: internal name anyway.
1249      break;
1250    }
1251
1252    // Class extensions have no name as a category, and it's possible
1253    // for them to be the semantic parent of certain declarations
1254    // (primarily, tag decls defined within declarations).  Such
1255    // declarations will always have internal linkage, so the name
1256    // doesn't really matter, but we shouldn't crash on them.  For
1257    // safety, just handle all ObjC containers here.
1258    if (isa<ObjCContainerDecl>(ND))
1259      break;
1260
1261    // We must have an anonymous struct.
1262    const TagDecl *TD = cast<TagDecl>(ND);
1263    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1264      assert(TD->getDeclContext() == D->getDeclContext() &&
1265             "Typedef should not be in another decl context!");
1266      assert(D->getDeclName().getAsIdentifierInfo() &&
1267             "Typedef was not named!");
1268      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1269      assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1270      // Explicit abi tags are still possible; take from underlying type, not
1271      // from typedef.
1272      writeAbiTags(TD, nullptr);
1273      break;
1274    }
1275
1276    // <unnamed-type-name> ::= <closure-type-name>
1277    //
1278    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1279    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1280    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1281      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1282        assert(!AdditionalAbiTags &&
1283               "Lambda type cannot have additional abi tags");
1284        mangleLambda(Record);
1285        break;
1286      }
1287    }
1288
1289    if (TD->isExternallyVisible()) {
1290      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1291      Out << "Ut";
1292      if (UnnamedMangle > 1)
1293        Out << UnnamedMangle - 2;
1294      Out << '_';
1295      writeAbiTags(TD, AdditionalAbiTags);
1296      break;
1297    }
1298
1299    // Get a unique id for the anonymous struct. If it is not a real output
1300    // ID doesn't matter so use fake one.
1301    unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1302
1303    // Mangle it as a source name in the form
1304    // [n] $_<id>
1305    // where n is the length of the string.
1306    SmallString<8> Str;
1307    Str += "$_";
1308    Str += llvm::utostr(AnonStructId);
1309
1310    Out << Str.size();
1311    Out << Str;
1312    break;
1313  }
1314
1315  case DeclarationName::ObjCZeroArgSelector:
1316  case DeclarationName::ObjCOneArgSelector:
1317  case DeclarationName::ObjCMultiArgSelector:
1318    llvm_unreachable("Can't mangle Objective-C selector names here!");
1319
1320  case DeclarationName::CXXConstructorName: {
1321    const CXXRecordDecl *InheritedFrom = nullptr;
1322    const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1323    if (auto Inherited =
1324            cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1325      InheritedFrom = Inherited.getConstructor()->getParent();
1326      InheritedTemplateArgs =
1327          Inherited.getConstructor()->getTemplateSpecializationArgs();
1328    }
1329
1330    if (ND == Structor)
1331      // If the named decl is the C++ constructor we're mangling, use the type
1332      // we were given.
1333      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1334    else
1335      // Otherwise, use the complete constructor name. This is relevant if a
1336      // class with a constructor is declared within a constructor.
1337      mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1338
1339    // FIXME: The template arguments are part of the enclosing prefix or
1340    // nested-name, but it's more convenient to mangle them here.
1341    if (InheritedTemplateArgs)
1342      mangleTemplateArgs(*InheritedTemplateArgs);
1343
1344    writeAbiTags(ND, AdditionalAbiTags);
1345    break;
1346  }
1347
1348  case DeclarationName::CXXDestructorName:
1349    if (ND == Structor)
1350      // If the named decl is the C++ destructor we're mangling, use the type we
1351      // were given.
1352      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1353    else
1354      // Otherwise, use the complete destructor name. This is relevant if a
1355      // class with a destructor is declared within a destructor.
1356      mangleCXXDtorType(Dtor_Complete);
1357    writeAbiTags(ND, AdditionalAbiTags);
1358    break;
1359
1360  case DeclarationName::CXXOperatorName:
1361    if (ND && Arity == UnknownArity) {
1362      Arity = cast<FunctionDecl>(ND)->getNumParams();
1363
1364      // If we have a member function, we need to include the 'this' pointer.
1365      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1366        if (!MD->isStatic())
1367          Arity++;
1368    }
1369  // FALLTHROUGH
1370  case DeclarationName::CXXConversionFunctionName:
1371  case DeclarationName::CXXLiteralOperatorName:
1372    mangleOperatorName(Name, Arity);
1373    writeAbiTags(ND, AdditionalAbiTags);
1374    break;
1375
1376  case DeclarationName::CXXUsingDirective:
1377    llvm_unreachable("Can't mangle a using directive name!");
1378  }
1379}
1380
1381void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1382  // <source-name> ::= <positive length number> <identifier>
1383  // <number> ::= [n] <non-negative decimal integer>
1384  // <identifier> ::= <unqualified source code identifier>
1385  Out << II->getLength() << II->getName();
1386}
1387
1388void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1389                                      const DeclContext *DC,
1390                                      const AbiTagList *AdditionalAbiTags,
1391                                      bool NoFunction) {
1392  // <nested-name>
1393  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1394  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1395  //       <template-args> E
1396
1397  Out << 'N';
1398  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1399    Qualifiers MethodQuals =
1400        Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1401    // We do not consider restrict a distinguishing attribute for overloading
1402    // purposes so we must not mangle it.
1403    MethodQuals.removeRestrict();
1404    mangleQualifiers(MethodQuals);
1405    mangleRefQualifier(Method->getRefQualifier());
1406  }
1407
1408  // Check if we have a template.
1409  const TemplateArgumentList *TemplateArgs = nullptr;
1410  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1411    mangleTemplatePrefix(TD, NoFunction);
1412    mangleTemplateArgs(*TemplateArgs);
1413  }
1414  else {
1415    manglePrefix(DC, NoFunction);
1416    mangleUnqualifiedName(ND, AdditionalAbiTags);
1417  }
1418
1419  Out << 'E';
1420}
1421void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1422                                      const TemplateArgument *TemplateArgs,
1423                                      unsigned NumTemplateArgs) {
1424  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1425
1426  Out << 'N';
1427
1428  mangleTemplatePrefix(TD);
1429  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1430
1431  Out << 'E';
1432}
1433
1434void CXXNameMangler::mangleLocalName(const Decl *D,
1435                                     const AbiTagList *AdditionalAbiTags) {
1436  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1437  //              := Z <function encoding> E s [<discriminator>]
1438  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1439  //                 _ <entity name>
1440  // <discriminator> := _ <non-negative number>
1441  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1442  const RecordDecl *RD = GetLocalClassDecl(D);
1443  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1444
1445  Out << 'Z';
1446
1447  {
1448    AbiTagState LocalAbiTags(AbiTags);
1449
1450    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1451      mangleObjCMethodName(MD);
1452    else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1453      mangleBlockForPrefix(BD);
1454    else
1455      mangleFunctionEncoding(cast<FunctionDecl>(DC));
1456
1457    // Implicit ABI tags (from namespace) are not available in the following
1458    // entity; reset to actually emitted tags, which are available.
1459    LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1460  }
1461
1462  Out << 'E';
1463
1464  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1465  // be a bug that is fixed in trunk.
1466
1467  if (RD) {
1468    // The parameter number is omitted for the last parameter, 0 for the
1469    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1470    // <entity name> will of course contain a <closure-type-name>: Its
1471    // numbering will be local to the particular argument in which it appears
1472    // -- other default arguments do not affect its encoding.
1473    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1474    if (CXXRD->isLambda()) {
1475      if (const ParmVarDecl *Parm
1476              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1477        if (const FunctionDecl *Func
1478              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1479          Out << 'd';
1480          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1481          if (Num > 1)
1482            mangleNumber(Num - 2);
1483          Out << '_';
1484        }
1485      }
1486    }
1487
1488    // Mangle the name relative to the closest enclosing function.
1489    // equality ok because RD derived from ND above
1490    if (D == RD)  {
1491      mangleUnqualifiedName(RD, AdditionalAbiTags);
1492    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1493      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1494      assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1495      mangleUnqualifiedBlock(BD);
1496    } else {
1497      const NamedDecl *ND = cast<NamedDecl>(D);
1498      mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1499                       true /*NoFunction*/);
1500    }
1501  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1502    // Mangle a block in a default parameter; see above explanation for
1503    // lambdas.
1504    if (const ParmVarDecl *Parm
1505            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1506      if (const FunctionDecl *Func
1507            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1508        Out << 'd';
1509        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1510        if (Num > 1)
1511          mangleNumber(Num - 2);
1512        Out << '_';
1513      }
1514    }
1515
1516    assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1517    mangleUnqualifiedBlock(BD);
1518  } else {
1519    mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1520  }
1521
1522  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1523    unsigned disc;
1524    if (Context.getNextDiscriminator(ND, disc)) {
1525      if (disc < 10)
1526        Out << '_' << disc;
1527      else
1528        Out << "__" << disc << '_';
1529    }
1530  }
1531}
1532
1533void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1534  if (GetLocalClassDecl(Block)) {
1535    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1536    return;
1537  }
1538  const DeclContext *DC = getEffectiveDeclContext(Block);
1539  if (isLocalContainerContext(DC)) {
1540    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1541    return;
1542  }
1543  manglePrefix(getEffectiveDeclContext(Block));
1544  mangleUnqualifiedBlock(Block);
1545}
1546
1547void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1548  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1549    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1550        Context->getDeclContext()->isRecord()) {
1551      const auto *ND = cast<NamedDecl>(Context);
1552      if (ND->getIdentifier()) {
1553        mangleSourceNameWithAbiTags(ND);
1554        Out << 'M';
1555      }
1556    }
1557  }
1558
1559  // If we have a block mangling number, use it.
1560  unsigned Number = Block->getBlockManglingNumber();
1561  // Otherwise, just make up a number. It doesn't matter what it is because
1562  // the symbol in question isn't externally visible.
1563  if (!Number)
1564    Number = Context.getBlockId(Block, false);
1565  Out << "Ub";
1566  if (Number > 0)
1567    Out << Number - 1;
1568  Out << '_';
1569}
1570
1571void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1572  // If the context of a closure type is an initializer for a class member
1573  // (static or nonstatic), it is encoded in a qualified name with a final
1574  // <prefix> of the form:
1575  //
1576  //   <data-member-prefix> := <member source-name> M
1577  //
1578  // Technically, the data-member-prefix is part of the <prefix>. However,
1579  // since a closure type will always be mangled with a prefix, it's easier
1580  // to emit that last part of the prefix here.
1581  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1582    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1583        Context->getDeclContext()->isRecord()) {
1584      if (const IdentifierInfo *Name
1585            = cast<NamedDecl>(Context)->getIdentifier()) {
1586        mangleSourceName(Name);
1587        Out << 'M';
1588      }
1589    }
1590  }
1591
1592  Out << "Ul";
1593  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1594                                   getAs<FunctionProtoType>();
1595  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1596                         Lambda->getLambdaStaticInvoker());
1597  Out << "E";
1598
1599  // The number is omitted for the first closure type with a given
1600  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1601  // (in lexical order) with that same <lambda-sig> and context.
1602  //
1603  // The AST keeps track of the number for us.
1604  unsigned Number = Lambda->getLambdaManglingNumber();
1605  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1606  if (Number > 1)
1607    mangleNumber(Number - 2);
1608  Out << '_';
1609}
1610
1611void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1612  switch (qualifier->getKind()) {
1613  case NestedNameSpecifier::Global:
1614    // nothing
1615    return;
1616
1617  case NestedNameSpecifier::Super:
1618    llvm_unreachable("Can't mangle __super specifier");
1619
1620  case NestedNameSpecifier::Namespace:
1621    mangleName(qualifier->getAsNamespace());
1622    return;
1623
1624  case NestedNameSpecifier::NamespaceAlias:
1625    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1626    return;
1627
1628  case NestedNameSpecifier::TypeSpec:
1629  case NestedNameSpecifier::TypeSpecWithTemplate:
1630    manglePrefix(QualType(qualifier->getAsType(), 0));
1631    return;
1632
1633  case NestedNameSpecifier::Identifier:
1634    // Member expressions can have these without prefixes, but that
1635    // should end up in mangleUnresolvedPrefix instead.
1636    assert(qualifier->getPrefix());
1637    manglePrefix(qualifier->getPrefix());
1638
1639    mangleSourceName(qualifier->getAsIdentifier());
1640    return;
1641  }
1642
1643  llvm_unreachable("unexpected nested name specifier");
1644}
1645
1646void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1647  //  <prefix> ::= <prefix> <unqualified-name>
1648  //           ::= <template-prefix> <template-args>
1649  //           ::= <template-param>
1650  //           ::= # empty
1651  //           ::= <substitution>
1652
1653  DC = IgnoreLinkageSpecDecls(DC);
1654
1655  if (DC->isTranslationUnit())
1656    return;
1657
1658  if (NoFunction && isLocalContainerContext(DC))
1659    return;
1660
1661  assert(!isLocalContainerContext(DC));
1662
1663  const NamedDecl *ND = cast<NamedDecl>(DC);
1664  if (mangleSubstitution(ND))
1665    return;
1666
1667  // Check if we have a template.
1668  const TemplateArgumentList *TemplateArgs = nullptr;
1669  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1670    mangleTemplatePrefix(TD);
1671    mangleTemplateArgs(*TemplateArgs);
1672  } else {
1673    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1674    mangleUnqualifiedName(ND, nullptr);
1675  }
1676
1677  addSubstitution(ND);
1678}
1679
1680void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1681  // <template-prefix> ::= <prefix> <template unqualified-name>
1682  //                   ::= <template-param>
1683  //                   ::= <substitution>
1684  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1685    return mangleTemplatePrefix(TD);
1686
1687  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1688    manglePrefix(Qualified->getQualifier());
1689
1690  if (OverloadedTemplateStorage *Overloaded
1691                                      = Template.getAsOverloadedTemplate()) {
1692    mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1693                          UnknownArity, nullptr);
1694    return;
1695  }
1696
1697  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1698  assert(Dependent && "Unknown template name kind?");
1699  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1700    manglePrefix(Qualifier);
1701  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1702}
1703
1704void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1705                                          bool NoFunction) {
1706  // <template-prefix> ::= <prefix> <template unqualified-name>
1707  //                   ::= <template-param>
1708  //                   ::= <substitution>
1709  // <template-template-param> ::= <template-param>
1710  //                               <substitution>
1711
1712  if (mangleSubstitution(ND))
1713    return;
1714
1715  // <template-template-param> ::= <template-param>
1716  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1717    mangleTemplateParameter(TTP->getIndex());
1718  } else {
1719    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1720    if (isa<BuiltinTemplateDecl>(ND))
1721      mangleUnqualifiedName(ND, nullptr);
1722    else
1723      mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1724  }
1725
1726  addSubstitution(ND);
1727}
1728
1729/// Mangles a template name under the production <type>.  Required for
1730/// template template arguments.
1731///   <type> ::= <class-enum-type>
1732///          ::= <template-param>
1733///          ::= <substitution>
1734void CXXNameMangler::mangleType(TemplateName TN) {
1735  if (mangleSubstitution(TN))
1736    return;
1737
1738  TemplateDecl *TD = nullptr;
1739
1740  switch (TN.getKind()) {
1741  case TemplateName::QualifiedTemplate:
1742    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1743    goto HaveDecl;
1744
1745  case TemplateName::Template:
1746    TD = TN.getAsTemplateDecl();
1747    goto HaveDecl;
1748
1749  HaveDecl:
1750    if (isa<TemplateTemplateParmDecl>(TD))
1751      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1752    else
1753      mangleName(TD);
1754    break;
1755
1756  case TemplateName::OverloadedTemplate:
1757    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1758
1759  case TemplateName::DependentTemplate: {
1760    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1761    assert(Dependent->isIdentifier());
1762
1763    // <class-enum-type> ::= <name>
1764    // <name> ::= <nested-name>
1765    mangleUnresolvedPrefix(Dependent->getQualifier());
1766    mangleSourceName(Dependent->getIdentifier());
1767    break;
1768  }
1769
1770  case TemplateName::SubstTemplateTemplateParm: {
1771    // Substituted template parameters are mangled as the substituted
1772    // template.  This will check for the substitution twice, which is
1773    // fine, but we have to return early so that we don't try to *add*
1774    // the substitution twice.
1775    SubstTemplateTemplateParmStorage *subst
1776      = TN.getAsSubstTemplateTemplateParm();
1777    mangleType(subst->getReplacement());
1778    return;
1779  }
1780
1781  case TemplateName::SubstTemplateTemplateParmPack: {
1782    // FIXME: not clear how to mangle this!
1783    // template <template <class> class T...> class A {
1784    //   template <template <class> class U...> void foo(B<T,U> x...);
1785    // };
1786    Out << "_SUBSTPACK_";
1787    break;
1788  }
1789  }
1790
1791  addSubstitution(TN);
1792}
1793
1794bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1795                                                    StringRef Prefix) {
1796  // Only certain other types are valid as prefixes;  enumerate them.
1797  switch (Ty->getTypeClass()) {
1798  case Type::Builtin:
1799  case Type::Complex:
1800  case Type::Adjusted:
1801  case Type::Decayed:
1802  case Type::Pointer:
1803  case Type::BlockPointer:
1804  case Type::LValueReference:
1805  case Type::RValueReference:
1806  case Type::MemberPointer:
1807  case Type::ConstantArray:
1808  case Type::IncompleteArray:
1809  case Type::VariableArray:
1810  case Type::DependentSizedArray:
1811  case Type::DependentSizedExtVector:
1812  case Type::Vector:
1813  case Type::ExtVector:
1814  case Type::FunctionProto:
1815  case Type::FunctionNoProto:
1816  case Type::Paren:
1817  case Type::Attributed:
1818  case Type::Auto:
1819  case Type::PackExpansion:
1820  case Type::ObjCObject:
1821  case Type::ObjCInterface:
1822  case Type::ObjCObjectPointer:
1823  case Type::Atomic:
1824  case Type::Pipe:
1825    llvm_unreachable("type is illegal as a nested name specifier");
1826
1827  case Type::SubstTemplateTypeParmPack:
1828    // FIXME: not clear how to mangle this!
1829    // template <class T...> class A {
1830    //   template <class U...> void foo(decltype(T::foo(U())) x...);
1831    // };
1832    Out << "_SUBSTPACK_";
1833    break;
1834
1835  // <unresolved-type> ::= <template-param>
1836  //                   ::= <decltype>
1837  //                   ::= <template-template-param> <template-args>
1838  // (this last is not official yet)
1839  case Type::TypeOfExpr:
1840  case Type::TypeOf:
1841  case Type::Decltype:
1842  case Type::TemplateTypeParm:
1843  case Type::UnaryTransform:
1844  case Type::SubstTemplateTypeParm:
1845  unresolvedType:
1846    // Some callers want a prefix before the mangled type.
1847    Out << Prefix;
1848
1849    // This seems to do everything we want.  It's not really
1850    // sanctioned for a substituted template parameter, though.
1851    mangleType(Ty);
1852
1853    // We never want to print 'E' directly after an unresolved-type,
1854    // so we return directly.
1855    return true;
1856
1857  case Type::Typedef:
1858    mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
1859    break;
1860
1861  case Type::UnresolvedUsing:
1862    mangleSourceNameWithAbiTags(
1863        cast<UnresolvedUsingType>(Ty)->getDecl());
1864    break;
1865
1866  case Type::Enum:
1867  case Type::Record:
1868    mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
1869    break;
1870
1871  case Type::TemplateSpecialization: {
1872    const TemplateSpecializationType *TST =
1873        cast<TemplateSpecializationType>(Ty);
1874    TemplateName TN = TST->getTemplateName();
1875    switch (TN.getKind()) {
1876    case TemplateName::Template:
1877    case TemplateName::QualifiedTemplate: {
1878      TemplateDecl *TD = TN.getAsTemplateDecl();
1879
1880      // If the base is a template template parameter, this is an
1881      // unresolved type.
1882      assert(TD && "no template for template specialization type");
1883      if (isa<TemplateTemplateParmDecl>(TD))
1884        goto unresolvedType;
1885
1886      mangleSourceNameWithAbiTags(TD);
1887      break;
1888    }
1889
1890    case TemplateName::OverloadedTemplate:
1891    case TemplateName::DependentTemplate:
1892      llvm_unreachable("invalid base for a template specialization type");
1893
1894    case TemplateName::SubstTemplateTemplateParm: {
1895      SubstTemplateTemplateParmStorage *subst =
1896          TN.getAsSubstTemplateTemplateParm();
1897      mangleExistingSubstitution(subst->getReplacement());
1898      break;
1899    }
1900
1901    case TemplateName::SubstTemplateTemplateParmPack: {
1902      // FIXME: not clear how to mangle this!
1903      // template <template <class U> class T...> class A {
1904      //   template <class U...> void foo(decltype(T<U>::foo) x...);
1905      // };
1906      Out << "_SUBSTPACK_";
1907      break;
1908    }
1909    }
1910
1911    mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1912    break;
1913  }
1914
1915  case Type::InjectedClassName:
1916    mangleSourceNameWithAbiTags(
1917        cast<InjectedClassNameType>(Ty)->getDecl());
1918    break;
1919
1920  case Type::DependentName:
1921    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
1922    break;
1923
1924  case Type::DependentTemplateSpecialization: {
1925    const DependentTemplateSpecializationType *DTST =
1926        cast<DependentTemplateSpecializationType>(Ty);
1927    mangleSourceName(DTST->getIdentifier());
1928    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1929    break;
1930  }
1931
1932  case Type::Elaborated:
1933    return mangleUnresolvedTypeOrSimpleId(
1934        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
1935  }
1936
1937  return false;
1938}
1939
1940void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
1941  switch (Name.getNameKind()) {
1942  case DeclarationName::CXXConstructorName:
1943  case DeclarationName::CXXDestructorName:
1944  case DeclarationName::CXXUsingDirective:
1945  case DeclarationName::Identifier:
1946  case DeclarationName::ObjCMultiArgSelector:
1947  case DeclarationName::ObjCOneArgSelector:
1948  case DeclarationName::ObjCZeroArgSelector:
1949    llvm_unreachable("Not an operator name");
1950
1951  case DeclarationName::CXXConversionFunctionName:
1952    // <operator-name> ::= cv <type>    # (cast)
1953    Out << "cv";
1954    mangleType(Name.getCXXNameType());
1955    break;
1956
1957  case DeclarationName::CXXLiteralOperatorName:
1958    Out << "li";
1959    mangleSourceName(Name.getCXXLiteralIdentifier());
1960    return;
1961
1962  case DeclarationName::CXXOperatorName:
1963    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1964    break;
1965  }
1966}
1967
1968void
1969CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1970  switch (OO) {
1971  // <operator-name> ::= nw     # new
1972  case OO_New: Out << "nw"; break;
1973  //              ::= na        # new[]
1974  case OO_Array_New: Out << "na"; break;
1975  //              ::= dl        # delete
1976  case OO_Delete: Out << "dl"; break;
1977  //              ::= da        # delete[]
1978  case OO_Array_Delete: Out << "da"; break;
1979  //              ::= ps        # + (unary)
1980  //              ::= pl        # + (binary or unknown)
1981  case OO_Plus:
1982    Out << (Arity == 1? "ps" : "pl"); break;
1983  //              ::= ng        # - (unary)
1984  //              ::= mi        # - (binary or unknown)
1985  case OO_Minus:
1986    Out << (Arity == 1? "ng" : "mi"); break;
1987  //              ::= ad        # & (unary)
1988  //              ::= an        # & (binary or unknown)
1989  case OO_Amp:
1990    Out << (Arity == 1? "ad" : "an"); break;
1991  //              ::= de        # * (unary)
1992  //              ::= ml        # * (binary or unknown)
1993  case OO_Star:
1994    // Use binary when unknown.
1995    Out << (Arity == 1? "de" : "ml"); break;
1996  //              ::= co        # ~
1997  case OO_Tilde: Out << "co"; break;
1998  //              ::= dv        # /
1999  case OO_Slash: Out << "dv"; break;
2000  //              ::= rm        # %
2001  case OO_Percent: Out << "rm"; break;
2002  //              ::= or        # |
2003  case OO_Pipe: Out << "or"; break;
2004  //              ::= eo        # ^
2005  case OO_Caret: Out << "eo"; break;
2006  //              ::= aS        # =
2007  case OO_Equal: Out << "aS"; break;
2008  //              ::= pL        # +=
2009  case OO_PlusEqual: Out << "pL"; break;
2010  //              ::= mI        # -=
2011  case OO_MinusEqual: Out << "mI"; break;
2012  //              ::= mL        # *=
2013  case OO_StarEqual: Out << "mL"; break;
2014  //              ::= dV        # /=
2015  case OO_SlashEqual: Out << "dV"; break;
2016  //              ::= rM        # %=
2017  case OO_PercentEqual: Out << "rM"; break;
2018  //              ::= aN        # &=
2019  case OO_AmpEqual: Out << "aN"; break;
2020  //              ::= oR        # |=
2021  case OO_PipeEqual: Out << "oR"; break;
2022  //              ::= eO        # ^=
2023  case OO_CaretEqual: Out << "eO"; break;
2024  //              ::= ls        # <<
2025  case OO_LessLess: Out << "ls"; break;
2026  //              ::= rs        # >>
2027  case OO_GreaterGreater: Out << "rs"; break;
2028  //              ::= lS        # <<=
2029  case OO_LessLessEqual: Out << "lS"; break;
2030  //              ::= rS        # >>=
2031  case OO_GreaterGreaterEqual: Out << "rS"; break;
2032  //              ::= eq        # ==
2033  case OO_EqualEqual: Out << "eq"; break;
2034  //              ::= ne        # !=
2035  case OO_ExclaimEqual: Out << "ne"; break;
2036  //              ::= lt        # <
2037  case OO_Less: Out << "lt"; break;
2038  //              ::= gt        # >
2039  case OO_Greater: Out << "gt"; break;
2040  //              ::= le        # <=
2041  case OO_LessEqual: Out << "le"; break;
2042  //              ::= ge        # >=
2043  case OO_GreaterEqual: Out << "ge"; break;
2044  //              ::= nt        # !
2045  case OO_Exclaim: Out << "nt"; break;
2046  //              ::= aa        # &&
2047  case OO_AmpAmp: Out << "aa"; break;
2048  //              ::= oo        # ||
2049  case OO_PipePipe: Out << "oo"; break;
2050  //              ::= pp        # ++
2051  case OO_PlusPlus: Out << "pp"; break;
2052  //              ::= mm        # --
2053  case OO_MinusMinus: Out << "mm"; break;
2054  //              ::= cm        # ,
2055  case OO_Comma: Out << "cm"; break;
2056  //              ::= pm        # ->*
2057  case OO_ArrowStar: Out << "pm"; break;
2058  //              ::= pt        # ->
2059  case OO_Arrow: Out << "pt"; break;
2060  //              ::= cl        # ()
2061  case OO_Call: Out << "cl"; break;
2062  //              ::= ix        # []
2063  case OO_Subscript: Out << "ix"; break;
2064
2065  //              ::= qu        # ?
2066  // The conditional operator can't be overloaded, but we still handle it when
2067  // mangling expressions.
2068  case OO_Conditional: Out << "qu"; break;
2069  // Proposal on cxx-abi-dev, 2015-10-21.
2070  //              ::= aw        # co_await
2071  case OO_Coawait: Out << "aw"; break;
2072
2073  case OO_None:
2074  case NUM_OVERLOADED_OPERATORS:
2075    llvm_unreachable("Not an overloaded operator");
2076  }
2077}
2078
2079void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
2080  // Vendor qualifiers come first.
2081
2082  // Address space qualifiers start with an ordinary letter.
2083  if (Quals.hasAddressSpace()) {
2084    // Address space extension:
2085    //
2086    //   <type> ::= U <target-addrspace>
2087    //   <type> ::= U <OpenCL-addrspace>
2088    //   <type> ::= U <CUDA-addrspace>
2089
2090    SmallString<64> ASString;
2091    unsigned AS = Quals.getAddressSpace();
2092
2093    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2094      //  <target-addrspace> ::= "AS" <address-space-number>
2095      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2096      ASString = "AS" + llvm::utostr(TargetAS);
2097    } else {
2098      switch (AS) {
2099      default: llvm_unreachable("Not a language specific address space");
2100      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
2101      case LangAS::opencl_global:   ASString = "CLglobal";   break;
2102      case LangAS::opencl_local:    ASString = "CLlocal";    break;
2103      case LangAS::opencl_constant: ASString = "CLconstant"; break;
2104      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2105      case LangAS::cuda_device:     ASString = "CUdevice";   break;
2106      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2107      case LangAS::cuda_shared:     ASString = "CUshared";   break;
2108      }
2109    }
2110    mangleVendorQualifier(ASString);
2111  }
2112
2113  // The ARC ownership qualifiers start with underscores.
2114  switch (Quals.getObjCLifetime()) {
2115  // Objective-C ARC Extension:
2116  //
2117  //   <type> ::= U "__strong"
2118  //   <type> ::= U "__weak"
2119  //   <type> ::= U "__autoreleasing"
2120  case Qualifiers::OCL_None:
2121    break;
2122
2123  case Qualifiers::OCL_Weak:
2124    mangleVendorQualifier("__weak");
2125    break;
2126
2127  case Qualifiers::OCL_Strong:
2128    mangleVendorQualifier("__strong");
2129    break;
2130
2131  case Qualifiers::OCL_Autoreleasing:
2132    mangleVendorQualifier("__autoreleasing");
2133    break;
2134
2135  case Qualifiers::OCL_ExplicitNone:
2136    // The __unsafe_unretained qualifier is *not* mangled, so that
2137    // __unsafe_unretained types in ARC produce the same manglings as the
2138    // equivalent (but, naturally, unqualified) types in non-ARC, providing
2139    // better ABI compatibility.
2140    //
2141    // It's safe to do this because unqualified 'id' won't show up
2142    // in any type signatures that need to be mangled.
2143    break;
2144  }
2145
2146  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2147  if (Quals.hasRestrict())
2148    Out << 'r';
2149  if (Quals.hasVolatile())
2150    Out << 'V';
2151  if (Quals.hasConst())
2152    Out << 'K';
2153}
2154
2155void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2156  Out << 'U' << name.size() << name;
2157}
2158
2159void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2160  // <ref-qualifier> ::= R                # lvalue reference
2161  //                 ::= O                # rvalue-reference
2162  switch (RefQualifier) {
2163  case RQ_None:
2164    break;
2165
2166  case RQ_LValue:
2167    Out << 'R';
2168    break;
2169
2170  case RQ_RValue:
2171    Out << 'O';
2172    break;
2173  }
2174}
2175
2176void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2177  Context.mangleObjCMethodName(MD, Out);
2178}
2179
2180static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
2181  if (Quals)
2182    return true;
2183  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2184    return true;
2185  if (Ty->isOpenCLSpecificType())
2186    return true;
2187  if (Ty->isBuiltinType())
2188    return false;
2189
2190  return true;
2191}
2192
2193void CXXNameMangler::mangleType(QualType T) {
2194  // If our type is instantiation-dependent but not dependent, we mangle
2195  // it as it was written in the source, removing any top-level sugar.
2196  // Otherwise, use the canonical type.
2197  //
2198  // FIXME: This is an approximation of the instantiation-dependent name
2199  // mangling rules, since we should really be using the type as written and
2200  // augmented via semantic analysis (i.e., with implicit conversions and
2201  // default template arguments) for any instantiation-dependent type.
2202  // Unfortunately, that requires several changes to our AST:
2203  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2204  //     uniqued, so that we can handle substitutions properly
2205  //   - Default template arguments will need to be represented in the
2206  //     TemplateSpecializationType, since they need to be mangled even though
2207  //     they aren't written.
2208  //   - Conversions on non-type template arguments need to be expressed, since
2209  //     they can affect the mangling of sizeof/alignof.
2210  if (!T->isInstantiationDependentType() || T->isDependentType())
2211    T = T.getCanonicalType();
2212  else {
2213    // Desugar any types that are purely sugar.
2214    do {
2215      // Don't desugar through template specialization types that aren't
2216      // type aliases. We need to mangle the template arguments as written.
2217      if (const TemplateSpecializationType *TST
2218                                      = dyn_cast<TemplateSpecializationType>(T))
2219        if (!TST->isTypeAlias())
2220          break;
2221
2222      QualType Desugared
2223        = T.getSingleStepDesugaredType(Context.getASTContext());
2224      if (Desugared == T)
2225        break;
2226
2227      T = Desugared;
2228    } while (true);
2229  }
2230  SplitQualType split = T.split();
2231  Qualifiers quals = split.Quals;
2232  const Type *ty = split.Ty;
2233
2234  bool isSubstitutable = isTypeSubstitutable(quals, ty);
2235  if (isSubstitutable && mangleSubstitution(T))
2236    return;
2237
2238  // If we're mangling a qualified array type, push the qualifiers to
2239  // the element type.
2240  if (quals && isa<ArrayType>(T)) {
2241    ty = Context.getASTContext().getAsArrayType(T);
2242    quals = Qualifiers();
2243
2244    // Note that we don't update T: we want to add the
2245    // substitution at the original type.
2246  }
2247
2248  if (quals) {
2249    mangleQualifiers(quals);
2250    // Recurse:  even if the qualified type isn't yet substitutable,
2251    // the unqualified type might be.
2252    mangleType(QualType(ty, 0));
2253  } else {
2254    switch (ty->getTypeClass()) {
2255#define ABSTRACT_TYPE(CLASS, PARENT)
2256#define NON_CANONICAL_TYPE(CLASS, PARENT) \
2257    case Type::CLASS: \
2258      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2259      return;
2260#define TYPE(CLASS, PARENT) \
2261    case Type::CLASS: \
2262      mangleType(static_cast<const CLASS##Type*>(ty)); \
2263      break;
2264#include "clang/AST/TypeNodes.def"
2265    }
2266  }
2267
2268  // Add the substitution.
2269  if (isSubstitutable)
2270    addSubstitution(T);
2271}
2272
2273void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2274  if (!mangleStandardSubstitution(ND))
2275    mangleName(ND);
2276}
2277
2278void CXXNameMangler::mangleType(const BuiltinType *T) {
2279  //  <type>         ::= <builtin-type>
2280  //  <builtin-type> ::= v  # void
2281  //                 ::= w  # wchar_t
2282  //                 ::= b  # bool
2283  //                 ::= c  # char
2284  //                 ::= a  # signed char
2285  //                 ::= h  # unsigned char
2286  //                 ::= s  # short
2287  //                 ::= t  # unsigned short
2288  //                 ::= i  # int
2289  //                 ::= j  # unsigned int
2290  //                 ::= l  # long
2291  //                 ::= m  # unsigned long
2292  //                 ::= x  # long long, __int64
2293  //                 ::= y  # unsigned long long, __int64
2294  //                 ::= n  # __int128
2295  //                 ::= o  # unsigned __int128
2296  //                 ::= f  # float
2297  //                 ::= d  # double
2298  //                 ::= e  # long double, __float80
2299  //                 ::= g  # __float128
2300  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2301  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2302  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2303  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2304  //                 ::= Di # char32_t
2305  //                 ::= Ds # char16_t
2306  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2307  //                 ::= u <source-name>    # vendor extended type
2308  std::string type_name;
2309  switch (T->getKind()) {
2310  case BuiltinType::Void:
2311    Out << 'v';
2312    break;
2313  case BuiltinType::Bool:
2314    Out << 'b';
2315    break;
2316  case BuiltinType::Char_U:
2317  case BuiltinType::Char_S:
2318    Out << 'c';
2319    break;
2320  case BuiltinType::UChar:
2321    Out << 'h';
2322    break;
2323  case BuiltinType::UShort:
2324    Out << 't';
2325    break;
2326  case BuiltinType::UInt:
2327    Out << 'j';
2328    break;
2329  case BuiltinType::ULong:
2330    Out << 'm';
2331    break;
2332  case BuiltinType::ULongLong:
2333    Out << 'y';
2334    break;
2335  case BuiltinType::UInt128:
2336    Out << 'o';
2337    break;
2338  case BuiltinType::SChar:
2339    Out << 'a';
2340    break;
2341  case BuiltinType::WChar_S:
2342  case BuiltinType::WChar_U:
2343    Out << 'w';
2344    break;
2345  case BuiltinType::Char16:
2346    Out << "Ds";
2347    break;
2348  case BuiltinType::Char32:
2349    Out << "Di";
2350    break;
2351  case BuiltinType::Short:
2352    Out << 's';
2353    break;
2354  case BuiltinType::Int:
2355    Out << 'i';
2356    break;
2357  case BuiltinType::Long:
2358    Out << 'l';
2359    break;
2360  case BuiltinType::LongLong:
2361    Out << 'x';
2362    break;
2363  case BuiltinType::Int128:
2364    Out << 'n';
2365    break;
2366  case BuiltinType::Half:
2367    Out << "Dh";
2368    break;
2369  case BuiltinType::Float:
2370    Out << 'f';
2371    break;
2372  case BuiltinType::Double:
2373    Out << 'd';
2374    break;
2375  case BuiltinType::LongDouble:
2376    Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2377                ? 'g'
2378                : 'e');
2379    break;
2380  case BuiltinType::Float128:
2381    if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble())
2382      Out << "U10__float128"; // Match the GCC mangling
2383    else
2384      Out << 'g';
2385    break;
2386  case BuiltinType::NullPtr:
2387    Out << "Dn";
2388    break;
2389
2390#define BUILTIN_TYPE(Id, SingletonId)
2391#define PLACEHOLDER_TYPE(Id, SingletonId) \
2392  case BuiltinType::Id:
2393#include "clang/AST/BuiltinTypes.def"
2394  case BuiltinType::Dependent:
2395    if (!NullOut)
2396      llvm_unreachable("mangling a placeholder type");
2397    break;
2398  case BuiltinType::ObjCId:
2399    Out << "11objc_object";
2400    break;
2401  case BuiltinType::ObjCClass:
2402    Out << "10objc_class";
2403    break;
2404  case BuiltinType::ObjCSel:
2405    Out << "13objc_selector";
2406    break;
2407#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2408  case BuiltinType::Id: \
2409    type_name = "ocl_" #ImgType "_" #Suffix; \
2410    Out << type_name.size() << type_name; \
2411    break;
2412#include "clang/Basic/OpenCLImageTypes.def"
2413  case BuiltinType::OCLSampler:
2414    Out << "11ocl_sampler";
2415    break;
2416  case BuiltinType::OCLEvent:
2417    Out << "9ocl_event";
2418    break;
2419  case BuiltinType::OCLClkEvent:
2420    Out << "12ocl_clkevent";
2421    break;
2422  case BuiltinType::OCLQueue:
2423    Out << "9ocl_queue";
2424    break;
2425  case BuiltinType::OCLNDRange:
2426    Out << "11ocl_ndrange";
2427    break;
2428  case BuiltinType::OCLReserveID:
2429    Out << "13ocl_reserveid";
2430    break;
2431  }
2432}
2433
2434StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2435  switch (CC) {
2436  case CC_C:
2437    return "";
2438
2439  case CC_X86StdCall:
2440  case CC_X86FastCall:
2441  case CC_X86ThisCall:
2442  case CC_X86VectorCall:
2443  case CC_X86Pascal:
2444  case CC_X86_64Win64:
2445  case CC_X86_64SysV:
2446  case CC_AAPCS:
2447  case CC_AAPCS_VFP:
2448  case CC_IntelOclBicc:
2449  case CC_SpirFunction:
2450  case CC_OpenCLKernel:
2451  case CC_PreserveMost:
2452  case CC_PreserveAll:
2453    // FIXME: we should be mangling all of the above.
2454    return "";
2455
2456  case CC_Swift:
2457    return "swiftcall";
2458  }
2459  llvm_unreachable("bad calling convention");
2460}
2461
2462void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2463  // Fast path.
2464  if (T->getExtInfo() == FunctionType::ExtInfo())
2465    return;
2466
2467  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2468  // This will get more complicated in the future if we mangle other
2469  // things here; but for now, since we mangle ns_returns_retained as
2470  // a qualifier on the result type, we can get away with this:
2471  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2472  if (!CCQualifier.empty())
2473    mangleVendorQualifier(CCQualifier);
2474
2475  // FIXME: regparm
2476  // FIXME: noreturn
2477}
2478
2479void
2480CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2481  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2482
2483  // Note that these are *not* substitution candidates.  Demanglers might
2484  // have trouble with this if the parameter type is fully substituted.
2485
2486  switch (PI.getABI()) {
2487  case ParameterABI::Ordinary:
2488    break;
2489
2490  // All of these start with "swift", so they come before "ns_consumed".
2491  case ParameterABI::SwiftContext:
2492  case ParameterABI::SwiftErrorResult:
2493  case ParameterABI::SwiftIndirectResult:
2494    mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2495    break;
2496  }
2497
2498  if (PI.isConsumed())
2499    mangleVendorQualifier("ns_consumed");
2500}
2501
2502// <type>          ::= <function-type>
2503// <function-type> ::= [<CV-qualifiers>] F [Y]
2504//                      <bare-function-type> [<ref-qualifier>] E
2505void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2506  mangleExtFunctionInfo(T);
2507
2508  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2509  // e.g. "const" in "int (A::*)() const".
2510  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2511
2512  Out << 'F';
2513
2514  // FIXME: We don't have enough information in the AST to produce the 'Y'
2515  // encoding for extern "C" function types.
2516  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2517
2518  // Mangle the ref-qualifier, if present.
2519  mangleRefQualifier(T->getRefQualifier());
2520
2521  Out << 'E';
2522}
2523
2524void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2525  // Function types without prototypes can arise when mangling a function type
2526  // within an overloadable function in C. We mangle these as the absence of any
2527  // parameter types (not even an empty parameter list).
2528  Out << 'F';
2529
2530  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2531
2532  FunctionTypeDepth.enterResultType();
2533  mangleType(T->getReturnType());
2534  FunctionTypeDepth.leaveResultType();
2535
2536  FunctionTypeDepth.pop(saved);
2537  Out << 'E';
2538}
2539
2540void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2541                                            bool MangleReturnType,
2542                                            const FunctionDecl *FD) {
2543  // Record that we're in a function type.  See mangleFunctionParam
2544  // for details on what we're trying to achieve here.
2545  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2546
2547  // <bare-function-type> ::= <signature type>+
2548  if (MangleReturnType) {
2549    FunctionTypeDepth.enterResultType();
2550
2551    // Mangle ns_returns_retained as an order-sensitive qualifier here.
2552    if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2553      mangleVendorQualifier("ns_returns_retained");
2554
2555    // Mangle the return type without any direct ARC ownership qualifiers.
2556    QualType ReturnTy = Proto->getReturnType();
2557    if (ReturnTy.getObjCLifetime()) {
2558      auto SplitReturnTy = ReturnTy.split();
2559      SplitReturnTy.Quals.removeObjCLifetime();
2560      ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2561    }
2562    mangleType(ReturnTy);
2563
2564    FunctionTypeDepth.leaveResultType();
2565  }
2566
2567  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2568    //   <builtin-type> ::= v   # void
2569    Out << 'v';
2570
2571    FunctionTypeDepth.pop(saved);
2572    return;
2573  }
2574
2575  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2576  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2577    // Mangle extended parameter info as order-sensitive qualifiers here.
2578    if (Proto->hasExtParameterInfos() && FD == nullptr) {
2579      mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2580    }
2581
2582    // Mangle the type.
2583    QualType ParamTy = Proto->getParamType(I);
2584    mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2585
2586    if (FD) {
2587      if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2588        // Attr can only take 1 character, so we can hardcode the length below.
2589        assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2590        Out << "U17pass_object_size" << Attr->getType();
2591      }
2592    }
2593  }
2594
2595  FunctionTypeDepth.pop(saved);
2596
2597  // <builtin-type>      ::= z  # ellipsis
2598  if (Proto->isVariadic())
2599    Out << 'z';
2600}
2601
2602// <type>            ::= <class-enum-type>
2603// <class-enum-type> ::= <name>
2604void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2605  mangleName(T->getDecl());
2606}
2607
2608// <type>            ::= <class-enum-type>
2609// <class-enum-type> ::= <name>
2610void CXXNameMangler::mangleType(const EnumType *T) {
2611  mangleType(static_cast<const TagType*>(T));
2612}
2613void CXXNameMangler::mangleType(const RecordType *T) {
2614  mangleType(static_cast<const TagType*>(T));
2615}
2616void CXXNameMangler::mangleType(const TagType *T) {
2617  mangleName(T->getDecl());
2618}
2619
2620// <type>       ::= <array-type>
2621// <array-type> ::= A <positive dimension number> _ <element type>
2622//              ::= A [<dimension expression>] _ <element type>
2623void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2624  Out << 'A' << T->getSize() << '_';
2625  mangleType(T->getElementType());
2626}
2627void CXXNameMangler::mangleType(const VariableArrayType *T) {
2628  Out << 'A';
2629  // decayed vla types (size 0) will just be skipped.
2630  if (T->getSizeExpr())
2631    mangleExpression(T->getSizeExpr());
2632  Out << '_';
2633  mangleType(T->getElementType());
2634}
2635void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2636  Out << 'A';
2637  mangleExpression(T->getSizeExpr());
2638  Out << '_';
2639  mangleType(T->getElementType());
2640}
2641void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2642  Out << "A_";
2643  mangleType(T->getElementType());
2644}
2645
2646// <type>                   ::= <pointer-to-member-type>
2647// <pointer-to-member-type> ::= M <class type> <member type>
2648void CXXNameMangler::mangleType(const MemberPointerType *T) {
2649  Out << 'M';
2650  mangleType(QualType(T->getClass(), 0));
2651  QualType PointeeType = T->getPointeeType();
2652  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2653    mangleType(FPT);
2654
2655    // Itanium C++ ABI 5.1.8:
2656    //
2657    //   The type of a non-static member function is considered to be different,
2658    //   for the purposes of substitution, from the type of a namespace-scope or
2659    //   static member function whose type appears similar. The types of two
2660    //   non-static member functions are considered to be different, for the
2661    //   purposes of substitution, if the functions are members of different
2662    //   classes. In other words, for the purposes of substitution, the class of
2663    //   which the function is a member is considered part of the type of
2664    //   function.
2665
2666    // Given that we already substitute member function pointers as a
2667    // whole, the net effect of this rule is just to unconditionally
2668    // suppress substitution on the function type in a member pointer.
2669    // We increment the SeqID here to emulate adding an entry to the
2670    // substitution table.
2671    ++SeqID;
2672  } else
2673    mangleType(PointeeType);
2674}
2675
2676// <type>           ::= <template-param>
2677void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2678  mangleTemplateParameter(T->getIndex());
2679}
2680
2681// <type>           ::= <template-param>
2682void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2683  // FIXME: not clear how to mangle this!
2684  // template <class T...> class A {
2685  //   template <class U...> void foo(T(*)(U) x...);
2686  // };
2687  Out << "_SUBSTPACK_";
2688}
2689
2690// <type> ::= P <type>   # pointer-to
2691void CXXNameMangler::mangleType(const PointerType *T) {
2692  Out << 'P';
2693  mangleType(T->getPointeeType());
2694}
2695void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2696  Out << 'P';
2697  mangleType(T->getPointeeType());
2698}
2699
2700// <type> ::= R <type>   # reference-to
2701void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2702  Out << 'R';
2703  mangleType(T->getPointeeType());
2704}
2705
2706// <type> ::= O <type>   # rvalue reference-to (C++0x)
2707void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2708  Out << 'O';
2709  mangleType(T->getPointeeType());
2710}
2711
2712// <type> ::= C <type>   # complex pair (C 2000)
2713void CXXNameMangler::mangleType(const ComplexType *T) {
2714  Out << 'C';
2715  mangleType(T->getElementType());
2716}
2717
2718// ARM's ABI for Neon vector types specifies that they should be mangled as
2719// if they are structs (to match ARM's initial implementation).  The
2720// vector type must be one of the special types predefined by ARM.
2721void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2722  QualType EltType = T->getElementType();
2723  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2724  const char *EltName = nullptr;
2725  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2726    switch (cast<BuiltinType>(EltType)->getKind()) {
2727    case BuiltinType::SChar:
2728    case BuiltinType::UChar:
2729      EltName = "poly8_t";
2730      break;
2731    case BuiltinType::Short:
2732    case BuiltinType::UShort:
2733      EltName = "poly16_t";
2734      break;
2735    case BuiltinType::ULongLong:
2736      EltName = "poly64_t";
2737      break;
2738    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2739    }
2740  } else {
2741    switch (cast<BuiltinType>(EltType)->getKind()) {
2742    case BuiltinType::SChar:     EltName = "int8_t"; break;
2743    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2744    case BuiltinType::Short:     EltName = "int16_t"; break;
2745    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2746    case BuiltinType::Int:       EltName = "int32_t"; break;
2747    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2748    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2749    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2750    case BuiltinType::Double:    EltName = "float64_t"; break;
2751    case BuiltinType::Float:     EltName = "float32_t"; break;
2752    case BuiltinType::Half:      EltName = "float16_t";break;
2753    default:
2754      llvm_unreachable("unexpected Neon vector element type");
2755    }
2756  }
2757  const char *BaseName = nullptr;
2758  unsigned BitSize = (T->getNumElements() *
2759                      getASTContext().getTypeSize(EltType));
2760  if (BitSize == 64)
2761    BaseName = "__simd64_";
2762  else {
2763    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2764    BaseName = "__simd128_";
2765  }
2766  Out << strlen(BaseName) + strlen(EltName);
2767  Out << BaseName << EltName;
2768}
2769
2770static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2771  switch (EltType->getKind()) {
2772  case BuiltinType::SChar:
2773    return "Int8";
2774  case BuiltinType::Short:
2775    return "Int16";
2776  case BuiltinType::Int:
2777    return "Int32";
2778  case BuiltinType::Long:
2779  case BuiltinType::LongLong:
2780    return "Int64";
2781  case BuiltinType::UChar:
2782    return "Uint8";
2783  case BuiltinType::UShort:
2784    return "Uint16";
2785  case BuiltinType::UInt:
2786    return "Uint32";
2787  case BuiltinType::ULong:
2788  case BuiltinType::ULongLong:
2789    return "Uint64";
2790  case BuiltinType::Half:
2791    return "Float16";
2792  case BuiltinType::Float:
2793    return "Float32";
2794  case BuiltinType::Double:
2795    return "Float64";
2796  default:
2797    llvm_unreachable("Unexpected vector element base type");
2798  }
2799}
2800
2801// AArch64's ABI for Neon vector types specifies that they should be mangled as
2802// the equivalent internal name. The vector type must be one of the special
2803// types predefined by ARM.
2804void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2805  QualType EltType = T->getElementType();
2806  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2807  unsigned BitSize =
2808      (T->getNumElements() * getASTContext().getTypeSize(EltType));
2809  (void)BitSize; // Silence warning.
2810
2811  assert((BitSize == 64 || BitSize == 128) &&
2812         "Neon vector type not 64 or 128 bits");
2813
2814  StringRef EltName;
2815  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2816    switch (cast<BuiltinType>(EltType)->getKind()) {
2817    case BuiltinType::UChar:
2818      EltName = "Poly8";
2819      break;
2820    case BuiltinType::UShort:
2821      EltName = "Poly16";
2822      break;
2823    case BuiltinType::ULong:
2824    case BuiltinType::ULongLong:
2825      EltName = "Poly64";
2826      break;
2827    default:
2828      llvm_unreachable("unexpected Neon polynomial vector element type");
2829    }
2830  } else
2831    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2832
2833  std::string TypeName =
2834      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
2835  Out << TypeName.length() << TypeName;
2836}
2837
2838// GNU extension: vector types
2839// <type>                  ::= <vector-type>
2840// <vector-type>           ::= Dv <positive dimension number> _
2841//                                    <extended element type>
2842//                         ::= Dv [<dimension expression>] _ <element type>
2843// <extended element type> ::= <element type>
2844//                         ::= p # AltiVec vector pixel
2845//                         ::= b # Altivec vector bool
2846void CXXNameMangler::mangleType(const VectorType *T) {
2847  if ((T->getVectorKind() == VectorType::NeonVector ||
2848       T->getVectorKind() == VectorType::NeonPolyVector)) {
2849    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2850    llvm::Triple::ArchType Arch =
2851        getASTContext().getTargetInfo().getTriple().getArch();
2852    if ((Arch == llvm::Triple::aarch64 ||
2853         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2854      mangleAArch64NeonVectorType(T);
2855    else
2856      mangleNeonVectorType(T);
2857    return;
2858  }
2859  Out << "Dv" << T->getNumElements() << '_';
2860  if (T->getVectorKind() == VectorType::AltiVecPixel)
2861    Out << 'p';
2862  else if (T->getVectorKind() == VectorType::AltiVecBool)
2863    Out << 'b';
2864  else
2865    mangleType(T->getElementType());
2866}
2867void CXXNameMangler::mangleType(const ExtVectorType *T) {
2868  mangleType(static_cast<const VectorType*>(T));
2869}
2870void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2871  Out << "Dv";
2872  mangleExpression(T->getSizeExpr());
2873  Out << '_';
2874  mangleType(T->getElementType());
2875}
2876
2877void CXXNameMangler::mangleType(const PackExpansionType *T) {
2878  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2879  Out << "Dp";
2880  mangleType(T->getPattern());
2881}
2882
2883void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2884  mangleSourceName(T->getDecl()->getIdentifier());
2885}
2886
2887void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2888  // Treat __kindof as a vendor extended type qualifier.
2889  if (T->isKindOfType())
2890    Out << "U8__kindof";
2891
2892  if (!T->qual_empty()) {
2893    // Mangle protocol qualifiers.
2894    SmallString<64> QualStr;
2895    llvm::raw_svector_ostream QualOS(QualStr);
2896    QualOS << "objcproto";
2897    for (const auto *I : T->quals()) {
2898      StringRef name = I->getName();
2899      QualOS << name.size() << name;
2900    }
2901    Out << 'U' << QualStr.size() << QualStr;
2902  }
2903
2904  mangleType(T->getBaseType());
2905
2906  if (T->isSpecialized()) {
2907    // Mangle type arguments as I <type>+ E
2908    Out << 'I';
2909    for (auto typeArg : T->getTypeArgs())
2910      mangleType(typeArg);
2911    Out << 'E';
2912  }
2913}
2914
2915void CXXNameMangler::mangleType(const BlockPointerType *T) {
2916  Out << "U13block_pointer";
2917  mangleType(T->getPointeeType());
2918}
2919
2920void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2921  // Mangle injected class name types as if the user had written the
2922  // specialization out fully.  It may not actually be possible to see
2923  // this mangling, though.
2924  mangleType(T->getInjectedSpecializationType());
2925}
2926
2927void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2928  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2929    mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
2930  } else {
2931    if (mangleSubstitution(QualType(T, 0)))
2932      return;
2933
2934    mangleTemplatePrefix(T->getTemplateName());
2935
2936    // FIXME: GCC does not appear to mangle the template arguments when
2937    // the template in question is a dependent template name. Should we
2938    // emulate that badness?
2939    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2940    addSubstitution(QualType(T, 0));
2941  }
2942}
2943
2944void CXXNameMangler::mangleType(const DependentNameType *T) {
2945  // Proposal by cxx-abi-dev, 2014-03-26
2946  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2947  //                                 # dependent elaborated type specifier using
2948  //                                 # 'typename'
2949  //                   ::= Ts <name> # dependent elaborated type specifier using
2950  //                                 # 'struct' or 'class'
2951  //                   ::= Tu <name> # dependent elaborated type specifier using
2952  //                                 # 'union'
2953  //                   ::= Te <name> # dependent elaborated type specifier using
2954  //                                 # 'enum'
2955  switch (T->getKeyword()) {
2956    case ETK_Typename:
2957      break;
2958    case ETK_Struct:
2959    case ETK_Class:
2960    case ETK_Interface:
2961      Out << "Ts";
2962      break;
2963    case ETK_Union:
2964      Out << "Tu";
2965      break;
2966    case ETK_Enum:
2967      Out << "Te";
2968      break;
2969    default:
2970      llvm_unreachable("unexpected keyword for dependent type name");
2971  }
2972  // Typename types are always nested
2973  Out << 'N';
2974  manglePrefix(T->getQualifier());
2975  mangleSourceName(T->getIdentifier());
2976  Out << 'E';
2977}
2978
2979void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2980  // Dependently-scoped template types are nested if they have a prefix.
2981  Out << 'N';
2982
2983  // TODO: avoid making this TemplateName.
2984  TemplateName Prefix =
2985    getASTContext().getDependentTemplateName(T->getQualifier(),
2986                                             T->getIdentifier());
2987  mangleTemplatePrefix(Prefix);
2988
2989  // FIXME: GCC does not appear to mangle the template arguments when
2990  // the template in question is a dependent template name. Should we
2991  // emulate that badness?
2992  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2993  Out << 'E';
2994}
2995
2996void CXXNameMangler::mangleType(const TypeOfType *T) {
2997  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2998  // "extension with parameters" mangling.
2999  Out << "u6typeof";
3000}
3001
3002void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3003  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3004  // "extension with parameters" mangling.
3005  Out << "u6typeof";
3006}
3007
3008void CXXNameMangler::mangleType(const DecltypeType *T) {
3009  Expr *E = T->getUnderlyingExpr();
3010
3011  // type ::= Dt <expression> E  # decltype of an id-expression
3012  //                             #   or class member access
3013  //      ::= DT <expression> E  # decltype of an expression
3014
3015  // This purports to be an exhaustive list of id-expressions and
3016  // class member accesses.  Note that we do not ignore parentheses;
3017  // parentheses change the semantics of decltype for these
3018  // expressions (and cause the mangler to use the other form).
3019  if (isa<DeclRefExpr>(E) ||
3020      isa<MemberExpr>(E) ||
3021      isa<UnresolvedLookupExpr>(E) ||
3022      isa<DependentScopeDeclRefExpr>(E) ||
3023      isa<CXXDependentScopeMemberExpr>(E) ||
3024      isa<UnresolvedMemberExpr>(E))
3025    Out << "Dt";
3026  else
3027    Out << "DT";
3028  mangleExpression(E);
3029  Out << 'E';
3030}
3031
3032void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3033  // If this is dependent, we need to record that. If not, we simply
3034  // mangle it as the underlying type since they are equivalent.
3035  if (T->isDependentType()) {
3036    Out << 'U';
3037
3038    switch (T->getUTTKind()) {
3039      case UnaryTransformType::EnumUnderlyingType:
3040        Out << "3eut";
3041        break;
3042    }
3043  }
3044
3045  mangleType(T->getBaseType());
3046}
3047
3048void CXXNameMangler::mangleType(const AutoType *T) {
3049  QualType D = T->getDeducedType();
3050  // <builtin-type> ::= Da  # dependent auto
3051  if (D.isNull()) {
3052    assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3053           "shouldn't need to mangle __auto_type!");
3054    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3055  } else
3056    mangleType(D);
3057}
3058
3059void CXXNameMangler::mangleType(const AtomicType *T) {
3060  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3061  // (Until there's a standardized mangling...)
3062  Out << "U7_Atomic";
3063  mangleType(T->getValueType());
3064}
3065
3066void CXXNameMangler::mangleType(const PipeType *T) {
3067  // Pipe type mangling rules are described in SPIR 2.0 specification
3068  // A.1 Data types and A.3 Summary of changes
3069  // <type> ::= 8ocl_pipe
3070  Out << "8ocl_pipe";
3071}
3072
3073void CXXNameMangler::mangleIntegerLiteral(QualType T,
3074                                          const llvm::APSInt &Value) {
3075  //  <expr-primary> ::= L <type> <value number> E # integer literal
3076  Out << 'L';
3077
3078  mangleType(T);
3079  if (T->isBooleanType()) {
3080    // Boolean values are encoded as 0/1.
3081    Out << (Value.getBoolValue() ? '1' : '0');
3082  } else {
3083    mangleNumber(Value);
3084  }
3085  Out << 'E';
3086
3087}
3088
3089void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3090  // Ignore member expressions involving anonymous unions.
3091  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3092    if (!RT->getDecl()->isAnonymousStructOrUnion())
3093      break;
3094    const auto *ME = dyn_cast<MemberExpr>(Base);
3095    if (!ME)
3096      break;
3097    Base = ME->getBase();
3098    IsArrow = ME->isArrow();
3099  }
3100
3101  if (Base->isImplicitCXXThis()) {
3102    // Note: GCC mangles member expressions to the implicit 'this' as
3103    // *this., whereas we represent them as this->. The Itanium C++ ABI
3104    // does not specify anything here, so we follow GCC.
3105    Out << "dtdefpT";
3106  } else {
3107    Out << (IsArrow ? "pt" : "dt");
3108    mangleExpression(Base);
3109  }
3110}
3111
3112/// Mangles a member expression.
3113void CXXNameMangler::mangleMemberExpr(const Expr *base,
3114                                      bool isArrow,
3115                                      NestedNameSpecifier *qualifier,
3116                                      NamedDecl *firstQualifierLookup,
3117                                      DeclarationName member,
3118                                      unsigned arity) {
3119  // <expression> ::= dt <expression> <unresolved-name>
3120  //              ::= pt <expression> <unresolved-name>
3121  if (base)
3122    mangleMemberExprBase(base, isArrow);
3123  mangleUnresolvedName(qualifier, member, arity);
3124}
3125
3126/// Look at the callee of the given call expression and determine if
3127/// it's a parenthesized id-expression which would have triggered ADL
3128/// otherwise.
3129static bool isParenthesizedADLCallee(const CallExpr *call) {
3130  const Expr *callee = call->getCallee();
3131  const Expr *fn = callee->IgnoreParens();
3132
3133  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3134  // too, but for those to appear in the callee, it would have to be
3135  // parenthesized.
3136  if (callee == fn) return false;
3137
3138  // Must be an unresolved lookup.
3139  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3140  if (!lookup) return false;
3141
3142  assert(!lookup->requiresADL());
3143
3144  // Must be an unqualified lookup.
3145  if (lookup->getQualifier()) return false;
3146
3147  // Must not have found a class member.  Note that if one is a class
3148  // member, they're all class members.
3149  if (lookup->getNumDecls() > 0 &&
3150      (*lookup->decls_begin())->isCXXClassMember())
3151    return false;
3152
3153  // Otherwise, ADL would have been triggered.
3154  return true;
3155}
3156
3157void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3158  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3159  Out << CastEncoding;
3160  mangleType(ECE->getType());
3161  mangleExpression(ECE->getSubExpr());
3162}
3163
3164void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3165  if (auto *Syntactic = InitList->getSyntacticForm())
3166    InitList = Syntactic;
3167  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3168    mangleExpression(InitList->getInit(i));
3169}
3170
3171void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3172  // <expression> ::= <unary operator-name> <expression>
3173  //              ::= <binary operator-name> <expression> <expression>
3174  //              ::= <trinary operator-name> <expression> <expression> <expression>
3175  //              ::= cv <type> expression           # conversion with one argument
3176  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3177  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3178  //              ::= sc <type> <expression>         # static_cast<type> (expression)
3179  //              ::= cc <type> <expression>         # const_cast<type> (expression)
3180  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3181  //              ::= st <type>                      # sizeof (a type)
3182  //              ::= at <type>                      # alignof (a type)
3183  //              ::= <template-param>
3184  //              ::= <function-param>
3185  //              ::= sr <type> <unqualified-name>                   # dependent name
3186  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3187  //              ::= ds <expression> <expression>                   # expr.*expr
3188  //              ::= sZ <template-param>                            # size of a parameter pack
3189  //              ::= sZ <function-param>    # size of a function parameter pack
3190  //              ::= <expr-primary>
3191  // <expr-primary> ::= L <type> <value number> E    # integer literal
3192  //                ::= L <type <value float> E      # floating literal
3193  //                ::= L <mangled-name> E           # external name
3194  //                ::= fpT                          # 'this' expression
3195  QualType ImplicitlyConvertedToType;
3196
3197recurse:
3198  switch (E->getStmtClass()) {
3199  case Expr::NoStmtClass:
3200#define ABSTRACT_STMT(Type)
3201#define EXPR(Type, Base)
3202#define STMT(Type, Base) \
3203  case Expr::Type##Class:
3204#include "clang/AST/StmtNodes.inc"
3205    // fallthrough
3206
3207  // These all can only appear in local or variable-initialization
3208  // contexts and so should never appear in a mangling.
3209  case Expr::AddrLabelExprClass:
3210  case Expr::DesignatedInitUpdateExprClass:
3211  case Expr::ImplicitValueInitExprClass:
3212  case Expr::NoInitExprClass:
3213  case Expr::ParenListExprClass:
3214  case Expr::LambdaExprClass:
3215  case Expr::MSPropertyRefExprClass:
3216  case Expr::MSPropertySubscriptExprClass:
3217  case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
3218  case Expr::OMPArraySectionExprClass:
3219  case Expr::CXXInheritedCtorInitExprClass:
3220    llvm_unreachable("unexpected statement kind");
3221
3222  // FIXME: invent manglings for all these.
3223  case Expr::BlockExprClass:
3224  case Expr::ChooseExprClass:
3225  case Expr::CompoundLiteralExprClass:
3226  case Expr::DesignatedInitExprClass:
3227  case Expr::ExtVectorElementExprClass:
3228  case Expr::GenericSelectionExprClass:
3229  case Expr::ObjCEncodeExprClass:
3230  case Expr::ObjCIsaExprClass:
3231  case Expr::ObjCIvarRefExprClass:
3232  case Expr::ObjCMessageExprClass:
3233  case Expr::ObjCPropertyRefExprClass:
3234  case Expr::ObjCProtocolExprClass:
3235  case Expr::ObjCSelectorExprClass:
3236  case Expr::ObjCStringLiteralClass:
3237  case Expr::ObjCBoxedExprClass:
3238  case Expr::ObjCArrayLiteralClass:
3239  case Expr::ObjCDictionaryLiteralClass:
3240  case Expr::ObjCSubscriptRefExprClass:
3241  case Expr::ObjCIndirectCopyRestoreExprClass:
3242  case Expr::OffsetOfExprClass:
3243  case Expr::PredefinedExprClass:
3244  case Expr::ShuffleVectorExprClass:
3245  case Expr::ConvertVectorExprClass:
3246  case Expr::StmtExprClass:
3247  case Expr::TypeTraitExprClass:
3248  case Expr::ArrayTypeTraitExprClass:
3249  case Expr::ExpressionTraitExprClass:
3250  case Expr::VAArgExprClass:
3251  case Expr::CUDAKernelCallExprClass:
3252  case Expr::AsTypeExprClass:
3253  case Expr::PseudoObjectExprClass:
3254  case Expr::AtomicExprClass:
3255  {
3256    if (!NullOut) {
3257      // As bad as this diagnostic is, it's better than crashing.
3258      DiagnosticsEngine &Diags = Context.getDiags();
3259      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3260                                       "cannot yet mangle expression type %0");
3261      Diags.Report(E->getExprLoc(), DiagID)
3262        << E->getStmtClassName() << E->getSourceRange();
3263    }
3264    break;
3265  }
3266
3267  case Expr::CXXUuidofExprClass: {
3268    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3269    if (UE->isTypeOperand()) {
3270      QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3271      Out << "u8__uuidoft";
3272      mangleType(UuidT);
3273    } else {
3274      Expr *UuidExp = UE->getExprOperand();
3275      Out << "u8__uuidofz";
3276      mangleExpression(UuidExp, Arity);
3277    }
3278    break;
3279  }
3280
3281  // Even gcc-4.5 doesn't mangle this.
3282  case Expr::BinaryConditionalOperatorClass: {
3283    DiagnosticsEngine &Diags = Context.getDiags();
3284    unsigned DiagID =
3285      Diags.getCustomDiagID(DiagnosticsEngine::Error,
3286                "?: operator with omitted middle operand cannot be mangled");
3287    Diags.Report(E->getExprLoc(), DiagID)
3288      << E->getStmtClassName() << E->getSourceRange();
3289    break;
3290  }
3291
3292  // These are used for internal purposes and cannot be meaningfully mangled.
3293  case Expr::OpaqueValueExprClass:
3294    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3295
3296  case Expr::InitListExprClass: {
3297    Out << "il";
3298    mangleInitListElements(cast<InitListExpr>(E));
3299    Out << "E";
3300    break;
3301  }
3302
3303  case Expr::CXXDefaultArgExprClass:
3304    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3305    break;
3306
3307  case Expr::CXXDefaultInitExprClass:
3308    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3309    break;
3310
3311  case Expr::CXXStdInitializerListExprClass:
3312    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3313    break;
3314
3315  case Expr::SubstNonTypeTemplateParmExprClass:
3316    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3317                     Arity);
3318    break;
3319
3320  case Expr::UserDefinedLiteralClass:
3321    // We follow g++'s approach of mangling a UDL as a call to the literal
3322    // operator.
3323  case Expr::CXXMemberCallExprClass: // fallthrough
3324  case Expr::CallExprClass: {
3325    const CallExpr *CE = cast<CallExpr>(E);
3326
3327    // <expression> ::= cp <simple-id> <expression>* E
3328    // We use this mangling only when the call would use ADL except
3329    // for being parenthesized.  Per discussion with David
3330    // Vandervoorde, 2011.04.25.
3331    if (isParenthesizedADLCallee(CE)) {
3332      Out << "cp";
3333      // The callee here is a parenthesized UnresolvedLookupExpr with
3334      // no qualifier and should always get mangled as a <simple-id>
3335      // anyway.
3336
3337    // <expression> ::= cl <expression>* E
3338    } else {
3339      Out << "cl";
3340    }
3341
3342    unsigned CallArity = CE->getNumArgs();
3343    for (const Expr *Arg : CE->arguments())
3344      if (isa<PackExpansionExpr>(Arg))
3345        CallArity = UnknownArity;
3346
3347    mangleExpression(CE->getCallee(), CallArity);
3348    for (const Expr *Arg : CE->arguments())
3349      mangleExpression(Arg);
3350    Out << 'E';
3351    break;
3352  }
3353
3354  case Expr::CXXNewExprClass: {
3355    const CXXNewExpr *New = cast<CXXNewExpr>(E);
3356    if (New->isGlobalNew()) Out << "gs";
3357    Out << (New->isArray() ? "na" : "nw");
3358    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3359           E = New->placement_arg_end(); I != E; ++I)
3360      mangleExpression(*I);
3361    Out << '_';
3362    mangleType(New->getAllocatedType());
3363    if (New->hasInitializer()) {
3364      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3365        Out << "il";
3366      else
3367        Out << "pi";
3368      const Expr *Init = New->getInitializer();
3369      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3370        // Directly inline the initializers.
3371        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3372                                                  E = CCE->arg_end();
3373             I != E; ++I)
3374          mangleExpression(*I);
3375      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3376        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3377          mangleExpression(PLE->getExpr(i));
3378      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3379                 isa<InitListExpr>(Init)) {
3380        // Only take InitListExprs apart for list-initialization.
3381        mangleInitListElements(cast<InitListExpr>(Init));
3382      } else
3383        mangleExpression(Init);
3384    }
3385    Out << 'E';
3386    break;
3387  }
3388
3389  case Expr::CXXPseudoDestructorExprClass: {
3390    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3391    if (const Expr *Base = PDE->getBase())
3392      mangleMemberExprBase(Base, PDE->isArrow());
3393    NestedNameSpecifier *Qualifier = PDE->getQualifier();
3394    QualType ScopeType;
3395    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3396      if (Qualifier) {
3397        mangleUnresolvedPrefix(Qualifier,
3398                               /*Recursive=*/true);
3399        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3400        Out << 'E';
3401      } else {
3402        Out << "sr";
3403        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3404          Out << 'E';
3405      }
3406    } else if (Qualifier) {
3407      mangleUnresolvedPrefix(Qualifier);
3408    }
3409    // <base-unresolved-name> ::= dn <destructor-name>
3410    Out << "dn";
3411    QualType DestroyedType = PDE->getDestroyedType();
3412    mangleUnresolvedTypeOrSimpleId(DestroyedType);
3413    break;
3414  }
3415
3416  case Expr::MemberExprClass: {
3417    const MemberExpr *ME = cast<MemberExpr>(E);
3418    mangleMemberExpr(ME->getBase(), ME->isArrow(),
3419                     ME->getQualifier(), nullptr,
3420                     ME->getMemberDecl()->getDeclName(), Arity);
3421    break;
3422  }
3423
3424  case Expr::UnresolvedMemberExprClass: {
3425    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3426    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3427                     ME->isArrow(), ME->getQualifier(), nullptr,
3428                     ME->getMemberName(), Arity);
3429    if (ME->hasExplicitTemplateArgs())
3430      mangleTemplateArgs(ME->getTemplateArgs(), ME->getNumTemplateArgs());
3431    break;
3432  }
3433
3434  case Expr::CXXDependentScopeMemberExprClass: {
3435    const CXXDependentScopeMemberExpr *ME
3436      = cast<CXXDependentScopeMemberExpr>(E);
3437    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3438                     ME->isArrow(), ME->getQualifier(),
3439                     ME->getFirstQualifierFoundInScope(),
3440                     ME->getMember(), Arity);
3441    if (ME->hasExplicitTemplateArgs())
3442      mangleTemplateArgs(ME->getTemplateArgs(), ME->getNumTemplateArgs());
3443    break;
3444  }
3445
3446  case Expr::UnresolvedLookupExprClass: {
3447    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3448    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
3449
3450    // All the <unresolved-name> productions end in a
3451    // base-unresolved-name, where <template-args> are just tacked
3452    // onto the end.
3453    if (ULE->hasExplicitTemplateArgs())
3454      mangleTemplateArgs(ULE->getTemplateArgs(), ULE->getNumTemplateArgs());
3455    break;
3456  }
3457
3458  case Expr::CXXUnresolvedConstructExprClass: {
3459    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3460    unsigned N = CE->arg_size();
3461
3462    Out << "cv";
3463    mangleType(CE->getType());
3464    if (N != 1) Out << '_';
3465    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3466    if (N != 1) Out << 'E';
3467    break;
3468  }
3469
3470  case Expr::CXXConstructExprClass: {
3471    const auto *CE = cast<CXXConstructExpr>(E);
3472    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3473      assert(
3474          CE->getNumArgs() >= 1 &&
3475          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3476          "implicit CXXConstructExpr must have one argument");
3477      return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3478    }
3479    Out << "il";
3480    for (auto *E : CE->arguments())
3481      mangleExpression(E);
3482    Out << "E";
3483    break;
3484  }
3485
3486  case Expr::CXXTemporaryObjectExprClass: {
3487    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3488    unsigned N = CE->getNumArgs();
3489    bool List = CE->isListInitialization();
3490
3491    if (List)
3492      Out << "tl";
3493    else
3494      Out << "cv";
3495    mangleType(CE->getType());
3496    if (!List && N != 1)
3497      Out << '_';
3498    if (CE->isStdInitListInitialization()) {
3499      // We implicitly created a std::initializer_list<T> for the first argument
3500      // of a constructor of type U in an expression of the form U{a, b, c}.
3501      // Strip all the semantic gunk off the initializer list.
3502      auto *SILE =
3503          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3504      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3505      mangleInitListElements(ILE);
3506    } else {
3507      for (auto *E : CE->arguments())
3508        mangleExpression(E);
3509    }
3510    if (List || N != 1)
3511      Out << 'E';
3512    break;
3513  }
3514
3515  case Expr::CXXScalarValueInitExprClass:
3516    Out << "cv";
3517    mangleType(E->getType());
3518    Out << "_E";
3519    break;
3520
3521  case Expr::CXXNoexceptExprClass:
3522    Out << "nx";
3523    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3524    break;
3525
3526  case Expr::UnaryExprOrTypeTraitExprClass: {
3527    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3528
3529    if (!SAE->isInstantiationDependent()) {
3530      // Itanium C++ ABI:
3531      //   If the operand of a sizeof or alignof operator is not
3532      //   instantiation-dependent it is encoded as an integer literal
3533      //   reflecting the result of the operator.
3534      //
3535      //   If the result of the operator is implicitly converted to a known
3536      //   integer type, that type is used for the literal; otherwise, the type
3537      //   of std::size_t or std::ptrdiff_t is used.
3538      QualType T = (ImplicitlyConvertedToType.isNull() ||
3539                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3540                                                    : ImplicitlyConvertedToType;
3541      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3542      mangleIntegerLiteral(T, V);
3543      break;
3544    }
3545
3546    switch(SAE->getKind()) {
3547    case UETT_SizeOf:
3548      Out << 's';
3549      break;
3550    case UETT_AlignOf:
3551      Out << 'a';
3552      break;
3553    case UETT_VecStep: {
3554      DiagnosticsEngine &Diags = Context.getDiags();
3555      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3556                                     "cannot yet mangle vec_step expression");
3557      Diags.Report(DiagID);
3558      return;
3559    }
3560    case UETT_OpenMPRequiredSimdAlign:
3561      DiagnosticsEngine &Diags = Context.getDiags();
3562      unsigned DiagID = Diags.getCustomDiagID(
3563          DiagnosticsEngine::Error,
3564          "cannot yet mangle __builtin_omp_required_simd_align expression");
3565      Diags.Report(DiagID);
3566      return;
3567    }
3568    if (SAE->isArgumentType()) {
3569      Out << 't';
3570      mangleType(SAE->getArgumentType());
3571    } else {
3572      Out << 'z';
3573      mangleExpression(SAE->getArgumentExpr());
3574    }
3575    break;
3576  }
3577
3578  case Expr::CXXThrowExprClass: {
3579    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3580    //  <expression> ::= tw <expression>  # throw expression
3581    //               ::= tr               # rethrow
3582    if (TE->getSubExpr()) {
3583      Out << "tw";
3584      mangleExpression(TE->getSubExpr());
3585    } else {
3586      Out << "tr";
3587    }
3588    break;
3589  }
3590
3591  case Expr::CXXTypeidExprClass: {
3592    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3593    //  <expression> ::= ti <type>        # typeid (type)
3594    //               ::= te <expression>  # typeid (expression)
3595    if (TIE->isTypeOperand()) {
3596      Out << "ti";
3597      mangleType(TIE->getTypeOperand(Context.getASTContext()));
3598    } else {
3599      Out << "te";
3600      mangleExpression(TIE->getExprOperand());
3601    }
3602    break;
3603  }
3604
3605  case Expr::CXXDeleteExprClass: {
3606    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3607    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3608    //               ::= [gs] da <expression>  # [::] delete [] expr
3609    if (DE->isGlobalDelete()) Out << "gs";
3610    Out << (DE->isArrayForm() ? "da" : "dl");
3611    mangleExpression(DE->getArgument());
3612    break;
3613  }
3614
3615  case Expr::UnaryOperatorClass: {
3616    const UnaryOperator *UO = cast<UnaryOperator>(E);
3617    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3618                       /*Arity=*/1);
3619    mangleExpression(UO->getSubExpr());
3620    break;
3621  }
3622
3623  case Expr::ArraySubscriptExprClass: {
3624    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3625
3626    // Array subscript is treated as a syntactically weird form of
3627    // binary operator.
3628    Out << "ix";
3629    mangleExpression(AE->getLHS());
3630    mangleExpression(AE->getRHS());
3631    break;
3632  }
3633
3634  case Expr::CompoundAssignOperatorClass: // fallthrough
3635  case Expr::BinaryOperatorClass: {
3636    const BinaryOperator *BO = cast<BinaryOperator>(E);
3637    if (BO->getOpcode() == BO_PtrMemD)
3638      Out << "ds";
3639    else
3640      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3641                         /*Arity=*/2);
3642    mangleExpression(BO->getLHS());
3643    mangleExpression(BO->getRHS());
3644    break;
3645  }
3646
3647  case Expr::ConditionalOperatorClass: {
3648    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3649    mangleOperatorName(OO_Conditional, /*Arity=*/3);
3650    mangleExpression(CO->getCond());
3651    mangleExpression(CO->getLHS(), Arity);
3652    mangleExpression(CO->getRHS(), Arity);
3653    break;
3654  }
3655
3656  case Expr::ImplicitCastExprClass: {
3657    ImplicitlyConvertedToType = E->getType();
3658    E = cast<ImplicitCastExpr>(E)->getSubExpr();
3659    goto recurse;
3660  }
3661
3662  case Expr::ObjCBridgedCastExprClass: {
3663    // Mangle ownership casts as a vendor extended operator __bridge,
3664    // __bridge_transfer, or __bridge_retain.
3665    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3666    Out << "v1U" << Kind.size() << Kind;
3667  }
3668  // Fall through to mangle the cast itself.
3669
3670  case Expr::CStyleCastExprClass:
3671    mangleCastExpression(E, "cv");
3672    break;
3673
3674  case Expr::CXXFunctionalCastExprClass: {
3675    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3676    // FIXME: Add isImplicit to CXXConstructExpr.
3677    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3678      if (CCE->getParenOrBraceRange().isInvalid())
3679        Sub = CCE->getArg(0)->IgnoreImplicit();
3680    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3681      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3682    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3683      Out << "tl";
3684      mangleType(E->getType());
3685      mangleInitListElements(IL);
3686      Out << "E";
3687    } else {
3688      mangleCastExpression(E, "cv");
3689    }
3690    break;
3691  }
3692
3693  case Expr::CXXStaticCastExprClass:
3694    mangleCastExpression(E, "sc");
3695    break;
3696  case Expr::CXXDynamicCastExprClass:
3697    mangleCastExpression(E, "dc");
3698    break;
3699  case Expr::CXXReinterpretCastExprClass:
3700    mangleCastExpression(E, "rc");
3701    break;
3702  case Expr::CXXConstCastExprClass:
3703    mangleCastExpression(E, "cc");
3704    break;
3705
3706  case Expr::CXXOperatorCallExprClass: {
3707    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3708    unsigned NumArgs = CE->getNumArgs();
3709    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3710    // Mangle the arguments.
3711    for (unsigned i = 0; i != NumArgs; ++i)
3712      mangleExpression(CE->getArg(i));
3713    break;
3714  }
3715
3716  case Expr::ParenExprClass:
3717    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3718    break;
3719
3720  case Expr::DeclRefExprClass: {
3721    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3722
3723    switch (D->getKind()) {
3724    default:
3725      //  <expr-primary> ::= L <mangled-name> E # external name
3726      Out << 'L';
3727      mangle(D);
3728      Out << 'E';
3729      break;
3730
3731    case Decl::ParmVar:
3732      mangleFunctionParam(cast<ParmVarDecl>(D));
3733      break;
3734
3735    case Decl::EnumConstant: {
3736      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3737      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3738      break;
3739    }
3740
3741    case Decl::NonTypeTemplateParm: {
3742      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3743      mangleTemplateParameter(PD->getIndex());
3744      break;
3745    }
3746
3747    }
3748
3749    break;
3750  }
3751
3752  case Expr::SubstNonTypeTemplateParmPackExprClass:
3753    // FIXME: not clear how to mangle this!
3754    // template <unsigned N...> class A {
3755    //   template <class U...> void foo(U (&x)[N]...);
3756    // };
3757    Out << "_SUBSTPACK_";
3758    break;
3759
3760  case Expr::FunctionParmPackExprClass: {
3761    // FIXME: not clear how to mangle this!
3762    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3763    Out << "v110_SUBSTPACK";
3764    mangleFunctionParam(FPPE->getParameterPack());
3765    break;
3766  }
3767
3768  case Expr::DependentScopeDeclRefExprClass: {
3769    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3770    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
3771
3772    // All the <unresolved-name> productions end in a
3773    // base-unresolved-name, where <template-args> are just tacked
3774    // onto the end.
3775    if (DRE->hasExplicitTemplateArgs())
3776      mangleTemplateArgs(DRE->getTemplateArgs(), DRE->getNumTemplateArgs());
3777    break;
3778  }
3779
3780  case Expr::CXXBindTemporaryExprClass:
3781    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3782    break;
3783
3784  case Expr::ExprWithCleanupsClass:
3785    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3786    break;
3787
3788  case Expr::FloatingLiteralClass: {
3789    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3790    Out << 'L';
3791    mangleType(FL->getType());
3792    mangleFloat(FL->getValue());
3793    Out << 'E';
3794    break;
3795  }
3796
3797  case Expr::CharacterLiteralClass:
3798    Out << 'L';
3799    mangleType(E->getType());
3800    Out << cast<CharacterLiteral>(E)->getValue();
3801    Out << 'E';
3802    break;
3803
3804  // FIXME. __objc_yes/__objc_no are mangled same as true/false
3805  case Expr::ObjCBoolLiteralExprClass:
3806    Out << "Lb";
3807    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3808    Out << 'E';
3809    break;
3810
3811  case Expr::CXXBoolLiteralExprClass:
3812    Out << "Lb";
3813    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3814    Out << 'E';
3815    break;
3816
3817  case Expr::IntegerLiteralClass: {
3818    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3819    if (E->getType()->isSignedIntegerType())
3820      Value.setIsSigned(true);
3821    mangleIntegerLiteral(E->getType(), Value);
3822    break;
3823  }
3824
3825  case Expr::ImaginaryLiteralClass: {
3826    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3827    // Mangle as if a complex literal.
3828    // Proposal from David Vandevoorde, 2010.06.30.
3829    Out << 'L';
3830    mangleType(E->getType());
3831    if (const FloatingLiteral *Imag =
3832          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3833      // Mangle a floating-point zero of the appropriate type.
3834      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3835      Out << '_';
3836      mangleFloat(Imag->getValue());
3837    } else {
3838      Out << "0_";
3839      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3840      if (IE->getSubExpr()->getType()->isSignedIntegerType())
3841        Value.setIsSigned(true);
3842      mangleNumber(Value);
3843    }
3844    Out << 'E';
3845    break;
3846  }
3847
3848  case Expr::StringLiteralClass: {
3849    // Revised proposal from David Vandervoorde, 2010.07.15.
3850    Out << 'L';
3851    assert(isa<ConstantArrayType>(E->getType()));
3852    mangleType(E->getType());
3853    Out << 'E';
3854    break;
3855  }
3856
3857  case Expr::GNUNullExprClass:
3858    // FIXME: should this really be mangled the same as nullptr?
3859    // fallthrough
3860
3861  case Expr::CXXNullPtrLiteralExprClass: {
3862    Out << "LDnE";
3863    break;
3864  }
3865
3866  case Expr::PackExpansionExprClass:
3867    Out << "sp";
3868    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3869    break;
3870
3871  case Expr::SizeOfPackExprClass: {
3872    auto *SPE = cast<SizeOfPackExpr>(E);
3873    if (SPE->isPartiallySubstituted()) {
3874      Out << "sP";
3875      for (const auto &A : SPE->getPartialArguments())
3876        mangleTemplateArg(A);
3877      Out << "E";
3878      break;
3879    }
3880
3881    Out << "sZ";
3882    const NamedDecl *Pack = SPE->getPack();
3883    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3884      mangleTemplateParameter(TTP->getIndex());
3885    else if (const NonTypeTemplateParmDecl *NTTP
3886                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3887      mangleTemplateParameter(NTTP->getIndex());
3888    else if (const TemplateTemplateParmDecl *TempTP
3889                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
3890      mangleTemplateParameter(TempTP->getIndex());
3891    else
3892      mangleFunctionParam(cast<ParmVarDecl>(Pack));
3893    break;
3894  }
3895
3896  case Expr::MaterializeTemporaryExprClass: {
3897    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3898    break;
3899  }
3900
3901  case Expr::CXXFoldExprClass: {
3902    auto *FE = cast<CXXFoldExpr>(E);
3903    if (FE->isLeftFold())
3904      Out << (FE->getInit() ? "fL" : "fl");
3905    else
3906      Out << (FE->getInit() ? "fR" : "fr");
3907
3908    if (FE->getOperator() == BO_PtrMemD)
3909      Out << "ds";
3910    else
3911      mangleOperatorName(
3912          BinaryOperator::getOverloadedOperator(FE->getOperator()),
3913          /*Arity=*/2);
3914
3915    if (FE->getLHS())
3916      mangleExpression(FE->getLHS());
3917    if (FE->getRHS())
3918      mangleExpression(FE->getRHS());
3919    break;
3920  }
3921
3922  case Expr::CXXThisExprClass:
3923    Out << "fpT";
3924    break;
3925
3926  case Expr::CoawaitExprClass:
3927    // FIXME: Propose a non-vendor mangling.
3928    Out << "v18co_await";
3929    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
3930    break;
3931
3932  case Expr::CoyieldExprClass:
3933    // FIXME: Propose a non-vendor mangling.
3934    Out << "v18co_yield";
3935    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
3936    break;
3937  }
3938}
3939
3940/// Mangle an expression which refers to a parameter variable.
3941///
3942/// <expression>     ::= <function-param>
3943/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3944/// <function-param> ::= fp <top-level CV-qualifiers>
3945///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3946/// <function-param> ::= fL <L-1 non-negative number>
3947///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3948/// <function-param> ::= fL <L-1 non-negative number>
3949///                      p <top-level CV-qualifiers>
3950///                      <I-1 non-negative number> _         # L > 0, I > 0
3951///
3952/// L is the nesting depth of the parameter, defined as 1 if the
3953/// parameter comes from the innermost function prototype scope
3954/// enclosing the current context, 2 if from the next enclosing
3955/// function prototype scope, and so on, with one special case: if
3956/// we've processed the full parameter clause for the innermost
3957/// function type, then L is one less.  This definition conveniently
3958/// makes it irrelevant whether a function's result type was written
3959/// trailing or leading, but is otherwise overly complicated; the
3960/// numbering was first designed without considering references to
3961/// parameter in locations other than return types, and then the
3962/// mangling had to be generalized without changing the existing
3963/// manglings.
3964///
3965/// I is the zero-based index of the parameter within its parameter
3966/// declaration clause.  Note that the original ABI document describes
3967/// this using 1-based ordinals.
3968void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3969  unsigned parmDepth = parm->getFunctionScopeDepth();
3970  unsigned parmIndex = parm->getFunctionScopeIndex();
3971
3972  // Compute 'L'.
3973  // parmDepth does not include the declaring function prototype.
3974  // FunctionTypeDepth does account for that.
3975  assert(parmDepth < FunctionTypeDepth.getDepth());
3976  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3977  if (FunctionTypeDepth.isInResultType())
3978    nestingDepth--;
3979
3980  if (nestingDepth == 0) {
3981    Out << "fp";
3982  } else {
3983    Out << "fL" << (nestingDepth - 1) << 'p';
3984  }
3985
3986  // Top-level qualifiers.  We don't have to worry about arrays here,
3987  // because parameters declared as arrays should already have been
3988  // transformed to have pointer type. FIXME: apparently these don't
3989  // get mangled if used as an rvalue of a known non-class type?
3990  assert(!parm->getType()->isArrayType()
3991         && "parameter's type is still an array type?");
3992  mangleQualifiers(parm->getType().getQualifiers());
3993
3994  // Parameter index.
3995  if (parmIndex != 0) {
3996    Out << (parmIndex - 1);
3997  }
3998  Out << '_';
3999}
4000
4001void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4002                                       const CXXRecordDecl *InheritedFrom) {
4003  // <ctor-dtor-name> ::= C1  # complete object constructor
4004  //                  ::= C2  # base object constructor
4005  //                  ::= CI1 <type> # complete inheriting constructor
4006  //                  ::= CI2 <type> # base inheriting constructor
4007  //
4008  // In addition, C5 is a comdat name with C1 and C2 in it.
4009  Out << 'C';
4010  if (InheritedFrom)
4011    Out << 'I';
4012  switch (T) {
4013  case Ctor_Complete:
4014    Out << '1';
4015    break;
4016  case Ctor_Base:
4017    Out << '2';
4018    break;
4019  case Ctor_Comdat:
4020    Out << '5';
4021    break;
4022  case Ctor_DefaultClosure:
4023  case Ctor_CopyingClosure:
4024    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4025  }
4026  if (InheritedFrom)
4027    mangleName(InheritedFrom);
4028}
4029
4030void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4031  // <ctor-dtor-name> ::= D0  # deleting destructor
4032  //                  ::= D1  # complete object destructor
4033  //                  ::= D2  # base object destructor
4034  //
4035  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4036  switch (T) {
4037  case Dtor_Deleting:
4038    Out << "D0";
4039    break;
4040  case Dtor_Complete:
4041    Out << "D1";
4042    break;
4043  case Dtor_Base:
4044    Out << "D2";
4045    break;
4046  case Dtor_Comdat:
4047    Out << "D5";
4048    break;
4049  }
4050}
4051
4052void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4053                                        unsigned NumTemplateArgs) {
4054  // <template-args> ::= I <template-arg>+ E
4055  Out << 'I';
4056  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4057    mangleTemplateArg(TemplateArgs[i].getArgument());
4058  Out << 'E';
4059}
4060
4061void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4062  // <template-args> ::= I <template-arg>+ E
4063  Out << 'I';
4064  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4065    mangleTemplateArg(AL[i]);
4066  Out << 'E';
4067}
4068
4069void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4070                                        unsigned NumTemplateArgs) {
4071  // <template-args> ::= I <template-arg>+ E
4072  Out << 'I';
4073  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4074    mangleTemplateArg(TemplateArgs[i]);
4075  Out << 'E';
4076}
4077
4078void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4079  // <template-arg> ::= <type>              # type or template
4080  //                ::= X <expression> E    # expression
4081  //                ::= <expr-primary>      # simple expressions
4082  //                ::= J <template-arg>* E # argument pack
4083  if (!A.isInstantiationDependent() || A.isDependent())
4084    A = Context.getASTContext().getCanonicalTemplateArgument(A);
4085
4086  switch (A.getKind()) {
4087  case TemplateArgument::Null:
4088    llvm_unreachable("Cannot mangle NULL template argument");
4089
4090  case TemplateArgument::Type:
4091    mangleType(A.getAsType());
4092    break;
4093  case TemplateArgument::Template:
4094    // This is mangled as <type>.
4095    mangleType(A.getAsTemplate());
4096    break;
4097  case TemplateArgument::TemplateExpansion:
4098    // <type>  ::= Dp <type>          # pack expansion (C++0x)
4099    Out << "Dp";
4100    mangleType(A.getAsTemplateOrTemplatePattern());
4101    break;
4102  case TemplateArgument::Expression: {
4103    // It's possible to end up with a DeclRefExpr here in certain
4104    // dependent cases, in which case we should mangle as a
4105    // declaration.
4106    const Expr *E = A.getAsExpr()->IgnoreParens();
4107    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4108      const ValueDecl *D = DRE->getDecl();
4109      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4110        Out << 'L';
4111        mangle(D);
4112        Out << 'E';
4113        break;
4114      }
4115    }
4116
4117    Out << 'X';
4118    mangleExpression(E);
4119    Out << 'E';
4120    break;
4121  }
4122  case TemplateArgument::Integral:
4123    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4124    break;
4125  case TemplateArgument::Declaration: {
4126    //  <expr-primary> ::= L <mangled-name> E # external name
4127    // Clang produces AST's where pointer-to-member-function expressions
4128    // and pointer-to-function expressions are represented as a declaration not
4129    // an expression. We compensate for it here to produce the correct mangling.
4130    ValueDecl *D = A.getAsDecl();
4131    bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4132    if (compensateMangling) {
4133      Out << 'X';
4134      mangleOperatorName(OO_Amp, 1);
4135    }
4136
4137    Out << 'L';
4138    // References to external entities use the mangled name; if the name would
4139    // not normally be mangled then mangle it as unqualified.
4140    mangle(D);
4141    Out << 'E';
4142
4143    if (compensateMangling)
4144      Out << 'E';
4145
4146    break;
4147  }
4148  case TemplateArgument::NullPtr: {
4149    //  <expr-primary> ::= L <type> 0 E
4150    Out << 'L';
4151    mangleType(A.getNullPtrType());
4152    Out << "0E";
4153    break;
4154  }
4155  case TemplateArgument::Pack: {
4156    //  <template-arg> ::= J <template-arg>* E
4157    Out << 'J';
4158    for (const auto &P : A.pack_elements())
4159      mangleTemplateArg(P);
4160    Out << 'E';
4161  }
4162  }
4163}
4164
4165void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
4166  // <template-param> ::= T_    # first template parameter
4167  //                  ::= T <parameter-2 non-negative number> _
4168  if (Index == 0)
4169    Out << "T_";
4170  else
4171    Out << 'T' << (Index - 1) << '_';
4172}
4173
4174void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4175  if (SeqID == 1)
4176    Out << '0';
4177  else if (SeqID > 1) {
4178    SeqID--;
4179
4180    // <seq-id> is encoded in base-36, using digits and upper case letters.
4181    char Buffer[7]; // log(2**32) / log(36) ~= 7
4182    MutableArrayRef<char> BufferRef(Buffer);
4183    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4184
4185    for (; SeqID != 0; SeqID /= 36) {
4186      unsigned C = SeqID % 36;
4187      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4188    }
4189
4190    Out.write(I.base(), I - BufferRef.rbegin());
4191  }
4192  Out << '_';
4193}
4194
4195void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4196  bool result = mangleSubstitution(tname);
4197  assert(result && "no existing substitution for template name");
4198  (void) result;
4199}
4200
4201// <substitution> ::= S <seq-id> _
4202//                ::= S_
4203bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4204  // Try one of the standard substitutions first.
4205  if (mangleStandardSubstitution(ND))
4206    return true;
4207
4208  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4209  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4210}
4211
4212/// Determine whether the given type has any qualifiers that are relevant for
4213/// substitutions.
4214static bool hasMangledSubstitutionQualifiers(QualType T) {
4215  Qualifiers Qs = T.getQualifiers();
4216  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
4217}
4218
4219bool CXXNameMangler::mangleSubstitution(QualType T) {
4220  if (!hasMangledSubstitutionQualifiers(T)) {
4221    if (const RecordType *RT = T->getAs<RecordType>())
4222      return mangleSubstitution(RT->getDecl());
4223  }
4224
4225  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4226
4227  return mangleSubstitution(TypePtr);
4228}
4229
4230bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4231  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4232    return mangleSubstitution(TD);
4233
4234  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4235  return mangleSubstitution(
4236                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4237}
4238
4239bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4240  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4241  if (I == Substitutions.end())
4242    return false;
4243
4244  unsigned SeqID = I->second;
4245  Out << 'S';
4246  mangleSeqID(SeqID);
4247
4248  return true;
4249}
4250
4251static bool isCharType(QualType T) {
4252  if (T.isNull())
4253    return false;
4254
4255  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4256    T->isSpecificBuiltinType(BuiltinType::Char_U);
4257}
4258
4259/// Returns whether a given type is a template specialization of a given name
4260/// with a single argument of type char.
4261static bool isCharSpecialization(QualType T, const char *Name) {
4262  if (T.isNull())
4263    return false;
4264
4265  const RecordType *RT = T->getAs<RecordType>();
4266  if (!RT)
4267    return false;
4268
4269  const ClassTemplateSpecializationDecl *SD =
4270    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4271  if (!SD)
4272    return false;
4273
4274  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4275    return false;
4276
4277  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4278  if (TemplateArgs.size() != 1)
4279    return false;
4280
4281  if (!isCharType(TemplateArgs[0].getAsType()))
4282    return false;
4283
4284  return SD->getIdentifier()->getName() == Name;
4285}
4286
4287template <std::size_t StrLen>
4288static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4289                                       const char (&Str)[StrLen]) {
4290  if (!SD->getIdentifier()->isStr(Str))
4291    return false;
4292
4293  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4294  if (TemplateArgs.size() != 2)
4295    return false;
4296
4297  if (!isCharType(TemplateArgs[0].getAsType()))
4298    return false;
4299
4300  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4301    return false;
4302
4303  return true;
4304}
4305
4306bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4307  // <substitution> ::= St # ::std::
4308  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4309    if (isStd(NS)) {
4310      Out << "St";
4311      return true;
4312    }
4313  }
4314
4315  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4316    if (!isStdNamespace(getEffectiveDeclContext(TD)))
4317      return false;
4318
4319    // <substitution> ::= Sa # ::std::allocator
4320    if (TD->getIdentifier()->isStr("allocator")) {
4321      Out << "Sa";
4322      return true;
4323    }
4324
4325    // <<substitution> ::= Sb # ::std::basic_string
4326    if (TD->getIdentifier()->isStr("basic_string")) {
4327      Out << "Sb";
4328      return true;
4329    }
4330  }
4331
4332  if (const ClassTemplateSpecializationDecl *SD =
4333        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4334    if (!isStdNamespace(getEffectiveDeclContext(SD)))
4335      return false;
4336
4337    //    <substitution> ::= Ss # ::std::basic_string<char,
4338    //                            ::std::char_traits<char>,
4339    //                            ::std::allocator<char> >
4340    if (SD->getIdentifier()->isStr("basic_string")) {
4341      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4342
4343      if (TemplateArgs.size() != 3)
4344        return false;
4345
4346      if (!isCharType(TemplateArgs[0].getAsType()))
4347        return false;
4348
4349      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4350        return false;
4351
4352      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4353        return false;
4354
4355      Out << "Ss";
4356      return true;
4357    }
4358
4359    //    <substitution> ::= Si # ::std::basic_istream<char,
4360    //                            ::std::char_traits<char> >
4361    if (isStreamCharSpecialization(SD, "basic_istream")) {
4362      Out << "Si";
4363      return true;
4364    }
4365
4366    //    <substitution> ::= So # ::std::basic_ostream<char,
4367    //                            ::std::char_traits<char> >
4368    if (isStreamCharSpecialization(SD, "basic_ostream")) {
4369      Out << "So";
4370      return true;
4371    }
4372
4373    //    <substitution> ::= Sd # ::std::basic_iostream<char,
4374    //                            ::std::char_traits<char> >
4375    if (isStreamCharSpecialization(SD, "basic_iostream")) {
4376      Out << "Sd";
4377      return true;
4378    }
4379  }
4380  return false;
4381}
4382
4383void CXXNameMangler::addSubstitution(QualType T) {
4384  if (!hasMangledSubstitutionQualifiers(T)) {
4385    if (const RecordType *RT = T->getAs<RecordType>()) {
4386      addSubstitution(RT->getDecl());
4387      return;
4388    }
4389  }
4390
4391  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4392  addSubstitution(TypePtr);
4393}
4394
4395void CXXNameMangler::addSubstitution(TemplateName Template) {
4396  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4397    return addSubstitution(TD);
4398
4399  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4400  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4401}
4402
4403void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4404  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4405  Substitutions[Ptr] = SeqID++;
4406}
4407
4408CXXNameMangler::AbiTagList
4409CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4410  // When derived abi tags are disabled there is no need to make any list.
4411  if (DisableDerivedAbiTags)
4412    return AbiTagList();
4413
4414  llvm::raw_null_ostream NullOutStream;
4415  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4416  TrackReturnTypeTags.disableDerivedAbiTags();
4417
4418  const FunctionProtoType *Proto =
4419      cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4420  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4421  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4422  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4423
4424  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4425}
4426
4427CXXNameMangler::AbiTagList
4428CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4429  // When derived abi tags are disabled there is no need to make any list.
4430  if (DisableDerivedAbiTags)
4431    return AbiTagList();
4432
4433  llvm::raw_null_ostream NullOutStream;
4434  CXXNameMangler TrackVariableType(*this, NullOutStream);
4435  TrackVariableType.disableDerivedAbiTags();
4436
4437  TrackVariableType.mangleType(VD->getType());
4438
4439  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4440}
4441
4442bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4443                                       const VarDecl *VD) {
4444  llvm::raw_null_ostream NullOutStream;
4445  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4446  TrackAbiTags.mangle(VD);
4447  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4448}
4449
4450//
4451
4452/// Mangles the name of the declaration D and emits that name to the given
4453/// output stream.
4454///
4455/// If the declaration D requires a mangled name, this routine will emit that
4456/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4457/// and this routine will return false. In this case, the caller should just
4458/// emit the identifier of the declaration (\c D->getIdentifier()) as its
4459/// name.
4460void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4461                                             raw_ostream &Out) {
4462  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4463          "Invalid mangleName() call, argument is not a variable or function!");
4464  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4465         "Invalid mangleName() call on 'structor decl!");
4466
4467  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4468                                 getASTContext().getSourceManager(),
4469                                 "Mangling declaration");
4470
4471  CXXNameMangler Mangler(*this, Out, D);
4472  Mangler.mangle(D);
4473}
4474
4475void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4476                                             CXXCtorType Type,
4477                                             raw_ostream &Out) {
4478  CXXNameMangler Mangler(*this, Out, D, Type);
4479  Mangler.mangle(D);
4480}
4481
4482void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4483                                             CXXDtorType Type,
4484                                             raw_ostream &Out) {
4485  CXXNameMangler Mangler(*this, Out, D, Type);
4486  Mangler.mangle(D);
4487}
4488
4489void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4490                                                   raw_ostream &Out) {
4491  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4492  Mangler.mangle(D);
4493}
4494
4495void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4496                                                   raw_ostream &Out) {
4497  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4498  Mangler.mangle(D);
4499}
4500
4501void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4502                                           const ThunkInfo &Thunk,
4503                                           raw_ostream &Out) {
4504  //  <special-name> ::= T <call-offset> <base encoding>
4505  //                      # base is the nominal target function of thunk
4506  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4507  //                      # base is the nominal target function of thunk
4508  //                      # first call-offset is 'this' adjustment
4509  //                      # second call-offset is result adjustment
4510
4511  assert(!isa<CXXDestructorDecl>(MD) &&
4512         "Use mangleCXXDtor for destructor decls!");
4513  CXXNameMangler Mangler(*this, Out);
4514  Mangler.getStream() << "_ZT";
4515  if (!Thunk.Return.isEmpty())
4516    Mangler.getStream() << 'c';
4517
4518  // Mangle the 'this' pointer adjustment.
4519  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4520                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4521
4522  // Mangle the return pointer adjustment if there is one.
4523  if (!Thunk.Return.isEmpty())
4524    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4525                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4526
4527  Mangler.mangleFunctionEncoding(MD);
4528}
4529
4530void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4531    const CXXDestructorDecl *DD, CXXDtorType Type,
4532    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4533  //  <special-name> ::= T <call-offset> <base encoding>
4534  //                      # base is the nominal target function of thunk
4535  CXXNameMangler Mangler(*this, Out, DD, Type);
4536  Mangler.getStream() << "_ZT";
4537
4538  // Mangle the 'this' pointer adjustment.
4539  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4540                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4541
4542  Mangler.mangleFunctionEncoding(DD);
4543}
4544
4545/// Returns the mangled name for a guard variable for the passed in VarDecl.
4546void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4547                                                         raw_ostream &Out) {
4548  //  <special-name> ::= GV <object name>       # Guard variable for one-time
4549  //                                            # initialization
4550  CXXNameMangler Mangler(*this, Out);
4551  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
4552  // be a bug that is fixed in trunk.
4553  Mangler.getStream() << "_ZGV";
4554  Mangler.mangleName(D);
4555}
4556
4557void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4558                                                        raw_ostream &Out) {
4559  // These symbols are internal in the Itanium ABI, so the names don't matter.
4560  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4561  // avoid duplicate symbols.
4562  Out << "__cxx_global_var_init";
4563}
4564
4565void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4566                                                             raw_ostream &Out) {
4567  // Prefix the mangling of D with __dtor_.
4568  CXXNameMangler Mangler(*this, Out);
4569  Mangler.getStream() << "__dtor_";
4570  if (shouldMangleDeclName(D))
4571    Mangler.mangle(D);
4572  else
4573    Mangler.getStream() << D->getName();
4574}
4575
4576void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4577    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4578  CXXNameMangler Mangler(*this, Out);
4579  Mangler.getStream() << "__filt_";
4580  if (shouldMangleDeclName(EnclosingDecl))
4581    Mangler.mangle(EnclosingDecl);
4582  else
4583    Mangler.getStream() << EnclosingDecl->getName();
4584}
4585
4586void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4587    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4588  CXXNameMangler Mangler(*this, Out);
4589  Mangler.getStream() << "__fin_";
4590  if (shouldMangleDeclName(EnclosingDecl))
4591    Mangler.mangle(EnclosingDecl);
4592  else
4593    Mangler.getStream() << EnclosingDecl->getName();
4594}
4595
4596void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4597                                                            raw_ostream &Out) {
4598  //  <special-name> ::= TH <object name>
4599  CXXNameMangler Mangler(*this, Out);
4600  Mangler.getStream() << "_ZTH";
4601  Mangler.mangleName(D);
4602}
4603
4604void
4605ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4606                                                          raw_ostream &Out) {
4607  //  <special-name> ::= TW <object name>
4608  CXXNameMangler Mangler(*this, Out);
4609  Mangler.getStream() << "_ZTW";
4610  Mangler.mangleName(D);
4611}
4612
4613void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4614                                                        unsigned ManglingNumber,
4615                                                        raw_ostream &Out) {
4616  // We match the GCC mangling here.
4617  //  <special-name> ::= GR <object name>
4618  CXXNameMangler Mangler(*this, Out);
4619  Mangler.getStream() << "_ZGR";
4620  Mangler.mangleName(D);
4621  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4622  Mangler.mangleSeqID(ManglingNumber - 1);
4623}
4624
4625void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4626                                               raw_ostream &Out) {
4627  // <special-name> ::= TV <type>  # virtual table
4628  CXXNameMangler Mangler(*this, Out);
4629  Mangler.getStream() << "_ZTV";
4630  Mangler.mangleNameOrStandardSubstitution(RD);
4631}
4632
4633void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4634                                            raw_ostream &Out) {
4635  // <special-name> ::= TT <type>  # VTT structure
4636  CXXNameMangler Mangler(*this, Out);
4637  Mangler.getStream() << "_ZTT";
4638  Mangler.mangleNameOrStandardSubstitution(RD);
4639}
4640
4641void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4642                                                   int64_t Offset,
4643                                                   const CXXRecordDecl *Type,
4644                                                   raw_ostream &Out) {
4645  // <special-name> ::= TC <type> <offset number> _ <base type>
4646  CXXNameMangler Mangler(*this, Out);
4647  Mangler.getStream() << "_ZTC";
4648  Mangler.mangleNameOrStandardSubstitution(RD);
4649  Mangler.getStream() << Offset;
4650  Mangler.getStream() << '_';
4651  Mangler.mangleNameOrStandardSubstitution(Type);
4652}
4653
4654void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4655  // <special-name> ::= TI <type>  # typeinfo structure
4656  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4657  CXXNameMangler Mangler(*this, Out);
4658  Mangler.getStream() << "_ZTI";
4659  Mangler.mangleType(Ty);
4660}
4661
4662void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4663                                                 raw_ostream &Out) {
4664  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
4665  CXXNameMangler Mangler(*this, Out);
4666  Mangler.getStream() << "_ZTS";
4667  Mangler.mangleType(Ty);
4668}
4669
4670void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4671  mangleCXXRTTIName(Ty, Out);
4672}
4673
4674void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4675  llvm_unreachable("Can't mangle string literals");
4676}
4677
4678ItaniumMangleContext *
4679ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4680  return new ItaniumMangleContextImpl(Context, Diags);
4681}
4682