1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCXXABI.h"
15#include "CGCall.h"
16#include "CGCleanup.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGOpenMPRuntime.h"
20#include "CGRecordLayout.h"
21#include "CodeGenFunction.h"
22#include "CodeGenModule.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/Frontend/CodeGenOptions.h"
28#include "llvm/ADT/Hashing.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/Support/ConvertUTF.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/Path.h"
37#include "llvm/Transforms/Utils/SanitizerStats.h"
38
39using namespace clang;
40using namespace CodeGen;
41
42//===--------------------------------------------------------------------===//
43//                        Miscellaneous Helper Methods
44//===--------------------------------------------------------------------===//
45
46llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
47  unsigned addressSpace =
48    cast<llvm::PointerType>(value->getType())->getAddressSpace();
49
50  llvm::PointerType *destType = Int8PtrTy;
51  if (addressSpace)
52    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
53
54  if (value->getType() == destType) return value;
55  return Builder.CreateBitCast(value, destType);
56}
57
58/// CreateTempAlloca - This creates a alloca and inserts it into the entry
59/// block.
60Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
61                                          const Twine &Name) {
62  auto Alloca = CreateTempAlloca(Ty, Name);
63  Alloca->setAlignment(Align.getQuantity());
64  return Address(Alloca, Align);
65}
66
67/// CreateTempAlloca - This creates a alloca and inserts it into the entry
68/// block.
69llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
70                                                    const Twine &Name) {
71  return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
72}
73
74/// CreateDefaultAlignTempAlloca - This creates an alloca with the
75/// default alignment of the corresponding LLVM type, which is *not*
76/// guaranteed to be related in any way to the expected alignment of
77/// an AST type that might have been lowered to Ty.
78Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
79                                                      const Twine &Name) {
80  CharUnits Align =
81    CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
82  return CreateTempAlloca(Ty, Align, Name);
83}
84
85void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
86  assert(isa<llvm::AllocaInst>(Var.getPointer()));
87  auto *Store = new llvm::StoreInst(Init, Var.getPointer());
88  Store->setAlignment(Var.getAlignment().getQuantity());
89  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
90  Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
91}
92
93Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
94  CharUnits Align = getContext().getTypeAlignInChars(Ty);
95  return CreateTempAlloca(ConvertType(Ty), Align, Name);
96}
97
98Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
99  // FIXME: Should we prefer the preferred type alignment here?
100  return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
101}
102
103Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
104                                       const Twine &Name) {
105  return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
106}
107
108/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
109/// expression and compare the result against zero, returning an Int1Ty value.
110llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
111  PGO.setCurrentStmt(E);
112  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
113    llvm::Value *MemPtr = EmitScalarExpr(E);
114    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
115  }
116
117  QualType BoolTy = getContext().BoolTy;
118  SourceLocation Loc = E->getExprLoc();
119  if (!E->getType()->isAnyComplexType())
120    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
121
122  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
123                                       Loc);
124}
125
126/// EmitIgnoredExpr - Emit code to compute the specified expression,
127/// ignoring the result.
128void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
129  if (E->isRValue())
130    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
131
132  // Just emit it as an l-value and drop the result.
133  EmitLValue(E);
134}
135
136/// EmitAnyExpr - Emit code to compute the specified expression which
137/// can have any type.  The result is returned as an RValue struct.
138/// If this is an aggregate expression, AggSlot indicates where the
139/// result should be returned.
140RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
141                                    AggValueSlot aggSlot,
142                                    bool ignoreResult) {
143  switch (getEvaluationKind(E->getType())) {
144  case TEK_Scalar:
145    return RValue::get(EmitScalarExpr(E, ignoreResult));
146  case TEK_Complex:
147    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
148  case TEK_Aggregate:
149    if (!ignoreResult && aggSlot.isIgnored())
150      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
151    EmitAggExpr(E, aggSlot);
152    return aggSlot.asRValue();
153  }
154  llvm_unreachable("bad evaluation kind");
155}
156
157/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
158/// always be accessible even if no aggregate location is provided.
159RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
160  AggValueSlot AggSlot = AggValueSlot::ignored();
161
162  if (hasAggregateEvaluationKind(E->getType()))
163    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
164  return EmitAnyExpr(E, AggSlot);
165}
166
167/// EmitAnyExprToMem - Evaluate an expression into a given memory
168/// location.
169void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
170                                       Address Location,
171                                       Qualifiers Quals,
172                                       bool IsInit) {
173  // FIXME: This function should take an LValue as an argument.
174  switch (getEvaluationKind(E->getType())) {
175  case TEK_Complex:
176    EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
177                              /*isInit*/ false);
178    return;
179
180  case TEK_Aggregate: {
181    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
182                                         AggValueSlot::IsDestructed_t(IsInit),
183                                         AggValueSlot::DoesNotNeedGCBarriers,
184                                         AggValueSlot::IsAliased_t(!IsInit)));
185    return;
186  }
187
188  case TEK_Scalar: {
189    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
190    LValue LV = MakeAddrLValue(Location, E->getType());
191    EmitStoreThroughLValue(RV, LV);
192    return;
193  }
194  }
195  llvm_unreachable("bad evaluation kind");
196}
197
198static void
199pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
200                     const Expr *E, Address ReferenceTemporary) {
201  // Objective-C++ ARC:
202  //   If we are binding a reference to a temporary that has ownership, we
203  //   need to perform retain/release operations on the temporary.
204  //
205  // FIXME: This should be looking at E, not M.
206  if (auto Lifetime = M->getType().getObjCLifetime()) {
207    switch (Lifetime) {
208    case Qualifiers::OCL_None:
209    case Qualifiers::OCL_ExplicitNone:
210      // Carry on to normal cleanup handling.
211      break;
212
213    case Qualifiers::OCL_Autoreleasing:
214      // Nothing to do; cleaned up by an autorelease pool.
215      return;
216
217    case Qualifiers::OCL_Strong:
218    case Qualifiers::OCL_Weak:
219      switch (StorageDuration Duration = M->getStorageDuration()) {
220      case SD_Static:
221        // Note: we intentionally do not register a cleanup to release
222        // the object on program termination.
223        return;
224
225      case SD_Thread:
226        // FIXME: We should probably register a cleanup in this case.
227        return;
228
229      case SD_Automatic:
230      case SD_FullExpression:
231        CodeGenFunction::Destroyer *Destroy;
232        CleanupKind CleanupKind;
233        if (Lifetime == Qualifiers::OCL_Strong) {
234          const ValueDecl *VD = M->getExtendingDecl();
235          bool Precise =
236              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
237          CleanupKind = CGF.getARCCleanupKind();
238          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
239                            : &CodeGenFunction::destroyARCStrongImprecise;
240        } else {
241          // __weak objects always get EH cleanups; otherwise, exceptions
242          // could cause really nasty crashes instead of mere leaks.
243          CleanupKind = NormalAndEHCleanup;
244          Destroy = &CodeGenFunction::destroyARCWeak;
245        }
246        if (Duration == SD_FullExpression)
247          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
248                          M->getType(), *Destroy,
249                          CleanupKind & EHCleanup);
250        else
251          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
252                                          M->getType(),
253                                          *Destroy, CleanupKind & EHCleanup);
254        return;
255
256      case SD_Dynamic:
257        llvm_unreachable("temporary cannot have dynamic storage duration");
258      }
259      llvm_unreachable("unknown storage duration");
260    }
261  }
262
263  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
264  if (const RecordType *RT =
265          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
266    // Get the destructor for the reference temporary.
267    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
268    if (!ClassDecl->hasTrivialDestructor())
269      ReferenceTemporaryDtor = ClassDecl->getDestructor();
270  }
271
272  if (!ReferenceTemporaryDtor)
273    return;
274
275  // Call the destructor for the temporary.
276  switch (M->getStorageDuration()) {
277  case SD_Static:
278  case SD_Thread: {
279    llvm::Constant *CleanupFn;
280    llvm::Constant *CleanupArg;
281    if (E->getType()->isArrayType()) {
282      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
283          ReferenceTemporary, E->getType(),
284          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
285          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
286      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
287    } else {
288      CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
289                                               StructorType::Complete);
290      CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
291    }
292    CGF.CGM.getCXXABI().registerGlobalDtor(
293        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
294    break;
295  }
296
297  case SD_FullExpression:
298    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
299                    CodeGenFunction::destroyCXXObject,
300                    CGF.getLangOpts().Exceptions);
301    break;
302
303  case SD_Automatic:
304    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
305                                    ReferenceTemporary, E->getType(),
306                                    CodeGenFunction::destroyCXXObject,
307                                    CGF.getLangOpts().Exceptions);
308    break;
309
310  case SD_Dynamic:
311    llvm_unreachable("temporary cannot have dynamic storage duration");
312  }
313}
314
315static Address
316createReferenceTemporary(CodeGenFunction &CGF,
317                         const MaterializeTemporaryExpr *M, const Expr *Inner) {
318  switch (M->getStorageDuration()) {
319  case SD_FullExpression:
320  case SD_Automatic: {
321    // If we have a constant temporary array or record try to promote it into a
322    // constant global under the same rules a normal constant would've been
323    // promoted. This is easier on the optimizer and generally emits fewer
324    // instructions.
325    QualType Ty = Inner->getType();
326    if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
327        (Ty->isArrayType() || Ty->isRecordType()) &&
328        CGF.CGM.isTypeConstant(Ty, true))
329      if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
330        auto *GV = new llvm::GlobalVariable(
331            CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
332            llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
333        CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
334        GV->setAlignment(alignment.getQuantity());
335        // FIXME: Should we put the new global into a COMDAT?
336        return Address(GV, alignment);
337      }
338    return CGF.CreateMemTemp(Ty, "ref.tmp");
339  }
340  case SD_Thread:
341  case SD_Static:
342    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
343
344  case SD_Dynamic:
345    llvm_unreachable("temporary can't have dynamic storage duration");
346  }
347  llvm_unreachable("unknown storage duration");
348}
349
350LValue CodeGenFunction::
351EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
352  const Expr *E = M->GetTemporaryExpr();
353
354    // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
355    // as that will cause the lifetime adjustment to be lost for ARC
356  auto ownership = M->getType().getObjCLifetime();
357  if (ownership != Qualifiers::OCL_None &&
358      ownership != Qualifiers::OCL_ExplicitNone) {
359    Address Object = createReferenceTemporary(*this, M, E);
360    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
361      Object = Address(llvm::ConstantExpr::getBitCast(Var,
362                           ConvertTypeForMem(E->getType())
363                             ->getPointerTo(Object.getAddressSpace())),
364                       Object.getAlignment());
365
366      // createReferenceTemporary will promote the temporary to a global with a
367      // constant initializer if it can.  It can only do this to a value of
368      // ARC-manageable type if the value is global and therefore "immune" to
369      // ref-counting operations.  Therefore we have no need to emit either a
370      // dynamic initialization or a cleanup and we can just return the address
371      // of the temporary.
372      if (Var->hasInitializer())
373        return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
374
375      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
376    }
377    LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
378                                       AlignmentSource::Decl);
379
380    switch (getEvaluationKind(E->getType())) {
381    default: llvm_unreachable("expected scalar or aggregate expression");
382    case TEK_Scalar:
383      EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
384      break;
385    case TEK_Aggregate: {
386      EmitAggExpr(E, AggValueSlot::forAddr(Object,
387                                           E->getType().getQualifiers(),
388                                           AggValueSlot::IsDestructed,
389                                           AggValueSlot::DoesNotNeedGCBarriers,
390                                           AggValueSlot::IsNotAliased));
391      break;
392    }
393    }
394
395    pushTemporaryCleanup(*this, M, E, Object);
396    return RefTempDst;
397  }
398
399  SmallVector<const Expr *, 2> CommaLHSs;
400  SmallVector<SubobjectAdjustment, 2> Adjustments;
401  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
402
403  for (const auto &Ignored : CommaLHSs)
404    EmitIgnoredExpr(Ignored);
405
406  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
407    if (opaque->getType()->isRecordType()) {
408      assert(Adjustments.empty());
409      return EmitOpaqueValueLValue(opaque);
410    }
411  }
412
413  // Create and initialize the reference temporary.
414  Address Object = createReferenceTemporary(*this, M, E);
415  if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
416    Object = Address(llvm::ConstantExpr::getBitCast(
417        Var, ConvertTypeForMem(E->getType())->getPointerTo()),
418                     Object.getAlignment());
419    // If the temporary is a global and has a constant initializer or is a
420    // constant temporary that we promoted to a global, we may have already
421    // initialized it.
422    if (!Var->hasInitializer()) {
423      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
424      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
425    }
426  } else {
427    switch (M->getStorageDuration()) {
428    case SD_Automatic:
429    case SD_FullExpression:
430      if (auto *Size = EmitLifetimeStart(
431              CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
432              Object.getPointer())) {
433        if (M->getStorageDuration() == SD_Automatic)
434          pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
435                                                    Object, Size);
436        else
437          pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
438                                               Size);
439      }
440      break;
441    default:
442      break;
443    }
444    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
445  }
446  pushTemporaryCleanup(*this, M, E, Object);
447
448  // Perform derived-to-base casts and/or field accesses, to get from the
449  // temporary object we created (and, potentially, for which we extended
450  // the lifetime) to the subobject we're binding the reference to.
451  for (unsigned I = Adjustments.size(); I != 0; --I) {
452    SubobjectAdjustment &Adjustment = Adjustments[I-1];
453    switch (Adjustment.Kind) {
454    case SubobjectAdjustment::DerivedToBaseAdjustment:
455      Object =
456          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
457                                Adjustment.DerivedToBase.BasePath->path_begin(),
458                                Adjustment.DerivedToBase.BasePath->path_end(),
459                                /*NullCheckValue=*/ false, E->getExprLoc());
460      break;
461
462    case SubobjectAdjustment::FieldAdjustment: {
463      LValue LV = MakeAddrLValue(Object, E->getType(),
464                                 AlignmentSource::Decl);
465      LV = EmitLValueForField(LV, Adjustment.Field);
466      assert(LV.isSimple() &&
467             "materialized temporary field is not a simple lvalue");
468      Object = LV.getAddress();
469      break;
470    }
471
472    case SubobjectAdjustment::MemberPointerAdjustment: {
473      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
474      Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
475                                               Adjustment.Ptr.MPT);
476      break;
477    }
478    }
479  }
480
481  return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
482}
483
484RValue
485CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
486  // Emit the expression as an lvalue.
487  LValue LV = EmitLValue(E);
488  assert(LV.isSimple());
489  llvm::Value *Value = LV.getPointer();
490
491  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
492    // C++11 [dcl.ref]p5 (as amended by core issue 453):
493    //   If a glvalue to which a reference is directly bound designates neither
494    //   an existing object or function of an appropriate type nor a region of
495    //   storage of suitable size and alignment to contain an object of the
496    //   reference's type, the behavior is undefined.
497    QualType Ty = E->getType();
498    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
499  }
500
501  return RValue::get(Value);
502}
503
504
505/// getAccessedFieldNo - Given an encoded value and a result number, return the
506/// input field number being accessed.
507unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
508                                             const llvm::Constant *Elts) {
509  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
510      ->getZExtValue();
511}
512
513/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
514static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
515                                    llvm::Value *High) {
516  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
517  llvm::Value *K47 = Builder.getInt64(47);
518  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
519  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
520  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
521  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
522  return Builder.CreateMul(B1, KMul);
523}
524
525bool CodeGenFunction::sanitizePerformTypeCheck() const {
526  return SanOpts.has(SanitizerKind::Null) |
527         SanOpts.has(SanitizerKind::Alignment) |
528         SanOpts.has(SanitizerKind::ObjectSize) |
529         SanOpts.has(SanitizerKind::Vptr);
530}
531
532void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
533                                    llvm::Value *Ptr, QualType Ty,
534                                    CharUnits Alignment, bool SkipNullCheck) {
535  if (!sanitizePerformTypeCheck())
536    return;
537
538  // Don't check pointers outside the default address space. The null check
539  // isn't correct, the object-size check isn't supported by LLVM, and we can't
540  // communicate the addresses to the runtime handler for the vptr check.
541  if (Ptr->getType()->getPointerAddressSpace())
542    return;
543
544  SanitizerScope SanScope(this);
545
546  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
547  llvm::BasicBlock *Done = nullptr;
548
549  bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
550                           TCK == TCK_UpcastToVirtualBase;
551  if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
552      !SkipNullCheck) {
553    // The glvalue must not be an empty glvalue.
554    llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
555
556    if (AllowNullPointers) {
557      // When performing pointer casts, it's OK if the value is null.
558      // Skip the remaining checks in that case.
559      Done = createBasicBlock("null");
560      llvm::BasicBlock *Rest = createBasicBlock("not.null");
561      Builder.CreateCondBr(IsNonNull, Rest, Done);
562      EmitBlock(Rest);
563    } else {
564      Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
565    }
566  }
567
568  if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
569    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
570
571    // The glvalue must refer to a large enough storage region.
572    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
573    //        to check this.
574    // FIXME: Get object address space
575    llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
576    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
577    llvm::Value *Min = Builder.getFalse();
578    llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
579    llvm::Value *LargeEnough =
580        Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
581                              llvm::ConstantInt::get(IntPtrTy, Size));
582    Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
583  }
584
585  uint64_t AlignVal = 0;
586
587  if (SanOpts.has(SanitizerKind::Alignment)) {
588    AlignVal = Alignment.getQuantity();
589    if (!Ty->isIncompleteType() && !AlignVal)
590      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
591
592    // The glvalue must be suitably aligned.
593    if (AlignVal) {
594      llvm::Value *Align =
595          Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
596                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
597      llvm::Value *Aligned =
598        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
599      Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
600    }
601  }
602
603  if (Checks.size() > 0) {
604    llvm::Constant *StaticData[] = {
605     EmitCheckSourceLocation(Loc),
606      EmitCheckTypeDescriptor(Ty),
607      llvm::ConstantInt::get(SizeTy, AlignVal),
608      llvm::ConstantInt::get(Int8Ty, TCK)
609    };
610    EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
611  }
612
613  // If possible, check that the vptr indicates that there is a subobject of
614  // type Ty at offset zero within this object.
615  //
616  // C++11 [basic.life]p5,6:
617  //   [For storage which does not refer to an object within its lifetime]
618  //   The program has undefined behavior if:
619  //    -- the [pointer or glvalue] is used to access a non-static data member
620  //       or call a non-static member function
621  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
622  if (SanOpts.has(SanitizerKind::Vptr) &&
623      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
624       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
625       TCK == TCK_UpcastToVirtualBase) &&
626      RD && RD->hasDefinition() && RD->isDynamicClass()) {
627    // Compute a hash of the mangled name of the type.
628    //
629    // FIXME: This is not guaranteed to be deterministic! Move to a
630    //        fingerprinting mechanism once LLVM provides one. For the time
631    //        being the implementation happens to be deterministic.
632    SmallString<64> MangledName;
633    llvm::raw_svector_ostream Out(MangledName);
634    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
635                                                     Out);
636
637    // Blacklist based on the mangled type.
638    if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
639            Out.str())) {
640      llvm::hash_code TypeHash = hash_value(Out.str());
641
642      // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
643      llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
644      llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
645      Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
646      llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
647      llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
648
649      llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
650      Hash = Builder.CreateTrunc(Hash, IntPtrTy);
651
652      // Look the hash up in our cache.
653      const int CacheSize = 128;
654      llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
655      llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
656                                                     "__ubsan_vptr_type_cache");
657      llvm::Value *Slot = Builder.CreateAnd(Hash,
658                                            llvm::ConstantInt::get(IntPtrTy,
659                                                                   CacheSize-1));
660      llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
661      llvm::Value *CacheVal =
662        Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
663                                  getPointerAlign());
664
665      // If the hash isn't in the cache, call a runtime handler to perform the
666      // hard work of checking whether the vptr is for an object of the right
667      // type. This will either fill in the cache and return, or produce a
668      // diagnostic.
669      llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
670      llvm::Constant *StaticData[] = {
671        EmitCheckSourceLocation(Loc),
672        EmitCheckTypeDescriptor(Ty),
673        CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
674        llvm::ConstantInt::get(Int8Ty, TCK)
675      };
676      llvm::Value *DynamicData[] = { Ptr, Hash };
677      EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
678                "dynamic_type_cache_miss", StaticData, DynamicData);
679    }
680  }
681
682  if (Done) {
683    Builder.CreateBr(Done);
684    EmitBlock(Done);
685  }
686}
687
688/// Determine whether this expression refers to a flexible array member in a
689/// struct. We disable array bounds checks for such members.
690static bool isFlexibleArrayMemberExpr(const Expr *E) {
691  // For compatibility with existing code, we treat arrays of length 0 or
692  // 1 as flexible array members.
693  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
694  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
695    if (CAT->getSize().ugt(1))
696      return false;
697  } else if (!isa<IncompleteArrayType>(AT))
698    return false;
699
700  E = E->IgnoreParens();
701
702  // A flexible array member must be the last member in the class.
703  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
704    // FIXME: If the base type of the member expr is not FD->getParent(),
705    // this should not be treated as a flexible array member access.
706    if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
707      RecordDecl::field_iterator FI(
708          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
709      return ++FI == FD->getParent()->field_end();
710    }
711  }
712
713  return false;
714}
715
716/// If Base is known to point to the start of an array, return the length of
717/// that array. Return 0 if the length cannot be determined.
718static llvm::Value *getArrayIndexingBound(
719    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
720  // For the vector indexing extension, the bound is the number of elements.
721  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
722    IndexedType = Base->getType();
723    return CGF.Builder.getInt32(VT->getNumElements());
724  }
725
726  Base = Base->IgnoreParens();
727
728  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
729    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
730        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
731      IndexedType = CE->getSubExpr()->getType();
732      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
733      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
734        return CGF.Builder.getInt(CAT->getSize());
735      else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
736        return CGF.getVLASize(VAT).first;
737    }
738  }
739
740  return nullptr;
741}
742
743void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
744                                      llvm::Value *Index, QualType IndexType,
745                                      bool Accessed) {
746  assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
747         "should not be called unless adding bounds checks");
748  SanitizerScope SanScope(this);
749
750  QualType IndexedType;
751  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
752  if (!Bound)
753    return;
754
755  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
756  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
757  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
758
759  llvm::Constant *StaticData[] = {
760    EmitCheckSourceLocation(E->getExprLoc()),
761    EmitCheckTypeDescriptor(IndexedType),
762    EmitCheckTypeDescriptor(IndexType)
763  };
764  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
765                                : Builder.CreateICmpULE(IndexVal, BoundVal);
766  EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
767            StaticData, Index);
768}
769
770
771CodeGenFunction::ComplexPairTy CodeGenFunction::
772EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
773                         bool isInc, bool isPre) {
774  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
775
776  llvm::Value *NextVal;
777  if (isa<llvm::IntegerType>(InVal.first->getType())) {
778    uint64_t AmountVal = isInc ? 1 : -1;
779    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
780
781    // Add the inc/dec to the real part.
782    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
783  } else {
784    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
785    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
786    if (!isInc)
787      FVal.changeSign();
788    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
789
790    // Add the inc/dec to the real part.
791    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
792  }
793
794  ComplexPairTy IncVal(NextVal, InVal.second);
795
796  // Store the updated result through the lvalue.
797  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
798
799  // If this is a postinc, return the value read from memory, otherwise use the
800  // updated value.
801  return isPre ? IncVal : InVal;
802}
803
804void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
805                                             CodeGenFunction *CGF) {
806  // Bind VLAs in the cast type.
807  if (CGF && E->getType()->isVariablyModifiedType())
808    CGF->EmitVariablyModifiedType(E->getType());
809
810  if (CGDebugInfo *DI = getModuleDebugInfo())
811    DI->EmitExplicitCastType(E->getType());
812}
813
814//===----------------------------------------------------------------------===//
815//                         LValue Expression Emission
816//===----------------------------------------------------------------------===//
817
818/// EmitPointerWithAlignment - Given an expression of pointer type, try to
819/// derive a more accurate bound on the alignment of the pointer.
820Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
821                                                  AlignmentSource  *Source) {
822  // We allow this with ObjC object pointers because of fragile ABIs.
823  assert(E->getType()->isPointerType() ||
824         E->getType()->isObjCObjectPointerType());
825  E = E->IgnoreParens();
826
827  // Casts:
828  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
829    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
830      CGM.EmitExplicitCastExprType(ECE, this);
831
832    switch (CE->getCastKind()) {
833    // Non-converting casts (but not C's implicit conversion from void*).
834    case CK_BitCast:
835    case CK_NoOp:
836      if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
837        if (PtrTy->getPointeeType()->isVoidType())
838          break;
839
840        AlignmentSource InnerSource;
841        Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
842        if (Source) *Source = InnerSource;
843
844        // If this is an explicit bitcast, and the source l-value is
845        // opaque, honor the alignment of the casted-to type.
846        if (isa<ExplicitCastExpr>(CE) &&
847            InnerSource != AlignmentSource::Decl) {
848          Addr = Address(Addr.getPointer(),
849                         getNaturalPointeeTypeAlignment(E->getType(), Source));
850        }
851
852        if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
853            CE->getCastKind() == CK_BitCast) {
854          if (auto PT = E->getType()->getAs<PointerType>())
855            EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
856                                      /*MayBeNull=*/true,
857                                      CodeGenFunction::CFITCK_UnrelatedCast,
858                                      CE->getLocStart());
859        }
860
861        return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
862      }
863      break;
864
865    // Array-to-pointer decay.
866    case CK_ArrayToPointerDecay:
867      return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
868
869    // Derived-to-base conversions.
870    case CK_UncheckedDerivedToBase:
871    case CK_DerivedToBase: {
872      Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
873      auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
874      return GetAddressOfBaseClass(Addr, Derived,
875                                   CE->path_begin(), CE->path_end(),
876                                   ShouldNullCheckClassCastValue(CE),
877                                   CE->getExprLoc());
878    }
879
880    // TODO: Is there any reason to treat base-to-derived conversions
881    // specially?
882    default:
883      break;
884    }
885  }
886
887  // Unary &.
888  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
889    if (UO->getOpcode() == UO_AddrOf) {
890      LValue LV = EmitLValue(UO->getSubExpr());
891      if (Source) *Source = LV.getAlignmentSource();
892      return LV.getAddress();
893    }
894  }
895
896  // TODO: conditional operators, comma.
897
898  // Otherwise, use the alignment of the type.
899  CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
900  return Address(EmitScalarExpr(E), Align);
901}
902
903RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
904  if (Ty->isVoidType())
905    return RValue::get(nullptr);
906
907  switch (getEvaluationKind(Ty)) {
908  case TEK_Complex: {
909    llvm::Type *EltTy =
910      ConvertType(Ty->castAs<ComplexType>()->getElementType());
911    llvm::Value *U = llvm::UndefValue::get(EltTy);
912    return RValue::getComplex(std::make_pair(U, U));
913  }
914
915  // If this is a use of an undefined aggregate type, the aggregate must have an
916  // identifiable address.  Just because the contents of the value are undefined
917  // doesn't mean that the address can't be taken and compared.
918  case TEK_Aggregate: {
919    Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
920    return RValue::getAggregate(DestPtr);
921  }
922
923  case TEK_Scalar:
924    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
925  }
926  llvm_unreachable("bad evaluation kind");
927}
928
929RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
930                                              const char *Name) {
931  ErrorUnsupported(E, Name);
932  return GetUndefRValue(E->getType());
933}
934
935LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
936                                              const char *Name) {
937  ErrorUnsupported(E, Name);
938  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
939  return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
940                        E->getType());
941}
942
943LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
944  LValue LV;
945  if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
946    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
947  else
948    LV = EmitLValue(E);
949  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
950    EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
951                  E->getType(), LV.getAlignment());
952  return LV;
953}
954
955/// EmitLValue - Emit code to compute a designator that specifies the location
956/// of the expression.
957///
958/// This can return one of two things: a simple address or a bitfield reference.
959/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
960/// an LLVM pointer type.
961///
962/// If this returns a bitfield reference, nothing about the pointee type of the
963/// LLVM value is known: For example, it may not be a pointer to an integer.
964///
965/// If this returns a normal address, and if the lvalue's C type is fixed size,
966/// this method guarantees that the returned pointer type will point to an LLVM
967/// type of the same size of the lvalue's type.  If the lvalue has a variable
968/// length type, this is not possible.
969///
970LValue CodeGenFunction::EmitLValue(const Expr *E) {
971  ApplyDebugLocation DL(*this, E);
972  switch (E->getStmtClass()) {
973  default: return EmitUnsupportedLValue(E, "l-value expression");
974
975  case Expr::ObjCPropertyRefExprClass:
976    llvm_unreachable("cannot emit a property reference directly");
977
978  case Expr::ObjCSelectorExprClass:
979    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
980  case Expr::ObjCIsaExprClass:
981    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
982  case Expr::BinaryOperatorClass:
983    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
984  case Expr::CompoundAssignOperatorClass: {
985    QualType Ty = E->getType();
986    if (const AtomicType *AT = Ty->getAs<AtomicType>())
987      Ty = AT->getValueType();
988    if (!Ty->isAnyComplexType())
989      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
990    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
991  }
992  case Expr::CallExprClass:
993  case Expr::CXXMemberCallExprClass:
994  case Expr::CXXOperatorCallExprClass:
995  case Expr::UserDefinedLiteralClass:
996    return EmitCallExprLValue(cast<CallExpr>(E));
997  case Expr::VAArgExprClass:
998    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
999  case Expr::DeclRefExprClass:
1000    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1001  case Expr::ParenExprClass:
1002    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1003  case Expr::GenericSelectionExprClass:
1004    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1005  case Expr::PredefinedExprClass:
1006    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1007  case Expr::StringLiteralClass:
1008    return EmitStringLiteralLValue(cast<StringLiteral>(E));
1009  case Expr::ObjCEncodeExprClass:
1010    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1011  case Expr::PseudoObjectExprClass:
1012    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1013  case Expr::InitListExprClass:
1014    return EmitInitListLValue(cast<InitListExpr>(E));
1015  case Expr::CXXTemporaryObjectExprClass:
1016  case Expr::CXXConstructExprClass:
1017    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1018  case Expr::CXXBindTemporaryExprClass:
1019    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1020  case Expr::CXXUuidofExprClass:
1021    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1022  case Expr::LambdaExprClass:
1023    return EmitLambdaLValue(cast<LambdaExpr>(E));
1024
1025  case Expr::ExprWithCleanupsClass: {
1026    const auto *cleanups = cast<ExprWithCleanups>(E);
1027    enterFullExpression(cleanups);
1028    RunCleanupsScope Scope(*this);
1029    return EmitLValue(cleanups->getSubExpr());
1030  }
1031
1032  case Expr::CXXDefaultArgExprClass:
1033    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1034  case Expr::CXXDefaultInitExprClass: {
1035    CXXDefaultInitExprScope Scope(*this);
1036    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1037  }
1038  case Expr::CXXTypeidExprClass:
1039    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1040
1041  case Expr::ObjCMessageExprClass:
1042    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1043  case Expr::ObjCIvarRefExprClass:
1044    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1045  case Expr::StmtExprClass:
1046    return EmitStmtExprLValue(cast<StmtExpr>(E));
1047  case Expr::UnaryOperatorClass:
1048    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1049  case Expr::ArraySubscriptExprClass:
1050    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1051  case Expr::OMPArraySectionExprClass:
1052    return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1053  case Expr::ExtVectorElementExprClass:
1054    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1055  case Expr::MemberExprClass:
1056    return EmitMemberExpr(cast<MemberExpr>(E));
1057  case Expr::CompoundLiteralExprClass:
1058    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1059  case Expr::ConditionalOperatorClass:
1060    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1061  case Expr::BinaryConditionalOperatorClass:
1062    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1063  case Expr::ChooseExprClass:
1064    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1065  case Expr::OpaqueValueExprClass:
1066    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1067  case Expr::SubstNonTypeTemplateParmExprClass:
1068    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1069  case Expr::ImplicitCastExprClass:
1070  case Expr::CStyleCastExprClass:
1071  case Expr::CXXFunctionalCastExprClass:
1072  case Expr::CXXStaticCastExprClass:
1073  case Expr::CXXDynamicCastExprClass:
1074  case Expr::CXXReinterpretCastExprClass:
1075  case Expr::CXXConstCastExprClass:
1076  case Expr::ObjCBridgedCastExprClass:
1077    return EmitCastLValue(cast<CastExpr>(E));
1078
1079  case Expr::MaterializeTemporaryExprClass:
1080    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1081  }
1082}
1083
1084/// Given an object of the given canonical type, can we safely copy a
1085/// value out of it based on its initializer?
1086static bool isConstantEmittableObjectType(QualType type) {
1087  assert(type.isCanonical());
1088  assert(!type->isReferenceType());
1089
1090  // Must be const-qualified but non-volatile.
1091  Qualifiers qs = type.getLocalQualifiers();
1092  if (!qs.hasConst() || qs.hasVolatile()) return false;
1093
1094  // Otherwise, all object types satisfy this except C++ classes with
1095  // mutable subobjects or non-trivial copy/destroy behavior.
1096  if (const auto *RT = dyn_cast<RecordType>(type))
1097    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1098      if (RD->hasMutableFields() || !RD->isTrivial())
1099        return false;
1100
1101  return true;
1102}
1103
1104/// Can we constant-emit a load of a reference to a variable of the
1105/// given type?  This is different from predicates like
1106/// Decl::isUsableInConstantExpressions because we do want it to apply
1107/// in situations that don't necessarily satisfy the language's rules
1108/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1109/// to do this with const float variables even if those variables
1110/// aren't marked 'constexpr'.
1111enum ConstantEmissionKind {
1112  CEK_None,
1113  CEK_AsReferenceOnly,
1114  CEK_AsValueOrReference,
1115  CEK_AsValueOnly
1116};
1117static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1118  type = type.getCanonicalType();
1119  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1120    if (isConstantEmittableObjectType(ref->getPointeeType()))
1121      return CEK_AsValueOrReference;
1122    return CEK_AsReferenceOnly;
1123  }
1124  if (isConstantEmittableObjectType(type))
1125    return CEK_AsValueOnly;
1126  return CEK_None;
1127}
1128
1129/// Try to emit a reference to the given value without producing it as
1130/// an l-value.  This is actually more than an optimization: we can't
1131/// produce an l-value for variables that we never actually captured
1132/// in a block or lambda, which means const int variables or constexpr
1133/// literals or similar.
1134CodeGenFunction::ConstantEmission
1135CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1136  ValueDecl *value = refExpr->getDecl();
1137
1138  // The value needs to be an enum constant or a constant variable.
1139  ConstantEmissionKind CEK;
1140  if (isa<ParmVarDecl>(value)) {
1141    CEK = CEK_None;
1142  } else if (auto *var = dyn_cast<VarDecl>(value)) {
1143    CEK = checkVarTypeForConstantEmission(var->getType());
1144  } else if (isa<EnumConstantDecl>(value)) {
1145    CEK = CEK_AsValueOnly;
1146  } else {
1147    CEK = CEK_None;
1148  }
1149  if (CEK == CEK_None) return ConstantEmission();
1150
1151  Expr::EvalResult result;
1152  bool resultIsReference;
1153  QualType resultType;
1154
1155  // It's best to evaluate all the way as an r-value if that's permitted.
1156  if (CEK != CEK_AsReferenceOnly &&
1157      refExpr->EvaluateAsRValue(result, getContext())) {
1158    resultIsReference = false;
1159    resultType = refExpr->getType();
1160
1161  // Otherwise, try to evaluate as an l-value.
1162  } else if (CEK != CEK_AsValueOnly &&
1163             refExpr->EvaluateAsLValue(result, getContext())) {
1164    resultIsReference = true;
1165    resultType = value->getType();
1166
1167  // Failure.
1168  } else {
1169    return ConstantEmission();
1170  }
1171
1172  // In any case, if the initializer has side-effects, abandon ship.
1173  if (result.HasSideEffects)
1174    return ConstantEmission();
1175
1176  // Emit as a constant.
1177  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1178
1179  // Make sure we emit a debug reference to the global variable.
1180  // This should probably fire even for
1181  if (isa<VarDecl>(value)) {
1182    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1183      EmitDeclRefExprDbgValue(refExpr, C);
1184  } else {
1185    assert(isa<EnumConstantDecl>(value));
1186    EmitDeclRefExprDbgValue(refExpr, C);
1187  }
1188
1189  // If we emitted a reference constant, we need to dereference that.
1190  if (resultIsReference)
1191    return ConstantEmission::forReference(C);
1192
1193  return ConstantEmission::forValue(C);
1194}
1195
1196llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1197                                               SourceLocation Loc) {
1198  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1199                          lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1200                          lvalue.getTBAAInfo(),
1201                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1202                          lvalue.isNontemporal());
1203}
1204
1205static bool hasBooleanRepresentation(QualType Ty) {
1206  if (Ty->isBooleanType())
1207    return true;
1208
1209  if (const EnumType *ET = Ty->getAs<EnumType>())
1210    return ET->getDecl()->getIntegerType()->isBooleanType();
1211
1212  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1213    return hasBooleanRepresentation(AT->getValueType());
1214
1215  return false;
1216}
1217
1218static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1219                            llvm::APInt &Min, llvm::APInt &End,
1220                            bool StrictEnums) {
1221  const EnumType *ET = Ty->getAs<EnumType>();
1222  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1223                                ET && !ET->getDecl()->isFixed();
1224  bool IsBool = hasBooleanRepresentation(Ty);
1225  if (!IsBool && !IsRegularCPlusPlusEnum)
1226    return false;
1227
1228  if (IsBool) {
1229    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1230    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1231  } else {
1232    const EnumDecl *ED = ET->getDecl();
1233    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1234    unsigned Bitwidth = LTy->getScalarSizeInBits();
1235    unsigned NumNegativeBits = ED->getNumNegativeBits();
1236    unsigned NumPositiveBits = ED->getNumPositiveBits();
1237
1238    if (NumNegativeBits) {
1239      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1240      assert(NumBits <= Bitwidth);
1241      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1242      Min = -End;
1243    } else {
1244      assert(NumPositiveBits <= Bitwidth);
1245      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1246      Min = llvm::APInt(Bitwidth, 0);
1247    }
1248  }
1249  return true;
1250}
1251
1252llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1253  llvm::APInt Min, End;
1254  if (!getRangeForType(*this, Ty, Min, End,
1255                       CGM.getCodeGenOpts().StrictEnums))
1256    return nullptr;
1257
1258  llvm::MDBuilder MDHelper(getLLVMContext());
1259  return MDHelper.createRange(Min, End);
1260}
1261
1262llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1263                                               QualType Ty,
1264                                               SourceLocation Loc,
1265                                               AlignmentSource AlignSource,
1266                                               llvm::MDNode *TBAAInfo,
1267                                               QualType TBAABaseType,
1268                                               uint64_t TBAAOffset,
1269                                               bool isNontemporal) {
1270  // For better performance, handle vector loads differently.
1271  if (Ty->isVectorType()) {
1272    const llvm::Type *EltTy = Addr.getElementType();
1273
1274    const auto *VTy = cast<llvm::VectorType>(EltTy);
1275
1276    // Handle vectors of size 3 like size 4 for better performance.
1277    if (VTy->getNumElements() == 3) {
1278
1279      // Bitcast to vec4 type.
1280      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1281                                                         4);
1282      Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1283      // Now load value.
1284      llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1285
1286      // Shuffle vector to get vec3.
1287      V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1288                                      {0, 1, 2}, "extractVec");
1289      return EmitFromMemory(V, Ty);
1290    }
1291  }
1292
1293  // Atomic operations have to be done on integral types.
1294  LValue AtomicLValue =
1295      LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1296  if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1297    return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1298  }
1299
1300  llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1301  if (isNontemporal) {
1302    llvm::MDNode *Node = llvm::MDNode::get(
1303        Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1304    Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1305  }
1306  if (TBAAInfo) {
1307    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1308                                                      TBAAOffset);
1309    if (TBAAPath)
1310      CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1311                                      false /*ConvertTypeToTag*/);
1312  }
1313
1314  bool NeedsBoolCheck =
1315      SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1316  bool NeedsEnumCheck =
1317      SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1318  if (NeedsBoolCheck || NeedsEnumCheck) {
1319    SanitizerScope SanScope(this);
1320    llvm::APInt Min, End;
1321    if (getRangeForType(*this, Ty, Min, End, true)) {
1322      --End;
1323      llvm::Value *Check;
1324      if (!Min)
1325        Check = Builder.CreateICmpULE(
1326          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1327      else {
1328        llvm::Value *Upper = Builder.CreateICmpSLE(
1329          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1330        llvm::Value *Lower = Builder.CreateICmpSGE(
1331          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1332        Check = Builder.CreateAnd(Upper, Lower);
1333      }
1334      llvm::Constant *StaticArgs[] = {
1335        EmitCheckSourceLocation(Loc),
1336        EmitCheckTypeDescriptor(Ty)
1337      };
1338      SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1339      EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1340                EmitCheckValue(Load));
1341    }
1342  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1343    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1344      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1345
1346  return EmitFromMemory(Load, Ty);
1347}
1348
1349llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1350  // Bool has a different representation in memory than in registers.
1351  if (hasBooleanRepresentation(Ty)) {
1352    // This should really always be an i1, but sometimes it's already
1353    // an i8, and it's awkward to track those cases down.
1354    if (Value->getType()->isIntegerTy(1))
1355      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1356    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1357           "wrong value rep of bool");
1358  }
1359
1360  return Value;
1361}
1362
1363llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1364  // Bool has a different representation in memory than in registers.
1365  if (hasBooleanRepresentation(Ty)) {
1366    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1367           "wrong value rep of bool");
1368    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1369  }
1370
1371  return Value;
1372}
1373
1374void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1375                                        bool Volatile, QualType Ty,
1376                                        AlignmentSource AlignSource,
1377                                        llvm::MDNode *TBAAInfo,
1378                                        bool isInit, QualType TBAABaseType,
1379                                        uint64_t TBAAOffset,
1380                                        bool isNontemporal) {
1381
1382  // Handle vectors differently to get better performance.
1383  if (Ty->isVectorType()) {
1384    llvm::Type *SrcTy = Value->getType();
1385    auto *VecTy = cast<llvm::VectorType>(SrcTy);
1386    // Handle vec3 special.
1387    if (VecTy->getNumElements() == 3) {
1388      // Our source is a vec3, do a shuffle vector to make it a vec4.
1389      llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1390                                Builder.getInt32(2),
1391                                llvm::UndefValue::get(Builder.getInt32Ty())};
1392      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1393      Value = Builder.CreateShuffleVector(Value,
1394                                          llvm::UndefValue::get(VecTy),
1395                                          MaskV, "extractVec");
1396      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1397    }
1398    if (Addr.getElementType() != SrcTy) {
1399      Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1400    }
1401  }
1402
1403  Value = EmitToMemory(Value, Ty);
1404
1405  LValue AtomicLValue =
1406      LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1407  if (Ty->isAtomicType() ||
1408      (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1409    EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1410    return;
1411  }
1412
1413  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1414  if (isNontemporal) {
1415    llvm::MDNode *Node =
1416        llvm::MDNode::get(Store->getContext(),
1417                          llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1418    Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1419  }
1420  if (TBAAInfo) {
1421    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1422                                                      TBAAOffset);
1423    if (TBAAPath)
1424      CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1425                                      false /*ConvertTypeToTag*/);
1426  }
1427}
1428
1429void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1430                                        bool isInit) {
1431  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1432                    lvalue.getType(), lvalue.getAlignmentSource(),
1433                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1434                    lvalue.getTBAAOffset(), lvalue.isNontemporal());
1435}
1436
1437/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1438/// method emits the address of the lvalue, then loads the result as an rvalue,
1439/// returning the rvalue.
1440RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1441  if (LV.isObjCWeak()) {
1442    // load of a __weak object.
1443    Address AddrWeakObj = LV.getAddress();
1444    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1445                                                             AddrWeakObj));
1446  }
1447  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1448    // In MRC mode, we do a load+autorelease.
1449    if (!getLangOpts().ObjCAutoRefCount) {
1450      return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1451    }
1452
1453    // In ARC mode, we load retained and then consume the value.
1454    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1455    Object = EmitObjCConsumeObject(LV.getType(), Object);
1456    return RValue::get(Object);
1457  }
1458
1459  if (LV.isSimple()) {
1460    assert(!LV.getType()->isFunctionType());
1461
1462    // Everything needs a load.
1463    return RValue::get(EmitLoadOfScalar(LV, Loc));
1464  }
1465
1466  if (LV.isVectorElt()) {
1467    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1468                                              LV.isVolatileQualified());
1469    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1470                                                    "vecext"));
1471  }
1472
1473  // If this is a reference to a subset of the elements of a vector, either
1474  // shuffle the input or extract/insert them as appropriate.
1475  if (LV.isExtVectorElt())
1476    return EmitLoadOfExtVectorElementLValue(LV);
1477
1478  // Global Register variables always invoke intrinsics
1479  if (LV.isGlobalReg())
1480    return EmitLoadOfGlobalRegLValue(LV);
1481
1482  assert(LV.isBitField() && "Unknown LValue type!");
1483  return EmitLoadOfBitfieldLValue(LV);
1484}
1485
1486RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1487  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1488
1489  // Get the output type.
1490  llvm::Type *ResLTy = ConvertType(LV.getType());
1491
1492  Address Ptr = LV.getBitFieldAddress();
1493  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1494
1495  if (Info.IsSigned) {
1496    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1497    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1498    if (HighBits)
1499      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1500    if (Info.Offset + HighBits)
1501      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1502  } else {
1503    if (Info.Offset)
1504      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1505    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1506      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1507                                                              Info.Size),
1508                              "bf.clear");
1509  }
1510  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1511
1512  return RValue::get(Val);
1513}
1514
1515// If this is a reference to a subset of the elements of a vector, create an
1516// appropriate shufflevector.
1517RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1518  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1519                                        LV.isVolatileQualified());
1520
1521  const llvm::Constant *Elts = LV.getExtVectorElts();
1522
1523  // If the result of the expression is a non-vector type, we must be extracting
1524  // a single element.  Just codegen as an extractelement.
1525  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1526  if (!ExprVT) {
1527    unsigned InIdx = getAccessedFieldNo(0, Elts);
1528    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1529    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1530  }
1531
1532  // Always use shuffle vector to try to retain the original program structure
1533  unsigned NumResultElts = ExprVT->getNumElements();
1534
1535  SmallVector<llvm::Constant*, 4> Mask;
1536  for (unsigned i = 0; i != NumResultElts; ++i)
1537    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1538
1539  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1540  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1541                                    MaskV);
1542  return RValue::get(Vec);
1543}
1544
1545/// @brief Generates lvalue for partial ext_vector access.
1546Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1547  Address VectorAddress = LV.getExtVectorAddress();
1548  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1549  QualType EQT = ExprVT->getElementType();
1550  llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1551
1552  Address CastToPointerElement =
1553    Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1554                                 "conv.ptr.element");
1555
1556  const llvm::Constant *Elts = LV.getExtVectorElts();
1557  unsigned ix = getAccessedFieldNo(0, Elts);
1558
1559  Address VectorBasePtrPlusIx =
1560    Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1561                                   getContext().getTypeSizeInChars(EQT),
1562                                   "vector.elt");
1563
1564  return VectorBasePtrPlusIx;
1565}
1566
1567/// @brief Load of global gamed gegisters are always calls to intrinsics.
1568RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1569  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1570         "Bad type for register variable");
1571  llvm::MDNode *RegName = cast<llvm::MDNode>(
1572      cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1573
1574  // We accept integer and pointer types only
1575  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1576  llvm::Type *Ty = OrigTy;
1577  if (OrigTy->isPointerTy())
1578    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1579  llvm::Type *Types[] = { Ty };
1580
1581  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1582  llvm::Value *Call = Builder.CreateCall(
1583      F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1584  if (OrigTy->isPointerTy())
1585    Call = Builder.CreateIntToPtr(Call, OrigTy);
1586  return RValue::get(Call);
1587}
1588
1589
1590/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1591/// lvalue, where both are guaranteed to the have the same type, and that type
1592/// is 'Ty'.
1593void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1594                                             bool isInit) {
1595  if (!Dst.isSimple()) {
1596    if (Dst.isVectorElt()) {
1597      // Read/modify/write the vector, inserting the new element.
1598      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1599                                            Dst.isVolatileQualified());
1600      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1601                                        Dst.getVectorIdx(), "vecins");
1602      Builder.CreateStore(Vec, Dst.getVectorAddress(),
1603                          Dst.isVolatileQualified());
1604      return;
1605    }
1606
1607    // If this is an update of extended vector elements, insert them as
1608    // appropriate.
1609    if (Dst.isExtVectorElt())
1610      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1611
1612    if (Dst.isGlobalReg())
1613      return EmitStoreThroughGlobalRegLValue(Src, Dst);
1614
1615    assert(Dst.isBitField() && "Unknown LValue type");
1616    return EmitStoreThroughBitfieldLValue(Src, Dst);
1617  }
1618
1619  // There's special magic for assigning into an ARC-qualified l-value.
1620  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1621    switch (Lifetime) {
1622    case Qualifiers::OCL_None:
1623      llvm_unreachable("present but none");
1624
1625    case Qualifiers::OCL_ExplicitNone:
1626      // nothing special
1627      break;
1628
1629    case Qualifiers::OCL_Strong:
1630      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1631      return;
1632
1633    case Qualifiers::OCL_Weak:
1634      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1635      return;
1636
1637    case Qualifiers::OCL_Autoreleasing:
1638      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1639                                                     Src.getScalarVal()));
1640      // fall into the normal path
1641      break;
1642    }
1643  }
1644
1645  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1646    // load of a __weak object.
1647    Address LvalueDst = Dst.getAddress();
1648    llvm::Value *src = Src.getScalarVal();
1649     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1650    return;
1651  }
1652
1653  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1654    // load of a __strong object.
1655    Address LvalueDst = Dst.getAddress();
1656    llvm::Value *src = Src.getScalarVal();
1657    if (Dst.isObjCIvar()) {
1658      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1659      llvm::Type *ResultType = IntPtrTy;
1660      Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1661      llvm::Value *RHS = dst.getPointer();
1662      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1663      llvm::Value *LHS =
1664        Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1665                               "sub.ptr.lhs.cast");
1666      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1667      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1668                                              BytesBetween);
1669    } else if (Dst.isGlobalObjCRef()) {
1670      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1671                                                Dst.isThreadLocalRef());
1672    }
1673    else
1674      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1675    return;
1676  }
1677
1678  assert(Src.isScalar() && "Can't emit an agg store with this method");
1679  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1680}
1681
1682void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1683                                                     llvm::Value **Result) {
1684  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1685  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1686  Address Ptr = Dst.getBitFieldAddress();
1687
1688  // Get the source value, truncated to the width of the bit-field.
1689  llvm::Value *SrcVal = Src.getScalarVal();
1690
1691  // Cast the source to the storage type and shift it into place.
1692  SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1693                                 /*IsSigned=*/false);
1694  llvm::Value *MaskedVal = SrcVal;
1695
1696  // See if there are other bits in the bitfield's storage we'll need to load
1697  // and mask together with source before storing.
1698  if (Info.StorageSize != Info.Size) {
1699    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1700    llvm::Value *Val =
1701      Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1702
1703    // Mask the source value as needed.
1704    if (!hasBooleanRepresentation(Dst.getType()))
1705      SrcVal = Builder.CreateAnd(SrcVal,
1706                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1707                                                            Info.Size),
1708                                 "bf.value");
1709    MaskedVal = SrcVal;
1710    if (Info.Offset)
1711      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1712
1713    // Mask out the original value.
1714    Val = Builder.CreateAnd(Val,
1715                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1716                                                     Info.Offset,
1717                                                     Info.Offset + Info.Size),
1718                            "bf.clear");
1719
1720    // Or together the unchanged values and the source value.
1721    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1722  } else {
1723    assert(Info.Offset == 0);
1724  }
1725
1726  // Write the new value back out.
1727  Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1728
1729  // Return the new value of the bit-field, if requested.
1730  if (Result) {
1731    llvm::Value *ResultVal = MaskedVal;
1732
1733    // Sign extend the value if needed.
1734    if (Info.IsSigned) {
1735      assert(Info.Size <= Info.StorageSize);
1736      unsigned HighBits = Info.StorageSize - Info.Size;
1737      if (HighBits) {
1738        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1739        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1740      }
1741    }
1742
1743    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1744                                      "bf.result.cast");
1745    *Result = EmitFromMemory(ResultVal, Dst.getType());
1746  }
1747}
1748
1749void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1750                                                               LValue Dst) {
1751  // This access turns into a read/modify/write of the vector.  Load the input
1752  // value now.
1753  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1754                                        Dst.isVolatileQualified());
1755  const llvm::Constant *Elts = Dst.getExtVectorElts();
1756
1757  llvm::Value *SrcVal = Src.getScalarVal();
1758
1759  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1760    unsigned NumSrcElts = VTy->getNumElements();
1761    unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1762    if (NumDstElts == NumSrcElts) {
1763      // Use shuffle vector is the src and destination are the same number of
1764      // elements and restore the vector mask since it is on the side it will be
1765      // stored.
1766      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1767      for (unsigned i = 0; i != NumSrcElts; ++i)
1768        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1769
1770      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1771      Vec = Builder.CreateShuffleVector(SrcVal,
1772                                        llvm::UndefValue::get(Vec->getType()),
1773                                        MaskV);
1774    } else if (NumDstElts > NumSrcElts) {
1775      // Extended the source vector to the same length and then shuffle it
1776      // into the destination.
1777      // FIXME: since we're shuffling with undef, can we just use the indices
1778      //        into that?  This could be simpler.
1779      SmallVector<llvm::Constant*, 4> ExtMask;
1780      for (unsigned i = 0; i != NumSrcElts; ++i)
1781        ExtMask.push_back(Builder.getInt32(i));
1782      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1783      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1784      llvm::Value *ExtSrcVal =
1785        Builder.CreateShuffleVector(SrcVal,
1786                                    llvm::UndefValue::get(SrcVal->getType()),
1787                                    ExtMaskV);
1788      // build identity
1789      SmallVector<llvm::Constant*, 4> Mask;
1790      for (unsigned i = 0; i != NumDstElts; ++i)
1791        Mask.push_back(Builder.getInt32(i));
1792
1793      // When the vector size is odd and .odd or .hi is used, the last element
1794      // of the Elts constant array will be one past the size of the vector.
1795      // Ignore the last element here, if it is greater than the mask size.
1796      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1797        NumSrcElts--;
1798
1799      // modify when what gets shuffled in
1800      for (unsigned i = 0; i != NumSrcElts; ++i)
1801        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1802      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1803      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1804    } else {
1805      // We should never shorten the vector
1806      llvm_unreachable("unexpected shorten vector length");
1807    }
1808  } else {
1809    // If the Src is a scalar (not a vector) it must be updating one element.
1810    unsigned InIdx = getAccessedFieldNo(0, Elts);
1811    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1812    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1813  }
1814
1815  Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1816                      Dst.isVolatileQualified());
1817}
1818
1819/// @brief Store of global named registers are always calls to intrinsics.
1820void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1821  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1822         "Bad type for register variable");
1823  llvm::MDNode *RegName = cast<llvm::MDNode>(
1824      cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1825  assert(RegName && "Register LValue is not metadata");
1826
1827  // We accept integer and pointer types only
1828  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1829  llvm::Type *Ty = OrigTy;
1830  if (OrigTy->isPointerTy())
1831    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1832  llvm::Type *Types[] = { Ty };
1833
1834  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1835  llvm::Value *Value = Src.getScalarVal();
1836  if (OrigTy->isPointerTy())
1837    Value = Builder.CreatePtrToInt(Value, Ty);
1838  Builder.CreateCall(
1839      F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1840}
1841
1842// setObjCGCLValueClass - sets class of the lvalue for the purpose of
1843// generating write-barries API. It is currently a global, ivar,
1844// or neither.
1845static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1846                                 LValue &LV,
1847                                 bool IsMemberAccess=false) {
1848  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1849    return;
1850
1851  if (isa<ObjCIvarRefExpr>(E)) {
1852    QualType ExpTy = E->getType();
1853    if (IsMemberAccess && ExpTy->isPointerType()) {
1854      // If ivar is a structure pointer, assigning to field of
1855      // this struct follows gcc's behavior and makes it a non-ivar
1856      // writer-barrier conservatively.
1857      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1858      if (ExpTy->isRecordType()) {
1859        LV.setObjCIvar(false);
1860        return;
1861      }
1862    }
1863    LV.setObjCIvar(true);
1864    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1865    LV.setBaseIvarExp(Exp->getBase());
1866    LV.setObjCArray(E->getType()->isArrayType());
1867    return;
1868  }
1869
1870  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1871    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1872      if (VD->hasGlobalStorage()) {
1873        LV.setGlobalObjCRef(true);
1874        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1875      }
1876    }
1877    LV.setObjCArray(E->getType()->isArrayType());
1878    return;
1879  }
1880
1881  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1882    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1883    return;
1884  }
1885
1886  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1887    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1888    if (LV.isObjCIvar()) {
1889      // If cast is to a structure pointer, follow gcc's behavior and make it
1890      // a non-ivar write-barrier.
1891      QualType ExpTy = E->getType();
1892      if (ExpTy->isPointerType())
1893        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1894      if (ExpTy->isRecordType())
1895        LV.setObjCIvar(false);
1896    }
1897    return;
1898  }
1899
1900  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1901    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1902    return;
1903  }
1904
1905  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1906    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1907    return;
1908  }
1909
1910  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1911    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1912    return;
1913  }
1914
1915  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1916    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1917    return;
1918  }
1919
1920  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1921    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1922    if (LV.isObjCIvar() && !LV.isObjCArray())
1923      // Using array syntax to assigning to what an ivar points to is not
1924      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1925      LV.setObjCIvar(false);
1926    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1927      // Using array syntax to assigning to what global points to is not
1928      // same as assigning to the global itself. {id *G;} G[i] = 0;
1929      LV.setGlobalObjCRef(false);
1930    return;
1931  }
1932
1933  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1934    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1935    // We don't know if member is an 'ivar', but this flag is looked at
1936    // only in the context of LV.isObjCIvar().
1937    LV.setObjCArray(E->getType()->isArrayType());
1938    return;
1939  }
1940}
1941
1942static llvm::Value *
1943EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1944                                llvm::Value *V, llvm::Type *IRType,
1945                                StringRef Name = StringRef()) {
1946  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1947  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1948}
1949
1950static LValue EmitThreadPrivateVarDeclLValue(
1951    CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
1952    llvm::Type *RealVarTy, SourceLocation Loc) {
1953  Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
1954  Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
1955  return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1956}
1957
1958Address CodeGenFunction::EmitLoadOfReference(Address Addr,
1959                                             const ReferenceType *RefTy,
1960                                             AlignmentSource *Source) {
1961  llvm::Value *Ptr = Builder.CreateLoad(Addr);
1962  return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
1963                                              Source, /*forPointee*/ true));
1964
1965}
1966
1967LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
1968                                                  const ReferenceType *RefTy) {
1969  AlignmentSource Source;
1970  Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
1971  return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
1972}
1973
1974Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
1975                                           const PointerType *PtrTy,
1976                                           AlignmentSource *Source) {
1977  llvm::Value *Addr = Builder.CreateLoad(Ptr);
1978  return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source,
1979                                               /*forPointeeType=*/true));
1980}
1981
1982LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
1983                                                const PointerType *PtrTy) {
1984  AlignmentSource Source;
1985  Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source);
1986  return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source);
1987}
1988
1989static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1990                                      const Expr *E, const VarDecl *VD) {
1991  QualType T = E->getType();
1992
1993  // If it's thread_local, emit a call to its wrapper function instead.
1994  if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1995      CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1996    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1997
1998  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1999  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2000  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2001  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2002  Address Addr(V, Alignment);
2003  LValue LV;
2004  // Emit reference to the private copy of the variable if it is an OpenMP
2005  // threadprivate variable.
2006  if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2007    return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2008                                          E->getExprLoc());
2009  if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2010    LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2011  } else {
2012    LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2013  }
2014  setObjCGCLValueClass(CGF.getContext(), E, LV);
2015  return LV;
2016}
2017
2018static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2019                                     const Expr *E, const FunctionDecl *FD) {
2020  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
2021  if (!FD->hasPrototype()) {
2022    if (const FunctionProtoType *Proto =
2023            FD->getType()->getAs<FunctionProtoType>()) {
2024      // Ugly case: for a K&R-style definition, the type of the definition
2025      // isn't the same as the type of a use.  Correct for this with a
2026      // bitcast.
2027      QualType NoProtoType =
2028          CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
2029      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
2030      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
2031    }
2032  }
2033  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2034  return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
2035}
2036
2037static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2038                                      llvm::Value *ThisValue) {
2039  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2040  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2041  return CGF.EmitLValueForField(LV, FD);
2042}
2043
2044/// Named Registers are named metadata pointing to the register name
2045/// which will be read from/written to as an argument to the intrinsic
2046/// @llvm.read/write_register.
2047/// So far, only the name is being passed down, but other options such as
2048/// register type, allocation type or even optimization options could be
2049/// passed down via the metadata node.
2050static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2051  SmallString<64> Name("llvm.named.register.");
2052  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2053  assert(Asm->getLabel().size() < 64-Name.size() &&
2054      "Register name too big");
2055  Name.append(Asm->getLabel());
2056  llvm::NamedMDNode *M =
2057    CGM.getModule().getOrInsertNamedMetadata(Name);
2058  if (M->getNumOperands() == 0) {
2059    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2060                                              Asm->getLabel());
2061    llvm::Metadata *Ops[] = {Str};
2062    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2063  }
2064
2065  CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2066
2067  llvm::Value *Ptr =
2068    llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2069  return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2070}
2071
2072LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2073  const NamedDecl *ND = E->getDecl();
2074  QualType T = E->getType();
2075
2076  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2077    // Global Named registers access via intrinsics only
2078    if (VD->getStorageClass() == SC_Register &&
2079        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2080      return EmitGlobalNamedRegister(VD, CGM);
2081
2082    // A DeclRefExpr for a reference initialized by a constant expression can
2083    // appear without being odr-used. Directly emit the constant initializer.
2084    const Expr *Init = VD->getAnyInitializer(VD);
2085    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2086        VD->isUsableInConstantExpressions(getContext()) &&
2087        VD->checkInitIsICE() &&
2088        // Do not emit if it is private OpenMP variable.
2089        !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2090          LocalDeclMap.count(VD))) {
2091      llvm::Constant *Val =
2092        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2093      assert(Val && "failed to emit reference constant expression");
2094      // FIXME: Eventually we will want to emit vector element references.
2095
2096      // Should we be using the alignment of the constant pointer we emitted?
2097      CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2098                                                    /*pointee*/ true);
2099
2100      return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2101    }
2102
2103    // Check for captured variables.
2104    if (E->refersToEnclosingVariableOrCapture()) {
2105      if (auto *FD = LambdaCaptureFields.lookup(VD))
2106        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2107      else if (CapturedStmtInfo) {
2108        auto it = LocalDeclMap.find(VD);
2109        if (it != LocalDeclMap.end()) {
2110          if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2111            return EmitLoadOfReferenceLValue(it->second, RefTy);
2112          }
2113          return MakeAddrLValue(it->second, T);
2114        }
2115        LValue CapLVal =
2116            EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2117                                    CapturedStmtInfo->getContextValue());
2118        return MakeAddrLValue(
2119            Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2120            CapLVal.getType(), AlignmentSource::Decl);
2121      }
2122
2123      assert(isa<BlockDecl>(CurCodeDecl));
2124      Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2125      return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2126    }
2127  }
2128
2129  // FIXME: We should be able to assert this for FunctionDecls as well!
2130  // FIXME: We should be able to assert this for all DeclRefExprs, not just
2131  // those with a valid source location.
2132  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2133          !E->getLocation().isValid()) &&
2134         "Should not use decl without marking it used!");
2135
2136  if (ND->hasAttr<WeakRefAttr>()) {
2137    const auto *VD = cast<ValueDecl>(ND);
2138    ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2139    return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2140  }
2141
2142  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2143    // Check if this is a global variable.
2144    if (VD->hasLinkage() || VD->isStaticDataMember())
2145      return EmitGlobalVarDeclLValue(*this, E, VD);
2146
2147    Address addr = Address::invalid();
2148
2149    // The variable should generally be present in the local decl map.
2150    auto iter = LocalDeclMap.find(VD);
2151    if (iter != LocalDeclMap.end()) {
2152      addr = iter->second;
2153
2154    // Otherwise, it might be static local we haven't emitted yet for
2155    // some reason; most likely, because it's in an outer function.
2156    } else if (VD->isStaticLocal()) {
2157      addr = Address(CGM.getOrCreateStaticVarDecl(
2158          *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2159                     getContext().getDeclAlign(VD));
2160
2161    // No other cases for now.
2162    } else {
2163      llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2164    }
2165
2166
2167    // Check for OpenMP threadprivate variables.
2168    if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2169      return EmitThreadPrivateVarDeclLValue(
2170          *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2171          E->getExprLoc());
2172    }
2173
2174    // Drill into block byref variables.
2175    bool isBlockByref = VD->hasAttr<BlocksAttr>();
2176    if (isBlockByref) {
2177      addr = emitBlockByrefAddress(addr, VD);
2178    }
2179
2180    // Drill into reference types.
2181    LValue LV;
2182    if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2183      LV = EmitLoadOfReferenceLValue(addr, RefTy);
2184    } else {
2185      LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2186    }
2187
2188    bool isLocalStorage = VD->hasLocalStorage();
2189
2190    bool NonGCable = isLocalStorage &&
2191                     !VD->getType()->isReferenceType() &&
2192                     !isBlockByref;
2193    if (NonGCable) {
2194      LV.getQuals().removeObjCGCAttr();
2195      LV.setNonGC(true);
2196    }
2197
2198    bool isImpreciseLifetime =
2199      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2200    if (isImpreciseLifetime)
2201      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2202    setObjCGCLValueClass(getContext(), E, LV);
2203    return LV;
2204  }
2205
2206  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2207    return EmitFunctionDeclLValue(*this, E, FD);
2208
2209  llvm_unreachable("Unhandled DeclRefExpr");
2210}
2211
2212LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2213  // __extension__ doesn't affect lvalue-ness.
2214  if (E->getOpcode() == UO_Extension)
2215    return EmitLValue(E->getSubExpr());
2216
2217  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2218  switch (E->getOpcode()) {
2219  default: llvm_unreachable("Unknown unary operator lvalue!");
2220  case UO_Deref: {
2221    QualType T = E->getSubExpr()->getType()->getPointeeType();
2222    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2223
2224    AlignmentSource AlignSource;
2225    Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2226    LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2227    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2228
2229    // We should not generate __weak write barrier on indirect reference
2230    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2231    // But, we continue to generate __strong write barrier on indirect write
2232    // into a pointer to object.
2233    if (getLangOpts().ObjC1 &&
2234        getLangOpts().getGC() != LangOptions::NonGC &&
2235        LV.isObjCWeak())
2236      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2237    return LV;
2238  }
2239  case UO_Real:
2240  case UO_Imag: {
2241    LValue LV = EmitLValue(E->getSubExpr());
2242    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2243
2244    // __real is valid on scalars.  This is a faster way of testing that.
2245    // __imag can only produce an rvalue on scalars.
2246    if (E->getOpcode() == UO_Real &&
2247        !LV.getAddress().getElementType()->isStructTy()) {
2248      assert(E->getSubExpr()->getType()->isArithmeticType());
2249      return LV;
2250    }
2251
2252    assert(E->getSubExpr()->getType()->isAnyComplexType());
2253
2254    Address Component =
2255      (E->getOpcode() == UO_Real
2256         ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2257         : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2258    return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
2259  }
2260  case UO_PreInc:
2261  case UO_PreDec: {
2262    LValue LV = EmitLValue(E->getSubExpr());
2263    bool isInc = E->getOpcode() == UO_PreInc;
2264
2265    if (E->getType()->isAnyComplexType())
2266      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2267    else
2268      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2269    return LV;
2270  }
2271  }
2272}
2273
2274LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2275  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2276                        E->getType(), AlignmentSource::Decl);
2277}
2278
2279LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2280  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2281                        E->getType(), AlignmentSource::Decl);
2282}
2283
2284LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2285  auto SL = E->getFunctionName();
2286  assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2287  StringRef FnName = CurFn->getName();
2288  if (FnName.startswith("\01"))
2289    FnName = FnName.substr(1);
2290  StringRef NameItems[] = {
2291      PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2292  std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2293  if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2294    auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2295    return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2296  }
2297  auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2298  return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2299}
2300
2301/// Emit a type description suitable for use by a runtime sanitizer library. The
2302/// format of a type descriptor is
2303///
2304/// \code
2305///   { i16 TypeKind, i16 TypeInfo }
2306/// \endcode
2307///
2308/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2309/// integer, 1 for a floating point value, and -1 for anything else.
2310llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2311  // Only emit each type's descriptor once.
2312  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2313    return C;
2314
2315  uint16_t TypeKind = -1;
2316  uint16_t TypeInfo = 0;
2317
2318  if (T->isIntegerType()) {
2319    TypeKind = 0;
2320    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2321               (T->isSignedIntegerType() ? 1 : 0);
2322  } else if (T->isFloatingType()) {
2323    TypeKind = 1;
2324    TypeInfo = getContext().getTypeSize(T);
2325  }
2326
2327  // Format the type name as if for a diagnostic, including quotes and
2328  // optionally an 'aka'.
2329  SmallString<32> Buffer;
2330  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2331                                    (intptr_t)T.getAsOpaquePtr(),
2332                                    StringRef(), StringRef(), None, Buffer,
2333                                    None);
2334
2335  llvm::Constant *Components[] = {
2336    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2337    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2338  };
2339  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2340
2341  auto *GV = new llvm::GlobalVariable(
2342      CGM.getModule(), Descriptor->getType(),
2343      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2344  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2345  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2346
2347  // Remember the descriptor for this type.
2348  CGM.setTypeDescriptorInMap(T, GV);
2349
2350  return GV;
2351}
2352
2353llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2354  llvm::Type *TargetTy = IntPtrTy;
2355
2356  // Floating-point types which fit into intptr_t are bitcast to integers
2357  // and then passed directly (after zero-extension, if necessary).
2358  if (V->getType()->isFloatingPointTy()) {
2359    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2360    if (Bits <= TargetTy->getIntegerBitWidth())
2361      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2362                                                         Bits));
2363  }
2364
2365  // Integers which fit in intptr_t are zero-extended and passed directly.
2366  if (V->getType()->isIntegerTy() &&
2367      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2368    return Builder.CreateZExt(V, TargetTy);
2369
2370  // Pointers are passed directly, everything else is passed by address.
2371  if (!V->getType()->isPointerTy()) {
2372    Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2373    Builder.CreateStore(V, Ptr);
2374    V = Ptr.getPointer();
2375  }
2376  return Builder.CreatePtrToInt(V, TargetTy);
2377}
2378
2379/// \brief Emit a representation of a SourceLocation for passing to a handler
2380/// in a sanitizer runtime library. The format for this data is:
2381/// \code
2382///   struct SourceLocation {
2383///     const char *Filename;
2384///     int32_t Line, Column;
2385///   };
2386/// \endcode
2387/// For an invalid SourceLocation, the Filename pointer is null.
2388llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2389  llvm::Constant *Filename;
2390  int Line, Column;
2391
2392  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2393  if (PLoc.isValid()) {
2394    StringRef FilenameString = PLoc.getFilename();
2395
2396    int PathComponentsToStrip =
2397        CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2398    if (PathComponentsToStrip < 0) {
2399      assert(PathComponentsToStrip != INT_MIN);
2400      int PathComponentsToKeep = -PathComponentsToStrip;
2401      auto I = llvm::sys::path::rbegin(FilenameString);
2402      auto E = llvm::sys::path::rend(FilenameString);
2403      while (I != E && --PathComponentsToKeep)
2404        ++I;
2405
2406      FilenameString = FilenameString.substr(I - E);
2407    } else if (PathComponentsToStrip > 0) {
2408      auto I = llvm::sys::path::begin(FilenameString);
2409      auto E = llvm::sys::path::end(FilenameString);
2410      while (I != E && PathComponentsToStrip--)
2411        ++I;
2412
2413      if (I != E)
2414        FilenameString =
2415            FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2416      else
2417        FilenameString = llvm::sys::path::filename(FilenameString);
2418    }
2419
2420    auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2421    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2422                          cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2423    Filename = FilenameGV.getPointer();
2424    Line = PLoc.getLine();
2425    Column = PLoc.getColumn();
2426  } else {
2427    Filename = llvm::Constant::getNullValue(Int8PtrTy);
2428    Line = Column = 0;
2429  }
2430
2431  llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2432                            Builder.getInt32(Column)};
2433
2434  return llvm::ConstantStruct::getAnon(Data);
2435}
2436
2437namespace {
2438/// \brief Specify under what conditions this check can be recovered
2439enum class CheckRecoverableKind {
2440  /// Always terminate program execution if this check fails.
2441  Unrecoverable,
2442  /// Check supports recovering, runtime has both fatal (noreturn) and
2443  /// non-fatal handlers for this check.
2444  Recoverable,
2445  /// Runtime conditionally aborts, always need to support recovery.
2446  AlwaysRecoverable
2447};
2448}
2449
2450static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2451  assert(llvm::countPopulation(Kind) == 1);
2452  switch (Kind) {
2453  case SanitizerKind::Vptr:
2454    return CheckRecoverableKind::AlwaysRecoverable;
2455  case SanitizerKind::Return:
2456  case SanitizerKind::Unreachable:
2457    return CheckRecoverableKind::Unrecoverable;
2458  default:
2459    return CheckRecoverableKind::Recoverable;
2460  }
2461}
2462
2463static void emitCheckHandlerCall(CodeGenFunction &CGF,
2464                                 llvm::FunctionType *FnType,
2465                                 ArrayRef<llvm::Value *> FnArgs,
2466                                 StringRef CheckName,
2467                                 CheckRecoverableKind RecoverKind, bool IsFatal,
2468                                 llvm::BasicBlock *ContBB) {
2469  assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2470  bool NeedsAbortSuffix =
2471      IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2472  std::string FnName = ("__ubsan_handle_" + CheckName +
2473                        (NeedsAbortSuffix ? "_abort" : "")).str();
2474  bool MayReturn =
2475      !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2476
2477  llvm::AttrBuilder B;
2478  if (!MayReturn) {
2479    B.addAttribute(llvm::Attribute::NoReturn)
2480        .addAttribute(llvm::Attribute::NoUnwind);
2481  }
2482  B.addAttribute(llvm::Attribute::UWTable);
2483
2484  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2485      FnType, FnName,
2486      llvm::AttributeSet::get(CGF.getLLVMContext(),
2487                              llvm::AttributeSet::FunctionIndex, B));
2488  llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2489  if (!MayReturn) {
2490    HandlerCall->setDoesNotReturn();
2491    CGF.Builder.CreateUnreachable();
2492  } else {
2493    CGF.Builder.CreateBr(ContBB);
2494  }
2495}
2496
2497void CodeGenFunction::EmitCheck(
2498    ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2499    StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2500    ArrayRef<llvm::Value *> DynamicArgs) {
2501  assert(IsSanitizerScope);
2502  assert(Checked.size() > 0);
2503
2504  llvm::Value *FatalCond = nullptr;
2505  llvm::Value *RecoverableCond = nullptr;
2506  llvm::Value *TrapCond = nullptr;
2507  for (int i = 0, n = Checked.size(); i < n; ++i) {
2508    llvm::Value *Check = Checked[i].first;
2509    // -fsanitize-trap= overrides -fsanitize-recover=.
2510    llvm::Value *&Cond =
2511        CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2512            ? TrapCond
2513            : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2514                  ? RecoverableCond
2515                  : FatalCond;
2516    Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2517  }
2518
2519  if (TrapCond)
2520    EmitTrapCheck(TrapCond);
2521  if (!FatalCond && !RecoverableCond)
2522    return;
2523
2524  llvm::Value *JointCond;
2525  if (FatalCond && RecoverableCond)
2526    JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2527  else
2528    JointCond = FatalCond ? FatalCond : RecoverableCond;
2529  assert(JointCond);
2530
2531  CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2532  assert(SanOpts.has(Checked[0].second));
2533#ifndef NDEBUG
2534  for (int i = 1, n = Checked.size(); i < n; ++i) {
2535    assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2536           "All recoverable kinds in a single check must be same!");
2537    assert(SanOpts.has(Checked[i].second));
2538  }
2539#endif
2540
2541  llvm::BasicBlock *Cont = createBasicBlock("cont");
2542  llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2543  llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2544  // Give hint that we very much don't expect to execute the handler
2545  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2546  llvm::MDBuilder MDHelper(getLLVMContext());
2547  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2548  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2549  EmitBlock(Handlers);
2550
2551  // Handler functions take an i8* pointing to the (handler-specific) static
2552  // information block, followed by a sequence of intptr_t arguments
2553  // representing operand values.
2554  SmallVector<llvm::Value *, 4> Args;
2555  SmallVector<llvm::Type *, 4> ArgTypes;
2556  Args.reserve(DynamicArgs.size() + 1);
2557  ArgTypes.reserve(DynamicArgs.size() + 1);
2558
2559  // Emit handler arguments and create handler function type.
2560  if (!StaticArgs.empty()) {
2561    llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2562    auto *InfoPtr =
2563        new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2564                                 llvm::GlobalVariable::PrivateLinkage, Info);
2565    InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2566    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2567    Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2568    ArgTypes.push_back(Int8PtrTy);
2569  }
2570
2571  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2572    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2573    ArgTypes.push_back(IntPtrTy);
2574  }
2575
2576  llvm::FunctionType *FnType =
2577    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2578
2579  if (!FatalCond || !RecoverableCond) {
2580    // Simple case: we need to generate a single handler call, either
2581    // fatal, or non-fatal.
2582    emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2583                         (FatalCond != nullptr), Cont);
2584  } else {
2585    // Emit two handler calls: first one for set of unrecoverable checks,
2586    // another one for recoverable.
2587    llvm::BasicBlock *NonFatalHandlerBB =
2588        createBasicBlock("non_fatal." + CheckName);
2589    llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2590    Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2591    EmitBlock(FatalHandlerBB);
2592    emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2593                         NonFatalHandlerBB);
2594    EmitBlock(NonFatalHandlerBB);
2595    emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2596                         Cont);
2597  }
2598
2599  EmitBlock(Cont);
2600}
2601
2602void CodeGenFunction::EmitCfiSlowPathCheck(
2603    SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2604    llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2605  llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2606
2607  llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2608  llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2609
2610  llvm::MDBuilder MDHelper(getLLVMContext());
2611  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2612  BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2613
2614  EmitBlock(CheckBB);
2615
2616  bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2617
2618  llvm::CallInst *CheckCall;
2619  if (WithDiag) {
2620    llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2621    auto *InfoPtr =
2622        new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2623                                 llvm::GlobalVariable::PrivateLinkage, Info);
2624    InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2625    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2626
2627    llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2628        "__cfi_slowpath_diag",
2629        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2630                                false));
2631    CheckCall = Builder.CreateCall(
2632        SlowPathDiagFn,
2633        {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2634  } else {
2635    llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2636        "__cfi_slowpath",
2637        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2638    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2639  }
2640
2641  CheckCall->setDoesNotThrow();
2642
2643  EmitBlock(Cont);
2644}
2645
2646// This function is basically a switch over the CFI failure kind, which is
2647// extracted from CFICheckFailData (1st function argument). Each case is either
2648// llvm.trap or a call to one of the two runtime handlers, based on
2649// -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2650// failure kind) traps, but this should really never happen.  CFICheckFailData
2651// can be nullptr if the calling module has -fsanitize-trap behavior for this
2652// check kind; in this case __cfi_check_fail traps as well.
2653void CodeGenFunction::EmitCfiCheckFail() {
2654  SanitizerScope SanScope(this);
2655  FunctionArgList Args;
2656  ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr,
2657                            getContext().VoidPtrTy);
2658  ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr,
2659                            getContext().VoidPtrTy);
2660  Args.push_back(&ArgData);
2661  Args.push_back(&ArgAddr);
2662
2663  const CGFunctionInfo &FI =
2664    CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2665
2666  llvm::Function *F = llvm::Function::Create(
2667      llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2668      llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2669  F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2670
2671  StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2672                SourceLocation());
2673
2674  llvm::Value *Data =
2675      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2676                       CGM.getContext().VoidPtrTy, ArgData.getLocation());
2677  llvm::Value *Addr =
2678      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2679                       CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2680
2681  // Data == nullptr means the calling module has trap behaviour for this check.
2682  llvm::Value *DataIsNotNullPtr =
2683      Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2684  EmitTrapCheck(DataIsNotNullPtr);
2685
2686  llvm::StructType *SourceLocationTy =
2687      llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr);
2688  llvm::StructType *CfiCheckFailDataTy =
2689      llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr);
2690
2691  llvm::Value *V = Builder.CreateConstGEP2_32(
2692      CfiCheckFailDataTy,
2693      Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2694      0);
2695  Address CheckKindAddr(V, getIntAlign());
2696  llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2697
2698  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2699      CGM.getLLVMContext(),
2700      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2701  llvm::Value *ValidVtable = Builder.CreateZExt(
2702      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2703                         {Addr, AllVtables}),
2704      IntPtrTy);
2705
2706  const std::pair<int, SanitizerMask> CheckKinds[] = {
2707      {CFITCK_VCall, SanitizerKind::CFIVCall},
2708      {CFITCK_NVCall, SanitizerKind::CFINVCall},
2709      {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2710      {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2711      {CFITCK_ICall, SanitizerKind::CFIICall}};
2712
2713  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
2714  for (auto CheckKindMaskPair : CheckKinds) {
2715    int Kind = CheckKindMaskPair.first;
2716    SanitizerMask Mask = CheckKindMaskPair.second;
2717    llvm::Value *Cond =
2718        Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
2719    if (CGM.getLangOpts().Sanitize.has(Mask))
2720      EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {},
2721                {Data, Addr, ValidVtable});
2722    else
2723      EmitTrapCheck(Cond);
2724  }
2725
2726  FinishFunction();
2727  // The only reference to this function will be created during LTO link.
2728  // Make sure it survives until then.
2729  CGM.addUsedGlobal(F);
2730}
2731
2732void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2733  llvm::BasicBlock *Cont = createBasicBlock("cont");
2734
2735  // If we're optimizing, collapse all calls to trap down to just one per
2736  // function to save on code size.
2737  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2738    TrapBB = createBasicBlock("trap");
2739    Builder.CreateCondBr(Checked, Cont, TrapBB);
2740    EmitBlock(TrapBB);
2741    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2742    TrapCall->setDoesNotReturn();
2743    TrapCall->setDoesNotThrow();
2744    Builder.CreateUnreachable();
2745  } else {
2746    Builder.CreateCondBr(Checked, Cont, TrapBB);
2747  }
2748
2749  EmitBlock(Cont);
2750}
2751
2752llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2753  llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2754
2755  if (!CGM.getCodeGenOpts().TrapFuncName.empty())
2756    TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
2757                           "trap-func-name",
2758                           CGM.getCodeGenOpts().TrapFuncName);
2759
2760  return TrapCall;
2761}
2762
2763Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2764                                                 AlignmentSource *AlignSource) {
2765  assert(E->getType()->isArrayType() &&
2766         "Array to pointer decay must have array source type!");
2767
2768  // Expressions of array type can't be bitfields or vector elements.
2769  LValue LV = EmitLValue(E);
2770  Address Addr = LV.getAddress();
2771  if (AlignSource) *AlignSource = LV.getAlignmentSource();
2772
2773  // If the array type was an incomplete type, we need to make sure
2774  // the decay ends up being the right type.
2775  llvm::Type *NewTy = ConvertType(E->getType());
2776  Addr = Builder.CreateElementBitCast(Addr, NewTy);
2777
2778  // Note that VLA pointers are always decayed, so we don't need to do
2779  // anything here.
2780  if (!E->getType()->isVariableArrayType()) {
2781    assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2782           "Expected pointer to array");
2783    Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2784  }
2785
2786  QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2787  return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2788}
2789
2790/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2791/// array to pointer, return the array subexpression.
2792static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2793  // If this isn't just an array->pointer decay, bail out.
2794  const auto *CE = dyn_cast<CastExpr>(E);
2795  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2796    return nullptr;
2797
2798  // If this is a decay from variable width array, bail out.
2799  const Expr *SubExpr = CE->getSubExpr();
2800  if (SubExpr->getType()->isVariableArrayType())
2801    return nullptr;
2802
2803  return SubExpr;
2804}
2805
2806static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2807                                          llvm::Value *ptr,
2808                                          ArrayRef<llvm::Value*> indices,
2809                                          bool inbounds,
2810                                    const llvm::Twine &name = "arrayidx") {
2811  if (inbounds) {
2812    return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2813  } else {
2814    return CGF.Builder.CreateGEP(ptr, indices, name);
2815  }
2816}
2817
2818static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2819                                      llvm::Value *idx,
2820                                      CharUnits eltSize) {
2821  // If we have a constant index, we can use the exact offset of the
2822  // element we're accessing.
2823  if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2824    CharUnits offset = constantIdx->getZExtValue() * eltSize;
2825    return arrayAlign.alignmentAtOffset(offset);
2826
2827  // Otherwise, use the worst-case alignment for any element.
2828  } else {
2829    return arrayAlign.alignmentOfArrayElement(eltSize);
2830  }
2831}
2832
2833static QualType getFixedSizeElementType(const ASTContext &ctx,
2834                                        const VariableArrayType *vla) {
2835  QualType eltType;
2836  do {
2837    eltType = vla->getElementType();
2838  } while ((vla = ctx.getAsVariableArrayType(eltType)));
2839  return eltType;
2840}
2841
2842static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2843                                     ArrayRef<llvm::Value*> indices,
2844                                     QualType eltType, bool inbounds,
2845                                     const llvm::Twine &name = "arrayidx") {
2846  // All the indices except that last must be zero.
2847#ifndef NDEBUG
2848  for (auto idx : indices.drop_back())
2849    assert(isa<llvm::ConstantInt>(idx) &&
2850           cast<llvm::ConstantInt>(idx)->isZero());
2851#endif
2852
2853  // Determine the element size of the statically-sized base.  This is
2854  // the thing that the indices are expressed in terms of.
2855  if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2856    eltType = getFixedSizeElementType(CGF.getContext(), vla);
2857  }
2858
2859  // We can use that to compute the best alignment of the element.
2860  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2861  CharUnits eltAlign =
2862    getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2863
2864  llvm::Value *eltPtr =
2865    emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2866  return Address(eltPtr, eltAlign);
2867}
2868
2869LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2870                                               bool Accessed) {
2871  // The index must always be an integer, which is not an aggregate.  Emit it.
2872  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2873  QualType IdxTy  = E->getIdx()->getType();
2874  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2875
2876  if (SanOpts.has(SanitizerKind::ArrayBounds))
2877    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2878
2879  // If the base is a vector type, then we are forming a vector element lvalue
2880  // with this subscript.
2881  if (E->getBase()->getType()->isVectorType() &&
2882      !isa<ExtVectorElementExpr>(E->getBase())) {
2883    // Emit the vector as an lvalue to get its address.
2884    LValue LHS = EmitLValue(E->getBase());
2885    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2886    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2887                                 E->getBase()->getType(),
2888                                 LHS.getAlignmentSource());
2889  }
2890
2891  // All the other cases basically behave like simple offsetting.
2892
2893  // Extend or truncate the index type to 32 or 64-bits.
2894  if (Idx->getType() != IntPtrTy)
2895    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2896
2897  // Handle the extvector case we ignored above.
2898  if (isa<ExtVectorElementExpr>(E->getBase())) {
2899    LValue LV = EmitLValue(E->getBase());
2900    Address Addr = EmitExtVectorElementLValue(LV);
2901
2902    QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
2903    Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
2904    return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
2905  }
2906
2907  AlignmentSource AlignSource;
2908  Address Addr = Address::invalid();
2909  if (const VariableArrayType *vla =
2910           getContext().getAsVariableArrayType(E->getType())) {
2911    // The base must be a pointer, which is not an aggregate.  Emit
2912    // it.  It needs to be emitted first in case it's what captures
2913    // the VLA bounds.
2914    Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2915
2916    // The element count here is the total number of non-VLA elements.
2917    llvm::Value *numElements = getVLASize(vla).first;
2918
2919    // Effectively, the multiply by the VLA size is part of the GEP.
2920    // GEP indexes are signed, and scaling an index isn't permitted to
2921    // signed-overflow, so we use the same semantics for our explicit
2922    // multiply.  We suppress this if overflow is not undefined behavior.
2923    if (getLangOpts().isSignedOverflowDefined()) {
2924      Idx = Builder.CreateMul(Idx, numElements);
2925    } else {
2926      Idx = Builder.CreateNSWMul(Idx, numElements);
2927    }
2928
2929    Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
2930                                 !getLangOpts().isSignedOverflowDefined());
2931
2932  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2933    // Indexing over an interface, as in "NSString *P; P[4];"
2934    CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
2935    llvm::Value *InterfaceSizeVal =
2936      llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
2937
2938    llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
2939
2940    // Emit the base pointer.
2941    Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2942
2943    // We don't necessarily build correct LLVM struct types for ObjC
2944    // interfaces, so we can't rely on GEP to do this scaling
2945    // correctly, so we need to cast to i8*.  FIXME: is this actually
2946    // true?  A lot of other things in the fragile ABI would break...
2947    llvm::Type *OrigBaseTy = Addr.getType();
2948    Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
2949
2950    // Do the GEP.
2951    CharUnits EltAlign =
2952      getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
2953    llvm::Value *EltPtr =
2954      emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
2955    Addr = Address(EltPtr, EltAlign);
2956
2957    // Cast back.
2958    Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
2959  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2960    // If this is A[i] where A is an array, the frontend will have decayed the
2961    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2962    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2963    // "gep x, i" here.  Emit one "gep A, 0, i".
2964    assert(Array->getType()->isArrayType() &&
2965           "Array to pointer decay must have array source type!");
2966    LValue ArrayLV;
2967    // For simple multidimensional array indexing, set the 'accessed' flag for
2968    // better bounds-checking of the base expression.
2969    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2970      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2971    else
2972      ArrayLV = EmitLValue(Array);
2973
2974    // Propagate the alignment from the array itself to the result.
2975    Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
2976                                 {CGM.getSize(CharUnits::Zero()), Idx},
2977                                 E->getType(),
2978                                 !getLangOpts().isSignedOverflowDefined());
2979    AlignSource = ArrayLV.getAlignmentSource();
2980  } else {
2981    // The base must be a pointer; emit it with an estimate of its alignment.
2982    Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2983    Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
2984                                 !getLangOpts().isSignedOverflowDefined());
2985  }
2986
2987  LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
2988
2989  // TODO: Preserve/extend path TBAA metadata?
2990
2991  if (getLangOpts().ObjC1 &&
2992      getLangOpts().getGC() != LangOptions::NonGC) {
2993    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2994    setObjCGCLValueClass(getContext(), E, LV);
2995  }
2996  return LV;
2997}
2998
2999static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3000                                       AlignmentSource &AlignSource,
3001                                       QualType BaseTy, QualType ElTy,
3002                                       bool IsLowerBound) {
3003  LValue BaseLVal;
3004  if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3005    BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3006    if (BaseTy->isArrayType()) {
3007      Address Addr = BaseLVal.getAddress();
3008      AlignSource = BaseLVal.getAlignmentSource();
3009
3010      // If the array type was an incomplete type, we need to make sure
3011      // the decay ends up being the right type.
3012      llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3013      Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3014
3015      // Note that VLA pointers are always decayed, so we don't need to do
3016      // anything here.
3017      if (!BaseTy->isVariableArrayType()) {
3018        assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3019               "Expected pointer to array");
3020        Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3021                                           "arraydecay");
3022      }
3023
3024      return CGF.Builder.CreateElementBitCast(Addr,
3025                                              CGF.ConvertTypeForMem(ElTy));
3026    }
3027    CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource);
3028    return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3029  }
3030  return CGF.EmitPointerWithAlignment(Base, &AlignSource);
3031}
3032
3033LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3034                                                bool IsLowerBound) {
3035  QualType BaseTy;
3036  if (auto *ASE =
3037          dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3038    BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3039  else
3040    BaseTy = E->getBase()->getType();
3041  QualType ResultExprTy;
3042  if (auto *AT = getContext().getAsArrayType(BaseTy))
3043    ResultExprTy = AT->getElementType();
3044  else
3045    ResultExprTy = BaseTy->getPointeeType();
3046  llvm::Value *Idx = nullptr;
3047  if (IsLowerBound || E->getColonLoc().isInvalid()) {
3048    // Requesting lower bound or upper bound, but without provided length and
3049    // without ':' symbol for the default length -> length = 1.
3050    // Idx = LowerBound ?: 0;
3051    if (auto *LowerBound = E->getLowerBound()) {
3052      Idx = Builder.CreateIntCast(
3053          EmitScalarExpr(LowerBound), IntPtrTy,
3054          LowerBound->getType()->hasSignedIntegerRepresentation());
3055    } else
3056      Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3057  } else {
3058    // Try to emit length or lower bound as constant. If this is possible, 1
3059    // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3060    // IR (LB + Len) - 1.
3061    auto &C = CGM.getContext();
3062    auto *Length = E->getLength();
3063    llvm::APSInt ConstLength;
3064    if (Length) {
3065      // Idx = LowerBound + Length - 1;
3066      if (Length->isIntegerConstantExpr(ConstLength, C)) {
3067        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3068        Length = nullptr;
3069      }
3070      auto *LowerBound = E->getLowerBound();
3071      llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3072      if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3073        ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3074        LowerBound = nullptr;
3075      }
3076      if (!Length)
3077        --ConstLength;
3078      else if (!LowerBound)
3079        --ConstLowerBound;
3080
3081      if (Length || LowerBound) {
3082        auto *LowerBoundVal =
3083            LowerBound
3084                ? Builder.CreateIntCast(
3085                      EmitScalarExpr(LowerBound), IntPtrTy,
3086                      LowerBound->getType()->hasSignedIntegerRepresentation())
3087                : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3088        auto *LengthVal =
3089            Length
3090                ? Builder.CreateIntCast(
3091                      EmitScalarExpr(Length), IntPtrTy,
3092                      Length->getType()->hasSignedIntegerRepresentation())
3093                : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3094        Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3095                                /*HasNUW=*/false,
3096                                !getLangOpts().isSignedOverflowDefined());
3097        if (Length && LowerBound) {
3098          Idx = Builder.CreateSub(
3099              Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3100              /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3101        }
3102      } else
3103        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3104    } else {
3105      // Idx = ArraySize - 1;
3106      QualType ArrayTy = BaseTy->isPointerType()
3107                             ? E->getBase()->IgnoreParenImpCasts()->getType()
3108                             : BaseTy;
3109      if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3110        Length = VAT->getSizeExpr();
3111        if (Length->isIntegerConstantExpr(ConstLength, C))
3112          Length = nullptr;
3113      } else {
3114        auto *CAT = C.getAsConstantArrayType(ArrayTy);
3115        ConstLength = CAT->getSize();
3116      }
3117      if (Length) {
3118        auto *LengthVal = Builder.CreateIntCast(
3119            EmitScalarExpr(Length), IntPtrTy,
3120            Length->getType()->hasSignedIntegerRepresentation());
3121        Idx = Builder.CreateSub(
3122            LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3123            /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3124      } else {
3125        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3126        --ConstLength;
3127        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3128      }
3129    }
3130  }
3131  assert(Idx);
3132
3133  Address EltPtr = Address::invalid();
3134  AlignmentSource AlignSource;
3135  if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3136    // The base must be a pointer, which is not an aggregate.  Emit
3137    // it.  It needs to be emitted first in case it's what captures
3138    // the VLA bounds.
3139    Address Base =
3140        emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy,
3141                                VLA->getElementType(), IsLowerBound);
3142    // The element count here is the total number of non-VLA elements.
3143    llvm::Value *NumElements = getVLASize(VLA).first;
3144
3145    // Effectively, the multiply by the VLA size is part of the GEP.
3146    // GEP indexes are signed, and scaling an index isn't permitted to
3147    // signed-overflow, so we use the same semantics for our explicit
3148    // multiply.  We suppress this if overflow is not undefined behavior.
3149    if (getLangOpts().isSignedOverflowDefined())
3150      Idx = Builder.CreateMul(Idx, NumElements);
3151    else
3152      Idx = Builder.CreateNSWMul(Idx, NumElements);
3153    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3154                                   !getLangOpts().isSignedOverflowDefined());
3155  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3156    // If this is A[i] where A is an array, the frontend will have decayed the
3157    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3158    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3159    // "gep x, i" here.  Emit one "gep A, 0, i".
3160    assert(Array->getType()->isArrayType() &&
3161           "Array to pointer decay must have array source type!");
3162    LValue ArrayLV;
3163    // For simple multidimensional array indexing, set the 'accessed' flag for
3164    // better bounds-checking of the base expression.
3165    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3166      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3167    else
3168      ArrayLV = EmitLValue(Array);
3169
3170    // Propagate the alignment from the array itself to the result.
3171    EltPtr = emitArraySubscriptGEP(
3172        *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3173        ResultExprTy, !getLangOpts().isSignedOverflowDefined());
3174    AlignSource = ArrayLV.getAlignmentSource();
3175  } else {
3176    Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource,
3177                                           BaseTy, ResultExprTy, IsLowerBound);
3178    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3179                                   !getLangOpts().isSignedOverflowDefined());
3180  }
3181
3182  return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource);
3183}
3184
3185LValue CodeGenFunction::
3186EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3187  // Emit the base vector as an l-value.
3188  LValue Base;
3189
3190  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3191  if (E->isArrow()) {
3192    // If it is a pointer to a vector, emit the address and form an lvalue with
3193    // it.
3194    AlignmentSource AlignSource;
3195    Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3196    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3197    Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
3198    Base.getQuals().removeObjCGCAttr();
3199  } else if (E->getBase()->isGLValue()) {
3200    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3201    // emit the base as an lvalue.
3202    assert(E->getBase()->getType()->isVectorType());
3203    Base = EmitLValue(E->getBase());
3204  } else {
3205    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3206    assert(E->getBase()->getType()->isVectorType() &&
3207           "Result must be a vector");
3208    llvm::Value *Vec = EmitScalarExpr(E->getBase());
3209
3210    // Store the vector to memory (because LValue wants an address).
3211    Address VecMem = CreateMemTemp(E->getBase()->getType());
3212    Builder.CreateStore(Vec, VecMem);
3213    Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3214                          AlignmentSource::Decl);
3215  }
3216
3217  QualType type =
3218    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3219
3220  // Encode the element access list into a vector of unsigned indices.
3221  SmallVector<uint32_t, 4> Indices;
3222  E->getEncodedElementAccess(Indices);
3223
3224  if (Base.isSimple()) {
3225    llvm::Constant *CV =
3226        llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3227    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3228                                    Base.getAlignmentSource());
3229  }
3230  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3231
3232  llvm::Constant *BaseElts = Base.getExtVectorElts();
3233  SmallVector<llvm::Constant *, 4> CElts;
3234
3235  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3236    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3237  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3238  return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3239                                  Base.getAlignmentSource());
3240}
3241
3242LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3243  Expr *BaseExpr = E->getBase();
3244
3245  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3246  LValue BaseLV;
3247  if (E->isArrow()) {
3248    AlignmentSource AlignSource;
3249    Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3250    QualType PtrTy = BaseExpr->getType()->getPointeeType();
3251    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
3252    BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3253  } else
3254    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3255
3256  NamedDecl *ND = E->getMemberDecl();
3257  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3258    LValue LV = EmitLValueForField(BaseLV, Field);
3259    setObjCGCLValueClass(getContext(), E, LV);
3260    return LV;
3261  }
3262
3263  if (auto *VD = dyn_cast<VarDecl>(ND))
3264    return EmitGlobalVarDeclLValue(*this, E, VD);
3265
3266  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3267    return EmitFunctionDeclLValue(*this, E, FD);
3268
3269  llvm_unreachable("Unhandled member declaration!");
3270}
3271
3272/// Given that we are currently emitting a lambda, emit an l-value for
3273/// one of its members.
3274LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3275  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3276  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3277  QualType LambdaTagType =
3278    getContext().getTagDeclType(Field->getParent());
3279  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3280  return EmitLValueForField(LambdaLV, Field);
3281}
3282
3283/// Drill down to the storage of a field without walking into
3284/// reference types.
3285///
3286/// The resulting address doesn't necessarily have the right type.
3287static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3288                                      const FieldDecl *field) {
3289  const RecordDecl *rec = field->getParent();
3290
3291  unsigned idx =
3292    CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3293
3294  CharUnits offset;
3295  // Adjust the alignment down to the given offset.
3296  // As a special case, if the LLVM field index is 0, we know that this
3297  // is zero.
3298  assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3299                         .getFieldOffset(field->getFieldIndex()) == 0) &&
3300         "LLVM field at index zero had non-zero offset?");
3301  if (idx != 0) {
3302    auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3303    auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3304    offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3305  }
3306
3307  return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3308}
3309
3310LValue CodeGenFunction::EmitLValueForField(LValue base,
3311                                           const FieldDecl *field) {
3312  AlignmentSource fieldAlignSource =
3313    getFieldAlignmentSource(base.getAlignmentSource());
3314
3315  if (field->isBitField()) {
3316    const CGRecordLayout &RL =
3317      CGM.getTypes().getCGRecordLayout(field->getParent());
3318    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3319    Address Addr = base.getAddress();
3320    unsigned Idx = RL.getLLVMFieldNo(field);
3321    if (Idx != 0)
3322      // For structs, we GEP to the field that the record layout suggests.
3323      Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3324                                     field->getName());
3325    // Get the access type.
3326    llvm::Type *FieldIntTy =
3327      llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3328    if (Addr.getElementType() != FieldIntTy)
3329      Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3330
3331    QualType fieldType =
3332      field->getType().withCVRQualifiers(base.getVRQualifiers());
3333    return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3334  }
3335
3336  const RecordDecl *rec = field->getParent();
3337  QualType type = field->getType();
3338
3339  bool mayAlias = rec->hasAttr<MayAliasAttr>();
3340
3341  Address addr = base.getAddress();
3342  unsigned cvr = base.getVRQualifiers();
3343  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3344  if (rec->isUnion()) {
3345    // For unions, there is no pointer adjustment.
3346    assert(!type->isReferenceType() && "union has reference member");
3347    // TODO: handle path-aware TBAA for union.
3348    TBAAPath = false;
3349  } else {
3350    // For structs, we GEP to the field that the record layout suggests.
3351    addr = emitAddrOfFieldStorage(*this, addr, field);
3352
3353    // If this is a reference field, load the reference right now.
3354    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3355      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3356      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3357
3358      // Loading the reference will disable path-aware TBAA.
3359      TBAAPath = false;
3360      if (CGM.shouldUseTBAA()) {
3361        llvm::MDNode *tbaa;
3362        if (mayAlias)
3363          tbaa = CGM.getTBAAInfo(getContext().CharTy);
3364        else
3365          tbaa = CGM.getTBAAInfo(type);
3366        if (tbaa)
3367          CGM.DecorateInstructionWithTBAA(load, tbaa);
3368      }
3369
3370      mayAlias = false;
3371      type = refType->getPointeeType();
3372
3373      CharUnits alignment =
3374        getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3375      addr = Address(load, alignment);
3376
3377      // Qualifiers on the struct don't apply to the referencee, and
3378      // we'll pick up CVR from the actual type later, so reset these
3379      // additional qualifiers now.
3380      cvr = 0;
3381    }
3382  }
3383
3384  // Make sure that the address is pointing to the right type.  This is critical
3385  // for both unions and structs.  A union needs a bitcast, a struct element
3386  // will need a bitcast if the LLVM type laid out doesn't match the desired
3387  // type.
3388  addr = Builder.CreateElementBitCast(addr,
3389                                      CGM.getTypes().ConvertTypeForMem(type),
3390                                      field->getName());
3391
3392  if (field->hasAttr<AnnotateAttr>())
3393    addr = EmitFieldAnnotations(field, addr);
3394
3395  LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3396  LV.getQuals().addCVRQualifiers(cvr);
3397  if (TBAAPath) {
3398    const ASTRecordLayout &Layout =
3399        getContext().getASTRecordLayout(field->getParent());
3400    // Set the base type to be the base type of the base LValue and
3401    // update offset to be relative to the base type.
3402    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3403    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3404                     Layout.getFieldOffset(field->getFieldIndex()) /
3405                                           getContext().getCharWidth());
3406  }
3407
3408  // __weak attribute on a field is ignored.
3409  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3410    LV.getQuals().removeObjCGCAttr();
3411
3412  // Fields of may_alias structs act like 'char' for TBAA purposes.
3413  // FIXME: this should get propagated down through anonymous structs
3414  // and unions.
3415  if (mayAlias && LV.getTBAAInfo())
3416    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3417
3418  return LV;
3419}
3420
3421LValue
3422CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3423                                                  const FieldDecl *Field) {
3424  QualType FieldType = Field->getType();
3425
3426  if (!FieldType->isReferenceType())
3427    return EmitLValueForField(Base, Field);
3428
3429  Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3430
3431  // Make sure that the address is pointing to the right type.
3432  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3433  V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3434
3435  // TODO: access-path TBAA?
3436  auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3437  return MakeAddrLValue(V, FieldType, FieldAlignSource);
3438}
3439
3440LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3441  if (E->isFileScope()) {
3442    ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3443    return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3444  }
3445  if (E->getType()->isVariablyModifiedType())
3446    // make sure to emit the VLA size.
3447    EmitVariablyModifiedType(E->getType());
3448
3449  Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3450  const Expr *InitExpr = E->getInitializer();
3451  LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3452
3453  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3454                   /*Init*/ true);
3455
3456  return Result;
3457}
3458
3459LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3460  if (!E->isGLValue())
3461    // Initializing an aggregate temporary in C++11: T{...}.
3462    return EmitAggExprToLValue(E);
3463
3464  // An lvalue initializer list must be initializing a reference.
3465  assert(E->getNumInits() == 1 && "reference init with multiple values");
3466  return EmitLValue(E->getInit(0));
3467}
3468
3469/// Emit the operand of a glvalue conditional operator. This is either a glvalue
3470/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3471/// LValue is returned and the current block has been terminated.
3472static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3473                                                    const Expr *Operand) {
3474  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3475    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3476    return None;
3477  }
3478
3479  return CGF.EmitLValue(Operand);
3480}
3481
3482LValue CodeGenFunction::
3483EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3484  if (!expr->isGLValue()) {
3485    // ?: here should be an aggregate.
3486    assert(hasAggregateEvaluationKind(expr->getType()) &&
3487           "Unexpected conditional operator!");
3488    return EmitAggExprToLValue(expr);
3489  }
3490
3491  OpaqueValueMapping binding(*this, expr);
3492
3493  const Expr *condExpr = expr->getCond();
3494  bool CondExprBool;
3495  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3496    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3497    if (!CondExprBool) std::swap(live, dead);
3498
3499    if (!ContainsLabel(dead)) {
3500      // If the true case is live, we need to track its region.
3501      if (CondExprBool)
3502        incrementProfileCounter(expr);
3503      return EmitLValue(live);
3504    }
3505  }
3506
3507  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3508  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3509  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3510
3511  ConditionalEvaluation eval(*this);
3512  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3513
3514  // Any temporaries created here are conditional.
3515  EmitBlock(lhsBlock);
3516  incrementProfileCounter(expr);
3517  eval.begin(*this);
3518  Optional<LValue> lhs =
3519      EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3520  eval.end(*this);
3521
3522  if (lhs && !lhs->isSimple())
3523    return EmitUnsupportedLValue(expr, "conditional operator");
3524
3525  lhsBlock = Builder.GetInsertBlock();
3526  if (lhs)
3527    Builder.CreateBr(contBlock);
3528
3529  // Any temporaries created here are conditional.
3530  EmitBlock(rhsBlock);
3531  eval.begin(*this);
3532  Optional<LValue> rhs =
3533      EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3534  eval.end(*this);
3535  if (rhs && !rhs->isSimple())
3536    return EmitUnsupportedLValue(expr, "conditional operator");
3537  rhsBlock = Builder.GetInsertBlock();
3538
3539  EmitBlock(contBlock);
3540
3541  if (lhs && rhs) {
3542    llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3543                                           2, "cond-lvalue");
3544    phi->addIncoming(lhs->getPointer(), lhsBlock);
3545    phi->addIncoming(rhs->getPointer(), rhsBlock);
3546    Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3547    AlignmentSource alignSource =
3548      std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3549    return MakeAddrLValue(result, expr->getType(), alignSource);
3550  } else {
3551    assert((lhs || rhs) &&
3552           "both operands of glvalue conditional are throw-expressions?");
3553    return lhs ? *lhs : *rhs;
3554  }
3555}
3556
3557/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3558/// type. If the cast is to a reference, we can have the usual lvalue result,
3559/// otherwise if a cast is needed by the code generator in an lvalue context,
3560/// then it must mean that we need the address of an aggregate in order to
3561/// access one of its members.  This can happen for all the reasons that casts
3562/// are permitted with aggregate result, including noop aggregate casts, and
3563/// cast from scalar to union.
3564LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3565  switch (E->getCastKind()) {
3566  case CK_ToVoid:
3567  case CK_BitCast:
3568  case CK_ArrayToPointerDecay:
3569  case CK_FunctionToPointerDecay:
3570  case CK_NullToMemberPointer:
3571  case CK_NullToPointer:
3572  case CK_IntegralToPointer:
3573  case CK_PointerToIntegral:
3574  case CK_PointerToBoolean:
3575  case CK_VectorSplat:
3576  case CK_IntegralCast:
3577  case CK_BooleanToSignedIntegral:
3578  case CK_IntegralToBoolean:
3579  case CK_IntegralToFloating:
3580  case CK_FloatingToIntegral:
3581  case CK_FloatingToBoolean:
3582  case CK_FloatingCast:
3583  case CK_FloatingRealToComplex:
3584  case CK_FloatingComplexToReal:
3585  case CK_FloatingComplexToBoolean:
3586  case CK_FloatingComplexCast:
3587  case CK_FloatingComplexToIntegralComplex:
3588  case CK_IntegralRealToComplex:
3589  case CK_IntegralComplexToReal:
3590  case CK_IntegralComplexToBoolean:
3591  case CK_IntegralComplexCast:
3592  case CK_IntegralComplexToFloatingComplex:
3593  case CK_DerivedToBaseMemberPointer:
3594  case CK_BaseToDerivedMemberPointer:
3595  case CK_MemberPointerToBoolean:
3596  case CK_ReinterpretMemberPointer:
3597  case CK_AnyPointerToBlockPointerCast:
3598  case CK_ARCProduceObject:
3599  case CK_ARCConsumeObject:
3600  case CK_ARCReclaimReturnedObject:
3601  case CK_ARCExtendBlockObject:
3602  case CK_CopyAndAutoreleaseBlockObject:
3603  case CK_AddressSpaceConversion:
3604    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3605
3606  case CK_Dependent:
3607    llvm_unreachable("dependent cast kind in IR gen!");
3608
3609  case CK_BuiltinFnToFnPtr:
3610    llvm_unreachable("builtin functions are handled elsewhere");
3611
3612  // These are never l-values; just use the aggregate emission code.
3613  case CK_NonAtomicToAtomic:
3614  case CK_AtomicToNonAtomic:
3615    return EmitAggExprToLValue(E);
3616
3617  case CK_Dynamic: {
3618    LValue LV = EmitLValue(E->getSubExpr());
3619    Address V = LV.getAddress();
3620    const auto *DCE = cast<CXXDynamicCastExpr>(E);
3621    return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3622  }
3623
3624  case CK_ConstructorConversion:
3625  case CK_UserDefinedConversion:
3626  case CK_CPointerToObjCPointerCast:
3627  case CK_BlockPointerToObjCPointerCast:
3628  case CK_NoOp:
3629  case CK_LValueToRValue:
3630    return EmitLValue(E->getSubExpr());
3631
3632  case CK_UncheckedDerivedToBase:
3633  case CK_DerivedToBase: {
3634    const RecordType *DerivedClassTy =
3635      E->getSubExpr()->getType()->getAs<RecordType>();
3636    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3637
3638    LValue LV = EmitLValue(E->getSubExpr());
3639    Address This = LV.getAddress();
3640
3641    // Perform the derived-to-base conversion
3642    Address Base = GetAddressOfBaseClass(
3643        This, DerivedClassDecl, E->path_begin(), E->path_end(),
3644        /*NullCheckValue=*/false, E->getExprLoc());
3645
3646    return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3647  }
3648  case CK_ToUnion:
3649    return EmitAggExprToLValue(E);
3650  case CK_BaseToDerived: {
3651    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3652    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3653
3654    LValue LV = EmitLValue(E->getSubExpr());
3655
3656    // Perform the base-to-derived conversion
3657    Address Derived =
3658      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3659                               E->path_begin(), E->path_end(),
3660                               /*NullCheckValue=*/false);
3661
3662    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3663    // performed and the object is not of the derived type.
3664    if (sanitizePerformTypeCheck())
3665      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3666                    Derived.getPointer(), E->getType());
3667
3668    if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3669      EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3670                                /*MayBeNull=*/false,
3671                                CFITCK_DerivedCast, E->getLocStart());
3672
3673    return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3674  }
3675  case CK_LValueBitCast: {
3676    // This must be a reinterpret_cast (or c-style equivalent).
3677    const auto *CE = cast<ExplicitCastExpr>(E);
3678
3679    CGM.EmitExplicitCastExprType(CE, this);
3680    LValue LV = EmitLValue(E->getSubExpr());
3681    Address V = Builder.CreateBitCast(LV.getAddress(),
3682                                      ConvertType(CE->getTypeAsWritten()));
3683
3684    if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3685      EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3686                                /*MayBeNull=*/false,
3687                                CFITCK_UnrelatedCast, E->getLocStart());
3688
3689    return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3690  }
3691  case CK_ObjCObjectLValueCast: {
3692    LValue LV = EmitLValue(E->getSubExpr());
3693    Address V = Builder.CreateElementBitCast(LV.getAddress(),
3694                                             ConvertType(E->getType()));
3695    return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3696  }
3697  case CK_ZeroToOCLEvent:
3698    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3699  }
3700
3701  llvm_unreachable("Unhandled lvalue cast kind?");
3702}
3703
3704LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3705  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3706  return getOpaqueLValueMapping(e);
3707}
3708
3709RValue CodeGenFunction::EmitRValueForField(LValue LV,
3710                                           const FieldDecl *FD,
3711                                           SourceLocation Loc) {
3712  QualType FT = FD->getType();
3713  LValue FieldLV = EmitLValueForField(LV, FD);
3714  switch (getEvaluationKind(FT)) {
3715  case TEK_Complex:
3716    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3717  case TEK_Aggregate:
3718    return FieldLV.asAggregateRValue();
3719  case TEK_Scalar:
3720    // This routine is used to load fields one-by-one to perform a copy, so
3721    // don't load reference fields.
3722    if (FD->getType()->isReferenceType())
3723      return RValue::get(FieldLV.getPointer());
3724    return EmitLoadOfLValue(FieldLV, Loc);
3725  }
3726  llvm_unreachable("bad evaluation kind");
3727}
3728
3729//===--------------------------------------------------------------------===//
3730//                             Expression Emission
3731//===--------------------------------------------------------------------===//
3732
3733RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3734                                     ReturnValueSlot ReturnValue) {
3735  // Builtins never have block type.
3736  if (E->getCallee()->getType()->isBlockPointerType())
3737    return EmitBlockCallExpr(E, ReturnValue);
3738
3739  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3740    return EmitCXXMemberCallExpr(CE, ReturnValue);
3741
3742  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3743    return EmitCUDAKernelCallExpr(CE, ReturnValue);
3744
3745  const Decl *TargetDecl = E->getCalleeDecl();
3746  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3747    if (unsigned builtinID = FD->getBuiltinID())
3748      return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3749  }
3750
3751  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3752    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3753      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3754
3755  if (const auto *PseudoDtor =
3756          dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3757    QualType DestroyedType = PseudoDtor->getDestroyedType();
3758    if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
3759      // Automatic Reference Counting:
3760      //   If the pseudo-expression names a retainable object with weak or
3761      //   strong lifetime, the object shall be released.
3762      Expr *BaseExpr = PseudoDtor->getBase();
3763      Address BaseValue = Address::invalid();
3764      Qualifiers BaseQuals;
3765
3766      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3767      if (PseudoDtor->isArrow()) {
3768        BaseValue = EmitPointerWithAlignment(BaseExpr);
3769        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3770        BaseQuals = PTy->getPointeeType().getQualifiers();
3771      } else {
3772        LValue BaseLV = EmitLValue(BaseExpr);
3773        BaseValue = BaseLV.getAddress();
3774        QualType BaseTy = BaseExpr->getType();
3775        BaseQuals = BaseTy.getQualifiers();
3776      }
3777
3778      switch (DestroyedType.getObjCLifetime()) {
3779      case Qualifiers::OCL_None:
3780      case Qualifiers::OCL_ExplicitNone:
3781      case Qualifiers::OCL_Autoreleasing:
3782        break;
3783
3784      case Qualifiers::OCL_Strong:
3785        EmitARCRelease(Builder.CreateLoad(BaseValue,
3786                          PseudoDtor->getDestroyedType().isVolatileQualified()),
3787                       ARCPreciseLifetime);
3788        break;
3789
3790      case Qualifiers::OCL_Weak:
3791        EmitARCDestroyWeak(BaseValue);
3792        break;
3793      }
3794    } else {
3795      // C++ [expr.pseudo]p1:
3796      //   The result shall only be used as the operand for the function call
3797      //   operator (), and the result of such a call has type void. The only
3798      //   effect is the evaluation of the postfix-expression before the dot or
3799      //   arrow.
3800      EmitScalarExpr(E->getCallee());
3801    }
3802
3803    return RValue::get(nullptr);
3804  }
3805
3806  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3807  return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3808                  TargetDecl);
3809}
3810
3811LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3812  // Comma expressions just emit their LHS then their RHS as an l-value.
3813  if (E->getOpcode() == BO_Comma) {
3814    EmitIgnoredExpr(E->getLHS());
3815    EnsureInsertPoint();
3816    return EmitLValue(E->getRHS());
3817  }
3818
3819  if (E->getOpcode() == BO_PtrMemD ||
3820      E->getOpcode() == BO_PtrMemI)
3821    return EmitPointerToDataMemberBinaryExpr(E);
3822
3823  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3824
3825  // Note that in all of these cases, __block variables need the RHS
3826  // evaluated first just in case the variable gets moved by the RHS.
3827
3828  switch (getEvaluationKind(E->getType())) {
3829  case TEK_Scalar: {
3830    switch (E->getLHS()->getType().getObjCLifetime()) {
3831    case Qualifiers::OCL_Strong:
3832      return EmitARCStoreStrong(E, /*ignored*/ false).first;
3833
3834    case Qualifiers::OCL_Autoreleasing:
3835      return EmitARCStoreAutoreleasing(E).first;
3836
3837    // No reason to do any of these differently.
3838    case Qualifiers::OCL_None:
3839    case Qualifiers::OCL_ExplicitNone:
3840    case Qualifiers::OCL_Weak:
3841      break;
3842    }
3843
3844    RValue RV = EmitAnyExpr(E->getRHS());
3845    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3846    EmitStoreThroughLValue(RV, LV);
3847    return LV;
3848  }
3849
3850  case TEK_Complex:
3851    return EmitComplexAssignmentLValue(E);
3852
3853  case TEK_Aggregate:
3854    return EmitAggExprToLValue(E);
3855  }
3856  llvm_unreachable("bad evaluation kind");
3857}
3858
3859LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3860  RValue RV = EmitCallExpr(E);
3861
3862  if (!RV.isScalar())
3863    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3864                          AlignmentSource::Decl);
3865
3866  assert(E->getCallReturnType(getContext())->isReferenceType() &&
3867         "Can't have a scalar return unless the return type is a "
3868         "reference type!");
3869
3870  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3871}
3872
3873LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3874  // FIXME: This shouldn't require another copy.
3875  return EmitAggExprToLValue(E);
3876}
3877
3878LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3879  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3880         && "binding l-value to type which needs a temporary");
3881  AggValueSlot Slot = CreateAggTemp(E->getType());
3882  EmitCXXConstructExpr(E, Slot);
3883  return MakeAddrLValue(Slot.getAddress(), E->getType(),
3884                        AlignmentSource::Decl);
3885}
3886
3887LValue
3888CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3889  return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3890}
3891
3892Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3893  return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
3894                                      ConvertType(E->getType()));
3895}
3896
3897LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3898  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
3899                        AlignmentSource::Decl);
3900}
3901
3902LValue
3903CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3904  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3905  Slot.setExternallyDestructed();
3906  EmitAggExpr(E->getSubExpr(), Slot);
3907  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
3908  return MakeAddrLValue(Slot.getAddress(), E->getType(),
3909                        AlignmentSource::Decl);
3910}
3911
3912LValue
3913CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3914  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3915  EmitLambdaExpr(E, Slot);
3916  return MakeAddrLValue(Slot.getAddress(), E->getType(),
3917                        AlignmentSource::Decl);
3918}
3919
3920LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3921  RValue RV = EmitObjCMessageExpr(E);
3922
3923  if (!RV.isScalar())
3924    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3925                          AlignmentSource::Decl);
3926
3927  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3928         "Can't have a scalar return unless the return type is a "
3929         "reference type!");
3930
3931  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3932}
3933
3934LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3935  Address V =
3936    CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
3937  return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
3938}
3939
3940llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3941                                             const ObjCIvarDecl *Ivar) {
3942  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3943}
3944
3945LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3946                                          llvm::Value *BaseValue,
3947                                          const ObjCIvarDecl *Ivar,
3948                                          unsigned CVRQualifiers) {
3949  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3950                                                   Ivar, CVRQualifiers);
3951}
3952
3953LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3954  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3955  llvm::Value *BaseValue = nullptr;
3956  const Expr *BaseExpr = E->getBase();
3957  Qualifiers BaseQuals;
3958  QualType ObjectTy;
3959  if (E->isArrow()) {
3960    BaseValue = EmitScalarExpr(BaseExpr);
3961    ObjectTy = BaseExpr->getType()->getPointeeType();
3962    BaseQuals = ObjectTy.getQualifiers();
3963  } else {
3964    LValue BaseLV = EmitLValue(BaseExpr);
3965    BaseValue = BaseLV.getPointer();
3966    ObjectTy = BaseExpr->getType();
3967    BaseQuals = ObjectTy.getQualifiers();
3968  }
3969
3970  LValue LV =
3971    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3972                      BaseQuals.getCVRQualifiers());
3973  setObjCGCLValueClass(getContext(), E, LV);
3974  return LV;
3975}
3976
3977LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3978  // Can only get l-value for message expression returning aggregate type
3979  RValue RV = EmitAnyExprToTemp(E);
3980  return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3981                        AlignmentSource::Decl);
3982}
3983
3984RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3985                                 const CallExpr *E, ReturnValueSlot ReturnValue,
3986                                 CGCalleeInfo CalleeInfo, llvm::Value *Chain) {
3987  // Get the actual function type. The callee type will always be a pointer to
3988  // function type or a block pointer type.
3989  assert(CalleeType->isFunctionPointerType() &&
3990         "Call must have function pointer type!");
3991
3992  // Preserve the non-canonical function type because things like exception
3993  // specifications disappear in the canonical type. That information is useful
3994  // to drive the generation of more accurate code for this call later on.
3995  const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>()
3996                                                 ->getPointeeType()
3997                                                 ->getAs<FunctionProtoType>();
3998
3999  const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
4000
4001  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4002    // We can only guarantee that a function is called from the correct
4003    // context/function based on the appropriate target attributes,
4004    // so only check in the case where we have both always_inline and target
4005    // since otherwise we could be making a conditional call after a check for
4006    // the proper cpu features (and it won't cause code generation issues due to
4007    // function based code generation).
4008    if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4009        TargetDecl->hasAttr<TargetAttr>())
4010      checkTargetFeatures(E, FD);
4011
4012  CalleeType = getContext().getCanonicalType(CalleeType);
4013
4014  const auto *FnType =
4015      cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4016
4017  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4018      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4019    if (llvm::Constant *PrefixSig =
4020            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4021      SanitizerScope SanScope(this);
4022      llvm::Constant *FTRTTIConst =
4023          CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4024      llvm::Type *PrefixStructTyElems[] = {
4025        PrefixSig->getType(),
4026        FTRTTIConst->getType()
4027      };
4028      llvm::StructType *PrefixStructTy = llvm::StructType::get(
4029          CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4030
4031      llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4032          Callee, llvm::PointerType::getUnqual(PrefixStructTy));
4033      llvm::Value *CalleeSigPtr =
4034          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4035      llvm::Value *CalleeSig =
4036          Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4037      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4038
4039      llvm::BasicBlock *Cont = createBasicBlock("cont");
4040      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4041      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4042
4043      EmitBlock(TypeCheck);
4044      llvm::Value *CalleeRTTIPtr =
4045          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4046      llvm::Value *CalleeRTTI =
4047          Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4048      llvm::Value *CalleeRTTIMatch =
4049          Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4050      llvm::Constant *StaticData[] = {
4051        EmitCheckSourceLocation(E->getLocStart()),
4052        EmitCheckTypeDescriptor(CalleeType)
4053      };
4054      EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4055                "function_type_mismatch", StaticData, Callee);
4056
4057      Builder.CreateBr(Cont);
4058      EmitBlock(Cont);
4059    }
4060  }
4061
4062  // If we are checking indirect calls and this call is indirect, check that the
4063  // function pointer is a member of the bit set for the function type.
4064  if (SanOpts.has(SanitizerKind::CFIICall) &&
4065      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4066    SanitizerScope SanScope(this);
4067    EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4068
4069    llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4070    llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4071
4072    llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
4073    llvm::Value *TypeTest = Builder.CreateCall(
4074        CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4075
4076    auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4077    llvm::Constant *StaticData[] = {
4078        llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4079        EmitCheckSourceLocation(E->getLocStart()),
4080        EmitCheckTypeDescriptor(QualType(FnType, 0)),
4081    };
4082    if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4083      EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4084                           CastedCallee, StaticData);
4085    } else {
4086      EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4087                "cfi_check_fail", StaticData,
4088                {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4089    }
4090  }
4091
4092  CallArgList Args;
4093  if (Chain)
4094    Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4095             CGM.getContext().VoidPtrTy);
4096  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4097               E->getDirectCallee(), /*ParamsToSkip*/ 0);
4098
4099  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4100      Args, FnType, /*isChainCall=*/Chain);
4101
4102  // C99 6.5.2.2p6:
4103  //   If the expression that denotes the called function has a type
4104  //   that does not include a prototype, [the default argument
4105  //   promotions are performed]. If the number of arguments does not
4106  //   equal the number of parameters, the behavior is undefined. If
4107  //   the function is defined with a type that includes a prototype,
4108  //   and either the prototype ends with an ellipsis (, ...) or the
4109  //   types of the arguments after promotion are not compatible with
4110  //   the types of the parameters, the behavior is undefined. If the
4111  //   function is defined with a type that does not include a
4112  //   prototype, and the types of the arguments after promotion are
4113  //   not compatible with those of the parameters after promotion,
4114  //   the behavior is undefined [except in some trivial cases].
4115  // That is, in the general case, we should assume that a call
4116  // through an unprototyped function type works like a *non-variadic*
4117  // call.  The way we make this work is to cast to the exact type
4118  // of the promoted arguments.
4119  //
4120  // Chain calls use this same code path to add the invisible chain parameter
4121  // to the function type.
4122  if (isa<FunctionNoProtoType>(FnType) || Chain) {
4123    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4124    CalleeTy = CalleeTy->getPointerTo();
4125    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
4126  }
4127
4128  return EmitCall(FnInfo, Callee, ReturnValue, Args,
4129                  CGCalleeInfo(NonCanonicalFTP, TargetDecl));
4130}
4131
4132LValue CodeGenFunction::
4133EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4134  Address BaseAddr = Address::invalid();
4135  if (E->getOpcode() == BO_PtrMemI) {
4136    BaseAddr = EmitPointerWithAlignment(E->getLHS());
4137  } else {
4138    BaseAddr = EmitLValue(E->getLHS()).getAddress();
4139  }
4140
4141  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4142
4143  const MemberPointerType *MPT
4144    = E->getRHS()->getType()->getAs<MemberPointerType>();
4145
4146  AlignmentSource AlignSource;
4147  Address MemberAddr =
4148    EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
4149                                    &AlignSource);
4150
4151  return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
4152}
4153
4154/// Given the address of a temporary variable, produce an r-value of
4155/// its type.
4156RValue CodeGenFunction::convertTempToRValue(Address addr,
4157                                            QualType type,
4158                                            SourceLocation loc) {
4159  LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4160  switch (getEvaluationKind(type)) {
4161  case TEK_Complex:
4162    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4163  case TEK_Aggregate:
4164    return lvalue.asAggregateRValue();
4165  case TEK_Scalar:
4166    return RValue::get(EmitLoadOfScalar(lvalue, loc));
4167  }
4168  llvm_unreachable("bad evaluation kind");
4169}
4170
4171void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4172  assert(Val->getType()->isFPOrFPVectorTy());
4173  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4174    return;
4175
4176  llvm::MDBuilder MDHelper(getLLVMContext());
4177  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4178
4179  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4180}
4181
4182namespace {
4183  struct LValueOrRValue {
4184    LValue LV;
4185    RValue RV;
4186  };
4187}
4188
4189static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4190                                           const PseudoObjectExpr *E,
4191                                           bool forLValue,
4192                                           AggValueSlot slot) {
4193  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4194
4195  // Find the result expression, if any.
4196  const Expr *resultExpr = E->getResultExpr();
4197  LValueOrRValue result;
4198
4199  for (PseudoObjectExpr::const_semantics_iterator
4200         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4201    const Expr *semantic = *i;
4202
4203    // If this semantic expression is an opaque value, bind it
4204    // to the result of its source expression.
4205    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4206
4207      // If this is the result expression, we may need to evaluate
4208      // directly into the slot.
4209      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4210      OVMA opaqueData;
4211      if (ov == resultExpr && ov->isRValue() && !forLValue &&
4212          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4213        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4214
4215        LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4216                                       AlignmentSource::Decl);
4217        opaqueData = OVMA::bind(CGF, ov, LV);
4218        result.RV = slot.asRValue();
4219
4220      // Otherwise, emit as normal.
4221      } else {
4222        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4223
4224        // If this is the result, also evaluate the result now.
4225        if (ov == resultExpr) {
4226          if (forLValue)
4227            result.LV = CGF.EmitLValue(ov);
4228          else
4229            result.RV = CGF.EmitAnyExpr(ov, slot);
4230        }
4231      }
4232
4233      opaques.push_back(opaqueData);
4234
4235    // Otherwise, if the expression is the result, evaluate it
4236    // and remember the result.
4237    } else if (semantic == resultExpr) {
4238      if (forLValue)
4239        result.LV = CGF.EmitLValue(semantic);
4240      else
4241        result.RV = CGF.EmitAnyExpr(semantic, slot);
4242
4243    // Otherwise, evaluate the expression in an ignored context.
4244    } else {
4245      CGF.EmitIgnoredExpr(semantic);
4246    }
4247  }
4248
4249  // Unbind all the opaques now.
4250  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4251    opaques[i].unbind(CGF);
4252
4253  return result;
4254}
4255
4256RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4257                                               AggValueSlot slot) {
4258  return emitPseudoObjectExpr(*this, E, false, slot).RV;
4259}
4260
4261LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4262  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4263}
4264