1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTLambda.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Lookup.h"
22#include "clang/Sema/Scope.h"
23#include "clang/Sema/ScopeInfo.h"
24#include "clang/Sema/SemaInternal.h"
25
26using namespace clang;
27using namespace sema;
28
29typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
30
31/// Determines if the given class is provably not derived from all of
32/// the prospective base classes.
33static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
34                                     const BaseSet &Bases) {
35  auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
36    return !Bases.count(Base->getCanonicalDecl());
37  };
38  return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
39}
40
41enum IMAKind {
42  /// The reference is definitely not an instance member access.
43  IMA_Static,
44
45  /// The reference may be an implicit instance member access.
46  IMA_Mixed,
47
48  /// The reference may be to an instance member, but it might be invalid if
49  /// so, because the context is not an instance method.
50  IMA_Mixed_StaticContext,
51
52  /// The reference may be to an instance member, but it is invalid if
53  /// so, because the context is from an unrelated class.
54  IMA_Mixed_Unrelated,
55
56  /// The reference is definitely an implicit instance member access.
57  IMA_Instance,
58
59  /// The reference may be to an unresolved using declaration.
60  IMA_Unresolved,
61
62  /// The reference is a contextually-permitted abstract member reference.
63  IMA_Abstract,
64
65  /// The reference may be to an unresolved using declaration and the
66  /// context is not an instance method.
67  IMA_Unresolved_StaticContext,
68
69  // The reference refers to a field which is not a member of the containing
70  // class, which is allowed because we're in C++11 mode and the context is
71  // unevaluated.
72  IMA_Field_Uneval_Context,
73
74  /// All possible referrents are instance members and the current
75  /// context is not an instance method.
76  IMA_Error_StaticContext,
77
78  /// All possible referrents are instance members of an unrelated
79  /// class.
80  IMA_Error_Unrelated
81};
82
83/// The given lookup names class member(s) and is not being used for
84/// an address-of-member expression.  Classify the type of access
85/// according to whether it's possible that this reference names an
86/// instance member.  This is best-effort in dependent contexts; it is okay to
87/// conservatively answer "yes", in which case some errors will simply
88/// not be caught until template-instantiation.
89static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
90                                            const LookupResult &R) {
91  assert(!R.empty() && (*R.begin())->isCXXClassMember());
92
93  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
94
95  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
96    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
97
98  if (R.isUnresolvableResult())
99    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
100
101  // Collect all the declaring classes of instance members we find.
102  bool hasNonInstance = false;
103  bool isField = false;
104  BaseSet Classes;
105  for (NamedDecl *D : R) {
106    // Look through any using decls.
107    D = D->getUnderlyingDecl();
108
109    if (D->isCXXInstanceMember()) {
110      isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
111                 isa<IndirectFieldDecl>(D);
112
113      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
114      Classes.insert(R->getCanonicalDecl());
115    } else
116      hasNonInstance = true;
117  }
118
119  // If we didn't find any instance members, it can't be an implicit
120  // member reference.
121  if (Classes.empty())
122    return IMA_Static;
123
124  // C++11 [expr.prim.general]p12:
125  //   An id-expression that denotes a non-static data member or non-static
126  //   member function of a class can only be used:
127  //   (...)
128  //   - if that id-expression denotes a non-static data member and it
129  //     appears in an unevaluated operand.
130  //
131  // This rule is specific to C++11.  However, we also permit this form
132  // in unevaluated inline assembly operands, like the operand to a SIZE.
133  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
134  assert(!AbstractInstanceResult);
135  switch (SemaRef.ExprEvalContexts.back().Context) {
136  case Sema::Unevaluated:
137    if (isField && SemaRef.getLangOpts().CPlusPlus11)
138      AbstractInstanceResult = IMA_Field_Uneval_Context;
139    break;
140
141  case Sema::UnevaluatedAbstract:
142    AbstractInstanceResult = IMA_Abstract;
143    break;
144
145  case Sema::DiscardedStatement:
146  case Sema::ConstantEvaluated:
147  case Sema::PotentiallyEvaluated:
148  case Sema::PotentiallyEvaluatedIfUsed:
149    break;
150  }
151
152  // If the current context is not an instance method, it can't be
153  // an implicit member reference.
154  if (isStaticContext) {
155    if (hasNonInstance)
156      return IMA_Mixed_StaticContext;
157
158    return AbstractInstanceResult ? AbstractInstanceResult
159                                  : IMA_Error_StaticContext;
160  }
161
162  CXXRecordDecl *contextClass;
163  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
164    contextClass = MD->getParent()->getCanonicalDecl();
165  else
166    contextClass = cast<CXXRecordDecl>(DC);
167
168  // [class.mfct.non-static]p3:
169  // ...is used in the body of a non-static member function of class X,
170  // if name lookup (3.4.1) resolves the name in the id-expression to a
171  // non-static non-type member of some class C [...]
172  // ...if C is not X or a base class of X, the class member access expression
173  // is ill-formed.
174  if (R.getNamingClass() &&
175      contextClass->getCanonicalDecl() !=
176        R.getNamingClass()->getCanonicalDecl()) {
177    // If the naming class is not the current context, this was a qualified
178    // member name lookup, and it's sufficient to check that we have the naming
179    // class as a base class.
180    Classes.clear();
181    Classes.insert(R.getNamingClass()->getCanonicalDecl());
182  }
183
184  // If we can prove that the current context is unrelated to all the
185  // declaring classes, it can't be an implicit member reference (in
186  // which case it's an error if any of those members are selected).
187  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
188    return hasNonInstance ? IMA_Mixed_Unrelated :
189           AbstractInstanceResult ? AbstractInstanceResult :
190                                    IMA_Error_Unrelated;
191
192  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
193}
194
195/// Diagnose a reference to a field with no object available.
196static void diagnoseInstanceReference(Sema &SemaRef,
197                                      const CXXScopeSpec &SS,
198                                      NamedDecl *Rep,
199                                      const DeclarationNameInfo &nameInfo) {
200  SourceLocation Loc = nameInfo.getLoc();
201  SourceRange Range(Loc);
202  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
203
204  // Look through using shadow decls and aliases.
205  Rep = Rep->getUnderlyingDecl();
206
207  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
208  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
209  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
210  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
211
212  bool InStaticMethod = Method && Method->isStatic();
213  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
214
215  if (IsField && InStaticMethod)
216    // "invalid use of member 'x' in static member function"
217    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
218        << Range << nameInfo.getName();
219  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
220           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
221    // Unqualified lookup in a non-static member function found a member of an
222    // enclosing class.
223    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
224      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
225  else if (IsField)
226    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
227      << nameInfo.getName() << Range;
228  else
229    SemaRef.Diag(Loc, diag::err_member_call_without_object)
230      << Range;
231}
232
233/// Builds an expression which might be an implicit member expression.
234ExprResult
235Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
236                                      SourceLocation TemplateKWLoc,
237                                      LookupResult &R,
238                                const TemplateArgumentListInfo *TemplateArgs,
239                                      const Scope *S) {
240  switch (ClassifyImplicitMemberAccess(*this, R)) {
241  case IMA_Instance:
242    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
243
244  case IMA_Mixed:
245  case IMA_Mixed_Unrelated:
246  case IMA_Unresolved:
247    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
248                                   S);
249
250  case IMA_Field_Uneval_Context:
251    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
252      << R.getLookupNameInfo().getName();
253    // Fall through.
254  case IMA_Static:
255  case IMA_Abstract:
256  case IMA_Mixed_StaticContext:
257  case IMA_Unresolved_StaticContext:
258    if (TemplateArgs || TemplateKWLoc.isValid())
259      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
260    return BuildDeclarationNameExpr(SS, R, false);
261
262  case IMA_Error_StaticContext:
263  case IMA_Error_Unrelated:
264    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
265                              R.getLookupNameInfo());
266    return ExprError();
267  }
268
269  llvm_unreachable("unexpected instance member access kind");
270}
271
272/// Determine whether input char is from rgba component set.
273static bool
274IsRGBA(char c) {
275  switch (c) {
276  case 'r':
277  case 'g':
278  case 'b':
279  case 'a':
280    return true;
281  default:
282    return false;
283  }
284}
285
286/// Check an ext-vector component access expression.
287///
288/// VK should be set in advance to the value kind of the base
289/// expression.
290static QualType
291CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
292                        SourceLocation OpLoc, const IdentifierInfo *CompName,
293                        SourceLocation CompLoc) {
294  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
295  // see FIXME there.
296  //
297  // FIXME: This logic can be greatly simplified by splitting it along
298  // halving/not halving and reworking the component checking.
299  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
300
301  // The vector accessor can't exceed the number of elements.
302  const char *compStr = CompName->getNameStart();
303
304  // This flag determines whether or not the component is one of the four
305  // special names that indicate a subset of exactly half the elements are
306  // to be selected.
307  bool HalvingSwizzle = false;
308
309  // This flag determines whether or not CompName has an 's' char prefix,
310  // indicating that it is a string of hex values to be used as vector indices.
311  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
312
313  bool HasRepeated = false;
314  bool HasIndex[16] = {};
315
316  int Idx;
317
318  // Check that we've found one of the special components, or that the component
319  // names must come from the same set.
320  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
321      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
322    HalvingSwizzle = true;
323  } else if (!HexSwizzle &&
324             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
325    bool HasRGBA = IsRGBA(*compStr);
326    do {
327      // Ensure that xyzw and rgba components don't intermingle.
328      if (HasRGBA != IsRGBA(*compStr))
329        break;
330      if (HasIndex[Idx]) HasRepeated = true;
331      HasIndex[Idx] = true;
332      compStr++;
333    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
334
335    // Emit a warning if an rgba selector is used earlier than OpenCL 2.2
336    if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
337      if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 220) {
338        const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
339        S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
340          << StringRef(DiagBegin, 1)
341          << S.getLangOpts().OpenCLVersion << SourceRange(CompLoc);
342      }
343    }
344  } else {
345    if (HexSwizzle) compStr++;
346    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
347      if (HasIndex[Idx]) HasRepeated = true;
348      HasIndex[Idx] = true;
349      compStr++;
350    }
351  }
352
353  if (!HalvingSwizzle && *compStr) {
354    // We didn't get to the end of the string. This means the component names
355    // didn't come from the same set *or* we encountered an illegal name.
356    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
357      << StringRef(compStr, 1) << SourceRange(CompLoc);
358    return QualType();
359  }
360
361  // Ensure no component accessor exceeds the width of the vector type it
362  // operates on.
363  if (!HalvingSwizzle) {
364    compStr = CompName->getNameStart();
365
366    if (HexSwizzle)
367      compStr++;
368
369    while (*compStr) {
370      if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
371        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
372          << baseType << SourceRange(CompLoc);
373        return QualType();
374      }
375    }
376  }
377
378  // The component accessor looks fine - now we need to compute the actual type.
379  // The vector type is implied by the component accessor. For example,
380  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
381  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
382  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
383  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
384                                     : CompName->getLength();
385  if (HexSwizzle)
386    CompSize--;
387
388  if (CompSize == 1)
389    return vecType->getElementType();
390
391  if (HasRepeated) VK = VK_RValue;
392
393  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
394  // Now look up the TypeDefDecl from the vector type. Without this,
395  // diagostics look bad. We want extended vector types to appear built-in.
396  for (Sema::ExtVectorDeclsType::iterator
397         I = S.ExtVectorDecls.begin(S.getExternalSource()),
398         E = S.ExtVectorDecls.end();
399       I != E; ++I) {
400    if ((*I)->getUnderlyingType() == VT)
401      return S.Context.getTypedefType(*I);
402  }
403
404  return VT; // should never get here (a typedef type should always be found).
405}
406
407static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
408                                                IdentifierInfo *Member,
409                                                const Selector &Sel,
410                                                ASTContext &Context) {
411  if (Member)
412    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
413            Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
414      return PD;
415  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
416    return OMD;
417
418  for (const auto *I : PDecl->protocols()) {
419    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
420                                                           Context))
421      return D;
422  }
423  return nullptr;
424}
425
426static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
427                                      IdentifierInfo *Member,
428                                      const Selector &Sel,
429                                      ASTContext &Context) {
430  // Check protocols on qualified interfaces.
431  Decl *GDecl = nullptr;
432  for (const auto *I : QIdTy->quals()) {
433    if (Member)
434      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
435              Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
436        GDecl = PD;
437        break;
438      }
439    // Also must look for a getter or setter name which uses property syntax.
440    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
441      GDecl = OMD;
442      break;
443    }
444  }
445  if (!GDecl) {
446    for (const auto *I : QIdTy->quals()) {
447      // Search in the protocol-qualifier list of current protocol.
448      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
449      if (GDecl)
450        return GDecl;
451    }
452  }
453  return GDecl;
454}
455
456ExprResult
457Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
458                               bool IsArrow, SourceLocation OpLoc,
459                               const CXXScopeSpec &SS,
460                               SourceLocation TemplateKWLoc,
461                               NamedDecl *FirstQualifierInScope,
462                               const DeclarationNameInfo &NameInfo,
463                               const TemplateArgumentListInfo *TemplateArgs) {
464  // Even in dependent contexts, try to diagnose base expressions with
465  // obviously wrong types, e.g.:
466  //
467  // T* t;
468  // t.f;
469  //
470  // In Obj-C++, however, the above expression is valid, since it could be
471  // accessing the 'f' property if T is an Obj-C interface. The extra check
472  // allows this, while still reporting an error if T is a struct pointer.
473  if (!IsArrow) {
474    const PointerType *PT = BaseType->getAs<PointerType>();
475    if (PT && (!getLangOpts().ObjC1 ||
476               PT->getPointeeType()->isRecordType())) {
477      assert(BaseExpr && "cannot happen with implicit member accesses");
478      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
479        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
480      return ExprError();
481    }
482  }
483
484  assert(BaseType->isDependentType() ||
485         NameInfo.getName().isDependentName() ||
486         isDependentScopeSpecifier(SS));
487
488  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
489  // must have pointer type, and the accessed type is the pointee.
490  return CXXDependentScopeMemberExpr::Create(
491      Context, BaseExpr, BaseType, IsArrow, OpLoc,
492      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
493      NameInfo, TemplateArgs);
494}
495
496/// We know that the given qualified member reference points only to
497/// declarations which do not belong to the static type of the base
498/// expression.  Diagnose the problem.
499static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
500                                             Expr *BaseExpr,
501                                             QualType BaseType,
502                                             const CXXScopeSpec &SS,
503                                             NamedDecl *rep,
504                                       const DeclarationNameInfo &nameInfo) {
505  // If this is an implicit member access, use a different set of
506  // diagnostics.
507  if (!BaseExpr)
508    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
509
510  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
511    << SS.getRange() << rep << BaseType;
512}
513
514// Check whether the declarations we found through a nested-name
515// specifier in a member expression are actually members of the base
516// type.  The restriction here is:
517//
518//   C++ [expr.ref]p2:
519//     ... In these cases, the id-expression shall name a
520//     member of the class or of one of its base classes.
521//
522// So it's perfectly legitimate for the nested-name specifier to name
523// an unrelated class, and for us to find an overload set including
524// decls from classes which are not superclasses, as long as the decl
525// we actually pick through overload resolution is from a superclass.
526bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
527                                         QualType BaseType,
528                                         const CXXScopeSpec &SS,
529                                         const LookupResult &R) {
530  CXXRecordDecl *BaseRecord =
531    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
532  if (!BaseRecord) {
533    // We can't check this yet because the base type is still
534    // dependent.
535    assert(BaseType->isDependentType());
536    return false;
537  }
538
539  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
540    // If this is an implicit member reference and we find a
541    // non-instance member, it's not an error.
542    if (!BaseExpr && !(*I)->isCXXInstanceMember())
543      return false;
544
545    // Note that we use the DC of the decl, not the underlying decl.
546    DeclContext *DC = (*I)->getDeclContext();
547    while (DC->isTransparentContext())
548      DC = DC->getParent();
549
550    if (!DC->isRecord())
551      continue;
552
553    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
554    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
555        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
556      return false;
557  }
558
559  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
560                                   R.getRepresentativeDecl(),
561                                   R.getLookupNameInfo());
562  return true;
563}
564
565namespace {
566
567// Callback to only accept typo corrections that are either a ValueDecl or a
568// FunctionTemplateDecl and are declared in the current record or, for a C++
569// classes, one of its base classes.
570class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
571public:
572  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
573      : Record(RTy->getDecl()) {
574    // Don't add bare keywords to the consumer since they will always fail
575    // validation by virtue of not being associated with any decls.
576    WantTypeSpecifiers = false;
577    WantExpressionKeywords = false;
578    WantCXXNamedCasts = false;
579    WantFunctionLikeCasts = false;
580    WantRemainingKeywords = false;
581  }
582
583  bool ValidateCandidate(const TypoCorrection &candidate) override {
584    NamedDecl *ND = candidate.getCorrectionDecl();
585    // Don't accept candidates that cannot be member functions, constants,
586    // variables, or templates.
587    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
588      return false;
589
590    // Accept candidates that occur in the current record.
591    if (Record->containsDecl(ND))
592      return true;
593
594    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
595      // Accept candidates that occur in any of the current class' base classes.
596      for (const auto &BS : RD->bases()) {
597        if (const RecordType *BSTy =
598                dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
599          if (BSTy->getDecl()->containsDecl(ND))
600            return true;
601        }
602      }
603    }
604
605    return false;
606  }
607
608private:
609  const RecordDecl *const Record;
610};
611
612}
613
614static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
615                                     Expr *BaseExpr,
616                                     const RecordType *RTy,
617                                     SourceLocation OpLoc, bool IsArrow,
618                                     CXXScopeSpec &SS, bool HasTemplateArgs,
619                                     TypoExpr *&TE) {
620  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
621  RecordDecl *RDecl = RTy->getDecl();
622  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
623      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
624                                  diag::err_typecheck_incomplete_tag,
625                                  BaseRange))
626    return true;
627
628  if (HasTemplateArgs) {
629    // LookupTemplateName doesn't expect these both to exist simultaneously.
630    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
631
632    bool MOUS;
633    SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
634    return false;
635  }
636
637  DeclContext *DC = RDecl;
638  if (SS.isSet()) {
639    // If the member name was a qualified-id, look into the
640    // nested-name-specifier.
641    DC = SemaRef.computeDeclContext(SS, false);
642
643    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
644      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
645          << SS.getRange() << DC;
646      return true;
647    }
648
649    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
650
651    if (!isa<TypeDecl>(DC)) {
652      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
653          << DC << SS.getRange();
654      return true;
655    }
656  }
657
658  // The record definition is complete, now look up the member.
659  SemaRef.LookupQualifiedName(R, DC, SS);
660
661  if (!R.empty())
662    return false;
663
664  DeclarationName Typo = R.getLookupName();
665  SourceLocation TypoLoc = R.getNameLoc();
666
667  struct QueryState {
668    Sema &SemaRef;
669    DeclarationNameInfo NameInfo;
670    Sema::LookupNameKind LookupKind;
671    Sema::RedeclarationKind Redecl;
672  };
673  QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
674                  R.isForRedeclaration() ? Sema::ForRedeclaration
675                                         : Sema::NotForRedeclaration};
676  TE = SemaRef.CorrectTypoDelayed(
677      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS,
678      llvm::make_unique<RecordMemberExprValidatorCCC>(RTy),
679      [=, &SemaRef](const TypoCorrection &TC) {
680        if (TC) {
681          assert(!TC.isKeyword() &&
682                 "Got a keyword as a correction for a member!");
683          bool DroppedSpecifier =
684              TC.WillReplaceSpecifier() &&
685              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
686          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
687                                       << Typo << DC << DroppedSpecifier
688                                       << SS.getRange());
689        } else {
690          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
691        }
692      },
693      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
694        LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
695        R.clear(); // Ensure there's no decls lingering in the shared state.
696        R.suppressDiagnostics();
697        R.setLookupName(TC.getCorrection());
698        for (NamedDecl *ND : TC)
699          R.addDecl(ND);
700        R.resolveKind();
701        return SemaRef.BuildMemberReferenceExpr(
702            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
703            nullptr, R, nullptr, nullptr);
704      },
705      Sema::CTK_ErrorRecovery, DC);
706
707  return false;
708}
709
710static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
711                                   ExprResult &BaseExpr, bool &IsArrow,
712                                   SourceLocation OpLoc, CXXScopeSpec &SS,
713                                   Decl *ObjCImpDecl, bool HasTemplateArgs);
714
715ExprResult
716Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
717                               SourceLocation OpLoc, bool IsArrow,
718                               CXXScopeSpec &SS,
719                               SourceLocation TemplateKWLoc,
720                               NamedDecl *FirstQualifierInScope,
721                               const DeclarationNameInfo &NameInfo,
722                               const TemplateArgumentListInfo *TemplateArgs,
723                               const Scope *S,
724                               ActOnMemberAccessExtraArgs *ExtraArgs) {
725  if (BaseType->isDependentType() ||
726      (SS.isSet() && isDependentScopeSpecifier(SS)))
727    return ActOnDependentMemberExpr(Base, BaseType,
728                                    IsArrow, OpLoc,
729                                    SS, TemplateKWLoc, FirstQualifierInScope,
730                                    NameInfo, TemplateArgs);
731
732  LookupResult R(*this, NameInfo, LookupMemberName);
733
734  // Implicit member accesses.
735  if (!Base) {
736    TypoExpr *TE = nullptr;
737    QualType RecordTy = BaseType;
738    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
739    if (LookupMemberExprInRecord(*this, R, nullptr,
740                                 RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
741                                 SS, TemplateArgs != nullptr, TE))
742      return ExprError();
743    if (TE)
744      return TE;
745
746  // Explicit member accesses.
747  } else {
748    ExprResult BaseResult = Base;
749    ExprResult Result = LookupMemberExpr(
750        *this, R, BaseResult, IsArrow, OpLoc, SS,
751        ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
752        TemplateArgs != nullptr);
753
754    if (BaseResult.isInvalid())
755      return ExprError();
756    Base = BaseResult.get();
757
758    if (Result.isInvalid())
759      return ExprError();
760
761    if (Result.get())
762      return Result;
763
764    // LookupMemberExpr can modify Base, and thus change BaseType
765    BaseType = Base->getType();
766  }
767
768  return BuildMemberReferenceExpr(Base, BaseType,
769                                  OpLoc, IsArrow, SS, TemplateKWLoc,
770                                  FirstQualifierInScope, R, TemplateArgs, S,
771                                  false, ExtraArgs);
772}
773
774static ExprResult
775BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
776                        SourceLocation OpLoc, const CXXScopeSpec &SS,
777                        FieldDecl *Field, DeclAccessPair FoundDecl,
778                        const DeclarationNameInfo &MemberNameInfo);
779
780ExprResult
781Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
782                                               SourceLocation loc,
783                                               IndirectFieldDecl *indirectField,
784                                               DeclAccessPair foundDecl,
785                                               Expr *baseObjectExpr,
786                                               SourceLocation opLoc) {
787  // First, build the expression that refers to the base object.
788
789  bool baseObjectIsPointer = false;
790  Qualifiers baseQuals;
791
792  // Case 1:  the base of the indirect field is not a field.
793  VarDecl *baseVariable = indirectField->getVarDecl();
794  CXXScopeSpec EmptySS;
795  if (baseVariable) {
796    assert(baseVariable->getType()->isRecordType());
797
798    // In principle we could have a member access expression that
799    // accesses an anonymous struct/union that's a static member of
800    // the base object's class.  However, under the current standard,
801    // static data members cannot be anonymous structs or unions.
802    // Supporting this is as easy as building a MemberExpr here.
803    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
804
805    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
806
807    ExprResult result
808      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
809    if (result.isInvalid()) return ExprError();
810
811    baseObjectExpr = result.get();
812    baseObjectIsPointer = false;
813    baseQuals = baseObjectExpr->getType().getQualifiers();
814
815    // Case 2: the base of the indirect field is a field and the user
816    // wrote a member expression.
817  } else if (baseObjectExpr) {
818    // The caller provided the base object expression. Determine
819    // whether its a pointer and whether it adds any qualifiers to the
820    // anonymous struct/union fields we're looking into.
821    QualType objectType = baseObjectExpr->getType();
822
823    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
824      baseObjectIsPointer = true;
825      objectType = ptr->getPointeeType();
826    } else {
827      baseObjectIsPointer = false;
828    }
829    baseQuals = objectType.getQualifiers();
830
831    // Case 3: the base of the indirect field is a field and we should
832    // build an implicit member access.
833  } else {
834    // We've found a member of an anonymous struct/union that is
835    // inside a non-anonymous struct/union, so in a well-formed
836    // program our base object expression is "this".
837    QualType ThisTy = getCurrentThisType();
838    if (ThisTy.isNull()) {
839      Diag(loc, diag::err_invalid_member_use_in_static_method)
840        << indirectField->getDeclName();
841      return ExprError();
842    }
843
844    // Our base object expression is "this".
845    CheckCXXThisCapture(loc);
846    baseObjectExpr
847      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
848    baseObjectIsPointer = true;
849    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
850  }
851
852  // Build the implicit member references to the field of the
853  // anonymous struct/union.
854  Expr *result = baseObjectExpr;
855  IndirectFieldDecl::chain_iterator
856  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
857
858  // Build the first member access in the chain with full information.
859  if (!baseVariable) {
860    FieldDecl *field = cast<FieldDecl>(*FI);
861
862    // Make a nameInfo that properly uses the anonymous name.
863    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
864
865    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
866                                     SourceLocation(), EmptySS, field,
867                                     foundDecl, memberNameInfo).get();
868    if (!result)
869      return ExprError();
870
871    // FIXME: check qualified member access
872  }
873
874  // In all cases, we should now skip the first declaration in the chain.
875  ++FI;
876
877  while (FI != FEnd) {
878    FieldDecl *field = cast<FieldDecl>(*FI++);
879
880    // FIXME: these are somewhat meaningless
881    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
882    DeclAccessPair fakeFoundDecl =
883        DeclAccessPair::make(field, field->getAccess());
884
885    result =
886        BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
887                                SourceLocation(), (FI == FEnd ? SS : EmptySS),
888                                field, fakeFoundDecl, memberNameInfo).get();
889  }
890
891  return result;
892}
893
894static ExprResult
895BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
896                       const CXXScopeSpec &SS,
897                       MSPropertyDecl *PD,
898                       const DeclarationNameInfo &NameInfo) {
899  // Property names are always simple identifiers and therefore never
900  // require any interesting additional storage.
901  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
902                                           S.Context.PseudoObjectTy, VK_LValue,
903                                           SS.getWithLocInContext(S.Context),
904                                           NameInfo.getLoc());
905}
906
907/// \brief Build a MemberExpr AST node.
908static MemberExpr *BuildMemberExpr(
909    Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
910    SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
911    ValueDecl *Member, DeclAccessPair FoundDecl,
912    const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK,
913    ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr) {
914  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
915  MemberExpr *E = MemberExpr::Create(
916      C, Base, isArrow, OpLoc, SS.getWithLocInContext(C), TemplateKWLoc, Member,
917      FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK);
918  SemaRef.MarkMemberReferenced(E);
919  return E;
920}
921
922/// \brief Determine if the given scope is within a function-try-block handler.
923static bool IsInFnTryBlockHandler(const Scope *S) {
924  // Walk the scope stack until finding a FnTryCatchScope, or leave the
925  // function scope. If a FnTryCatchScope is found, check whether the TryScope
926  // flag is set. If it is not, it's a function-try-block handler.
927  for (; S != S->getFnParent(); S = S->getParent()) {
928    if (S->getFlags() & Scope::FnTryCatchScope)
929      return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
930  }
931  return false;
932}
933
934static VarDecl *
935getVarTemplateSpecialization(Sema &S, VarTemplateDecl *VarTempl,
936                      const TemplateArgumentListInfo *TemplateArgs,
937                      const DeclarationNameInfo &MemberNameInfo,
938                      SourceLocation TemplateKWLoc) {
939
940  if (!TemplateArgs) {
941    S.Diag(MemberNameInfo.getBeginLoc(), diag::err_template_decl_ref)
942        << /*Variable template*/ 1 << MemberNameInfo.getName()
943        << MemberNameInfo.getSourceRange();
944
945    S.Diag(VarTempl->getLocation(), diag::note_template_decl_here);
946
947    return nullptr;
948  }
949  DeclResult VDecl = S.CheckVarTemplateId(
950      VarTempl, TemplateKWLoc, MemberNameInfo.getLoc(), *TemplateArgs);
951  if (VDecl.isInvalid())
952    return nullptr;
953  VarDecl *Var = cast<VarDecl>(VDecl.get());
954  if (!Var->getTemplateSpecializationKind())
955    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
956                                       MemberNameInfo.getLoc());
957  return Var;
958}
959
960ExprResult
961Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
962                               SourceLocation OpLoc, bool IsArrow,
963                               const CXXScopeSpec &SS,
964                               SourceLocation TemplateKWLoc,
965                               NamedDecl *FirstQualifierInScope,
966                               LookupResult &R,
967                               const TemplateArgumentListInfo *TemplateArgs,
968                               const Scope *S,
969                               bool SuppressQualifierCheck,
970                               ActOnMemberAccessExtraArgs *ExtraArgs) {
971  QualType BaseType = BaseExprType;
972  if (IsArrow) {
973    assert(BaseType->isPointerType());
974    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
975  }
976  R.setBaseObjectType(BaseType);
977
978  LambdaScopeInfo *const CurLSI = getCurLambda();
979  // If this is an implicit member reference and the overloaded
980  // name refers to both static and non-static member functions
981  // (i.e. BaseExpr is null) and if we are currently processing a lambda,
982  // check if we should/can capture 'this'...
983  // Keep this example in mind:
984  //  struct X {
985  //   void f(int) { }
986  //   static void f(double) { }
987  //
988  //   int g() {
989  //     auto L = [=](auto a) {
990  //       return [](int i) {
991  //         return [=](auto b) {
992  //           f(b);
993  //           //f(decltype(a){});
994  //         };
995  //       };
996  //     };
997  //     auto M = L(0.0);
998  //     auto N = M(3);
999  //     N(5.32); // OK, must not error.
1000  //     return 0;
1001  //   }
1002  //  };
1003  //
1004  if (!BaseExpr && CurLSI) {
1005    SourceLocation Loc = R.getNameLoc();
1006    if (SS.getRange().isValid())
1007      Loc = SS.getRange().getBegin();
1008    DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
1009    // If the enclosing function is not dependent, then this lambda is
1010    // capture ready, so if we can capture this, do so.
1011    if (!EnclosingFunctionCtx->isDependentContext()) {
1012      // If the current lambda and all enclosing lambdas can capture 'this' -
1013      // then go ahead and capture 'this' (since our unresolved overload set
1014      // contains both static and non-static member functions).
1015      if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
1016        CheckCXXThisCapture(Loc);
1017    } else if (CurContext->isDependentContext()) {
1018      // ... since this is an implicit member reference, that might potentially
1019      // involve a 'this' capture, mark 'this' for potential capture in
1020      // enclosing lambdas.
1021      if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
1022        CurLSI->addPotentialThisCapture(Loc);
1023    }
1024  }
1025  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
1026  DeclarationName MemberName = MemberNameInfo.getName();
1027  SourceLocation MemberLoc = MemberNameInfo.getLoc();
1028
1029  if (R.isAmbiguous())
1030    return ExprError();
1031
1032  // [except.handle]p10: Referring to any non-static member or base class of an
1033  // object in the handler for a function-try-block of a constructor or
1034  // destructor for that object results in undefined behavior.
1035  const auto *FD = getCurFunctionDecl();
1036  if (S && BaseExpr && FD &&
1037      (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
1038      isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
1039      IsInFnTryBlockHandler(S))
1040    Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
1041        << isa<CXXDestructorDecl>(FD);
1042
1043  if (R.empty()) {
1044    // Rederive where we looked up.
1045    DeclContext *DC = (SS.isSet()
1046                       ? computeDeclContext(SS, false)
1047                       : BaseType->getAs<RecordType>()->getDecl());
1048
1049    if (ExtraArgs) {
1050      ExprResult RetryExpr;
1051      if (!IsArrow && BaseExpr) {
1052        SFINAETrap Trap(*this, true);
1053        ParsedType ObjectType;
1054        bool MayBePseudoDestructor = false;
1055        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1056                                                 OpLoc, tok::arrow, ObjectType,
1057                                                 MayBePseudoDestructor);
1058        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1059          CXXScopeSpec TempSS(SS);
1060          RetryExpr = ActOnMemberAccessExpr(
1061              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1062              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1063        }
1064        if (Trap.hasErrorOccurred())
1065          RetryExpr = ExprError();
1066      }
1067      if (RetryExpr.isUsable()) {
1068        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1069          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1070        return RetryExpr;
1071      }
1072    }
1073
1074    Diag(R.getNameLoc(), diag::err_no_member)
1075      << MemberName << DC
1076      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1077    return ExprError();
1078  }
1079
1080  // Diagnose lookups that find only declarations from a non-base
1081  // type.  This is possible for either qualified lookups (which may
1082  // have been qualified with an unrelated type) or implicit member
1083  // expressions (which were found with unqualified lookup and thus
1084  // may have come from an enclosing scope).  Note that it's okay for
1085  // lookup to find declarations from a non-base type as long as those
1086  // aren't the ones picked by overload resolution.
1087  if ((SS.isSet() || !BaseExpr ||
1088       (isa<CXXThisExpr>(BaseExpr) &&
1089        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1090      !SuppressQualifierCheck &&
1091      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1092    return ExprError();
1093
1094  // Construct an unresolved result if we in fact got an unresolved
1095  // result.
1096  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1097    // Suppress any lookup-related diagnostics; we'll do these when we
1098    // pick a member.
1099    R.suppressDiagnostics();
1100
1101    UnresolvedMemberExpr *MemExpr
1102      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1103                                     BaseExpr, BaseExprType,
1104                                     IsArrow, OpLoc,
1105                                     SS.getWithLocInContext(Context),
1106                                     TemplateKWLoc, MemberNameInfo,
1107                                     TemplateArgs, R.begin(), R.end());
1108
1109    return MemExpr;
1110  }
1111
1112  assert(R.isSingleResult());
1113  DeclAccessPair FoundDecl = R.begin().getPair();
1114  NamedDecl *MemberDecl = R.getFoundDecl();
1115
1116  // FIXME: diagnose the presence of template arguments now.
1117
1118  // If the decl being referenced had an error, return an error for this
1119  // sub-expr without emitting another error, in order to avoid cascading
1120  // error cases.
1121  if (MemberDecl->isInvalidDecl())
1122    return ExprError();
1123
1124  // Handle the implicit-member-access case.
1125  if (!BaseExpr) {
1126    // If this is not an instance member, convert to a non-member access.
1127    if (!MemberDecl->isCXXInstanceMember()) {
1128      // If this is a variable template, get the instantiated variable
1129      // declaration corresponding to the supplied template arguments
1130      // (while emitting diagnostics as necessary) that will be referenced
1131      // by this expression.
1132      assert((!TemplateArgs || isa<VarTemplateDecl>(MemberDecl)) &&
1133             "How did we get template arguments here sans a variable template");
1134      if (isa<VarTemplateDecl>(MemberDecl)) {
1135        MemberDecl = getVarTemplateSpecialization(
1136            *this, cast<VarTemplateDecl>(MemberDecl), TemplateArgs,
1137            R.getLookupNameInfo(), TemplateKWLoc);
1138        if (!MemberDecl)
1139          return ExprError();
1140      }
1141      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1142                                      FoundDecl, TemplateArgs);
1143    }
1144    SourceLocation Loc = R.getNameLoc();
1145    if (SS.getRange().isValid())
1146      Loc = SS.getRange().getBegin();
1147    CheckCXXThisCapture(Loc);
1148    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1149  }
1150
1151  // Check the use of this member.
1152  if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1153    return ExprError();
1154
1155  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1156    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, OpLoc, SS, FD,
1157                                   FoundDecl, MemberNameInfo);
1158
1159  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1160    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1161                                  MemberNameInfo);
1162
1163  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1164    // We may have found a field within an anonymous union or struct
1165    // (C++ [class.union]).
1166    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1167                                                    FoundDecl, BaseExpr,
1168                                                    OpLoc);
1169
1170  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1171    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1172                           TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
1173                           Var->getType().getNonReferenceType(), VK_LValue,
1174                           OK_Ordinary);
1175  }
1176
1177  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1178    ExprValueKind valueKind;
1179    QualType type;
1180    if (MemberFn->isInstance()) {
1181      valueKind = VK_RValue;
1182      type = Context.BoundMemberTy;
1183    } else {
1184      valueKind = VK_LValue;
1185      type = MemberFn->getType();
1186    }
1187
1188    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1189                           TemplateKWLoc, MemberFn, FoundDecl, MemberNameInfo,
1190                           type, valueKind, OK_Ordinary);
1191  }
1192  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1193
1194  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1195    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1196                           TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
1197                           Enum->getType(), VK_RValue, OK_Ordinary);
1198  }
1199  if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1200    if (VarDecl *Var = getVarTemplateSpecialization(
1201            *this, VarTempl, TemplateArgs, MemberNameInfo, TemplateKWLoc))
1202      return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1203                             TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
1204                             Var->getType().getNonReferenceType(), VK_LValue,
1205                             OK_Ordinary);
1206    return ExprError();
1207  }
1208
1209  // We found something that we didn't expect. Complain.
1210  if (isa<TypeDecl>(MemberDecl))
1211    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1212      << MemberName << BaseType << int(IsArrow);
1213  else
1214    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1215      << MemberName << BaseType << int(IsArrow);
1216
1217  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1218    << MemberName;
1219  R.suppressDiagnostics();
1220  return ExprError();
1221}
1222
1223/// Given that normal member access failed on the given expression,
1224/// and given that the expression's type involves builtin-id or
1225/// builtin-Class, decide whether substituting in the redefinition
1226/// types would be profitable.  The redefinition type is whatever
1227/// this translation unit tried to typedef to id/Class;  we store
1228/// it to the side and then re-use it in places like this.
1229static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1230  const ObjCObjectPointerType *opty
1231    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1232  if (!opty) return false;
1233
1234  const ObjCObjectType *ty = opty->getObjectType();
1235
1236  QualType redef;
1237  if (ty->isObjCId()) {
1238    redef = S.Context.getObjCIdRedefinitionType();
1239  } else if (ty->isObjCClass()) {
1240    redef = S.Context.getObjCClassRedefinitionType();
1241  } else {
1242    return false;
1243  }
1244
1245  // Do the substitution as long as the redefinition type isn't just a
1246  // possibly-qualified pointer to builtin-id or builtin-Class again.
1247  opty = redef->getAs<ObjCObjectPointerType>();
1248  if (opty && !opty->getObjectType()->getInterface())
1249    return false;
1250
1251  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1252  return true;
1253}
1254
1255static bool isRecordType(QualType T) {
1256  return T->isRecordType();
1257}
1258static bool isPointerToRecordType(QualType T) {
1259  if (const PointerType *PT = T->getAs<PointerType>())
1260    return PT->getPointeeType()->isRecordType();
1261  return false;
1262}
1263
1264/// Perform conversions on the LHS of a member access expression.
1265ExprResult
1266Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1267  if (IsArrow && !Base->getType()->isFunctionType())
1268    return DefaultFunctionArrayLvalueConversion(Base);
1269
1270  return CheckPlaceholderExpr(Base);
1271}
1272
1273/// Look up the given member of the given non-type-dependent
1274/// expression.  This can return in one of two ways:
1275///  * If it returns a sentinel null-but-valid result, the caller will
1276///    assume that lookup was performed and the results written into
1277///    the provided structure.  It will take over from there.
1278///  * Otherwise, the returned expression will be produced in place of
1279///    an ordinary member expression.
1280///
1281/// The ObjCImpDecl bit is a gross hack that will need to be properly
1282/// fixed for ObjC++.
1283static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1284                                   ExprResult &BaseExpr, bool &IsArrow,
1285                                   SourceLocation OpLoc, CXXScopeSpec &SS,
1286                                   Decl *ObjCImpDecl, bool HasTemplateArgs) {
1287  assert(BaseExpr.get() && "no base expression");
1288
1289  // Perform default conversions.
1290  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1291  if (BaseExpr.isInvalid())
1292    return ExprError();
1293
1294  QualType BaseType = BaseExpr.get()->getType();
1295  assert(!BaseType->isDependentType());
1296
1297  DeclarationName MemberName = R.getLookupName();
1298  SourceLocation MemberLoc = R.getNameLoc();
1299
1300  // For later type-checking purposes, turn arrow accesses into dot
1301  // accesses.  The only access type we support that doesn't follow
1302  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1303  // and those never use arrows, so this is unaffected.
1304  if (IsArrow) {
1305    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1306      BaseType = Ptr->getPointeeType();
1307    else if (const ObjCObjectPointerType *Ptr
1308               = BaseType->getAs<ObjCObjectPointerType>())
1309      BaseType = Ptr->getPointeeType();
1310    else if (BaseType->isRecordType()) {
1311      // Recover from arrow accesses to records, e.g.:
1312      //   struct MyRecord foo;
1313      //   foo->bar
1314      // This is actually well-formed in C++ if MyRecord has an
1315      // overloaded operator->, but that should have been dealt with
1316      // by now--or a diagnostic message already issued if a problem
1317      // was encountered while looking for the overloaded operator->.
1318      if (!S.getLangOpts().CPlusPlus) {
1319        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1320          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1321          << FixItHint::CreateReplacement(OpLoc, ".");
1322      }
1323      IsArrow = false;
1324    } else if (BaseType->isFunctionType()) {
1325      goto fail;
1326    } else {
1327      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1328        << BaseType << BaseExpr.get()->getSourceRange();
1329      return ExprError();
1330    }
1331  }
1332
1333  // Handle field access to simple records.
1334  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1335    TypoExpr *TE = nullptr;
1336    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy,
1337                                 OpLoc, IsArrow, SS, HasTemplateArgs, TE))
1338      return ExprError();
1339
1340    // Returning valid-but-null is how we indicate to the caller that
1341    // the lookup result was filled in. If typo correction was attempted and
1342    // failed, the lookup result will have been cleared--that combined with the
1343    // valid-but-null ExprResult will trigger the appropriate diagnostics.
1344    return ExprResult(TE);
1345  }
1346
1347  // Handle ivar access to Objective-C objects.
1348  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1349    if (!SS.isEmpty() && !SS.isInvalid()) {
1350      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1351        << 1 << SS.getScopeRep()
1352        << FixItHint::CreateRemoval(SS.getRange());
1353      SS.clear();
1354    }
1355
1356    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1357
1358    // There are three cases for the base type:
1359    //   - builtin id (qualified or unqualified)
1360    //   - builtin Class (qualified or unqualified)
1361    //   - an interface
1362    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1363    if (!IDecl) {
1364      if (S.getLangOpts().ObjCAutoRefCount &&
1365          (OTy->isObjCId() || OTy->isObjCClass()))
1366        goto fail;
1367      // There's an implicit 'isa' ivar on all objects.
1368      // But we only actually find it this way on objects of type 'id',
1369      // apparently.
1370      if (OTy->isObjCId() && Member->isStr("isa"))
1371        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1372                                           OpLoc, S.Context.getObjCClassType());
1373      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1374        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1375                                ObjCImpDecl, HasTemplateArgs);
1376      goto fail;
1377    }
1378
1379    if (S.RequireCompleteType(OpLoc, BaseType,
1380                              diag::err_typecheck_incomplete_tag,
1381                              BaseExpr.get()))
1382      return ExprError();
1383
1384    ObjCInterfaceDecl *ClassDeclared = nullptr;
1385    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1386
1387    if (!IV) {
1388      // Attempt to correct for typos in ivar names.
1389      auto Validator = llvm::make_unique<DeclFilterCCC<ObjCIvarDecl>>();
1390      Validator->IsObjCIvarLookup = IsArrow;
1391      if (TypoCorrection Corrected = S.CorrectTypo(
1392              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1393              std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) {
1394        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1395        S.diagnoseTypo(
1396            Corrected,
1397            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1398                << IDecl->getDeclName() << MemberName);
1399
1400        // Figure out the class that declares the ivar.
1401        assert(!ClassDeclared);
1402        Decl *D = cast<Decl>(IV->getDeclContext());
1403        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1404          D = CAT->getClassInterface();
1405        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1406      } else {
1407        if (IsArrow &&
1408            IDecl->FindPropertyDeclaration(
1409                Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1410          S.Diag(MemberLoc, diag::err_property_found_suggest)
1411              << Member << BaseExpr.get()->getType()
1412              << FixItHint::CreateReplacement(OpLoc, ".");
1413          return ExprError();
1414        }
1415
1416        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1417            << IDecl->getDeclName() << MemberName
1418            << BaseExpr.get()->getSourceRange();
1419        return ExprError();
1420      }
1421    }
1422
1423    assert(ClassDeclared);
1424
1425    // If the decl being referenced had an error, return an error for this
1426    // sub-expr without emitting another error, in order to avoid cascading
1427    // error cases.
1428    if (IV->isInvalidDecl())
1429      return ExprError();
1430
1431    // Check whether we can reference this field.
1432    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1433      return ExprError();
1434    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1435        IV->getAccessControl() != ObjCIvarDecl::Package) {
1436      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1437      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1438        ClassOfMethodDecl =  MD->getClassInterface();
1439      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1440        // Case of a c-function declared inside an objc implementation.
1441        // FIXME: For a c-style function nested inside an objc implementation
1442        // class, there is no implementation context available, so we pass
1443        // down the context as argument to this routine. Ideally, this context
1444        // need be passed down in the AST node and somehow calculated from the
1445        // AST for a function decl.
1446        if (ObjCImplementationDecl *IMPD =
1447              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1448          ClassOfMethodDecl = IMPD->getClassInterface();
1449        else if (ObjCCategoryImplDecl* CatImplClass =
1450                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1451          ClassOfMethodDecl = CatImplClass->getClassInterface();
1452      }
1453      if (!S.getLangOpts().DebuggerSupport) {
1454        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1455          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1456              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1457            S.Diag(MemberLoc, diag::error_private_ivar_access)
1458              << IV->getDeclName();
1459        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1460          // @protected
1461          S.Diag(MemberLoc, diag::error_protected_ivar_access)
1462              << IV->getDeclName();
1463      }
1464    }
1465    bool warn = true;
1466    if (S.getLangOpts().ObjCAutoRefCount) {
1467      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1468      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1469        if (UO->getOpcode() == UO_Deref)
1470          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1471
1472      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1473        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1474          S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1475          warn = false;
1476        }
1477    }
1478    if (warn) {
1479      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1480        ObjCMethodFamily MF = MD->getMethodFamily();
1481        warn = (MF != OMF_init && MF != OMF_dealloc &&
1482                MF != OMF_finalize &&
1483                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1484      }
1485      if (warn)
1486        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1487    }
1488
1489    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1490        IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1491        IsArrow);
1492
1493    if (S.getLangOpts().ObjCAutoRefCount) {
1494      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1495        if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1496          S.recordUseOfEvaluatedWeak(Result);
1497      }
1498    }
1499
1500    return Result;
1501  }
1502
1503  // Objective-C property access.
1504  const ObjCObjectPointerType *OPT;
1505  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1506    if (!SS.isEmpty() && !SS.isInvalid()) {
1507      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1508          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1509      SS.clear();
1510    }
1511
1512    // This actually uses the base as an r-value.
1513    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1514    if (BaseExpr.isInvalid())
1515      return ExprError();
1516
1517    assert(S.Context.hasSameUnqualifiedType(BaseType,
1518                                            BaseExpr.get()->getType()));
1519
1520    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1521
1522    const ObjCObjectType *OT = OPT->getObjectType();
1523
1524    // id, with and without qualifiers.
1525    if (OT->isObjCId()) {
1526      // Check protocols on qualified interfaces.
1527      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1528      if (Decl *PMDecl =
1529              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1530        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1531          // Check the use of this declaration
1532          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1533            return ExprError();
1534
1535          return new (S.Context)
1536              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1537                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1538        }
1539
1540        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1541          // Check the use of this method.
1542          if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
1543            return ExprError();
1544          Selector SetterSel =
1545            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1546                                                   S.PP.getSelectorTable(),
1547                                                   Member);
1548          ObjCMethodDecl *SMD = nullptr;
1549          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1550                                                     /*Property id*/ nullptr,
1551                                                     SetterSel, S.Context))
1552            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1553
1554          return new (S.Context)
1555              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1556                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1557        }
1558      }
1559      // Use of id.member can only be for a property reference. Do not
1560      // use the 'id' redefinition in this case.
1561      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1562        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1563                                ObjCImpDecl, HasTemplateArgs);
1564
1565      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1566                         << MemberName << BaseType);
1567    }
1568
1569    // 'Class', unqualified only.
1570    if (OT->isObjCClass()) {
1571      // Only works in a method declaration (??!).
1572      ObjCMethodDecl *MD = S.getCurMethodDecl();
1573      if (!MD) {
1574        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1575          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1576                                  ObjCImpDecl, HasTemplateArgs);
1577
1578        goto fail;
1579      }
1580
1581      // Also must look for a getter name which uses property syntax.
1582      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1583      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1584      ObjCMethodDecl *Getter;
1585      if ((Getter = IFace->lookupClassMethod(Sel))) {
1586        // Check the use of this method.
1587        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1588          return ExprError();
1589      } else
1590        Getter = IFace->lookupPrivateMethod(Sel, false);
1591      // If we found a getter then this may be a valid dot-reference, we
1592      // will look for the matching setter, in case it is needed.
1593      Selector SetterSel =
1594        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1595                                               S.PP.getSelectorTable(),
1596                                               Member);
1597      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1598      if (!Setter) {
1599        // If this reference is in an @implementation, also check for 'private'
1600        // methods.
1601        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1602      }
1603
1604      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1605        return ExprError();
1606
1607      if (Getter || Setter) {
1608        return new (S.Context) ObjCPropertyRefExpr(
1609            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1610            OK_ObjCProperty, MemberLoc, BaseExpr.get());
1611      }
1612
1613      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1614        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1615                                ObjCImpDecl, HasTemplateArgs);
1616
1617      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1618                         << MemberName << BaseType);
1619    }
1620
1621    // Normal property access.
1622    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1623                                       MemberLoc, SourceLocation(), QualType(),
1624                                       false);
1625  }
1626
1627  // Handle 'field access' to vectors, such as 'V.xx'.
1628  if (BaseType->isExtVectorType()) {
1629    // FIXME: this expr should store IsArrow.
1630    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1631    ExprValueKind VK;
1632    if (IsArrow)
1633      VK = VK_LValue;
1634    else {
1635      if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1636        VK = POE->getSyntacticForm()->getValueKind();
1637      else
1638        VK = BaseExpr.get()->getValueKind();
1639    }
1640    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1641                                           Member, MemberLoc);
1642    if (ret.isNull())
1643      return ExprError();
1644
1645    return new (S.Context)
1646        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1647  }
1648
1649  // Adjust builtin-sel to the appropriate redefinition type if that's
1650  // not just a pointer to builtin-sel again.
1651  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1652      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1653    BaseExpr = S.ImpCastExprToType(
1654        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1655    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1656                            ObjCImpDecl, HasTemplateArgs);
1657  }
1658
1659  // Failure cases.
1660 fail:
1661
1662  // Recover from dot accesses to pointers, e.g.:
1663  //   type *foo;
1664  //   foo.bar
1665  // This is actually well-formed in two cases:
1666  //   - 'type' is an Objective C type
1667  //   - 'bar' is a pseudo-destructor name which happens to refer to
1668  //     the appropriate pointer type
1669  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1670    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1671        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1672      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1673          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1674          << FixItHint::CreateReplacement(OpLoc, "->");
1675
1676      // Recurse as an -> access.
1677      IsArrow = true;
1678      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1679                              ObjCImpDecl, HasTemplateArgs);
1680    }
1681  }
1682
1683  // If the user is trying to apply -> or . to a function name, it's probably
1684  // because they forgot parentheses to call that function.
1685  if (S.tryToRecoverWithCall(
1686          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1687          /*complain*/ false,
1688          IsArrow ? &isPointerToRecordType : &isRecordType)) {
1689    if (BaseExpr.isInvalid())
1690      return ExprError();
1691    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1692    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1693                            ObjCImpDecl, HasTemplateArgs);
1694  }
1695
1696  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1697    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1698
1699  return ExprError();
1700}
1701
1702/// The main callback when the parser finds something like
1703///   expression . [nested-name-specifier] identifier
1704///   expression -> [nested-name-specifier] identifier
1705/// where 'identifier' encompasses a fairly broad spectrum of
1706/// possibilities, including destructor and operator references.
1707///
1708/// \param OpKind either tok::arrow or tok::period
1709/// \param ObjCImpDecl the current Objective-C \@implementation
1710///   decl; this is an ugly hack around the fact that Objective-C
1711///   \@implementations aren't properly put in the context chain
1712ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1713                                       SourceLocation OpLoc,
1714                                       tok::TokenKind OpKind,
1715                                       CXXScopeSpec &SS,
1716                                       SourceLocation TemplateKWLoc,
1717                                       UnqualifiedId &Id,
1718                                       Decl *ObjCImpDecl) {
1719  if (SS.isSet() && SS.isInvalid())
1720    return ExprError();
1721
1722  // Warn about the explicit constructor calls Microsoft extension.
1723  if (getLangOpts().MicrosoftExt &&
1724      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1725    Diag(Id.getSourceRange().getBegin(),
1726         diag::ext_ms_explicit_constructor_call);
1727
1728  TemplateArgumentListInfo TemplateArgsBuffer;
1729
1730  // Decompose the name into its component parts.
1731  DeclarationNameInfo NameInfo;
1732  const TemplateArgumentListInfo *TemplateArgs;
1733  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1734                         NameInfo, TemplateArgs);
1735
1736  DeclarationName Name = NameInfo.getName();
1737  bool IsArrow = (OpKind == tok::arrow);
1738
1739  NamedDecl *FirstQualifierInScope
1740    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1741
1742  // This is a postfix expression, so get rid of ParenListExprs.
1743  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1744  if (Result.isInvalid()) return ExprError();
1745  Base = Result.get();
1746
1747  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1748      isDependentScopeSpecifier(SS)) {
1749    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1750                                    TemplateKWLoc, FirstQualifierInScope,
1751                                    NameInfo, TemplateArgs);
1752  }
1753
1754  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1755  return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
1756                                  TemplateKWLoc, FirstQualifierInScope,
1757                                  NameInfo, TemplateArgs, S, &ExtraArgs);
1758}
1759
1760static ExprResult
1761BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1762                        SourceLocation OpLoc, const CXXScopeSpec &SS,
1763                        FieldDecl *Field, DeclAccessPair FoundDecl,
1764                        const DeclarationNameInfo &MemberNameInfo) {
1765  // x.a is an l-value if 'a' has a reference type. Otherwise:
1766  // x.a is an l-value/x-value/pr-value if the base is (and note
1767  //   that *x is always an l-value), except that if the base isn't
1768  //   an ordinary object then we must have an rvalue.
1769  ExprValueKind VK = VK_LValue;
1770  ExprObjectKind OK = OK_Ordinary;
1771  if (!IsArrow) {
1772    if (BaseExpr->getObjectKind() == OK_Ordinary)
1773      VK = BaseExpr->getValueKind();
1774    else
1775      VK = VK_RValue;
1776  }
1777  if (VK != VK_RValue && Field->isBitField())
1778    OK = OK_BitField;
1779
1780  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1781  QualType MemberType = Field->getType();
1782  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1783    MemberType = Ref->getPointeeType();
1784    VK = VK_LValue;
1785  } else {
1786    QualType BaseType = BaseExpr->getType();
1787    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1788
1789    Qualifiers BaseQuals = BaseType.getQualifiers();
1790
1791    // GC attributes are never picked up by members.
1792    BaseQuals.removeObjCGCAttr();
1793
1794    // CVR attributes from the base are picked up by members,
1795    // except that 'mutable' members don't pick up 'const'.
1796    if (Field->isMutable()) BaseQuals.removeConst();
1797
1798    Qualifiers MemberQuals
1799    = S.Context.getCanonicalType(MemberType).getQualifiers();
1800
1801    assert(!MemberQuals.hasAddressSpace());
1802
1803
1804    Qualifiers Combined = BaseQuals + MemberQuals;
1805    if (Combined != MemberQuals)
1806      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1807  }
1808
1809  S.UnusedPrivateFields.remove(Field);
1810
1811  ExprResult Base =
1812  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1813                                  FoundDecl, Field);
1814  if (Base.isInvalid())
1815    return ExprError();
1816  MemberExpr *ME =
1817      BuildMemberExpr(S, S.Context, Base.get(), IsArrow, OpLoc, SS,
1818                      /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1819                      MemberNameInfo, MemberType, VK, OK);
1820
1821  // Build a reference to a private copy for non-static data members in
1822  // non-static member functions, privatized by OpenMP constructs.
1823  if (S.getLangOpts().OpenMP && IsArrow &&
1824      !S.CurContext->isDependentContext() &&
1825      isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1826    if (auto *PrivateCopy = S.IsOpenMPCapturedDecl(Field))
1827      return S.getOpenMPCapturedExpr(PrivateCopy, VK, OK, OpLoc);
1828  }
1829  return ME;
1830}
1831
1832/// Builds an implicit member access expression.  The current context
1833/// is known to be an instance method, and the given unqualified lookup
1834/// set is known to contain only instance members, at least one of which
1835/// is from an appropriate type.
1836ExprResult
1837Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1838                              SourceLocation TemplateKWLoc,
1839                              LookupResult &R,
1840                              const TemplateArgumentListInfo *TemplateArgs,
1841                              bool IsKnownInstance, const Scope *S) {
1842  assert(!R.empty() && !R.isAmbiguous());
1843
1844  SourceLocation loc = R.getNameLoc();
1845
1846  // If this is known to be an instance access, go ahead and build an
1847  // implicit 'this' expression now.
1848  // 'this' expression now.
1849  QualType ThisTy = getCurrentThisType();
1850  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1851
1852  Expr *baseExpr = nullptr; // null signifies implicit access
1853  if (IsKnownInstance) {
1854    SourceLocation Loc = R.getNameLoc();
1855    if (SS.getRange().isValid())
1856      Loc = SS.getRange().getBegin();
1857    CheckCXXThisCapture(Loc);
1858    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1859  }
1860
1861  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1862                                  /*OpLoc*/ SourceLocation(),
1863                                  /*IsArrow*/ true,
1864                                  SS, TemplateKWLoc,
1865                                  /*FirstQualifierInScope*/ nullptr,
1866                                  R, TemplateArgs, S);
1867}
1868