1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
8// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
9// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
10// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
11//
12// This Source Code Form is subject to the terms of the Mozilla
13// Public License v. 2.0. If a copy of the MPL was not distributed
14// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
15
16#ifndef EIGEN_SVDBASE_H
17#define EIGEN_SVDBASE_H
18
19namespace Eigen {
20/** \ingroup SVD_Module
21 *
22 *
23 * \class SVDBase
24 *
25 * \brief Base class of SVD algorithms
26 *
27 * \tparam Derived the type of the actual SVD decomposition
28 *
29 * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
30 *   \f[ A = U S V^* \f]
31 * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
32 * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
33 * and right \em singular \em vectors of \a A respectively.
34 *
35 * Singular values are always sorted in decreasing order.
36 *
37 *
38 * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
39 * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
40 * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
41 * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
42 *
43 * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
44 * terminate in finite (and reasonable) time.
45 * \sa class BDCSVD, class JacobiSVD
46 */
47template<typename Derived>
48class SVDBase
49{
50
51public:
52  typedef typename internal::traits<Derived>::MatrixType MatrixType;
53  typedef typename MatrixType::Scalar Scalar;
54  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
55  typedef typename MatrixType::StorageIndex StorageIndex;
56  typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
57  enum {
58    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
59    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
60    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
61    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
62    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
63    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
64    MatrixOptions = MatrixType::Options
65  };
66
67  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
68  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
69  typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
70
71  Derived& derived() { return *static_cast<Derived*>(this); }
72  const Derived& derived() const { return *static_cast<const Derived*>(this); }
73
74  /** \returns the \a U matrix.
75   *
76   * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
77   * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
78   *
79   * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
80   *
81   * This method asserts that you asked for \a U to be computed.
82   */
83  const MatrixUType& matrixU() const
84  {
85    eigen_assert(m_isInitialized && "SVD is not initialized.");
86    eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
87    return m_matrixU;
88  }
89
90  /** \returns the \a V matrix.
91   *
92   * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
93   * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
94   *
95   * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
96   *
97   * This method asserts that you asked for \a V to be computed.
98   */
99  const MatrixVType& matrixV() const
100  {
101    eigen_assert(m_isInitialized && "SVD is not initialized.");
102    eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
103    return m_matrixV;
104  }
105
106  /** \returns the vector of singular values.
107   *
108   * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
109   * returned vector has size \a m.  Singular values are always sorted in decreasing order.
110   */
111  const SingularValuesType& singularValues() const
112  {
113    eigen_assert(m_isInitialized && "SVD is not initialized.");
114    return m_singularValues;
115  }
116
117  /** \returns the number of singular values that are not exactly 0 */
118  Index nonzeroSingularValues() const
119  {
120    eigen_assert(m_isInitialized && "SVD is not initialized.");
121    return m_nonzeroSingularValues;
122  }
123
124  /** \returns the rank of the matrix of which \c *this is the SVD.
125    *
126    * \note This method has to determine which singular values should be considered nonzero.
127    *       For that, it uses the threshold value that you can control by calling
128    *       setThreshold(const RealScalar&).
129    */
130  inline Index rank() const
131  {
132    using std::abs;
133    eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
134    if(m_singularValues.size()==0) return 0;
135    RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
136    Index i = m_nonzeroSingularValues-1;
137    while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
138    return i+1;
139  }
140
141  /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
142    * which need to determine when singular values are to be considered nonzero.
143    * This is not used for the SVD decomposition itself.
144    *
145    * When it needs to get the threshold value, Eigen calls threshold().
146    * The default is \c NumTraits<Scalar>::epsilon()
147    *
148    * \param threshold The new value to use as the threshold.
149    *
150    * A singular value will be considered nonzero if its value is strictly greater than
151    *  \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
152    *
153    * If you want to come back to the default behavior, call setThreshold(Default_t)
154    */
155  Derived& setThreshold(const RealScalar& threshold)
156  {
157    m_usePrescribedThreshold = true;
158    m_prescribedThreshold = threshold;
159    return derived();
160  }
161
162  /** Allows to come back to the default behavior, letting Eigen use its default formula for
163    * determining the threshold.
164    *
165    * You should pass the special object Eigen::Default as parameter here.
166    * \code svd.setThreshold(Eigen::Default); \endcode
167    *
168    * See the documentation of setThreshold(const RealScalar&).
169    */
170  Derived& setThreshold(Default_t)
171  {
172    m_usePrescribedThreshold = false;
173    return derived();
174  }
175
176  /** Returns the threshold that will be used by certain methods such as rank().
177    *
178    * See the documentation of setThreshold(const RealScalar&).
179    */
180  RealScalar threshold() const
181  {
182    eigen_assert(m_isInitialized || m_usePrescribedThreshold);
183    return m_usePrescribedThreshold ? m_prescribedThreshold
184                                    : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
185  }
186
187  /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
188  inline bool computeU() const { return m_computeFullU || m_computeThinU; }
189  /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
190  inline bool computeV() const { return m_computeFullV || m_computeThinV; }
191
192  inline Index rows() const { return m_rows; }
193  inline Index cols() const { return m_cols; }
194
195  /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
196    *
197    * \param b the right-hand-side of the equation to solve.
198    *
199    * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
200    *
201    * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
202    * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
203    */
204  template<typename Rhs>
205  inline const Solve<Derived, Rhs>
206  solve(const MatrixBase<Rhs>& b) const
207  {
208    eigen_assert(m_isInitialized && "SVD is not initialized.");
209    eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
210    return Solve<Derived, Rhs>(derived(), b.derived());
211  }
212
213  #ifndef EIGEN_PARSED_BY_DOXYGEN
214  template<typename RhsType, typename DstType>
215  EIGEN_DEVICE_FUNC
216  void _solve_impl(const RhsType &rhs, DstType &dst) const;
217  #endif
218
219protected:
220
221  static void check_template_parameters()
222  {
223    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
224  }
225
226  // return true if already allocated
227  bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
228
229  MatrixUType m_matrixU;
230  MatrixVType m_matrixV;
231  SingularValuesType m_singularValues;
232  bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
233  bool m_computeFullU, m_computeThinU;
234  bool m_computeFullV, m_computeThinV;
235  unsigned int m_computationOptions;
236  Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
237  RealScalar m_prescribedThreshold;
238
239  /** \brief Default Constructor.
240   *
241   * Default constructor of SVDBase
242   */
243  SVDBase()
244    : m_isInitialized(false),
245      m_isAllocated(false),
246      m_usePrescribedThreshold(false),
247      m_computationOptions(0),
248      m_rows(-1), m_cols(-1), m_diagSize(0)
249  {
250    check_template_parameters();
251  }
252
253
254};
255
256#ifndef EIGEN_PARSED_BY_DOXYGEN
257template<typename Derived>
258template<typename RhsType, typename DstType>
259void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
260{
261  eigen_assert(rhs.rows() == rows());
262
263  // A = U S V^*
264  // So A^{-1} = V S^{-1} U^*
265
266  Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
267  Index l_rank = rank();
268  tmp.noalias() =  m_matrixU.leftCols(l_rank).adjoint() * rhs;
269  tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
270  dst = m_matrixV.leftCols(l_rank) * tmp;
271}
272#endif
273
274template<typename MatrixType>
275bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
276{
277  eigen_assert(rows >= 0 && cols >= 0);
278
279  if (m_isAllocated &&
280      rows == m_rows &&
281      cols == m_cols &&
282      computationOptions == m_computationOptions)
283  {
284    return true;
285  }
286
287  m_rows = rows;
288  m_cols = cols;
289  m_isInitialized = false;
290  m_isAllocated = true;
291  m_computationOptions = computationOptions;
292  m_computeFullU = (computationOptions & ComputeFullU) != 0;
293  m_computeThinU = (computationOptions & ComputeThinU) != 0;
294  m_computeFullV = (computationOptions & ComputeFullV) != 0;
295  m_computeThinV = (computationOptions & ComputeThinV) != 0;
296  eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
297  eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
298  eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
299	       "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
300
301  m_diagSize = (std::min)(m_rows, m_cols);
302  m_singularValues.resize(m_diagSize);
303  if(RowsAtCompileTime==Dynamic)
304    m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
305  if(ColsAtCompileTime==Dynamic)
306    m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
307
308  return false;
309}
310
311}// end namespace
312
313#endif // EIGEN_SVDBASE_H
314