1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11
12template<typename ArrayType> void array(const ArrayType& m)
13{
14  typedef typename ArrayType::Index Index;
15  typedef typename ArrayType::Scalar Scalar;
16  typedef typename ArrayType::RealScalar RealScalar;
17  typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
18  typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
19
20  Index rows = m.rows();
21  Index cols = m.cols();
22
23  ArrayType m1 = ArrayType::Random(rows, cols),
24             m2 = ArrayType::Random(rows, cols),
25             m3(rows, cols);
26  ArrayType m4 = m1; // copy constructor
27  VERIFY_IS_APPROX(m1, m4);
28
29  ColVectorType cv1 = ColVectorType::Random(rows);
30  RowVectorType rv1 = RowVectorType::Random(cols);
31
32  Scalar  s1 = internal::random<Scalar>(),
33          s2 = internal::random<Scalar>();
34
35  // scalar addition
36  VERIFY_IS_APPROX(m1 + s1, s1 + m1);
37  VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
38  VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
39  VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
40  VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
41  VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
42  m3 = m1;
43  m3 += s2;
44  VERIFY_IS_APPROX(m3, m1 + s2);
45  m3 = m1;
46  m3 -= s1;
47  VERIFY_IS_APPROX(m3, m1 - s1);
48
49  // scalar operators via Maps
50  m3 = m1;
51  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
52  VERIFY_IS_APPROX(m1, m3 - m2);
53
54  m3 = m1;
55  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
56  VERIFY_IS_APPROX(m1, m3 + m2);
57
58  m3 = m1;
59  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
60  VERIFY_IS_APPROX(m1, m3 * m2);
61
62  m3 = m1;
63  m2 = ArrayType::Random(rows,cols);
64  m2 = (m2==0).select(1,m2);
65  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
66  VERIFY_IS_APPROX(m1, m3 / m2);
67
68  // reductions
69  VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
70  VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
71  using std::abs;
72  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
73  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
74  if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
75      VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
76  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>()));
77
78  // vector-wise ops
79  m3 = m1;
80  VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
81  m3 = m1;
82  VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
83  m3 = m1;
84  VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
85  m3 = m1;
86  VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
87
88  // Conversion from scalar
89  VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1));
90  VERIFY_IS_APPROX((m3 = 1),  ArrayType::Constant(rows,cols,1));
91  VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1),  ArrayType::Constant(rows,cols,1));
92  typedef Array<Scalar,
93                ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime,
94                ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime,
95                ArrayType::Options> FixedArrayType;
96  FixedArrayType f1(s1);
97  VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
98  FixedArrayType f2(numext::real(s1));
99  VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
100  FixedArrayType f3((int)100*numext::real(s1));
101  VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
102  f1.setRandom();
103  FixedArrayType f4(f1.data());
104  VERIFY_IS_APPROX(f4, f1);
105
106  // pow
107  VERIFY_IS_APPROX(m1.pow(2), m1.square());
108  VERIFY_IS_APPROX(pow(m1,2), m1.square());
109  VERIFY_IS_APPROX(m1.pow(3), m1.cube());
110  VERIFY_IS_APPROX(pow(m1,3), m1.cube());
111  VERIFY_IS_APPROX((-m1).pow(3), -m1.cube());
112  VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube());
113  ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
114  VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
115  VERIFY_IS_APPROX(m1.pow(exponents), m1.square());
116  VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square());
117  VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square());
118  VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
119  VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
120  VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
121
122  // Check possible conflicts with 1D ctor
123  typedef Array<Scalar, Dynamic, 1> OneDArrayType;
124  OneDArrayType o1(rows);
125  VERIFY(o1.size()==rows);
126  OneDArrayType o4((int)rows);
127  VERIFY(o4.size()==rows);
128}
129
130template<typename ArrayType> void comparisons(const ArrayType& m)
131{
132  using std::abs;
133  typedef typename ArrayType::Index Index;
134  typedef typename ArrayType::Scalar Scalar;
135  typedef typename NumTraits<Scalar>::Real RealScalar;
136
137  Index rows = m.rows();
138  Index cols = m.cols();
139
140  Index r = internal::random<Index>(0, rows-1),
141        c = internal::random<Index>(0, cols-1);
142
143  ArrayType m1 = ArrayType::Random(rows, cols),
144            m2 = ArrayType::Random(rows, cols),
145            m3(rows, cols),
146            m4 = m1;
147
148  m4 = (m4.abs()==Scalar(0)).select(1,m4);
149
150  VERIFY(((m1 + Scalar(1)) > m1).all());
151  VERIFY(((m1 - Scalar(1)) < m1).all());
152  if (rows*cols>1)
153  {
154    m3 = m1;
155    m3(r,c) += 1;
156    VERIFY(! (m1 < m3).all() );
157    VERIFY(! (m1 > m3).all() );
158  }
159  VERIFY(!(m1 > m2 && m1 < m2).any());
160  VERIFY((m1 <= m2 || m1 >= m2).all());
161
162  // comparisons array to scalar
163  VERIFY( (m1 != (m1(r,c)+1) ).any() );
164  VERIFY( (m1 >  (m1(r,c)-1) ).any() );
165  VERIFY( (m1 <  (m1(r,c)+1) ).any() );
166  VERIFY( (m1 ==  m1(r,c)    ).any() );
167
168  // comparisons scalar to array
169  VERIFY( ( (m1(r,c)+1) != m1).any() );
170  VERIFY( ( (m1(r,c)-1) <  m1).any() );
171  VERIFY( ( (m1(r,c)+1) >  m1).any() );
172  VERIFY( (  m1(r,c)    == m1).any() );
173
174  // test Select
175  VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
176  VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
177  Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
178  for (int j=0; j<cols; ++j)
179  for (int i=0; i<rows; ++i)
180    m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
181  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
182                        .select(ArrayType::Zero(rows,cols),m1), m3);
183  // shorter versions:
184  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
185                        .select(0,m1), m3);
186  VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
187                        .select(m1,0), m3);
188  // even shorter version:
189  VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
190
191  // count
192  VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
193
194  // and/or
195  VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
196  VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
197  RealScalar a = m1.abs().mean();
198  VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
199
200  typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;
201
202  // TODO allows colwise/rowwise for array
203  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
204  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
205}
206
207template<typename ArrayType> void array_real(const ArrayType& m)
208{
209  using std::abs;
210  using std::sqrt;
211  typedef typename ArrayType::Index Index;
212  typedef typename ArrayType::Scalar Scalar;
213  typedef typename NumTraits<Scalar>::Real RealScalar;
214
215  Index rows = m.rows();
216  Index cols = m.cols();
217
218  ArrayType m1 = ArrayType::Random(rows, cols),
219            m2 = ArrayType::Random(rows, cols),
220            m3(rows, cols),
221            m4 = m1;
222
223  m4 = (m4.abs()==Scalar(0)).select(1,m4);
224
225  Scalar  s1 = internal::random<Scalar>();
226
227  // these tests are mostly to check possible compilation issues with free-functions.
228  VERIFY_IS_APPROX(m1.sin(), sin(m1));
229  VERIFY_IS_APPROX(m1.cos(), cos(m1));
230  VERIFY_IS_APPROX(m1.tan(), tan(m1));
231  VERIFY_IS_APPROX(m1.asin(), asin(m1));
232  VERIFY_IS_APPROX(m1.acos(), acos(m1));
233  VERIFY_IS_APPROX(m1.atan(), atan(m1));
234  VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
235  VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
236  VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
237
238  VERIFY_IS_APPROX(m1.arg(), arg(m1));
239  VERIFY_IS_APPROX(m1.round(), round(m1));
240  VERIFY_IS_APPROX(m1.floor(), floor(m1));
241  VERIFY_IS_APPROX(m1.ceil(), ceil(m1));
242  VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
243  VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
244  VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
245  VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
246  VERIFY_IS_APPROX(m1.abs(), abs(m1));
247  VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
248  VERIFY_IS_APPROX(m1.square(), square(m1));
249  VERIFY_IS_APPROX(m1.cube(), cube(m1));
250  VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
251  VERIFY_IS_APPROX(m1.sign(), sign(m1));
252
253
254  // avoid NaNs with abs() so verification doesn't fail
255  m3 = m1.abs();
256  VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1)));
257  VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1)));
258  VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m1)));
259  VERIFY_IS_APPROX(m3.log(), log(m3));
260  VERIFY_IS_APPROX(m3.log1p(), log1p(m3));
261  VERIFY_IS_APPROX(m3.log10(), log10(m3));
262
263
264  VERIFY((!(m1>m2) == (m1<=m2)).all());
265
266  VERIFY_IS_APPROX(sin(m1.asin()), m1);
267  VERIFY_IS_APPROX(cos(m1.acos()), m1);
268  VERIFY_IS_APPROX(tan(m1.atan()), m1);
269  VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
270  VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
271  VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
272  VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0));
273  VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
274  VERIFY((Eigen::isnan)((m1*0.0)/0.0).all());
275  VERIFY((Eigen::isinf)(m4/0.0).all());
276  VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all());
277  VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
278  VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
279  VERIFY_IS_APPROX(m3, sqrt(abs2(m1)));
280  VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
281  VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
282  VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1);
283
284  VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
285  VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1));
286  if(!NumTraits<Scalar>::IsComplex)
287    VERIFY_IS_APPROX(numext::real(m1), m1);
288
289  // shift argument of logarithm so that it is not zero
290  Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
291  VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber));
292  VERIFY_IS_APPROX((m3 + smallNumber + 1).log() , log1p(abs(m1) + smallNumber));
293
294  VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
295  VERIFY_IS_APPROX(m1.exp(), exp(m1));
296  VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
297
298  VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
299  VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
300
301  VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
302  VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
303
304  VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
305
306  // scalar by array division
307  const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
308  s1 += Scalar(tiny);
309  m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
310  VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
311
312  // check inplace transpose
313  m3 = m1;
314  m3.transposeInPlace();
315  VERIFY_IS_APPROX(m3, m1.transpose());
316  m3.transposeInPlace();
317  VERIFY_IS_APPROX(m3, m1);
318}
319
320template<typename ArrayType> void array_complex(const ArrayType& m)
321{
322  typedef typename ArrayType::Index Index;
323  typedef typename ArrayType::Scalar Scalar;
324  typedef typename NumTraits<Scalar>::Real RealScalar;
325
326  Index rows = m.rows();
327  Index cols = m.cols();
328
329  ArrayType m1 = ArrayType::Random(rows, cols),
330            m2(rows, cols),
331            m4 = m1;
332
333  m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real());
334  m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag());
335
336  Array<RealScalar, -1, -1> m3(rows, cols);
337
338  for (Index i = 0; i < m.rows(); ++i)
339    for (Index j = 0; j < m.cols(); ++j)
340      m2(i,j) = sqrt(m1(i,j));
341
342  // these tests are mostly to check possible compilation issues with free-functions.
343  VERIFY_IS_APPROX(m1.sin(), sin(m1));
344  VERIFY_IS_APPROX(m1.cos(), cos(m1));
345  VERIFY_IS_APPROX(m1.tan(), tan(m1));
346  VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
347  VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
348  VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
349  VERIFY_IS_APPROX(m1.arg(), arg(m1));
350  VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
351  VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
352  VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
353  VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
354  VERIFY_IS_APPROX(m1.log(), log(m1));
355  VERIFY_IS_APPROX(m1.log10(), log10(m1));
356  VERIFY_IS_APPROX(m1.abs(), abs(m1));
357  VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
358  VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1));
359  VERIFY_IS_APPROX(m1.square(), square(m1));
360  VERIFY_IS_APPROX(m1.cube(), cube(m1));
361  VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
362  VERIFY_IS_APPROX(m1.sign(), sign(m1));
363
364
365  VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
366  VERIFY_IS_APPROX(m1.exp(), exp(m1));
367  VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
368
369  VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
370  VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
371  VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
372
373  for (Index i = 0; i < m.rows(); ++i)
374    for (Index j = 0; j < m.cols(); ++j)
375      m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j)));
376  VERIFY_IS_APPROX(arg(m1), m3);
377
378  std::complex<RealScalar> zero(0.0,0.0);
379  VERIFY((Eigen::isnan)(m1*zero/zero).all());
380#if EIGEN_COMP_MSVC
381  // msvc complex division is not robust
382  VERIFY((Eigen::isinf)(m4/RealScalar(0)).all());
383#else
384#if EIGEN_COMP_CLANG
385  // clang's complex division is notoriously broken too
386  if((numext::isinf)(m4(0,0)/RealScalar(0))) {
387#endif
388    VERIFY((Eigen::isinf)(m4/zero).all());
389#if EIGEN_COMP_CLANG
390  }
391  else
392  {
393    VERIFY((Eigen::isinf)(m4.real()/zero.real()).all());
394  }
395#endif
396#endif // MSVC
397
398  VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
399
400  VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
401  VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
402  VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1))));
403  VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
404  VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));
405
406  VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
407  VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1);
408
409  // scalar by array division
410  Scalar  s1 = internal::random<Scalar>();
411  const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon());
412  s1 += Scalar(tiny);
413  m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
414  VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
415
416  // check inplace transpose
417  m2 = m1;
418  m2.transposeInPlace();
419  VERIFY_IS_APPROX(m2, m1.transpose());
420  m2.transposeInPlace();
421  VERIFY_IS_APPROX(m2, m1);
422
423}
424
425template<typename ArrayType> void min_max(const ArrayType& m)
426{
427  typedef typename ArrayType::Index Index;
428  typedef typename ArrayType::Scalar Scalar;
429
430  Index rows = m.rows();
431  Index cols = m.cols();
432
433  ArrayType m1 = ArrayType::Random(rows, cols);
434
435  // min/max with array
436  Scalar maxM1 = m1.maxCoeff();
437  Scalar minM1 = m1.minCoeff();
438
439  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
440  VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
441
442  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
443  VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
444
445  // min/max with scalar input
446  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
447  VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
448
449  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
450  VERIFY_IS_APPROX(m1, (m1.max)( minM1));
451
452}
453
454void test_array()
455{
456  for(int i = 0; i < g_repeat; i++) {
457    CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
458    CALL_SUBTEST_2( array(Array22f()) );
459    CALL_SUBTEST_3( array(Array44d()) );
460    CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
461    CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
462    CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
463  }
464  for(int i = 0; i < g_repeat; i++) {
465    CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
466    CALL_SUBTEST_2( comparisons(Array22f()) );
467    CALL_SUBTEST_3( comparisons(Array44d()) );
468    CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
469    CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
470  }
471  for(int i = 0; i < g_repeat; i++) {
472    CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
473    CALL_SUBTEST_2( min_max(Array22f()) );
474    CALL_SUBTEST_3( min_max(Array44d()) );
475    CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
476    CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
477  }
478  for(int i = 0; i < g_repeat; i++) {
479    CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
480    CALL_SUBTEST_2( array_real(Array22f()) );
481    CALL_SUBTEST_3( array_real(Array44d()) );
482    CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
483  }
484  for(int i = 0; i < g_repeat; i++) {
485    CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
486  }
487
488  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
489  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
490  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
491  typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd > Xpr;
492  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
493                           ArrayBase<Xpr>
494                         >::value));
495}
496