1// This file is part of Eigen, a lightweight C++ template library 2// for linear algebra. 3// 4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> 5// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> 6// 7// This Source Code Form is subject to the terms of the Mozilla 8// Public License v. 2.0. If a copy of the MPL was not distributed 9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11#include <cstdlib> 12#include <cerrno> 13#include <ctime> 14#include <iostream> 15#include <fstream> 16#include <string> 17#include <sstream> 18#include <vector> 19#include <typeinfo> 20 21// The following includes of STL headers have to be done _before_ the 22// definition of macros min() and max(). The reason is that many STL 23// implementations will not work properly as the min and max symbols collide 24// with the STL functions std:min() and std::max(). The STL headers may check 25// for the macro definition of min/max and issue a warning or undefine the 26// macros. 27// 28// Still, Windows defines min() and max() in windef.h as part of the regular 29// Windows system interfaces and many other Windows APIs depend on these 30// macros being available. To prevent the macro expansion of min/max and to 31// make Eigen compatible with the Windows environment all function calls of 32// std::min() and std::max() have to be written with parenthesis around the 33// function name. 34// 35// All STL headers used by Eigen should be included here. Because main.h is 36// included before any Eigen header and because the STL headers are guarded 37// against multiple inclusions, no STL header will see our own min/max macro 38// definitions. 39#include <limits> 40#include <algorithm> 41#include <complex> 42#include <deque> 43#include <queue> 44#include <cassert> 45#include <list> 46#if __cplusplus >= 201103L 47#include <random> 48#ifdef EIGEN_USE_THREADS 49#include <future> 50#endif 51#endif 52 53// To test that all calls from Eigen code to std::min() and std::max() are 54// protected by parenthesis against macro expansion, the min()/max() macros 55// are defined here and any not-parenthesized min/max call will cause a 56// compiler error. 57#define min(A,B) please_protect_your_min_with_parentheses 58#define max(A,B) please_protect_your_max_with_parentheses 59#define isnan(X) please_protect_your_isnan_with_parentheses 60#define isinf(X) please_protect_your_isinf_with_parentheses 61#define isfinite(X) please_protect_your_isfinite_with_parentheses 62#ifdef M_PI 63#undef M_PI 64#endif 65#define M_PI please_use_EIGEN_PI_instead_of_M_PI 66 67#define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes 68// B0 is defined in POSIX header termios.h 69#define B0 FORBIDDEN_IDENTIFIER 70 71// Unit tests calling Eigen's blas library must preserve the default blocking size 72// to avoid troubles. 73#ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS 74#define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS 75#endif 76 77// shuts down ICC's remark #593: variable "XXX" was set but never used 78#define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X) 79 80#ifdef TEST_ENABLE_TEMPORARY_TRACKING 81 82static long int nb_temporaries; 83static long int nb_temporaries_on_assert = -1; 84 85inline void on_temporary_creation(long int size) { 86 // here's a great place to set a breakpoint when debugging failures in this test! 87 if(size!=0) nb_temporaries++; 88 if(nb_temporaries_on_assert>0) assert(nb_temporaries<nb_temporaries_on_assert); 89} 90 91#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); } 92 93#define VERIFY_EVALUATION_COUNT(XPR,N) {\ 94 nb_temporaries = 0; \ 95 XPR; \ 96 if(nb_temporaries!=N) { std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; }\ 97 VERIFY( (#XPR) && nb_temporaries==N ); \ 98 } 99 100#endif 101 102// the following file is automatically generated by cmake 103#include "split_test_helper.h" 104 105#ifdef NDEBUG 106#undef NDEBUG 107#endif 108 109// On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined. 110#ifndef DEBUG 111#define DEBUG 112#endif 113 114// bounds integer values for AltiVec 115#if defined(__ALTIVEC__) || defined(__VSX__) 116#define EIGEN_MAKING_DOCS 117#endif 118 119#ifndef EIGEN_TEST_FUNC 120#error EIGEN_TEST_FUNC must be defined 121#endif 122 123#define DEFAULT_REPEAT 10 124 125namespace Eigen 126{ 127 static std::vector<std::string> g_test_stack; 128 // level == 0 <=> abort if test fail 129 // level >= 1 <=> warning message to std::cerr if test fail 130 static int g_test_level = 0; 131 static int g_repeat; 132 static unsigned int g_seed; 133 static bool g_has_set_repeat, g_has_set_seed; 134} 135 136#define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl 137// #define TRACK while() 138 139#define EI_PP_MAKE_STRING2(S) #S 140#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S) 141 142#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") 143 144#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) 145 #define EIGEN_EXCEPTIONS 146#endif 147 148#ifndef EIGEN_NO_ASSERTION_CHECKING 149 150 namespace Eigen 151 { 152 static const bool should_raise_an_assert = false; 153 154 // Used to avoid to raise two exceptions at a time in which 155 // case the exception is not properly caught. 156 // This may happen when a second exceptions is triggered in a destructor. 157 static bool no_more_assert = false; 158 static bool report_on_cerr_on_assert_failure = true; 159 160 struct eigen_assert_exception 161 { 162 eigen_assert_exception(void) {} 163 ~eigen_assert_exception() { Eigen::no_more_assert = false; } 164 }; 165 } 166 // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while 167 // one should have been, then the list of excecuted assertions is printed out. 168 // 169 // EIGEN_DEBUG_ASSERTS is not enabled by default as it 170 // significantly increases the compilation time 171 // and might even introduce side effects that would hide 172 // some memory errors. 173 #ifdef EIGEN_DEBUG_ASSERTS 174 175 namespace Eigen 176 { 177 namespace internal 178 { 179 static bool push_assert = false; 180 } 181 static std::vector<std::string> eigen_assert_list; 182 } 183 #define eigen_assert(a) \ 184 if( (!(a)) && (!no_more_assert) ) \ 185 { \ 186 if(report_on_cerr_on_assert_failure) \ 187 std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ 188 Eigen::no_more_assert = true; \ 189 EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ 190 } \ 191 else if (Eigen::internal::push_assert) \ 192 { \ 193 eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \ 194 } 195 196 #ifdef EIGEN_EXCEPTIONS 197 #define VERIFY_RAISES_ASSERT(a) \ 198 { \ 199 Eigen::no_more_assert = false; \ 200 Eigen::eigen_assert_list.clear(); \ 201 Eigen::internal::push_assert = true; \ 202 Eigen::report_on_cerr_on_assert_failure = false; \ 203 try { \ 204 a; \ 205 std::cerr << "One of the following asserts should have been triggered:\n"; \ 206 for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \ 207 std::cerr << " " << eigen_assert_list[ai] << "\n"; \ 208 VERIFY(Eigen::should_raise_an_assert && # a); \ 209 } catch (Eigen::eigen_assert_exception) { \ 210 Eigen::internal::push_assert = false; VERIFY(true); \ 211 } \ 212 Eigen::report_on_cerr_on_assert_failure = true; \ 213 Eigen::internal::push_assert = false; \ 214 } 215 #endif //EIGEN_EXCEPTIONS 216 217 #elif !defined(__CUDACC__) // EIGEN_DEBUG_ASSERTS 218 // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3 219 #define eigen_assert(a) \ 220 if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\ 221 { \ 222 Eigen::no_more_assert = true; \ 223 if(report_on_cerr_on_assert_failure) \ 224 eigen_plain_assert(a); \ 225 else \ 226 EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ 227 } 228 #ifdef EIGEN_EXCEPTIONS 229 #define VERIFY_RAISES_ASSERT(a) { \ 230 Eigen::no_more_assert = false; \ 231 Eigen::report_on_cerr_on_assert_failure = false; \ 232 try { \ 233 a; \ 234 VERIFY(Eigen::should_raise_an_assert && # a); \ 235 } \ 236 catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \ 237 Eigen::report_on_cerr_on_assert_failure = true; \ 238 } 239 #endif //EIGEN_EXCEPTIONS 240 #endif // EIGEN_DEBUG_ASSERTS 241 242#ifndef VERIFY_RAISES_ASSERT 243 #define VERIFY_RAISES_ASSERT(a) \ 244 std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n"; 245#endif 246 247 #if !defined(__CUDACC__) 248 #define EIGEN_USE_CUSTOM_ASSERT 249 #endif 250 251#else // EIGEN_NO_ASSERTION_CHECKING 252 253 #define VERIFY_RAISES_ASSERT(a) {} 254 255#endif // EIGEN_NO_ASSERTION_CHECKING 256 257 258#define EIGEN_INTERNAL_DEBUGGING 259#include <Eigen/QR> // required for createRandomPIMatrixOfRank 260 261inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string) 262{ 263 if (!condition) 264 { 265 if(Eigen::g_test_level>0) 266 std::cerr << "WARNING: "; 267 std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" 268 << std::endl << " " << condition_as_string << std::endl; 269 std::cerr << "Stack:\n"; 270 const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size()); 271 for(int i=test_stack_size-1; i>=0; --i) 272 std::cerr << " - " << Eigen::g_test_stack[i] << "\n"; 273 std::cerr << "\n"; 274 if(Eigen::g_test_level==0) 275 abort(); 276 } 277} 278 279#define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a)) 280 281#define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a >= b)) 282#define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a <= b)) 283 284 285#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true)) 286#define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false)) 287#define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b)) 288#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b)) 289#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b)) 290#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b)) 291#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b)) 292#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b)) 293 294#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) 295 296#define CALL_SUBTEST(FUNC) do { \ 297 g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \ 298 FUNC; \ 299 g_test_stack.pop_back(); \ 300 } while (0) 301 302 303namespace Eigen { 304 305template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } 306template<> inline float test_precision<float>() { return 1e-3f; } 307template<> inline double test_precision<double>() { return 1e-6; } 308template<> inline long double test_precision<long double>() { return 1e-6l; } 309template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } 310template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } 311template<> inline long double test_precision<std::complex<long double> >() { return test_precision<long double>(); } 312 313inline bool test_isApprox(const short& a, const short& b) 314{ return internal::isApprox(a, b, test_precision<short>()); } 315inline bool test_isApprox(const unsigned short& a, const unsigned short& b) 316{ return internal::isApprox(a, b, test_precision<unsigned long>()); } 317inline bool test_isApprox(const unsigned int& a, const unsigned int& b) 318{ return internal::isApprox(a, b, test_precision<unsigned int>()); } 319inline bool test_isApprox(const long& a, const long& b) 320{ return internal::isApprox(a, b, test_precision<long>()); } 321inline bool test_isApprox(const unsigned long& a, const unsigned long& b) 322{ return internal::isApprox(a, b, test_precision<unsigned long>()); } 323 324inline bool test_isApprox(const int& a, const int& b) 325{ return internal::isApprox(a, b, test_precision<int>()); } 326inline bool test_isMuchSmallerThan(const int& a, const int& b) 327{ return internal::isMuchSmallerThan(a, b, test_precision<int>()); } 328inline bool test_isApproxOrLessThan(const int& a, const int& b) 329{ return internal::isApproxOrLessThan(a, b, test_precision<int>()); } 330 331inline bool test_isApprox(const float& a, const float& b) 332{ return internal::isApprox(a, b, test_precision<float>()); } 333inline bool test_isMuchSmallerThan(const float& a, const float& b) 334{ return internal::isMuchSmallerThan(a, b, test_precision<float>()); } 335inline bool test_isApproxOrLessThan(const float& a, const float& b) 336{ return internal::isApproxOrLessThan(a, b, test_precision<float>()); } 337 338inline bool test_isApprox(const double& a, const double& b) 339{ return internal::isApprox(a, b, test_precision<double>()); } 340inline bool test_isMuchSmallerThan(const double& a, const double& b) 341{ return internal::isMuchSmallerThan(a, b, test_precision<double>()); } 342inline bool test_isApproxOrLessThan(const double& a, const double& b) 343{ return internal::isApproxOrLessThan(a, b, test_precision<double>()); } 344 345#ifndef EIGEN_TEST_NO_COMPLEX 346inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b) 347{ return internal::isApprox(a, b, test_precision<std::complex<float> >()); } 348inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b) 349{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); } 350 351inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b) 352{ return internal::isApprox(a, b, test_precision<std::complex<double> >()); } 353inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b) 354{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); } 355 356#ifndef EIGEN_TEST_NO_LONGDOUBLE 357inline bool test_isApprox(const std::complex<long double>& a, const std::complex<long double>& b) 358{ return internal::isApprox(a, b, test_precision<std::complex<long double> >()); } 359inline bool test_isMuchSmallerThan(const std::complex<long double>& a, const std::complex<long double>& b) 360{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<long double> >()); } 361#endif 362#endif 363 364#ifndef EIGEN_TEST_NO_LONGDOUBLE 365inline bool test_isApprox(const long double& a, const long double& b) 366{ 367 bool ret = internal::isApprox(a, b, test_precision<long double>()); 368 if (!ret) std::cerr 369 << std::endl << " actual = " << a 370 << std::endl << " expected = " << b << std::endl << std::endl; 371 return ret; 372} 373 374inline bool test_isMuchSmallerThan(const long double& a, const long double& b) 375{ return internal::isMuchSmallerThan(a, b, test_precision<long double>()); } 376inline bool test_isApproxOrLessThan(const long double& a, const long double& b) 377{ return internal::isApproxOrLessThan(a, b, test_precision<long double>()); } 378#endif // EIGEN_TEST_NO_LONGDOUBLE 379 380inline bool test_isApprox(const half& a, const half& b) 381{ return internal::isApprox(a, b, test_precision<half>()); } 382inline bool test_isMuchSmallerThan(const half& a, const half& b) 383{ return internal::isMuchSmallerThan(a, b, test_precision<half>()); } 384inline bool test_isApproxOrLessThan(const half& a, const half& b) 385{ return internal::isApproxOrLessThan(a, b, test_precision<half>()); } 386 387// test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox. 388template<typename T1,typename T2> 389typename NumTraits<typename T1::RealScalar>::NonInteger test_relative_error(const EigenBase<T1> &a, const EigenBase<T2> &b) 390{ 391 using std::sqrt; 392 typedef typename NumTraits<typename T1::RealScalar>::NonInteger RealScalar; 393 typename internal::nested_eval<T1,2>::type ea(a.derived()); 394 typename internal::nested_eval<T2,2>::type eb(b.derived()); 395 return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum()))); 396} 397 398template<typename T1,typename T2> 399typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0) 400{ 401 return test_relative_error(a.coeffs(), b.coeffs()); 402} 403 404template<typename T1,typename T2> 405typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0) 406{ 407 return test_relative_error(a.matrix(), b.matrix()); 408} 409 410template<typename S, int D> 411S test_relative_error(const Translation<S,D> &a, const Translation<S,D> &b) 412{ 413 return test_relative_error(a.vector(), b.vector()); 414} 415 416template <typename S, int D, int O> 417S test_relative_error(const ParametrizedLine<S,D,O> &a, const ParametrizedLine<S,D,O> &b) 418{ 419 return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin())); 420} 421 422template <typename S, int D> 423S test_relative_error(const AlignedBox<S,D> &a, const AlignedBox<S,D> &b) 424{ 425 return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)())); 426} 427 428template<typename Derived> class SparseMatrixBase; 429template<typename T1,typename T2> 430typename T1::RealScalar test_relative_error(const MatrixBase<T1> &a, const SparseMatrixBase<T2> &b) 431{ 432 return test_relative_error(a,b.toDense()); 433} 434 435template<typename Derived> class SparseMatrixBase; 436template<typename T1,typename T2> 437typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const MatrixBase<T2> &b) 438{ 439 return test_relative_error(a.toDense(),b); 440} 441 442template<typename Derived> class SparseMatrixBase; 443template<typename T1,typename T2> 444typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const SparseMatrixBase<T2> &b) 445{ 446 return test_relative_error(a.toDense(),b.toDense()); 447} 448 449template<typename T1,typename T2> 450typename NumTraits<typename NumTraits<T1>::Real>::NonInteger test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T1>::Real>::value, T1>::type* = 0) 451{ 452 typedef typename NumTraits<typename NumTraits<T1>::Real>::NonInteger RealScalar; 453 return numext::sqrt(RealScalar(numext::abs2(a-b))/RealScalar((numext::mini)(numext::abs2(a),numext::abs2(b)))); 454} 455 456template<typename T> 457T test_relative_error(const Rotation2D<T> &a, const Rotation2D<T> &b) 458{ 459 return test_relative_error(a.angle(), b.angle()); 460} 461 462template<typename T> 463T test_relative_error(const AngleAxis<T> &a, const AngleAxis<T> &b) 464{ 465 return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis())); 466} 467 468template<typename Type1, typename Type2> 469inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only 470{ 471 return a.isApprox(b, test_precision<typename Type1::Scalar>()); 472} 473 474// get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions 475template<typename T> 476typename NumTraits<typename T::Scalar>::Real get_test_precision(const T&, const typename T::Scalar* = 0) 477{ 478 return test_precision<typename NumTraits<typename T::Scalar>::Real>(); 479} 480 481template<typename T> 482typename NumTraits<T>::Real get_test_precision(const T&,typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0) 483{ 484 return test_precision<typename NumTraits<T>::Real>(); 485} 486 487// verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails. 488template<typename Type1, typename Type2> 489inline bool verifyIsApprox(const Type1& a, const Type2& b) 490{ 491 bool ret = test_isApprox(a,b); 492 if(!ret) 493 { 494 std::cerr << "Difference too large wrt tolerance " << get_test_precision(a) << ", relative error is: " << test_relative_error(a,b) << std::endl; 495 } 496 return ret; 497} 498 499// The idea behind this function is to compare the two scalars a and b where 500// the scalar ref is a hint about the expected order of magnitude of a and b. 501// WARNING: the scalar a and b must be positive 502// Therefore, if for some reason a and b are very small compared to ref, 503// we won't issue a false negative. 504// This test could be: abs(a-b) <= eps * ref 505// However, it seems that simply comparing a+ref and b+ref is more sensitive to true error. 506template<typename Scalar,typename ScalarRef> 507inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref) 508{ 509 return test_isApprox(a+ref, b+ref); 510} 511 512template<typename Derived1, typename Derived2> 513inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1, 514 const MatrixBase<Derived2>& m2) 515{ 516 return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>()); 517} 518 519template<typename Derived> 520inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m, 521 const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s) 522{ 523 return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>()); 524} 525 526template<typename Derived> 527inline bool test_isUnitary(const MatrixBase<Derived>& m) 528{ 529 return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>()); 530} 531 532// Forward declaration to avoid ICC warning 533template<typename T, typename U> 534bool test_is_equal(const T& actual, const U& expected, bool expect_equal=true); 535 536template<typename T, typename U> 537bool test_is_equal(const T& actual, const U& expected, bool expect_equal) 538{ 539 if ((actual==expected) == expect_equal) 540 return true; 541 // false: 542 std::cerr 543 << "\n actual = " << actual 544 << "\n expected " << (expect_equal ? "= " : "!=") << expected << "\n\n"; 545 return false; 546} 547 548/** Creates a random Partial Isometry matrix of given rank. 549 * 550 * A partial isometry is a matrix all of whose singular values are either 0 or 1. 551 * This is very useful to test rank-revealing algorithms. 552 */ 553// Forward declaration to avoid ICC warning 554template<typename MatrixType> 555void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m); 556template<typename MatrixType> 557void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m) 558{ 559 typedef typename internal::traits<MatrixType>::Scalar Scalar; 560 enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; 561 562 typedef Matrix<Scalar, Dynamic, 1> VectorType; 563 typedef Matrix<Scalar, Rows, Rows> MatrixAType; 564 typedef Matrix<Scalar, Cols, Cols> MatrixBType; 565 566 if(desired_rank == 0) 567 { 568 m.setZero(rows,cols); 569 return; 570 } 571 572 if(desired_rank == 1) 573 { 574 // here we normalize the vectors to get a partial isometry 575 m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); 576 return; 577 } 578 579 MatrixAType a = MatrixAType::Random(rows,rows); 580 MatrixType d = MatrixType::Identity(rows,cols); 581 MatrixBType b = MatrixBType::Random(cols,cols); 582 583 // set the diagonal such that only desired_rank non-zero entries reamain 584 const Index diag_size = (std::min)(d.rows(),d.cols()); 585 if(diag_size != desired_rank) 586 d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank); 587 588 HouseholderQR<MatrixAType> qra(a); 589 HouseholderQR<MatrixBType> qrb(b); 590 m = qra.householderQ() * d * qrb.householderQ(); 591} 592 593// Forward declaration to avoid ICC warning 594template<typename PermutationVectorType> 595void randomPermutationVector(PermutationVectorType& v, Index size); 596template<typename PermutationVectorType> 597void randomPermutationVector(PermutationVectorType& v, Index size) 598{ 599 typedef typename PermutationVectorType::Scalar Scalar; 600 v.resize(size); 601 for(Index i = 0; i < size; ++i) v(i) = Scalar(i); 602 if(size == 1) return; 603 for(Index n = 0; n < 3 * size; ++n) 604 { 605 Index i = internal::random<Index>(0, size-1); 606 Index j; 607 do j = internal::random<Index>(0, size-1); while(j==i); 608 std::swap(v(i), v(j)); 609 } 610} 611 612template<typename T> bool isNotNaN(const T& x) 613{ 614 return x==x; 615} 616 617template<typename T> bool isPlusInf(const T& x) 618{ 619 return x > NumTraits<T>::highest(); 620} 621 622template<typename T> bool isMinusInf(const T& x) 623{ 624 return x < NumTraits<T>::lowest(); 625} 626 627} // end namespace Eigen 628 629template<typename T> struct GetDifferentType; 630 631template<> struct GetDifferentType<float> { typedef double type; }; 632template<> struct GetDifferentType<double> { typedef float type; }; 633template<typename T> struct GetDifferentType<std::complex<T> > 634{ typedef std::complex<typename GetDifferentType<T>::type> type; }; 635 636// Forward declaration to avoid ICC warning 637template<typename T> std::string type_name(); 638template<typename T> std::string type_name() { return "other"; } 639template<> std::string type_name<float>() { return "float"; } 640template<> std::string type_name<double>() { return "double"; } 641template<> std::string type_name<long double>() { return "long double"; } 642template<> std::string type_name<int>() { return "int"; } 643template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } 644template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } 645template<> std::string type_name<std::complex<long double> >() { return "complex<long double>"; } 646template<> std::string type_name<std::complex<int> >() { return "complex<int>"; } 647 648// forward declaration of the main test function 649void EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); 650 651using namespace Eigen; 652 653inline void set_repeat_from_string(const char *str) 654{ 655 errno = 0; 656 g_repeat = int(strtoul(str, 0, 10)); 657 if(errno || g_repeat <= 0) 658 { 659 std::cout << "Invalid repeat value " << str << std::endl; 660 exit(EXIT_FAILURE); 661 } 662 g_has_set_repeat = true; 663} 664 665inline void set_seed_from_string(const char *str) 666{ 667 errno = 0; 668 g_seed = int(strtoul(str, 0, 10)); 669 if(errno || g_seed == 0) 670 { 671 std::cout << "Invalid seed value " << str << std::endl; 672 exit(EXIT_FAILURE); 673 } 674 g_has_set_seed = true; 675} 676 677int main(int argc, char *argv[]) 678{ 679 g_has_set_repeat = false; 680 g_has_set_seed = false; 681 bool need_help = false; 682 683 for(int i = 1; i < argc; i++) 684 { 685 if(argv[i][0] == 'r') 686 { 687 if(g_has_set_repeat) 688 { 689 std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; 690 return 1; 691 } 692 set_repeat_from_string(argv[i]+1); 693 } 694 else if(argv[i][0] == 's') 695 { 696 if(g_has_set_seed) 697 { 698 std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; 699 return 1; 700 } 701 set_seed_from_string(argv[i]+1); 702 } 703 else 704 { 705 need_help = true; 706 } 707 } 708 709 if(need_help) 710 { 711 std::cout << "This test application takes the following optional arguments:" << std::endl; 712 std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; 713 std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; 714 std::cout << std::endl; 715 std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; 716 std::cout << "will be used as default values for these parameters." << std::endl; 717 return 1; 718 } 719 720 char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); 721 if(!g_has_set_repeat && env_EIGEN_REPEAT) 722 set_repeat_from_string(env_EIGEN_REPEAT); 723 char *env_EIGEN_SEED = getenv("EIGEN_SEED"); 724 if(!g_has_set_seed && env_EIGEN_SEED) 725 set_seed_from_string(env_EIGEN_SEED); 726 727 if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); 728 if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; 729 730 std::cout << "Initializing random number generator with seed " << g_seed << std::endl; 731 std::stringstream ss; 732 ss << "Seed: " << g_seed; 733 g_test_stack.push_back(ss.str()); 734 srand(g_seed); 735 std::cout << "Repeating each test " << g_repeat << " times" << std::endl; 736 737 Eigen::g_test_stack.push_back(std::string(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC))); 738 739 EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); 740 return 0; 741} 742 743// These warning are disabled here such that they are still ON when parsing Eigen's header files. 744#if defined __INTEL_COMPILER 745 // remark #383: value copied to temporary, reference to temporary used 746 // -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string> 747 // remark #1418: external function definition with no prior declaration 748 // -> this warning is raised for all our test functions. Declaring them static would fix the issue. 749 // warning #279: controlling expression is constant 750 // remark #1572: floating-point equality and inequality comparisons are unreliable 751 #pragma warning disable 279 383 1418 1572 752#endif 753 754#ifdef _MSC_VER 755 // 4503 - decorated name length exceeded, name was truncated 756 #pragma warning( disable : 4503) 757#endif 758