1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used actions.
35
36#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38
39#ifndef _WIN32_WCE
40# include <errno.h>
41#endif
42
43#include <algorithm>
44#include <string>
45
46#include "gmock/internal/gmock-internal-utils.h"
47#include "gmock/internal/gmock-port.h"
48
49namespace testing {
50
51// To implement an action Foo, define:
52//   1. a class FooAction that implements the ActionInterface interface, and
53//   2. a factory function that creates an Action object from a
54//      const FooAction*.
55//
56// The two-level delegation design follows that of Matcher, providing
57// consistency for extension developers.  It also eases ownership
58// management as Action objects can now be copied like plain values.
59
60namespace internal {
61
62template <typename F1, typename F2>
63class ActionAdaptor;
64
65// BuiltInDefaultValue<T>::Get() returns the "built-in" default
66// value for type T, which is NULL when T is a pointer type, 0 when T
67// is a numeric type, false when T is bool, or "" when T is string or
68// std::string.  For any other type T, this value is undefined and the
69// function will abort the process.
70template <typename T>
71class BuiltInDefaultValue {
72 public:
73  // This function returns true iff type T has a built-in default value.
74  static bool Exists() { return false; }
75  static T Get() {
76    Assert(false, __FILE__, __LINE__,
77           "Default action undefined for the function return type.");
78    return internal::Invalid<T>();
79    // The above statement will never be reached, but is required in
80    // order for this function to compile.
81  }
82};
83
84// This partial specialization says that we use the same built-in
85// default value for T and const T.
86template <typename T>
87class BuiltInDefaultValue<const T> {
88 public:
89  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
90  static T Get() { return BuiltInDefaultValue<T>::Get(); }
91};
92
93// This partial specialization defines the default values for pointer
94// types.
95template <typename T>
96class BuiltInDefaultValue<T*> {
97 public:
98  static bool Exists() { return true; }
99  static T* Get() { return NULL; }
100};
101
102// The following specializations define the default values for
103// specific types we care about.
104#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
105  template <> \
106  class BuiltInDefaultValue<type> { \
107   public: \
108    static bool Exists() { return true; } \
109    static type Get() { return value; } \
110  }
111
112GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
113#if GTEST_HAS_GLOBAL_STRING
114GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
115#endif  // GTEST_HAS_GLOBAL_STRING
116GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
117GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
118GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
119GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
120GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
121
122// There's no need for a default action for signed wchar_t, as that
123// type is the same as wchar_t for gcc, and invalid for MSVC.
124//
125// There's also no need for a default action for unsigned wchar_t, as
126// that type is the same as unsigned int for gcc, and invalid for
127// MSVC.
128#if GMOCK_WCHAR_T_IS_NATIVE_
129GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
130#endif
131
132GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
133GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
134GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
135GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
136GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
137GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
138GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
139GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
140GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
141GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
142
143#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
144
145}  // namespace internal
146
147// When an unexpected function call is encountered, Google Mock will
148// let it return a default value if the user has specified one for its
149// return type, or if the return type has a built-in default value;
150// otherwise Google Mock won't know what value to return and will have
151// to abort the process.
152//
153// The DefaultValue<T> class allows a user to specify the
154// default value for a type T that is both copyable and publicly
155// destructible (i.e. anything that can be used as a function return
156// type).  The usage is:
157//
158//   // Sets the default value for type T to be foo.
159//   DefaultValue<T>::Set(foo);
160template <typename T>
161class DefaultValue {
162 public:
163  // Sets the default value for type T; requires T to be
164  // copy-constructable and have a public destructor.
165  static void Set(T x) {
166    delete value_;
167    value_ = new T(x);
168  }
169
170  // Unsets the default value for type T.
171  static void Clear() {
172    delete value_;
173    value_ = NULL;
174  }
175
176  // Returns true iff the user has set the default value for type T.
177  static bool IsSet() { return value_ != NULL; }
178
179  // Returns true if T has a default return value set by the user or there
180  // exists a built-in default value.
181  static bool Exists() {
182    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
183  }
184
185  // Returns the default value for type T if the user has set one;
186  // otherwise returns the built-in default value if there is one;
187  // otherwise aborts the process.
188  static T Get() {
189    return value_ == NULL ?
190        internal::BuiltInDefaultValue<T>::Get() : *value_;
191  }
192
193 private:
194  static const T* value_;
195};
196
197// This partial specialization allows a user to set default values for
198// reference types.
199template <typename T>
200class DefaultValue<T&> {
201 public:
202  // Sets the default value for type T&.
203  static void Set(T& x) {  // NOLINT
204    address_ = &x;
205  }
206
207  // Unsets the default value for type T&.
208  static void Clear() {
209    address_ = NULL;
210  }
211
212  // Returns true iff the user has set the default value for type T&.
213  static bool IsSet() { return address_ != NULL; }
214
215  // Returns true if T has a default return value set by the user or there
216  // exists a built-in default value.
217  static bool Exists() {
218    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
219  }
220
221  // Returns the default value for type T& if the user has set one;
222  // otherwise returns the built-in default value if there is one;
223  // otherwise aborts the process.
224  static T& Get() {
225    return address_ == NULL ?
226        internal::BuiltInDefaultValue<T&>::Get() : *address_;
227  }
228
229 private:
230  static T* address_;
231};
232
233// This specialization allows DefaultValue<void>::Get() to
234// compile.
235template <>
236class DefaultValue<void> {
237 public:
238  static bool Exists() { return true; }
239  static void Get() {}
240};
241
242// Points to the user-set default value for type T.
243template <typename T>
244const T* DefaultValue<T>::value_ = NULL;
245
246// Points to the user-set default value for type T&.
247template <typename T>
248T* DefaultValue<T&>::address_ = NULL;
249
250// Implement this interface to define an action for function type F.
251template <typename F>
252class ActionInterface {
253 public:
254  typedef typename internal::Function<F>::Result Result;
255  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
256
257  ActionInterface() {}
258  virtual ~ActionInterface() {}
259
260  // Performs the action.  This method is not const, as in general an
261  // action can have side effects and be stateful.  For example, a
262  // get-the-next-element-from-the-collection action will need to
263  // remember the current element.
264  virtual Result Perform(const ArgumentTuple& args) = 0;
265
266 private:
267  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
268};
269
270// An Action<F> is a copyable and IMMUTABLE (except by assignment)
271// object that represents an action to be taken when a mock function
272// of type F is called.  The implementation of Action<T> is just a
273// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
274// Don't inherit from Action!
275//
276// You can view an object implementing ActionInterface<F> as a
277// concrete action (including its current state), and an Action<F>
278// object as a handle to it.
279template <typename F>
280class Action {
281 public:
282  typedef typename internal::Function<F>::Result Result;
283  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
284
285  // Constructs a null Action.  Needed for storing Action objects in
286  // STL containers.
287  Action() : impl_(NULL) {}
288
289  // Constructs an Action from its implementation.  A NULL impl is
290  // used to represent the "do-default" action.
291  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
292
293  // Copy constructor.
294  Action(const Action& action) : impl_(action.impl_) {}
295
296  // This constructor allows us to turn an Action<Func> object into an
297  // Action<F>, as long as F's arguments can be implicitly converted
298  // to Func's and Func's return type can be implicitly converted to
299  // F's.
300  template <typename Func>
301  explicit Action(const Action<Func>& action);
302
303  // Returns true iff this is the DoDefault() action.
304  bool IsDoDefault() const { return impl_.get() == NULL; }
305
306  // Performs the action.  Note that this method is const even though
307  // the corresponding method in ActionInterface is not.  The reason
308  // is that a const Action<F> means that it cannot be re-bound to
309  // another concrete action, not that the concrete action it binds to
310  // cannot change state.  (Think of the difference between a const
311  // pointer and a pointer to const.)
312  Result Perform(const ArgumentTuple& args) const {
313    internal::Assert(
314        !IsDoDefault(), __FILE__, __LINE__,
315        "You are using DoDefault() inside a composite action like "
316        "DoAll() or WithArgs().  This is not supported for technical "
317        "reasons.  Please instead spell out the default action, or "
318        "assign the default action to an Action variable and use "
319        "the variable in various places.");
320    return impl_->Perform(args);
321  }
322
323 private:
324  template <typename F1, typename F2>
325  friend class internal::ActionAdaptor;
326
327  internal::linked_ptr<ActionInterface<F> > impl_;
328};
329
330// The PolymorphicAction class template makes it easy to implement a
331// polymorphic action (i.e. an action that can be used in mock
332// functions of than one type, e.g. Return()).
333//
334// To define a polymorphic action, a user first provides a COPYABLE
335// implementation class that has a Perform() method template:
336//
337//   class FooAction {
338//    public:
339//     template <typename Result, typename ArgumentTuple>
340//     Result Perform(const ArgumentTuple& args) const {
341//       // Processes the arguments and returns a result, using
342//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
343//     }
344//     ...
345//   };
346//
347// Then the user creates the polymorphic action using
348// MakePolymorphicAction(object) where object has type FooAction.  See
349// the definition of Return(void) and SetArgumentPointee<N>(value) for
350// complete examples.
351template <typename Impl>
352class PolymorphicAction {
353 public:
354  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
355
356  template <typename F>
357  operator Action<F>() const {
358    return Action<F>(new MonomorphicImpl<F>(impl_));
359  }
360
361 private:
362  template <typename F>
363  class MonomorphicImpl : public ActionInterface<F> {
364   public:
365    typedef typename internal::Function<F>::Result Result;
366    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
367
368    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
369
370    virtual Result Perform(const ArgumentTuple& args) {
371      return impl_.template Perform<Result>(args);
372    }
373
374   private:
375    Impl impl_;
376
377    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
378  };
379
380  Impl impl_;
381
382  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
383};
384
385// Creates an Action from its implementation and returns it.  The
386// created Action object owns the implementation.
387template <typename F>
388Action<F> MakeAction(ActionInterface<F>* impl) {
389  return Action<F>(impl);
390}
391
392// Creates a polymorphic action from its implementation.  This is
393// easier to use than the PolymorphicAction<Impl> constructor as it
394// doesn't require you to explicitly write the template argument, e.g.
395//
396//   MakePolymorphicAction(foo);
397// vs
398//   PolymorphicAction<TypeOfFoo>(foo);
399template <typename Impl>
400inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
401  return PolymorphicAction<Impl>(impl);
402}
403
404namespace internal {
405
406// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
407// and F1 are compatible.
408template <typename F1, typename F2>
409class ActionAdaptor : public ActionInterface<F1> {
410 public:
411  typedef typename internal::Function<F1>::Result Result;
412  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
413
414  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
415
416  virtual Result Perform(const ArgumentTuple& args) {
417    return impl_->Perform(args);
418  }
419
420 private:
421  const internal::linked_ptr<ActionInterface<F2> > impl_;
422
423  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
424};
425
426// Implements the polymorphic Return(x) action, which can be used in
427// any function that returns the type of x, regardless of the argument
428// types.
429//
430// Note: The value passed into Return must be converted into
431// Function<F>::Result when this action is cast to Action<F> rather than
432// when that action is performed. This is important in scenarios like
433//
434// MOCK_METHOD1(Method, T(U));
435// ...
436// {
437//   Foo foo;
438//   X x(&foo);
439//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
440// }
441//
442// In the example above the variable x holds reference to foo which leaves
443// scope and gets destroyed.  If copying X just copies a reference to foo,
444// that copy will be left with a hanging reference.  If conversion to T
445// makes a copy of foo, the above code is safe. To support that scenario, we
446// need to make sure that the type conversion happens inside the EXPECT_CALL
447// statement, and conversion of the result of Return to Action<T(U)> is a
448// good place for that.
449//
450template <typename R>
451class ReturnAction {
452 public:
453  // Constructs a ReturnAction object from the value to be returned.
454  // 'value' is passed by value instead of by const reference in order
455  // to allow Return("string literal") to compile.
456  explicit ReturnAction(R value) : value_(value) {}
457
458  // This template type conversion operator allows Return(x) to be
459  // used in ANY function that returns x's type.
460  template <typename F>
461  operator Action<F>() const {
462    // Assert statement belongs here because this is the best place to verify
463    // conditions on F. It produces the clearest error messages
464    // in most compilers.
465    // Impl really belongs in this scope as a local class but can't
466    // because MSVC produces duplicate symbols in different translation units
467    // in this case. Until MS fixes that bug we put Impl into the class scope
468    // and put the typedef both here (for use in assert statement) and
469    // in the Impl class. But both definitions must be the same.
470    typedef typename Function<F>::Result Result;
471    GTEST_COMPILE_ASSERT_(
472        !internal::is_reference<Result>::value,
473        use_ReturnRef_instead_of_Return_to_return_a_reference);
474    return Action<F>(new Impl<F>(value_));
475  }
476
477 private:
478  // Implements the Return(x) action for a particular function type F.
479  template <typename F>
480  class Impl : public ActionInterface<F> {
481   public:
482    typedef typename Function<F>::Result Result;
483    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
484
485    // The implicit cast is necessary when Result has more than one
486    // single-argument constructor (e.g. Result is std::vector<int>) and R
487    // has a type conversion operator template.  In that case, value_(value)
488    // won't compile as the compiler doesn't known which constructor of
489    // Result to call.  ImplicitCast_ forces the compiler to convert R to
490    // Result without considering explicit constructors, thus resolving the
491    // ambiguity. value_ is then initialized using its copy constructor.
492    explicit Impl(R value)
493        : value_(::testing::internal::ImplicitCast_<Result>(value)) {}
494
495    virtual Result Perform(const ArgumentTuple&) { return value_; }
496
497   private:
498    GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
499                          Result_cannot_be_a_reference_type);
500    Result value_;
501
502    GTEST_DISALLOW_ASSIGN_(Impl);
503  };
504
505  R value_;
506
507  GTEST_DISALLOW_ASSIGN_(ReturnAction);
508};
509
510// Implements the ReturnNull() action.
511class ReturnNullAction {
512 public:
513  // Allows ReturnNull() to be used in any pointer-returning function.
514  template <typename Result, typename ArgumentTuple>
515  static Result Perform(const ArgumentTuple&) {
516    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
517                          ReturnNull_can_be_used_to_return_a_pointer_only);
518    return NULL;
519  }
520};
521
522// Implements the Return() action.
523class ReturnVoidAction {
524 public:
525  // Allows Return() to be used in any void-returning function.
526  template <typename Result, typename ArgumentTuple>
527  static void Perform(const ArgumentTuple&) {
528    CompileAssertTypesEqual<void, Result>();
529  }
530};
531
532// Implements the polymorphic ReturnRef(x) action, which can be used
533// in any function that returns a reference to the type of x,
534// regardless of the argument types.
535template <typename T>
536class ReturnRefAction {
537 public:
538  // Constructs a ReturnRefAction object from the reference to be returned.
539  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
540
541  // This template type conversion operator allows ReturnRef(x) to be
542  // used in ANY function that returns a reference to x's type.
543  template <typename F>
544  operator Action<F>() const {
545    typedef typename Function<F>::Result Result;
546    // Asserts that the function return type is a reference.  This
547    // catches the user error of using ReturnRef(x) when Return(x)
548    // should be used, and generates some helpful error message.
549    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
550                          use_Return_instead_of_ReturnRef_to_return_a_value);
551    return Action<F>(new Impl<F>(ref_));
552  }
553
554 private:
555  // Implements the ReturnRef(x) action for a particular function type F.
556  template <typename F>
557  class Impl : public ActionInterface<F> {
558   public:
559    typedef typename Function<F>::Result Result;
560    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
561
562    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
563
564    virtual Result Perform(const ArgumentTuple&) {
565      return ref_;
566    }
567
568   private:
569    T& ref_;
570
571    GTEST_DISALLOW_ASSIGN_(Impl);
572  };
573
574  T& ref_;
575
576  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
577};
578
579// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
580// used in any function that returns a reference to the type of x,
581// regardless of the argument types.
582template <typename T>
583class ReturnRefOfCopyAction {
584 public:
585  // Constructs a ReturnRefOfCopyAction object from the reference to
586  // be returned.
587  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
588
589  // This template type conversion operator allows ReturnRefOfCopy(x) to be
590  // used in ANY function that returns a reference to x's type.
591  template <typename F>
592  operator Action<F>() const {
593    typedef typename Function<F>::Result Result;
594    // Asserts that the function return type is a reference.  This
595    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
596    // should be used, and generates some helpful error message.
597    GTEST_COMPILE_ASSERT_(
598        internal::is_reference<Result>::value,
599        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
600    return Action<F>(new Impl<F>(value_));
601  }
602
603 private:
604  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
605  template <typename F>
606  class Impl : public ActionInterface<F> {
607   public:
608    typedef typename Function<F>::Result Result;
609    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
610
611    explicit Impl(const T& value) : value_(value) {}  // NOLINT
612
613    virtual Result Perform(const ArgumentTuple&) {
614      return value_;
615    }
616
617   private:
618    T value_;
619
620    GTEST_DISALLOW_ASSIGN_(Impl);
621  };
622
623  const T value_;
624
625  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
626};
627
628// Implements the polymorphic DoDefault() action.
629class DoDefaultAction {
630 public:
631  // This template type conversion operator allows DoDefault() to be
632  // used in any function.
633  template <typename F>
634  operator Action<F>() const { return Action<F>(NULL); }
635};
636
637// Implements the Assign action to set a given pointer referent to a
638// particular value.
639template <typename T1, typename T2>
640class AssignAction {
641 public:
642  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
643
644  template <typename Result, typename ArgumentTuple>
645  void Perform(const ArgumentTuple& /* args */) const {
646    *ptr_ = value_;
647  }
648
649 private:
650  T1* const ptr_;
651  const T2 value_;
652
653  GTEST_DISALLOW_ASSIGN_(AssignAction);
654};
655
656#if !GTEST_OS_WINDOWS_MOBILE
657
658// Implements the SetErrnoAndReturn action to simulate return from
659// various system calls and libc functions.
660template <typename T>
661class SetErrnoAndReturnAction {
662 public:
663  SetErrnoAndReturnAction(int errno_value, T result)
664      : errno_(errno_value),
665        result_(result) {}
666  template <typename Result, typename ArgumentTuple>
667  Result Perform(const ArgumentTuple& /* args */) const {
668    errno = errno_;
669    return result_;
670  }
671
672 private:
673  const int errno_;
674  const T result_;
675
676  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
677};
678
679#endif  // !GTEST_OS_WINDOWS_MOBILE
680
681// Implements the SetArgumentPointee<N>(x) action for any function
682// whose N-th argument (0-based) is a pointer to x's type.  The
683// template parameter kIsProto is true iff type A is ProtocolMessage,
684// proto2::Message, or a sub-class of those.
685template <size_t N, typename A, bool kIsProto>
686class SetArgumentPointeeAction {
687 public:
688  // Constructs an action that sets the variable pointed to by the
689  // N-th function argument to 'value'.
690  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
691
692  template <typename Result, typename ArgumentTuple>
693  void Perform(const ArgumentTuple& args) const {
694    CompileAssertTypesEqual<void, Result>();
695    *::std::tr1::get<N>(args) = value_;
696  }
697
698 private:
699  const A value_;
700
701  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
702};
703
704template <size_t N, typename Proto>
705class SetArgumentPointeeAction<N, Proto, true> {
706 public:
707  // Constructs an action that sets the variable pointed to by the
708  // N-th function argument to 'proto'.  Both ProtocolMessage and
709  // proto2::Message have the CopyFrom() method, so the same
710  // implementation works for both.
711  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
712    proto_->CopyFrom(proto);
713  }
714
715  template <typename Result, typename ArgumentTuple>
716  void Perform(const ArgumentTuple& args) const {
717    CompileAssertTypesEqual<void, Result>();
718    ::std::tr1::get<N>(args)->CopyFrom(*proto_);
719  }
720
721 private:
722  const internal::linked_ptr<Proto> proto_;
723
724  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
725};
726
727// Implements the InvokeWithoutArgs(f) action.  The template argument
728// FunctionImpl is the implementation type of f, which can be either a
729// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
730// Action<F> as long as f's type is compatible with F (i.e. f can be
731// assigned to a tr1::function<F>).
732template <typename FunctionImpl>
733class InvokeWithoutArgsAction {
734 public:
735  // The c'tor makes a copy of function_impl (either a function
736  // pointer or a functor).
737  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
738      : function_impl_(function_impl) {}
739
740  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
741  // compatible with f.
742  template <typename Result, typename ArgumentTuple>
743  Result Perform(const ArgumentTuple&) { return function_impl_(); }
744
745 private:
746  FunctionImpl function_impl_;
747
748  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
749};
750
751// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
752template <class Class, typename MethodPtr>
753class InvokeMethodWithoutArgsAction {
754 public:
755  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
756      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
757
758  template <typename Result, typename ArgumentTuple>
759  Result Perform(const ArgumentTuple&) const {
760    return (obj_ptr_->*method_ptr_)();
761  }
762
763 private:
764  Class* const obj_ptr_;
765  const MethodPtr method_ptr_;
766
767  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
768};
769
770// Implements the IgnoreResult(action) action.
771template <typename A>
772class IgnoreResultAction {
773 public:
774  explicit IgnoreResultAction(const A& action) : action_(action) {}
775
776  template <typename F>
777  operator Action<F>() const {
778    // Assert statement belongs here because this is the best place to verify
779    // conditions on F. It produces the clearest error messages
780    // in most compilers.
781    // Impl really belongs in this scope as a local class but can't
782    // because MSVC produces duplicate symbols in different translation units
783    // in this case. Until MS fixes that bug we put Impl into the class scope
784    // and put the typedef both here (for use in assert statement) and
785    // in the Impl class. But both definitions must be the same.
786    typedef typename internal::Function<F>::Result Result;
787
788    // Asserts at compile time that F returns void.
789    CompileAssertTypesEqual<void, Result>();
790
791    return Action<F>(new Impl<F>(action_));
792  }
793
794 private:
795  template <typename F>
796  class Impl : public ActionInterface<F> {
797   public:
798    typedef typename internal::Function<F>::Result Result;
799    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
800
801    explicit Impl(const A& action) : action_(action) {}
802
803    virtual void Perform(const ArgumentTuple& args) {
804      // Performs the action and ignores its result.
805      action_.Perform(args);
806    }
807
808   private:
809    // Type OriginalFunction is the same as F except that its return
810    // type is IgnoredValue.
811    typedef typename internal::Function<F>::MakeResultIgnoredValue
812        OriginalFunction;
813
814    const Action<OriginalFunction> action_;
815
816    GTEST_DISALLOW_ASSIGN_(Impl);
817  };
818
819  const A action_;
820
821  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
822};
823
824// A ReferenceWrapper<T> object represents a reference to type T,
825// which can be either const or not.  It can be explicitly converted
826// from, and implicitly converted to, a T&.  Unlike a reference,
827// ReferenceWrapper<T> can be copied and can survive template type
828// inference.  This is used to support by-reference arguments in the
829// InvokeArgument<N>(...) action.  The idea was from "reference
830// wrappers" in tr1, which we don't have in our source tree yet.
831template <typename T>
832class ReferenceWrapper {
833 public:
834  // Constructs a ReferenceWrapper<T> object from a T&.
835  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
836
837  // Allows a ReferenceWrapper<T> object to be implicitly converted to
838  // a T&.
839  operator T&() const { return *pointer_; }
840 private:
841  T* pointer_;
842};
843
844// Allows the expression ByRef(x) to be printed as a reference to x.
845template <typename T>
846void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
847  T& value = ref;
848  UniversalPrinter<T&>::Print(value, os);
849}
850
851// Does two actions sequentially.  Used for implementing the DoAll(a1,
852// a2, ...) action.
853template <typename Action1, typename Action2>
854class DoBothAction {
855 public:
856  DoBothAction(Action1 action1, Action2 action2)
857      : action1_(action1), action2_(action2) {}
858
859  // This template type conversion operator allows DoAll(a1, ..., a_n)
860  // to be used in ANY function of compatible type.
861  template <typename F>
862  operator Action<F>() const {
863    return Action<F>(new Impl<F>(action1_, action2_));
864  }
865
866 private:
867  // Implements the DoAll(...) action for a particular function type F.
868  template <typename F>
869  class Impl : public ActionInterface<F> {
870   public:
871    typedef typename Function<F>::Result Result;
872    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
873    typedef typename Function<F>::MakeResultVoid VoidResult;
874
875    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
876        : action1_(action1), action2_(action2) {}
877
878    virtual Result Perform(const ArgumentTuple& args) {
879      action1_.Perform(args);
880      return action2_.Perform(args);
881    }
882
883   private:
884    const Action<VoidResult> action1_;
885    const Action<F> action2_;
886
887    GTEST_DISALLOW_ASSIGN_(Impl);
888  };
889
890  Action1 action1_;
891  Action2 action2_;
892
893  GTEST_DISALLOW_ASSIGN_(DoBothAction);
894};
895
896}  // namespace internal
897
898// An Unused object can be implicitly constructed from ANY value.
899// This is handy when defining actions that ignore some or all of the
900// mock function arguments.  For example, given
901//
902//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
903//   MOCK_METHOD3(Bar, double(int index, double x, double y));
904//
905// instead of
906//
907//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
908//     return sqrt(x*x + y*y);
909//   }
910//   double DistanceToOriginWithIndex(int index, double x, double y) {
911//     return sqrt(x*x + y*y);
912//   }
913//   ...
914//   EXEPCT_CALL(mock, Foo("abc", _, _))
915//       .WillOnce(Invoke(DistanceToOriginWithLabel));
916//   EXEPCT_CALL(mock, Bar(5, _, _))
917//       .WillOnce(Invoke(DistanceToOriginWithIndex));
918//
919// you could write
920//
921//   // We can declare any uninteresting argument as Unused.
922//   double DistanceToOrigin(Unused, double x, double y) {
923//     return sqrt(x*x + y*y);
924//   }
925//   ...
926//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
927//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
928typedef internal::IgnoredValue Unused;
929
930// This constructor allows us to turn an Action<From> object into an
931// Action<To>, as long as To's arguments can be implicitly converted
932// to From's and From's return type cann be implicitly converted to
933// To's.
934template <typename To>
935template <typename From>
936Action<To>::Action(const Action<From>& from)
937    : impl_(new internal::ActionAdaptor<To, From>(from)) {}
938
939// Creates an action that returns 'value'.  'value' is passed by value
940// instead of const reference - otherwise Return("string literal")
941// will trigger a compiler error about using array as initializer.
942template <typename R>
943internal::ReturnAction<R> Return(R value) {
944  return internal::ReturnAction<R>(value);
945}
946
947// Creates an action that returns NULL.
948inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
949  return MakePolymorphicAction(internal::ReturnNullAction());
950}
951
952// Creates an action that returns from a void function.
953inline PolymorphicAction<internal::ReturnVoidAction> Return() {
954  return MakePolymorphicAction(internal::ReturnVoidAction());
955}
956
957// Creates an action that returns the reference to a variable.
958template <typename R>
959inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
960  return internal::ReturnRefAction<R>(x);
961}
962
963// Creates an action that returns the reference to a copy of the
964// argument.  The copy is created when the action is constructed and
965// lives as long as the action.
966template <typename R>
967inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
968  return internal::ReturnRefOfCopyAction<R>(x);
969}
970
971// Creates an action that does the default action for the give mock function.
972inline internal::DoDefaultAction DoDefault() {
973  return internal::DoDefaultAction();
974}
975
976// Creates an action that sets the variable pointed by the N-th
977// (0-based) function argument to 'value'.
978template <size_t N, typename T>
979PolymorphicAction<
980  internal::SetArgumentPointeeAction<
981    N, T, internal::IsAProtocolMessage<T>::value> >
982SetArgPointee(const T& x) {
983  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
984      N, T, internal::IsAProtocolMessage<T>::value>(x));
985}
986
987#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
988// This overload allows SetArgPointee() to accept a string literal.
989// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
990// this overload from the templated version and emit a compile error.
991template <size_t N>
992PolymorphicAction<
993  internal::SetArgumentPointeeAction<N, const char*, false> >
994SetArgPointee(const char* p) {
995  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
996      N, const char*, false>(p));
997}
998
999template <size_t N>
1000PolymorphicAction<
1001  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1002SetArgPointee(const wchar_t* p) {
1003  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1004      N, const wchar_t*, false>(p));
1005}
1006#endif
1007
1008// The following version is DEPRECATED.
1009template <size_t N, typename T>
1010PolymorphicAction<
1011  internal::SetArgumentPointeeAction<
1012    N, T, internal::IsAProtocolMessage<T>::value> >
1013SetArgumentPointee(const T& x) {
1014  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1015      N, T, internal::IsAProtocolMessage<T>::value>(x));
1016}
1017
1018// Creates an action that sets a pointer referent to a given value.
1019template <typename T1, typename T2>
1020PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1021  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1022}
1023
1024#if !GTEST_OS_WINDOWS_MOBILE
1025
1026// Creates an action that sets errno and returns the appropriate error.
1027template <typename T>
1028PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1029SetErrnoAndReturn(int errval, T result) {
1030  return MakePolymorphicAction(
1031      internal::SetErrnoAndReturnAction<T>(errval, result));
1032}
1033
1034#endif  // !GTEST_OS_WINDOWS_MOBILE
1035
1036// Various overloads for InvokeWithoutArgs().
1037
1038// Creates an action that invokes 'function_impl' with no argument.
1039template <typename FunctionImpl>
1040PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1041InvokeWithoutArgs(FunctionImpl function_impl) {
1042  return MakePolymorphicAction(
1043      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1044}
1045
1046// Creates an action that invokes the given method on the given object
1047// with no argument.
1048template <class Class, typename MethodPtr>
1049PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1050InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1051  return MakePolymorphicAction(
1052      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1053          obj_ptr, method_ptr));
1054}
1055
1056// Creates an action that performs an_action and throws away its
1057// result.  In other words, it changes the return type of an_action to
1058// void.  an_action MUST NOT return void, or the code won't compile.
1059template <typename A>
1060inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1061  return internal::IgnoreResultAction<A>(an_action);
1062}
1063
1064// Creates a reference wrapper for the given L-value.  If necessary,
1065// you can explicitly specify the type of the reference.  For example,
1066// suppose 'derived' is an object of type Derived, ByRef(derived)
1067// would wrap a Derived&.  If you want to wrap a const Base& instead,
1068// where Base is a base class of Derived, just write:
1069//
1070//   ByRef<const Base>(derived)
1071template <typename T>
1072inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
1073  return internal::ReferenceWrapper<T>(l_value);
1074}
1075
1076}  // namespace testing
1077
1078#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
1079