1//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ImutAVLTree and ImmutableSet classes.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_IMMUTABLESET_H
15#define LLVM_ADT_IMMUTABLESET_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/Support/Allocator.h"
20#include "llvm/Support/DataTypes.h"
21#include "llvm/Support/ErrorHandling.h"
22#include <cassert>
23#include <functional>
24#include <vector>
25
26namespace llvm {
27
28//===----------------------------------------------------------------------===//
29// Immutable AVL-Tree Definition.
30//===----------------------------------------------------------------------===//
31
32template <typename ImutInfo> class ImutAVLFactory;
33template <typename ImutInfo> class ImutIntervalAVLFactory;
34template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
35template <typename ImutInfo> class ImutAVLTreeGenericIterator;
36
37template <typename ImutInfo >
38class ImutAVLTree {
39public:
40  typedef typename ImutInfo::key_type_ref   key_type_ref;
41  typedef typename ImutInfo::value_type     value_type;
42  typedef typename ImutInfo::value_type_ref value_type_ref;
43
44  typedef ImutAVLFactory<ImutInfo>          Factory;
45  friend class ImutAVLFactory<ImutInfo>;
46  friend class ImutIntervalAVLFactory<ImutInfo>;
47
48  friend class ImutAVLTreeGenericIterator<ImutInfo>;
49
50  typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
51
52  //===----------------------------------------------------===//
53  // Public Interface.
54  //===----------------------------------------------------===//
55
56  /// Return a pointer to the left subtree.  This value
57  ///  is NULL if there is no left subtree.
58  ImutAVLTree *getLeft() const { return left; }
59
60  /// Return a pointer to the right subtree.  This value is
61  ///  NULL if there is no right subtree.
62  ImutAVLTree *getRight() const { return right; }
63
64  /// getHeight - Returns the height of the tree.  A tree with no subtrees
65  ///  has a height of 1.
66  unsigned getHeight() const { return height; }
67
68  /// getValue - Returns the data value associated with the tree node.
69  const value_type& getValue() const { return value; }
70
71  /// find - Finds the subtree associated with the specified key value.
72  ///  This method returns NULL if no matching subtree is found.
73  ImutAVLTree* find(key_type_ref K) {
74    ImutAVLTree *T = this;
75    while (T) {
76      key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
77      if (ImutInfo::isEqual(K,CurrentKey))
78        return T;
79      else if (ImutInfo::isLess(K,CurrentKey))
80        T = T->getLeft();
81      else
82        T = T->getRight();
83    }
84    return nullptr;
85  }
86
87  /// getMaxElement - Find the subtree associated with the highest ranged
88  ///  key value.
89  ImutAVLTree* getMaxElement() {
90    ImutAVLTree *T = this;
91    ImutAVLTree *Right = T->getRight();
92    while (Right) { T = Right; Right = T->getRight(); }
93    return T;
94  }
95
96  /// size - Returns the number of nodes in the tree, which includes
97  ///  both leaves and non-leaf nodes.
98  unsigned size() const {
99    unsigned n = 1;
100    if (const ImutAVLTree* L = getLeft())
101      n += L->size();
102    if (const ImutAVLTree* R = getRight())
103      n += R->size();
104    return n;
105  }
106
107  /// begin - Returns an iterator that iterates over the nodes of the tree
108  ///  in an inorder traversal.  The returned iterator thus refers to the
109  ///  the tree node with the minimum data element.
110  iterator begin() const { return iterator(this); }
111
112  /// end - Returns an iterator for the tree that denotes the end of an
113  ///  inorder traversal.
114  iterator end() const { return iterator(); }
115
116  bool isElementEqual(value_type_ref V) const {
117    // Compare the keys.
118    if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
119                           ImutInfo::KeyOfValue(V)))
120      return false;
121
122    // Also compare the data values.
123    if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
124                               ImutInfo::DataOfValue(V)))
125      return false;
126
127    return true;
128  }
129
130  bool isElementEqual(const ImutAVLTree* RHS) const {
131    return isElementEqual(RHS->getValue());
132  }
133
134  /// isEqual - Compares two trees for structural equality and returns true
135  ///   if they are equal.  This worst case performance of this operation is
136  //    linear in the sizes of the trees.
137  bool isEqual(const ImutAVLTree& RHS) const {
138    if (&RHS == this)
139      return true;
140
141    iterator LItr = begin(), LEnd = end();
142    iterator RItr = RHS.begin(), REnd = RHS.end();
143
144    while (LItr != LEnd && RItr != REnd) {
145      if (&*LItr == &*RItr) {
146        LItr.skipSubTree();
147        RItr.skipSubTree();
148        continue;
149      }
150
151      if (!LItr->isElementEqual(&*RItr))
152        return false;
153
154      ++LItr;
155      ++RItr;
156    }
157
158    return LItr == LEnd && RItr == REnd;
159  }
160
161  /// isNotEqual - Compares two trees for structural inequality.  Performance
162  ///  is the same is isEqual.
163  bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
164
165  /// contains - Returns true if this tree contains a subtree (node) that
166  ///  has an data element that matches the specified key.  Complexity
167  ///  is logarithmic in the size of the tree.
168  bool contains(key_type_ref K) { return (bool) find(K); }
169
170  /// foreach - A member template the accepts invokes operator() on a functor
171  ///  object (specifed by Callback) for every node/subtree in the tree.
172  ///  Nodes are visited using an inorder traversal.
173  template <typename Callback>
174  void foreach(Callback& C) {
175    if (ImutAVLTree* L = getLeft())
176      L->foreach(C);
177
178    C(value);
179
180    if (ImutAVLTree* R = getRight())
181      R->foreach(C);
182  }
183
184  /// validateTree - A utility method that checks that the balancing and
185  ///  ordering invariants of the tree are satisifed.  It is a recursive
186  ///  method that returns the height of the tree, which is then consumed
187  ///  by the enclosing validateTree call.  External callers should ignore the
188  ///  return value.  An invalid tree will cause an assertion to fire in
189  ///  a debug build.
190  unsigned validateTree() const {
191    unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
192    unsigned HR = getRight() ? getRight()->validateTree() : 0;
193    (void) HL;
194    (void) HR;
195
196    assert(getHeight() == ( HL > HR ? HL : HR ) + 1
197            && "Height calculation wrong");
198
199    assert((HL > HR ? HL-HR : HR-HL) <= 2
200           && "Balancing invariant violated");
201
202    assert((!getLeft() ||
203            ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
204                             ImutInfo::KeyOfValue(getValue()))) &&
205           "Value in left child is not less that current value");
206
207
208    assert(!(getRight() ||
209             ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
210                              ImutInfo::KeyOfValue(getRight()->getValue()))) &&
211           "Current value is not less that value of right child");
212
213    return getHeight();
214  }
215
216  //===----------------------------------------------------===//
217  // Internal values.
218  //===----------------------------------------------------===//
219
220private:
221  Factory *factory;
222  ImutAVLTree *left;
223  ImutAVLTree *right;
224  ImutAVLTree *prev;
225  ImutAVLTree *next;
226
227  unsigned height         : 28;
228  unsigned IsMutable      : 1;
229  unsigned IsDigestCached : 1;
230  unsigned IsCanonicalized : 1;
231
232  value_type value;
233  uint32_t digest;
234  uint32_t refCount;
235
236  //===----------------------------------------------------===//
237  // Internal methods (node manipulation; used by Factory).
238  //===----------------------------------------------------===//
239
240private:
241  /// ImutAVLTree - Internal constructor that is only called by
242  ///   ImutAVLFactory.
243  ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
244              unsigned height)
245    : factory(f), left(l), right(r), prev(nullptr), next(nullptr),
246      height(height), IsMutable(true), IsDigestCached(false),
247      IsCanonicalized(0), value(v), digest(0), refCount(0)
248  {
249    if (left) left->retain();
250    if (right) right->retain();
251  }
252
253  /// isMutable - Returns true if the left and right subtree references
254  ///  (as well as height) can be changed.  If this method returns false,
255  ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
256  ///  object should always have this method return true.  Further, if this
257  ///  method returns false for an instance of ImutAVLTree, all subtrees
258  ///  will also have this method return false.  The converse is not true.
259  bool isMutable() const { return IsMutable; }
260
261  /// hasCachedDigest - Returns true if the digest for this tree is cached.
262  ///  This can only be true if the tree is immutable.
263  bool hasCachedDigest() const { return IsDigestCached; }
264
265  //===----------------------------------------------------===//
266  // Mutating operations.  A tree root can be manipulated as
267  // long as its reference has not "escaped" from internal
268  // methods of a factory object (see below).  When a tree
269  // pointer is externally viewable by client code, the
270  // internal "mutable bit" is cleared to mark the tree
271  // immutable.  Note that a tree that still has its mutable
272  // bit set may have children (subtrees) that are themselves
273  // immutable.
274  //===----------------------------------------------------===//
275
276  /// markImmutable - Clears the mutable flag for a tree.  After this happens,
277  ///   it is an error to call setLeft(), setRight(), and setHeight().
278  void markImmutable() {
279    assert(isMutable() && "Mutable flag already removed.");
280    IsMutable = false;
281  }
282
283  /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
284  void markedCachedDigest() {
285    assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
286    IsDigestCached = true;
287  }
288
289  /// setHeight - Changes the height of the tree.  Used internally by
290  ///  ImutAVLFactory.
291  void setHeight(unsigned h) {
292    assert(isMutable() && "Only a mutable tree can have its height changed.");
293    height = h;
294  }
295
296  static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
297                                value_type_ref V) {
298    uint32_t digest = 0;
299
300    if (L)
301      digest += L->computeDigest();
302
303    // Compute digest of stored data.
304    FoldingSetNodeID ID;
305    ImutInfo::Profile(ID,V);
306    digest += ID.ComputeHash();
307
308    if (R)
309      digest += R->computeDigest();
310
311    return digest;
312  }
313
314  uint32_t computeDigest() {
315    // Check the lowest bit to determine if digest has actually been
316    // pre-computed.
317    if (hasCachedDigest())
318      return digest;
319
320    uint32_t X = computeDigest(getLeft(), getRight(), getValue());
321    digest = X;
322    markedCachedDigest();
323    return X;
324  }
325
326  //===----------------------------------------------------===//
327  // Reference count operations.
328  //===----------------------------------------------------===//
329
330public:
331  void retain() { ++refCount; }
332  void release() {
333    assert(refCount > 0);
334    if (--refCount == 0)
335      destroy();
336  }
337  void destroy() {
338    if (left)
339      left->release();
340    if (right)
341      right->release();
342    if (IsCanonicalized) {
343      if (next)
344        next->prev = prev;
345
346      if (prev)
347        prev->next = next;
348      else
349        factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
350    }
351
352    // We need to clear the mutability bit in case we are
353    // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
354    IsMutable = false;
355    factory->freeNodes.push_back(this);
356  }
357};
358
359//===----------------------------------------------------------------------===//
360// Immutable AVL-Tree Factory class.
361//===----------------------------------------------------------------------===//
362
363template <typename ImutInfo >
364class ImutAVLFactory {
365  friend class ImutAVLTree<ImutInfo>;
366  typedef ImutAVLTree<ImutInfo> TreeTy;
367  typedef typename TreeTy::value_type_ref value_type_ref;
368  typedef typename TreeTy::key_type_ref   key_type_ref;
369
370  typedef DenseMap<unsigned, TreeTy*> CacheTy;
371
372  CacheTy Cache;
373  uintptr_t Allocator;
374  std::vector<TreeTy*> createdNodes;
375  std::vector<TreeTy*> freeNodes;
376
377  bool ownsAllocator() const {
378    return Allocator & 0x1 ? false : true;
379  }
380
381  BumpPtrAllocator& getAllocator() const {
382    return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
383  }
384
385  //===--------------------------------------------------===//
386  // Public interface.
387  //===--------------------------------------------------===//
388
389public:
390  ImutAVLFactory()
391    : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
392
393  ImutAVLFactory(BumpPtrAllocator& Alloc)
394    : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
395
396  ~ImutAVLFactory() {
397    if (ownsAllocator()) delete &getAllocator();
398  }
399
400  TreeTy* add(TreeTy* T, value_type_ref V) {
401    T = add_internal(V,T);
402    markImmutable(T);
403    recoverNodes();
404    return T;
405  }
406
407  TreeTy* remove(TreeTy* T, key_type_ref V) {
408    T = remove_internal(V,T);
409    markImmutable(T);
410    recoverNodes();
411    return T;
412  }
413
414  TreeTy* getEmptyTree() const { return nullptr; }
415
416protected:
417
418  //===--------------------------------------------------===//
419  // A bunch of quick helper functions used for reasoning
420  // about the properties of trees and their children.
421  // These have succinct names so that the balancing code
422  // is as terse (and readable) as possible.
423  //===--------------------------------------------------===//
424
425  bool            isEmpty(TreeTy* T) const { return !T; }
426  unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
427  TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
428  TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
429  value_type_ref  getValue(TreeTy* T) const { return T->value; }
430
431  // Make sure the index is not the Tombstone or Entry key of the DenseMap.
432  static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
433
434  unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
435    unsigned hl = getHeight(L);
436    unsigned hr = getHeight(R);
437    return (hl > hr ? hl : hr) + 1;
438  }
439
440  static bool compareTreeWithSection(TreeTy* T,
441                                     typename TreeTy::iterator& TI,
442                                     typename TreeTy::iterator& TE) {
443    typename TreeTy::iterator I = T->begin(), E = T->end();
444    for ( ; I!=E ; ++I, ++TI) {
445      if (TI == TE || !I->isElementEqual(&*TI))
446        return false;
447    }
448    return true;
449  }
450
451  //===--------------------------------------------------===//
452  // "createNode" is used to generate new tree roots that link
453  // to other trees.  The functon may also simply move links
454  // in an existing root if that root is still marked mutable.
455  // This is necessary because otherwise our balancing code
456  // would leak memory as it would create nodes that are
457  // then discarded later before the finished tree is
458  // returned to the caller.
459  //===--------------------------------------------------===//
460
461  TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
462    BumpPtrAllocator& A = getAllocator();
463    TreeTy* T;
464    if (!freeNodes.empty()) {
465      T = freeNodes.back();
466      freeNodes.pop_back();
467      assert(T != L);
468      assert(T != R);
469    } else {
470      T = (TreeTy*) A.Allocate<TreeTy>();
471    }
472    new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
473    createdNodes.push_back(T);
474    return T;
475  }
476
477  TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
478    return createNode(newLeft, getValue(oldTree), newRight);
479  }
480
481  void recoverNodes() {
482    for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
483      TreeTy *N = createdNodes[i];
484      if (N->isMutable() && N->refCount == 0)
485        N->destroy();
486    }
487    createdNodes.clear();
488  }
489
490  /// balanceTree - Used by add_internal and remove_internal to
491  ///  balance a newly created tree.
492  TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
493    unsigned hl = getHeight(L);
494    unsigned hr = getHeight(R);
495
496    if (hl > hr + 2) {
497      assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
498
499      TreeTy *LL = getLeft(L);
500      TreeTy *LR = getRight(L);
501
502      if (getHeight(LL) >= getHeight(LR))
503        return createNode(LL, L, createNode(LR,V,R));
504
505      assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
506
507      TreeTy *LRL = getLeft(LR);
508      TreeTy *LRR = getRight(LR);
509
510      return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
511    }
512
513    if (hr > hl + 2) {
514      assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
515
516      TreeTy *RL = getLeft(R);
517      TreeTy *RR = getRight(R);
518
519      if (getHeight(RR) >= getHeight(RL))
520        return createNode(createNode(L,V,RL), R, RR);
521
522      assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
523
524      TreeTy *RLL = getLeft(RL);
525      TreeTy *RLR = getRight(RL);
526
527      return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
528    }
529
530    return createNode(L,V,R);
531  }
532
533  /// add_internal - Creates a new tree that includes the specified
534  ///  data and the data from the original tree.  If the original tree
535  ///  already contained the data item, the original tree is returned.
536  TreeTy* add_internal(value_type_ref V, TreeTy* T) {
537    if (isEmpty(T))
538      return createNode(T, V, T);
539    assert(!T->isMutable());
540
541    key_type_ref K = ImutInfo::KeyOfValue(V);
542    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
543
544    if (ImutInfo::isEqual(K,KCurrent))
545      return createNode(getLeft(T), V, getRight(T));
546    else if (ImutInfo::isLess(K,KCurrent))
547      return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
548    else
549      return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
550  }
551
552  /// remove_internal - Creates a new tree that includes all the data
553  ///  from the original tree except the specified data.  If the
554  ///  specified data did not exist in the original tree, the original
555  ///  tree is returned.
556  TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
557    if (isEmpty(T))
558      return T;
559
560    assert(!T->isMutable());
561
562    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
563
564    if (ImutInfo::isEqual(K,KCurrent)) {
565      return combineTrees(getLeft(T), getRight(T));
566    } else if (ImutInfo::isLess(K,KCurrent)) {
567      return balanceTree(remove_internal(K, getLeft(T)),
568                                            getValue(T), getRight(T));
569    } else {
570      return balanceTree(getLeft(T), getValue(T),
571                         remove_internal(K, getRight(T)));
572    }
573  }
574
575  TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
576    if (isEmpty(L))
577      return R;
578    if (isEmpty(R))
579      return L;
580    TreeTy* OldNode;
581    TreeTy* newRight = removeMinBinding(R,OldNode);
582    return balanceTree(L, getValue(OldNode), newRight);
583  }
584
585  TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
586    assert(!isEmpty(T));
587    if (isEmpty(getLeft(T))) {
588      Noderemoved = T;
589      return getRight(T);
590    }
591    return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
592                       getValue(T), getRight(T));
593  }
594
595  /// markImmutable - Clears the mutable bits of a root and all of its
596  ///  descendants.
597  void markImmutable(TreeTy* T) {
598    if (!T || !T->isMutable())
599      return;
600    T->markImmutable();
601    markImmutable(getLeft(T));
602    markImmutable(getRight(T));
603  }
604
605public:
606  TreeTy *getCanonicalTree(TreeTy *TNew) {
607    if (!TNew)
608      return nullptr;
609
610    if (TNew->IsCanonicalized)
611      return TNew;
612
613    // Search the hashtable for another tree with the same digest, and
614    // if find a collision compare those trees by their contents.
615    unsigned digest = TNew->computeDigest();
616    TreeTy *&entry = Cache[maskCacheIndex(digest)];
617    do {
618      if (!entry)
619        break;
620      for (TreeTy *T = entry ; T != nullptr; T = T->next) {
621        // Compare the Contents('T') with Contents('TNew')
622        typename TreeTy::iterator TI = T->begin(), TE = T->end();
623        if (!compareTreeWithSection(TNew, TI, TE))
624          continue;
625        if (TI != TE)
626          continue; // T has more contents than TNew.
627        // Trees did match!  Return 'T'.
628        if (TNew->refCount == 0)
629          TNew->destroy();
630        return T;
631      }
632      entry->prev = TNew;
633      TNew->next = entry;
634    }
635    while (false);
636
637    entry = TNew;
638    TNew->IsCanonicalized = true;
639    return TNew;
640  }
641};
642
643//===----------------------------------------------------------------------===//
644// Immutable AVL-Tree Iterators.
645//===----------------------------------------------------------------------===//
646
647template <typename ImutInfo>
648class ImutAVLTreeGenericIterator
649    : public std::iterator<std::bidirectional_iterator_tag,
650                           ImutAVLTree<ImutInfo>> {
651  SmallVector<uintptr_t,20> stack;
652public:
653  enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
654                   Flags=0x3 };
655
656  typedef ImutAVLTree<ImutInfo> TreeTy;
657
658  ImutAVLTreeGenericIterator() {}
659  ImutAVLTreeGenericIterator(const TreeTy *Root) {
660    if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
661  }
662
663  TreeTy &operator*() const {
664    assert(!stack.empty());
665    return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
666  }
667  TreeTy *operator->() const { return &*this; }
668
669  uintptr_t getVisitState() const {
670    assert(!stack.empty());
671    return stack.back() & Flags;
672  }
673
674
675  bool atEnd() const { return stack.empty(); }
676
677  bool atBeginning() const {
678    return stack.size() == 1 && getVisitState() == VisitedNone;
679  }
680
681  void skipToParent() {
682    assert(!stack.empty());
683    stack.pop_back();
684    if (stack.empty())
685      return;
686    switch (getVisitState()) {
687      case VisitedNone:
688        stack.back() |= VisitedLeft;
689        break;
690      case VisitedLeft:
691        stack.back() |= VisitedRight;
692        break;
693      default:
694        llvm_unreachable("Unreachable.");
695    }
696  }
697
698  bool operator==(const ImutAVLTreeGenericIterator &x) const {
699    return stack == x.stack;
700  }
701
702  bool operator!=(const ImutAVLTreeGenericIterator &x) const {
703    return !(*this == x);
704  }
705
706  ImutAVLTreeGenericIterator &operator++() {
707    assert(!stack.empty());
708    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
709    assert(Current);
710    switch (getVisitState()) {
711      case VisitedNone:
712        if (TreeTy* L = Current->getLeft())
713          stack.push_back(reinterpret_cast<uintptr_t>(L));
714        else
715          stack.back() |= VisitedLeft;
716        break;
717      case VisitedLeft:
718        if (TreeTy* R = Current->getRight())
719          stack.push_back(reinterpret_cast<uintptr_t>(R));
720        else
721          stack.back() |= VisitedRight;
722        break;
723      case VisitedRight:
724        skipToParent();
725        break;
726      default:
727        llvm_unreachable("Unreachable.");
728    }
729    return *this;
730  }
731
732  ImutAVLTreeGenericIterator &operator--() {
733    assert(!stack.empty());
734    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
735    assert(Current);
736    switch (getVisitState()) {
737      case VisitedNone:
738        stack.pop_back();
739        break;
740      case VisitedLeft:
741        stack.back() &= ~Flags; // Set state to "VisitedNone."
742        if (TreeTy* L = Current->getLeft())
743          stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
744        break;
745      case VisitedRight:
746        stack.back() &= ~Flags;
747        stack.back() |= VisitedLeft;
748        if (TreeTy* R = Current->getRight())
749          stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
750        break;
751      default:
752        llvm_unreachable("Unreachable.");
753    }
754    return *this;
755  }
756};
757
758template <typename ImutInfo>
759class ImutAVLTreeInOrderIterator
760    : public std::iterator<std::bidirectional_iterator_tag,
761                           ImutAVLTree<ImutInfo>> {
762  typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
763  InternalIteratorTy InternalItr;
764
765public:
766  typedef ImutAVLTree<ImutInfo> TreeTy;
767
768  ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
769    if (Root)
770      ++*this; // Advance to first element.
771  }
772
773  ImutAVLTreeInOrderIterator() : InternalItr() {}
774
775  bool operator==(const ImutAVLTreeInOrderIterator &x) const {
776    return InternalItr == x.InternalItr;
777  }
778
779  bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
780    return !(*this == x);
781  }
782
783  TreeTy &operator*() const { return *InternalItr; }
784  TreeTy *operator->() const { return &*InternalItr; }
785
786  ImutAVLTreeInOrderIterator &operator++() {
787    do ++InternalItr;
788    while (!InternalItr.atEnd() &&
789           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
790
791    return *this;
792  }
793
794  ImutAVLTreeInOrderIterator &operator--() {
795    do --InternalItr;
796    while (!InternalItr.atBeginning() &&
797           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
798
799    return *this;
800  }
801
802  void skipSubTree() {
803    InternalItr.skipToParent();
804
805    while (!InternalItr.atEnd() &&
806           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
807      ++InternalItr;
808  }
809};
810
811/// Generic iterator that wraps a T::TreeTy::iterator and exposes
812/// iterator::getValue() on dereference.
813template <typename T>
814struct ImutAVLValueIterator
815    : iterator_adaptor_base<
816          ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
817          typename std::iterator_traits<
818              typename T::TreeTy::iterator>::iterator_category,
819          const typename T::value_type> {
820  ImutAVLValueIterator() = default;
821  explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
822      : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
823
824  typename ImutAVLValueIterator::reference operator*() const {
825    return this->I->getValue();
826  }
827};
828
829//===----------------------------------------------------------------------===//
830// Trait classes for Profile information.
831//===----------------------------------------------------------------------===//
832
833/// Generic profile template.  The default behavior is to invoke the
834/// profile method of an object.  Specializations for primitive integers
835/// and generic handling of pointers is done below.
836template <typename T>
837struct ImutProfileInfo {
838  typedef const T  value_type;
839  typedef const T& value_type_ref;
840
841  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
842    FoldingSetTrait<T>::Profile(X,ID);
843  }
844};
845
846/// Profile traits for integers.
847template <typename T>
848struct ImutProfileInteger {
849  typedef const T  value_type;
850  typedef const T& value_type_ref;
851
852  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
853    ID.AddInteger(X);
854  }
855};
856
857#define PROFILE_INTEGER_INFO(X)\
858template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
859
860PROFILE_INTEGER_INFO(char)
861PROFILE_INTEGER_INFO(unsigned char)
862PROFILE_INTEGER_INFO(short)
863PROFILE_INTEGER_INFO(unsigned short)
864PROFILE_INTEGER_INFO(unsigned)
865PROFILE_INTEGER_INFO(signed)
866PROFILE_INTEGER_INFO(long)
867PROFILE_INTEGER_INFO(unsigned long)
868PROFILE_INTEGER_INFO(long long)
869PROFILE_INTEGER_INFO(unsigned long long)
870
871#undef PROFILE_INTEGER_INFO
872
873/// Profile traits for booleans.
874template <>
875struct ImutProfileInfo<bool> {
876  typedef const bool  value_type;
877  typedef const bool& value_type_ref;
878
879  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
880    ID.AddBoolean(X);
881  }
882};
883
884
885/// Generic profile trait for pointer types.  We treat pointers as
886/// references to unique objects.
887template <typename T>
888struct ImutProfileInfo<T*> {
889  typedef const T*   value_type;
890  typedef value_type value_type_ref;
891
892  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
893    ID.AddPointer(X);
894  }
895};
896
897//===----------------------------------------------------------------------===//
898// Trait classes that contain element comparison operators and type
899//  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
900//  inherit from the profile traits (ImutProfileInfo) to include operations
901//  for element profiling.
902//===----------------------------------------------------------------------===//
903
904
905/// ImutContainerInfo - Generic definition of comparison operations for
906///   elements of immutable containers that defaults to using
907///   std::equal_to<> and std::less<> to perform comparison of elements.
908template <typename T>
909struct ImutContainerInfo : public ImutProfileInfo<T> {
910  typedef typename ImutProfileInfo<T>::value_type      value_type;
911  typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
912  typedef value_type      key_type;
913  typedef value_type_ref  key_type_ref;
914  typedef bool            data_type;
915  typedef bool            data_type_ref;
916
917  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
918  static data_type_ref DataOfValue(value_type_ref) { return true; }
919
920  static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
921    return std::equal_to<key_type>()(LHS,RHS);
922  }
923
924  static bool isLess(key_type_ref LHS, key_type_ref RHS) {
925    return std::less<key_type>()(LHS,RHS);
926  }
927
928  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
929};
930
931/// ImutContainerInfo - Specialization for pointer values to treat pointers
932///  as references to unique objects.  Pointers are thus compared by
933///  their addresses.
934template <typename T>
935struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
936  typedef typename ImutProfileInfo<T*>::value_type      value_type;
937  typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
938  typedef value_type      key_type;
939  typedef value_type_ref  key_type_ref;
940  typedef bool            data_type;
941  typedef bool            data_type_ref;
942
943  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
944  static data_type_ref DataOfValue(value_type_ref) { return true; }
945
946  static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
947
948  static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
949
950  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
951};
952
953//===----------------------------------------------------------------------===//
954// Immutable Set
955//===----------------------------------------------------------------------===//
956
957template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
958class ImmutableSet {
959public:
960  typedef typename ValInfo::value_type      value_type;
961  typedef typename ValInfo::value_type_ref  value_type_ref;
962  typedef ImutAVLTree<ValInfo> TreeTy;
963
964private:
965  TreeTy *Root;
966
967public:
968  /// Constructs a set from a pointer to a tree root.  In general one
969  /// should use a Factory object to create sets instead of directly
970  /// invoking the constructor, but there are cases where make this
971  /// constructor public is useful.
972  explicit ImmutableSet(TreeTy* R) : Root(R) {
973    if (Root) { Root->retain(); }
974  }
975  ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
976    if (Root) { Root->retain(); }
977  }
978  ImmutableSet &operator=(const ImmutableSet &X) {
979    if (Root != X.Root) {
980      if (X.Root) { X.Root->retain(); }
981      if (Root) { Root->release(); }
982      Root = X.Root;
983    }
984    return *this;
985  }
986  ~ImmutableSet() {
987    if (Root) { Root->release(); }
988  }
989
990  class Factory {
991    typename TreeTy::Factory F;
992    const bool Canonicalize;
993
994  public:
995    Factory(bool canonicalize = true)
996      : Canonicalize(canonicalize) {}
997
998    Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
999      : F(Alloc), Canonicalize(canonicalize) {}
1000
1001    /// getEmptySet - Returns an immutable set that contains no elements.
1002    ImmutableSet getEmptySet() {
1003      return ImmutableSet(F.getEmptyTree());
1004    }
1005
1006    /// add - Creates a new immutable set that contains all of the values
1007    ///  of the original set with the addition of the specified value.  If
1008    ///  the original set already included the value, then the original set is
1009    ///  returned and no memory is allocated.  The time and space complexity
1010    ///  of this operation is logarithmic in the size of the original set.
1011    ///  The memory allocated to represent the set is released when the
1012    ///  factory object that created the set is destroyed.
1013    ImmutableSet add(ImmutableSet Old, value_type_ref V) {
1014      TreeTy *NewT = F.add(Old.Root, V);
1015      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1016    }
1017
1018    /// remove - Creates a new immutable set that contains all of the values
1019    ///  of the original set with the exception of the specified value.  If
1020    ///  the original set did not contain the value, the original set is
1021    ///  returned and no memory is allocated.  The time and space complexity
1022    ///  of this operation is logarithmic in the size of the original set.
1023    ///  The memory allocated to represent the set is released when the
1024    ///  factory object that created the set is destroyed.
1025    ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
1026      TreeTy *NewT = F.remove(Old.Root, V);
1027      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1028    }
1029
1030    BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
1031
1032    typename TreeTy::Factory *getTreeFactory() const {
1033      return const_cast<typename TreeTy::Factory *>(&F);
1034    }
1035
1036  private:
1037    Factory(const Factory& RHS) = delete;
1038    void operator=(const Factory& RHS) = delete;
1039  };
1040
1041  friend class Factory;
1042
1043  /// Returns true if the set contains the specified value.
1044  bool contains(value_type_ref V) const {
1045    return Root ? Root->contains(V) : false;
1046  }
1047
1048  bool operator==(const ImmutableSet &RHS) const {
1049    return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
1050  }
1051
1052  bool operator!=(const ImmutableSet &RHS) const {
1053    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
1054  }
1055
1056  TreeTy *getRoot() {
1057    if (Root) { Root->retain(); }
1058    return Root;
1059  }
1060
1061  TreeTy *getRootWithoutRetain() const {
1062    return Root;
1063  }
1064
1065  /// isEmpty - Return true if the set contains no elements.
1066  bool isEmpty() const { return !Root; }
1067
1068  /// isSingleton - Return true if the set contains exactly one element.
1069  ///   This method runs in constant time.
1070  bool isSingleton() const { return getHeight() == 1; }
1071
1072  template <typename Callback>
1073  void foreach(Callback& C) { if (Root) Root->foreach(C); }
1074
1075  template <typename Callback>
1076  void foreach() { if (Root) { Callback C; Root->foreach(C); } }
1077
1078  //===--------------------------------------------------===//
1079  // Iterators.
1080  //===--------------------------------------------------===//
1081
1082  typedef ImutAVLValueIterator<ImmutableSet> iterator;
1083
1084  iterator begin() const { return iterator(Root); }
1085  iterator end() const { return iterator(); }
1086
1087  //===--------------------------------------------------===//
1088  // Utility methods.
1089  //===--------------------------------------------------===//
1090
1091  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1092
1093  static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
1094    ID.AddPointer(S.Root);
1095  }
1096
1097  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1098
1099  //===--------------------------------------------------===//
1100  // For testing.
1101  //===--------------------------------------------------===//
1102
1103  void validateTree() const { if (Root) Root->validateTree(); }
1104};
1105
1106// NOTE: This may some day replace the current ImmutableSet.
1107template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
1108class ImmutableSetRef {
1109public:
1110  typedef typename ValInfo::value_type      value_type;
1111  typedef typename ValInfo::value_type_ref  value_type_ref;
1112  typedef ImutAVLTree<ValInfo> TreeTy;
1113  typedef typename TreeTy::Factory          FactoryTy;
1114
1115private:
1116  TreeTy *Root;
1117  FactoryTy *Factory;
1118
1119public:
1120  /// Constructs a set from a pointer to a tree root.  In general one
1121  /// should use a Factory object to create sets instead of directly
1122  /// invoking the constructor, but there are cases where make this
1123  /// constructor public is useful.
1124  explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
1125    : Root(R),
1126      Factory(F) {
1127    if (Root) { Root->retain(); }
1128  }
1129  ImmutableSetRef(const ImmutableSetRef &X)
1130    : Root(X.Root),
1131      Factory(X.Factory) {
1132    if (Root) { Root->retain(); }
1133  }
1134  ImmutableSetRef &operator=(const ImmutableSetRef &X) {
1135    if (Root != X.Root) {
1136      if (X.Root) { X.Root->retain(); }
1137      if (Root) { Root->release(); }
1138      Root = X.Root;
1139      Factory = X.Factory;
1140    }
1141    return *this;
1142  }
1143  ~ImmutableSetRef() {
1144    if (Root) { Root->release(); }
1145  }
1146
1147  static ImmutableSetRef getEmptySet(FactoryTy *F) {
1148    return ImmutableSetRef(0, F);
1149  }
1150
1151  ImmutableSetRef add(value_type_ref V) {
1152    return ImmutableSetRef(Factory->add(Root, V), Factory);
1153  }
1154
1155  ImmutableSetRef remove(value_type_ref V) {
1156    return ImmutableSetRef(Factory->remove(Root, V), Factory);
1157  }
1158
1159  /// Returns true if the set contains the specified value.
1160  bool contains(value_type_ref V) const {
1161    return Root ? Root->contains(V) : false;
1162  }
1163
1164  ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
1165    return ImmutableSet<ValT>(canonicalize ?
1166                              Factory->getCanonicalTree(Root) : Root);
1167  }
1168
1169  TreeTy *getRootWithoutRetain() const {
1170    return Root;
1171  }
1172
1173  bool operator==(const ImmutableSetRef &RHS) const {
1174    return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
1175  }
1176
1177  bool operator!=(const ImmutableSetRef &RHS) const {
1178    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
1179  }
1180
1181  /// isEmpty - Return true if the set contains no elements.
1182  bool isEmpty() const { return !Root; }
1183
1184  /// isSingleton - Return true if the set contains exactly one element.
1185  ///   This method runs in constant time.
1186  bool isSingleton() const { return getHeight() == 1; }
1187
1188  //===--------------------------------------------------===//
1189  // Iterators.
1190  //===--------------------------------------------------===//
1191
1192  typedef ImutAVLValueIterator<ImmutableSetRef> iterator;
1193
1194  iterator begin() const { return iterator(Root); }
1195  iterator end() const { return iterator(); }
1196
1197  //===--------------------------------------------------===//
1198  // Utility methods.
1199  //===--------------------------------------------------===//
1200
1201  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1202
1203  static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
1204    ID.AddPointer(S.Root);
1205  }
1206
1207  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1208
1209  //===--------------------------------------------------===//
1210  // For testing.
1211  //===--------------------------------------------------===//
1212
1213  void validateTree() const { if (Root) Root->validateTree(); }
1214};
1215
1216} // end namespace llvm
1217
1218#endif
1219