1//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/CodeGen/MachineInstrBundleIterator.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/Support/BranchProbability.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/Support/DataTypes.h"
24#include <functional>
25
26namespace llvm {
27
28class Pass;
29class BasicBlock;
30class MachineFunction;
31class MCSymbol;
32class MIPrinter;
33class SlotIndexes;
34class StringRef;
35class raw_ostream;
36class MachineBranchProbabilityInfo;
37
38// Forward declaration to avoid circular include problem with TargetRegisterInfo
39typedef unsigned LaneBitmask;
40
41template <>
42struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
43private:
44  mutable ilist_half_node<MachineInstr> Sentinel;
45
46  // this is only set by the MachineBasicBlock owning the LiveList
47  friend class MachineBasicBlock;
48  MachineBasicBlock* Parent;
49
50public:
51  MachineInstr *createSentinel() const {
52    return static_cast<MachineInstr*>(&Sentinel);
53  }
54  void destroySentinel(MachineInstr *) const {}
55
56  MachineInstr *provideInitialHead() const { return createSentinel(); }
57  MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
58  static void noteHead(MachineInstr*, MachineInstr*) {}
59
60  void addNodeToList(MachineInstr* N);
61  void removeNodeFromList(MachineInstr* N);
62  void transferNodesFromList(ilist_traits &SrcTraits,
63                             ilist_iterator<MachineInstr> First,
64                             ilist_iterator<MachineInstr> Last);
65  void deleteNode(MachineInstr *N);
66private:
67  void createNode(const MachineInstr &);
68};
69
70class MachineBasicBlock
71    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
72public:
73  /// Pair of physical register and lane mask.
74  /// This is not simply a std::pair typedef because the members should be named
75  /// clearly as they both have an integer type.
76  struct RegisterMaskPair {
77  public:
78    MCPhysReg PhysReg;
79    LaneBitmask LaneMask;
80
81    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
82        : PhysReg(PhysReg), LaneMask(LaneMask) {}
83  };
84
85private:
86  typedef ilist<MachineInstr> Instructions;
87  Instructions Insts;
88  const BasicBlock *BB;
89  int Number;
90  MachineFunction *xParent;
91
92  /// Keep track of the predecessor / successor basic blocks.
93  std::vector<MachineBasicBlock *> Predecessors;
94  std::vector<MachineBasicBlock *> Successors;
95
96  /// Keep track of the probabilities to the successors. This vector has the
97  /// same order as Successors, or it is empty if we don't use it (disable
98  /// optimization).
99  std::vector<BranchProbability> Probs;
100  typedef std::vector<BranchProbability>::iterator probability_iterator;
101  typedef std::vector<BranchProbability>::const_iterator
102      const_probability_iterator;
103
104  /// Keep track of the physical registers that are livein of the basicblock.
105  typedef std::vector<RegisterMaskPair> LiveInVector;
106  LiveInVector LiveIns;
107
108  /// Alignment of the basic block. Zero if the basic block does not need to be
109  /// aligned. The alignment is specified as log2(bytes).
110  unsigned Alignment = 0;
111
112  /// Indicate that this basic block is entered via an exception handler.
113  bool IsEHPad = false;
114
115  /// Indicate that this basic block is potentially the target of an indirect
116  /// branch.
117  bool AddressTaken = false;
118
119  /// Indicate that this basic block is the entry block of an EH funclet.
120  bool IsEHFuncletEntry = false;
121
122  /// Indicate that this basic block is the entry block of a cleanup funclet.
123  bool IsCleanupFuncletEntry = false;
124
125  /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
126  /// is only computed once and is cached.
127  mutable MCSymbol *CachedMCSymbol = nullptr;
128
129  // Intrusive list support
130  MachineBasicBlock() {}
131
132  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
133
134  ~MachineBasicBlock();
135
136  // MachineBasicBlocks are allocated and owned by MachineFunction.
137  friend class MachineFunction;
138
139public:
140  /// Return the LLVM basic block that this instance corresponded to originally.
141  /// Note that this may be NULL if this instance does not correspond directly
142  /// to an LLVM basic block.
143  const BasicBlock *getBasicBlock() const { return BB; }
144
145  /// Return the name of the corresponding LLVM basic block, or "(null)".
146  StringRef getName() const;
147
148  /// Return a formatted string to identify this block and its parent function.
149  std::string getFullName() const;
150
151  /// Test whether this block is potentially the target of an indirect branch.
152  bool hasAddressTaken() const { return AddressTaken; }
153
154  /// Set this block to reflect that it potentially is the target of an indirect
155  /// branch.
156  void setHasAddressTaken() { AddressTaken = true; }
157
158  /// Return the MachineFunction containing this basic block.
159  const MachineFunction *getParent() const { return xParent; }
160  MachineFunction *getParent() { return xParent; }
161
162  typedef Instructions::iterator                                 instr_iterator;
163  typedef Instructions::const_iterator                     const_instr_iterator;
164  typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
165  typedef
166  std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
167
168  typedef MachineInstrBundleIterator<MachineInstr> iterator;
169  typedef MachineInstrBundleIterator<const MachineInstr> const_iterator;
170  typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
171  typedef std::reverse_iterator<iterator>                      reverse_iterator;
172
173
174  unsigned size() const { return (unsigned)Insts.size(); }
175  bool empty() const { return Insts.empty(); }
176
177  MachineInstr       &instr_front()       { return Insts.front(); }
178  MachineInstr       &instr_back()        { return Insts.back();  }
179  const MachineInstr &instr_front() const { return Insts.front(); }
180  const MachineInstr &instr_back()  const { return Insts.back();  }
181
182  MachineInstr       &front()             { return Insts.front(); }
183  MachineInstr       &back()              { return *--end();      }
184  const MachineInstr &front()       const { return Insts.front(); }
185  const MachineInstr &back()        const { return *--end();      }
186
187  instr_iterator                instr_begin()       { return Insts.begin();  }
188  const_instr_iterator          instr_begin() const { return Insts.begin();  }
189  instr_iterator                  instr_end()       { return Insts.end();    }
190  const_instr_iterator            instr_end() const { return Insts.end();    }
191  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
192  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
193  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
194  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
195
196  typedef iterator_range<instr_iterator> instr_range;
197  typedef iterator_range<const_instr_iterator> const_instr_range;
198  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
199  const_instr_range instrs() const {
200    return const_instr_range(instr_begin(), instr_end());
201  }
202
203  iterator                begin()       { return instr_begin();  }
204  const_iterator          begin() const { return instr_begin();  }
205  iterator                end  ()       { return instr_end();    }
206  const_iterator          end  () const { return instr_end();    }
207  reverse_iterator       rbegin()       { return instr_rbegin(); }
208  const_reverse_iterator rbegin() const { return instr_rbegin(); }
209  reverse_iterator       rend  ()       { return instr_rend();   }
210  const_reverse_iterator rend  () const { return instr_rend();   }
211
212  /// Support for MachineInstr::getNextNode().
213  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
214    return &MachineBasicBlock::Insts;
215  }
216
217  inline iterator_range<iterator> terminators() {
218    return make_range(getFirstTerminator(), end());
219  }
220  inline iterator_range<const_iterator> terminators() const {
221    return make_range(getFirstTerminator(), end());
222  }
223
224  // Machine-CFG iterators
225  typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
226  typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
227  typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
228  typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
229  typedef std::vector<MachineBasicBlock *>::reverse_iterator
230                                                         pred_reverse_iterator;
231  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
232                                                   const_pred_reverse_iterator;
233  typedef std::vector<MachineBasicBlock *>::reverse_iterator
234                                                         succ_reverse_iterator;
235  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
236                                                   const_succ_reverse_iterator;
237  pred_iterator        pred_begin()       { return Predecessors.begin(); }
238  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
239  pred_iterator        pred_end()         { return Predecessors.end();   }
240  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
241  pred_reverse_iterator        pred_rbegin()
242                                          { return Predecessors.rbegin();}
243  const_pred_reverse_iterator  pred_rbegin() const
244                                          { return Predecessors.rbegin();}
245  pred_reverse_iterator        pred_rend()
246                                          { return Predecessors.rend();  }
247  const_pred_reverse_iterator  pred_rend()   const
248                                          { return Predecessors.rend();  }
249  unsigned             pred_size()  const {
250    return (unsigned)Predecessors.size();
251  }
252  bool                 pred_empty() const { return Predecessors.empty(); }
253  succ_iterator        succ_begin()       { return Successors.begin();   }
254  const_succ_iterator  succ_begin() const { return Successors.begin();   }
255  succ_iterator        succ_end()         { return Successors.end();     }
256  const_succ_iterator  succ_end()   const { return Successors.end();     }
257  succ_reverse_iterator        succ_rbegin()
258                                          { return Successors.rbegin();  }
259  const_succ_reverse_iterator  succ_rbegin() const
260                                          { return Successors.rbegin();  }
261  succ_reverse_iterator        succ_rend()
262                                          { return Successors.rend();    }
263  const_succ_reverse_iterator  succ_rend()   const
264                                          { return Successors.rend();    }
265  unsigned             succ_size()  const {
266    return (unsigned)Successors.size();
267  }
268  bool                 succ_empty() const { return Successors.empty();   }
269
270  inline iterator_range<pred_iterator> predecessors() {
271    return make_range(pred_begin(), pred_end());
272  }
273  inline iterator_range<const_pred_iterator> predecessors() const {
274    return make_range(pred_begin(), pred_end());
275  }
276  inline iterator_range<succ_iterator> successors() {
277    return make_range(succ_begin(), succ_end());
278  }
279  inline iterator_range<const_succ_iterator> successors() const {
280    return make_range(succ_begin(), succ_end());
281  }
282
283  // LiveIn management methods.
284
285  /// Adds the specified register as a live in. Note that it is an error to add
286  /// the same register to the same set more than once unless the intention is
287  /// to call sortUniqueLiveIns after all registers are added.
288  void addLiveIn(MCPhysReg PhysReg, LaneBitmask LaneMask = ~0u) {
289    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
290  }
291  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
292    LiveIns.push_back(RegMaskPair);
293  }
294
295  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
296  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
297  /// LiveIn insertion.
298  void sortUniqueLiveIns();
299
300  /// Add PhysReg as live in to this block, and ensure that there is a copy of
301  /// PhysReg to a virtual register of class RC. Return the virtual register
302  /// that is a copy of the live in PhysReg.
303  unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
304
305  /// Remove the specified register from the live in set.
306  void removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = ~0u);
307
308  /// Return true if the specified register is in the live in set.
309  bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = ~0u) const;
310
311  // Iteration support for live in sets.  These sets are kept in sorted
312  // order by their register number.
313  typedef LiveInVector::const_iterator livein_iterator;
314  livein_iterator livein_begin() const { return LiveIns.begin(); }
315  livein_iterator livein_end()   const { return LiveIns.end(); }
316  bool            livein_empty() const { return LiveIns.empty(); }
317  iterator_range<livein_iterator> liveins() const {
318    return make_range(livein_begin(), livein_end());
319  }
320
321  /// Get the clobber mask for the start of this basic block. Funclets use this
322  /// to prevent register allocation across funclet transitions.
323  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
324
325  /// Get the clobber mask for the end of the basic block.
326  /// \see getBeginClobberMask()
327  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
328
329  /// Return alignment of the basic block. The alignment is specified as
330  /// log2(bytes).
331  unsigned getAlignment() const { return Alignment; }
332
333  /// Set alignment of the basic block. The alignment is specified as
334  /// log2(bytes).
335  void setAlignment(unsigned Align) { Alignment = Align; }
336
337  /// Returns true if the block is a landing pad. That is this basic block is
338  /// entered via an exception handler.
339  bool isEHPad() const { return IsEHPad; }
340
341  /// Indicates the block is a landing pad.  That is this basic block is entered
342  /// via an exception handler.
343  void setIsEHPad(bool V = true) { IsEHPad = V; }
344
345  bool hasEHPadSuccessor() const;
346
347  /// Returns true if this is the entry block of an EH funclet.
348  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
349
350  /// Indicates if this is the entry block of an EH funclet.
351  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
352
353  /// Returns true if this is the entry block of a cleanup funclet.
354  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
355
356  /// Indicates if this is the entry block of a cleanup funclet.
357  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
358
359  // Code Layout methods.
360
361  /// Move 'this' block before or after the specified block.  This only moves
362  /// the block, it does not modify the CFG or adjust potential fall-throughs at
363  /// the end of the block.
364  void moveBefore(MachineBasicBlock *NewAfter);
365  void moveAfter(MachineBasicBlock *NewBefore);
366
367  /// Update the terminator instructions in block to account for changes to the
368  /// layout. If the block previously used a fallthrough, it may now need a
369  /// branch, and if it previously used branching it may now be able to use a
370  /// fallthrough.
371  void updateTerminator();
372
373  // Machine-CFG mutators
374
375  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
376  /// of Succ is automatically updated. PROB parameter is stored in
377  /// Probabilities list. The default probability is set as unknown. Mixing
378  /// known and unknown probabilities in successor list is not allowed. When all
379  /// successors have unknown probabilities, 1 / N is returned as the
380  /// probability for each successor, where N is the number of successors.
381  ///
382  /// Note that duplicate Machine CFG edges are not allowed.
383  void addSuccessor(MachineBasicBlock *Succ,
384                    BranchProbability Prob = BranchProbability::getUnknown());
385
386  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
387  /// of Succ is automatically updated. The probability is not provided because
388  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
389  /// won't be used. Using this interface can save some space.
390  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
391
392  /// Set successor probability of a given iterator.
393  void setSuccProbability(succ_iterator I, BranchProbability Prob);
394
395  /// Normalize probabilities of all successors so that the sum of them becomes
396  /// one. This is usually done when the current update on this MBB is done, and
397  /// the sum of its successors' probabilities is not guaranteed to be one. The
398  /// user is responsible for the correct use of this function.
399  /// MBB::removeSuccessor() has an option to do this automatically.
400  void normalizeSuccProbs() {
401    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
402  }
403
404  /// Validate successors' probabilities and check if the sum of them is
405  /// approximate one. This only works in DEBUG mode.
406  void validateSuccProbs() const;
407
408  /// Remove successor from the successors list of this MachineBasicBlock. The
409  /// Predecessors list of Succ is automatically updated.
410  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
411  /// after the successor is removed.
412  void removeSuccessor(MachineBasicBlock *Succ,
413                       bool NormalizeSuccProbs = false);
414
415  /// Remove specified successor from the successors list of this
416  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
417  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
418  /// after the successor is removed.
419  /// Return the iterator to the element after the one removed.
420  succ_iterator removeSuccessor(succ_iterator I,
421                                bool NormalizeSuccProbs = false);
422
423  /// Replace successor OLD with NEW and update probability info.
424  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
425
426  /// Transfers all the successors from MBB to this machine basic block (i.e.,
427  /// copies all the successors FromMBB and remove all the successors from
428  /// FromMBB).
429  void transferSuccessors(MachineBasicBlock *FromMBB);
430
431  /// Transfers all the successors, as in transferSuccessors, and update PHI
432  /// operands in the successor blocks which refer to FromMBB to refer to this.
433  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
434
435  /// Return true if any of the successors have probabilities attached to them.
436  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
437
438  /// Return true if the specified MBB is a predecessor of this block.
439  bool isPredecessor(const MachineBasicBlock *MBB) const;
440
441  /// Return true if the specified MBB is a successor of this block.
442  bool isSuccessor(const MachineBasicBlock *MBB) const;
443
444  /// Return true if the specified MBB will be emitted immediately after this
445  /// block, such that if this block exits by falling through, control will
446  /// transfer to the specified MBB. Note that MBB need not be a successor at
447  /// all, for example if this block ends with an unconditional branch to some
448  /// other block.
449  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
450
451  /// Return true if the block can implicitly transfer control to the block
452  /// after it by falling off the end of it.  This should return false if it can
453  /// reach the block after it, but it uses an explicit branch to do so (e.g., a
454  /// table jump).  True is a conservative answer.
455  bool canFallThrough();
456
457  /// Returns a pointer to the first instruction in this block that is not a
458  /// PHINode instruction. When adding instructions to the beginning of the
459  /// basic block, they should be added before the returned value, not before
460  /// the first instruction, which might be PHI.
461  /// Returns end() is there's no non-PHI instruction.
462  iterator getFirstNonPHI();
463
464  /// Return the first instruction in MBB after I that is not a PHI or a label.
465  /// This is the correct point to insert copies at the beginning of a basic
466  /// block.
467  iterator SkipPHIsAndLabels(iterator I);
468
469  /// Returns an iterator to the first terminator instruction of this basic
470  /// block. If a terminator does not exist, it returns end().
471  iterator getFirstTerminator();
472  const_iterator getFirstTerminator() const {
473    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
474  }
475
476  /// Same getFirstTerminator but it ignores bundles and return an
477  /// instr_iterator instead.
478  instr_iterator getFirstInstrTerminator();
479
480  /// Returns an iterator to the first non-debug instruction in the basic block,
481  /// or end().
482  iterator getFirstNonDebugInstr();
483  const_iterator getFirstNonDebugInstr() const {
484    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
485  }
486
487  /// Returns an iterator to the last non-debug instruction in the basic block,
488  /// or end().
489  iterator getLastNonDebugInstr();
490  const_iterator getLastNonDebugInstr() const {
491    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
492  }
493
494  /// Convenience function that returns true if the block ends in a return
495  /// instruction.
496  bool isReturnBlock() const {
497    return !empty() && back().isReturn();
498  }
499
500  /// Split the critical edge from this block to the given successor block, and
501  /// return the newly created block, or null if splitting is not possible.
502  ///
503  /// This function updates LiveVariables, MachineDominatorTree, and
504  /// MachineLoopInfo, as applicable.
505  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
506
507  /// Check if the edge between this block and the given successor \p
508  /// Succ, can be split. If this returns true a subsequent call to
509  /// SplitCriticalEdge is guaranteed to return a valid basic block if
510  /// no changes occured in the meantime.
511  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
512
513  void pop_front() { Insts.pop_front(); }
514  void pop_back() { Insts.pop_back(); }
515  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
516
517  /// Insert MI into the instruction list before I, possibly inside a bundle.
518  ///
519  /// If the insertion point is inside a bundle, MI will be added to the bundle,
520  /// otherwise MI will not be added to any bundle. That means this function
521  /// alone can't be used to prepend or append instructions to bundles. See
522  /// MIBundleBuilder::insert() for a more reliable way of doing that.
523  instr_iterator insert(instr_iterator I, MachineInstr *M);
524
525  /// Insert a range of instructions into the instruction list before I.
526  template<typename IT>
527  void insert(iterator I, IT S, IT E) {
528    assert((I == end() || I->getParent() == this) &&
529           "iterator points outside of basic block");
530    Insts.insert(I.getInstrIterator(), S, E);
531  }
532
533  /// Insert MI into the instruction list before I.
534  iterator insert(iterator I, MachineInstr *MI) {
535    assert((I == end() || I->getParent() == this) &&
536           "iterator points outside of basic block");
537    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
538           "Cannot insert instruction with bundle flags");
539    return Insts.insert(I.getInstrIterator(), MI);
540  }
541
542  /// Insert MI into the instruction list after I.
543  iterator insertAfter(iterator I, MachineInstr *MI) {
544    assert((I == end() || I->getParent() == this) &&
545           "iterator points outside of basic block");
546    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
547           "Cannot insert instruction with bundle flags");
548    return Insts.insertAfter(I.getInstrIterator(), MI);
549  }
550
551  /// Remove an instruction from the instruction list and delete it.
552  ///
553  /// If the instruction is part of a bundle, the other instructions in the
554  /// bundle will still be bundled after removing the single instruction.
555  instr_iterator erase(instr_iterator I);
556
557  /// Remove an instruction from the instruction list and delete it.
558  ///
559  /// If the instruction is part of a bundle, the other instructions in the
560  /// bundle will still be bundled after removing the single instruction.
561  instr_iterator erase_instr(MachineInstr *I) {
562    return erase(instr_iterator(I));
563  }
564
565  /// Remove a range of instructions from the instruction list and delete them.
566  iterator erase(iterator I, iterator E) {
567    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
568  }
569
570  /// Remove an instruction or bundle from the instruction list and delete it.
571  ///
572  /// If I points to a bundle of instructions, they are all erased.
573  iterator erase(iterator I) {
574    return erase(I, std::next(I));
575  }
576
577  /// Remove an instruction from the instruction list and delete it.
578  ///
579  /// If I is the head of a bundle of instructions, the whole bundle will be
580  /// erased.
581  iterator erase(MachineInstr *I) {
582    return erase(iterator(I));
583  }
584
585  /// Remove the unbundled instruction from the instruction list without
586  /// deleting it.
587  ///
588  /// This function can not be used to remove bundled instructions, use
589  /// remove_instr to remove individual instructions from a bundle.
590  MachineInstr *remove(MachineInstr *I) {
591    assert(!I->isBundled() && "Cannot remove bundled instructions");
592    return Insts.remove(instr_iterator(I));
593  }
594
595  /// Remove the possibly bundled instruction from the instruction list
596  /// without deleting it.
597  ///
598  /// If the instruction is part of a bundle, the other instructions in the
599  /// bundle will still be bundled after removing the single instruction.
600  MachineInstr *remove_instr(MachineInstr *I);
601
602  void clear() {
603    Insts.clear();
604  }
605
606  /// Take an instruction from MBB 'Other' at the position From, and insert it
607  /// into this MBB right before 'Where'.
608  ///
609  /// If From points to a bundle of instructions, the whole bundle is moved.
610  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
611    // The range splice() doesn't allow noop moves, but this one does.
612    if (Where != From)
613      splice(Where, Other, From, std::next(From));
614  }
615
616  /// Take a block of instructions from MBB 'Other' in the range [From, To),
617  /// and insert them into this MBB right before 'Where'.
618  ///
619  /// The instruction at 'Where' must not be included in the range of
620  /// instructions to move.
621  void splice(iterator Where, MachineBasicBlock *Other,
622              iterator From, iterator To) {
623    Insts.splice(Where.getInstrIterator(), Other->Insts,
624                 From.getInstrIterator(), To.getInstrIterator());
625  }
626
627  /// This method unlinks 'this' from the containing function, and returns it,
628  /// but does not delete it.
629  MachineBasicBlock *removeFromParent();
630
631  /// This method unlinks 'this' from the containing function and deletes it.
632  void eraseFromParent();
633
634  /// Given a machine basic block that branched to 'Old', change the code and
635  /// CFG so that it branches to 'New' instead.
636  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
637
638  /// Various pieces of code can cause excess edges in the CFG to be inserted.
639  /// If we have proven that MBB can only branch to DestA and DestB, remove any
640  /// other MBB successors from the CFG. DestA and DestB can be null. Besides
641  /// DestA and DestB, retain other edges leading to LandingPads (currently
642  /// there can be only one; we don't check or require that here). Note it is
643  /// possible that DestA and/or DestB are LandingPads.
644  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
645                            MachineBasicBlock *DestB,
646                            bool IsCond);
647
648  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
649  /// instructions.  Return UnknownLoc if there is none.
650  DebugLoc findDebugLoc(instr_iterator MBBI);
651  DebugLoc findDebugLoc(iterator MBBI) {
652    return findDebugLoc(MBBI.getInstrIterator());
653  }
654
655  /// Possible outcome of a register liveness query to computeRegisterLiveness()
656  enum LivenessQueryResult {
657    LQR_Live,   ///< Register is known to be (at least partially) live.
658    LQR_Dead,   ///< Register is known to be fully dead.
659    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
660  };
661
662  /// Return whether (physical) register \p Reg has been <def>ined and not
663  /// <kill>ed as of just before \p Before.
664  ///
665  /// Search is localised to a neighborhood of \p Neighborhood instructions
666  /// before (searching for defs or kills) and \p Neighborhood instructions
667  /// after (searching just for defs) \p Before.
668  ///
669  /// \p Reg must be a physical register.
670  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
671                                              unsigned Reg,
672                                              const_iterator Before,
673                                              unsigned Neighborhood=10) const;
674
675  // Debugging methods.
676  void dump() const;
677  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
678  void print(raw_ostream &OS, ModuleSlotTracker &MST,
679             const SlotIndexes* = nullptr) const;
680
681  // Printing method used by LoopInfo.
682  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
683
684  /// MachineBasicBlocks are uniquely numbered at the function level, unless
685  /// they're not in a MachineFunction yet, in which case this will return -1.
686  int getNumber() const { return Number; }
687  void setNumber(int N) { Number = N; }
688
689  /// Return the MCSymbol for this basic block.
690  MCSymbol *getSymbol() const;
691
692
693private:
694  /// Return probability iterator corresponding to the I successor iterator.
695  probability_iterator getProbabilityIterator(succ_iterator I);
696  const_probability_iterator
697  getProbabilityIterator(const_succ_iterator I) const;
698
699  friend class MachineBranchProbabilityInfo;
700  friend class MIPrinter;
701
702  /// Return probability of the edge from this block to MBB. This method should
703  /// NOT be called directly, but by using getEdgeProbability method from
704  /// MachineBranchProbabilityInfo class.
705  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
706
707  // Methods used to maintain doubly linked list of blocks...
708  friend struct ilist_traits<MachineBasicBlock>;
709
710  // Machine-CFG mutators
711
712  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
713  /// unless you know what you're doing, because it doesn't update Pred's
714  /// successors list. Use Pred->addSuccessor instead.
715  void addPredecessor(MachineBasicBlock *Pred);
716
717  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
718  /// unless you know what you're doing, because it doesn't update Pred's
719  /// successors list. Use Pred->removeSuccessor instead.
720  void removePredecessor(MachineBasicBlock *Pred);
721};
722
723raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
724
725// This is useful when building IndexedMaps keyed on basic block pointers.
726struct MBB2NumberFunctor :
727  public std::unary_function<const MachineBasicBlock*, unsigned> {
728  unsigned operator()(const MachineBasicBlock *MBB) const {
729    return MBB->getNumber();
730  }
731};
732
733//===--------------------------------------------------------------------===//
734// GraphTraits specializations for machine basic block graphs (machine-CFGs)
735//===--------------------------------------------------------------------===//
736
737// Provide specializations of GraphTraits to be able to treat a
738// MachineFunction as a graph of MachineBasicBlocks.
739//
740
741template <> struct GraphTraits<MachineBasicBlock *> {
742  typedef MachineBasicBlock NodeType;
743  typedef MachineBasicBlock::succ_iterator ChildIteratorType;
744
745  static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
746  static inline ChildIteratorType child_begin(NodeType *N) {
747    return N->succ_begin();
748  }
749  static inline ChildIteratorType child_end(NodeType *N) {
750    return N->succ_end();
751  }
752};
753
754template <> struct GraphTraits<const MachineBasicBlock *> {
755  typedef const MachineBasicBlock NodeType;
756  typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
757
758  static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
759  static inline ChildIteratorType child_begin(NodeType *N) {
760    return N->succ_begin();
761  }
762  static inline ChildIteratorType child_end(NodeType *N) {
763    return N->succ_end();
764  }
765};
766
767// Provide specializations of GraphTraits to be able to treat a
768// MachineFunction as a graph of MachineBasicBlocks and to walk it
769// in inverse order.  Inverse order for a function is considered
770// to be when traversing the predecessor edges of a MBB
771// instead of the successor edges.
772//
773template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
774  typedef MachineBasicBlock NodeType;
775  typedef MachineBasicBlock::pred_iterator ChildIteratorType;
776  static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
777    return G.Graph;
778  }
779  static inline ChildIteratorType child_begin(NodeType *N) {
780    return N->pred_begin();
781  }
782  static inline ChildIteratorType child_end(NodeType *N) {
783    return N->pred_end();
784  }
785};
786
787template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
788  typedef const MachineBasicBlock NodeType;
789  typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
790  static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
791    return G.Graph;
792  }
793  static inline ChildIteratorType child_begin(NodeType *N) {
794    return N->pred_begin();
795  }
796  static inline ChildIteratorType child_end(NodeType *N) {
797    return N->pred_end();
798  }
799};
800
801
802
803/// MachineInstrSpan provides an interface to get an iteration range
804/// containing the instruction it was initialized with, along with all
805/// those instructions inserted prior to or following that instruction
806/// at some point after the MachineInstrSpan is constructed.
807class MachineInstrSpan {
808  MachineBasicBlock &MBB;
809  MachineBasicBlock::iterator I, B, E;
810public:
811  MachineInstrSpan(MachineBasicBlock::iterator I)
812    : MBB(*I->getParent()),
813      I(I),
814      B(I == MBB.begin() ? MBB.end() : std::prev(I)),
815      E(std::next(I)) {}
816
817  MachineBasicBlock::iterator begin() {
818    return B == MBB.end() ? MBB.begin() : std::next(B);
819  }
820  MachineBasicBlock::iterator end() { return E; }
821  bool empty() { return begin() == end(); }
822
823  MachineBasicBlock::iterator getInitial() { return I; }
824};
825
826} // End llvm namespace
827
828#endif
829