1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the LoopInfo class that is used to identify natural loops 11// and determine the loop depth of various nodes of the CFG. Note that the 12// loops identified may actually be several natural loops that share the same 13// header node... not just a single natural loop. 14// 15//===----------------------------------------------------------------------===// 16 17#include "llvm/Analysis/LoopInfo.h" 18#include "llvm/ADT/DepthFirstIterator.h" 19#include "llvm/ADT/SmallPtrSet.h" 20#include "llvm/Analysis/LoopInfoImpl.h" 21#include "llvm/Analysis/LoopIterator.h" 22#include "llvm/Analysis/ValueTracking.h" 23#include "llvm/IR/CFG.h" 24#include "llvm/IR/Constants.h" 25#include "llvm/IR/DebugLoc.h" 26#include "llvm/IR/Dominators.h" 27#include "llvm/IR/Instructions.h" 28#include "llvm/IR/LLVMContext.h" 29#include "llvm/IR/Metadata.h" 30#include "llvm/IR/PassManager.h" 31#include "llvm/Support/CommandLine.h" 32#include "llvm/Support/Debug.h" 33#include "llvm/Support/raw_ostream.h" 34#include <algorithm> 35using namespace llvm; 36 37// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 38template class llvm::LoopBase<BasicBlock, Loop>; 39template class llvm::LoopInfoBase<BasicBlock, Loop>; 40 41// Always verify loopinfo if expensive checking is enabled. 42#ifdef EXPENSIVE_CHECKS 43static bool VerifyLoopInfo = true; 44#else 45static bool VerifyLoopInfo = false; 46#endif 47static cl::opt<bool,true> 48VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 49 cl::desc("Verify loop info (time consuming)")); 50 51//===----------------------------------------------------------------------===// 52// Loop implementation 53// 54 55bool Loop::isLoopInvariant(const Value *V) const { 56 if (const Instruction *I = dyn_cast<Instruction>(V)) 57 return !contains(I); 58 return true; // All non-instructions are loop invariant 59} 60 61bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 62 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 63} 64 65bool Loop::makeLoopInvariant(Value *V, bool &Changed, 66 Instruction *InsertPt) const { 67 if (Instruction *I = dyn_cast<Instruction>(V)) 68 return makeLoopInvariant(I, Changed, InsertPt); 69 return true; // All non-instructions are loop-invariant. 70} 71 72bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 73 Instruction *InsertPt) const { 74 // Test if the value is already loop-invariant. 75 if (isLoopInvariant(I)) 76 return true; 77 if (!isSafeToSpeculativelyExecute(I)) 78 return false; 79 if (I->mayReadFromMemory()) 80 return false; 81 // EH block instructions are immobile. 82 if (I->isEHPad()) 83 return false; 84 // Determine the insertion point, unless one was given. 85 if (!InsertPt) { 86 BasicBlock *Preheader = getLoopPreheader(); 87 // Without a preheader, hoisting is not feasible. 88 if (!Preheader) 89 return false; 90 InsertPt = Preheader->getTerminator(); 91 } 92 // Don't hoist instructions with loop-variant operands. 93 for (Value *Operand : I->operands()) 94 if (!makeLoopInvariant(Operand, Changed, InsertPt)) 95 return false; 96 97 // Hoist. 98 I->moveBefore(InsertPt); 99 100 // There is possibility of hoisting this instruction above some arbitrary 101 // condition. Any metadata defined on it can be control dependent on this 102 // condition. Conservatively strip it here so that we don't give any wrong 103 // information to the optimizer. 104 I->dropUnknownNonDebugMetadata(); 105 106 Changed = true; 107 return true; 108} 109 110PHINode *Loop::getCanonicalInductionVariable() const { 111 BasicBlock *H = getHeader(); 112 113 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 114 pred_iterator PI = pred_begin(H); 115 assert(PI != pred_end(H) && 116 "Loop must have at least one backedge!"); 117 Backedge = *PI++; 118 if (PI == pred_end(H)) return nullptr; // dead loop 119 Incoming = *PI++; 120 if (PI != pred_end(H)) return nullptr; // multiple backedges? 121 122 if (contains(Incoming)) { 123 if (contains(Backedge)) 124 return nullptr; 125 std::swap(Incoming, Backedge); 126 } else if (!contains(Backedge)) 127 return nullptr; 128 129 // Loop over all of the PHI nodes, looking for a canonical indvar. 130 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 131 PHINode *PN = cast<PHINode>(I); 132 if (ConstantInt *CI = 133 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 134 if (CI->isNullValue()) 135 if (Instruction *Inc = 136 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 137 if (Inc->getOpcode() == Instruction::Add && 138 Inc->getOperand(0) == PN) 139 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 140 if (CI->equalsInt(1)) 141 return PN; 142 } 143 return nullptr; 144} 145 146bool Loop::isLCSSAForm(DominatorTree &DT) const { 147 for (BasicBlock *BB : this->blocks()) { 148 for (Instruction &I : *BB) { 149 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 150 // optimizations, so for the purposes of considered LCSSA form, we 151 // can ignore them. 152 if (I.getType()->isTokenTy()) 153 continue; 154 155 for (Use &U : I.uses()) { 156 Instruction *UI = cast<Instruction>(U.getUser()); 157 BasicBlock *UserBB = UI->getParent(); 158 if (PHINode *P = dyn_cast<PHINode>(UI)) 159 UserBB = P->getIncomingBlock(U); 160 161 // Check the current block, as a fast-path, before checking whether 162 // the use is anywhere in the loop. Most values are used in the same 163 // block they are defined in. Also, blocks not reachable from the 164 // entry are special; uses in them don't need to go through PHIs. 165 if (UserBB != BB && 166 !contains(UserBB) && 167 DT.isReachableFromEntry(UserBB)) 168 return false; 169 } 170 } 171 } 172 173 return true; 174} 175 176bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const { 177 if (!isLCSSAForm(DT)) 178 return false; 179 180 return std::all_of(begin(), end(), [&](const Loop *L) { 181 return L->isRecursivelyLCSSAForm(DT); 182 }); 183} 184 185bool Loop::isLoopSimplifyForm() const { 186 // Normal-form loops have a preheader, a single backedge, and all of their 187 // exits have all their predecessors inside the loop. 188 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 189} 190 191// Routines that reform the loop CFG and split edges often fail on indirectbr. 192bool Loop::isSafeToClone() const { 193 // Return false if any loop blocks contain indirectbrs, or there are any calls 194 // to noduplicate functions. 195 for (BasicBlock *BB : this->blocks()) { 196 if (isa<IndirectBrInst>(BB->getTerminator())) 197 return false; 198 199 for (Instruction &I : *BB) 200 if (auto CS = CallSite(&I)) 201 if (CS.cannotDuplicate()) 202 return false; 203 } 204 return true; 205} 206 207MDNode *Loop::getLoopID() const { 208 MDNode *LoopID = nullptr; 209 if (isLoopSimplifyForm()) { 210 LoopID = getLoopLatch()->getTerminator()->getMetadata(LLVMContext::MD_loop); 211 } else { 212 // Go through each predecessor of the loop header and check the 213 // terminator for the metadata. 214 BasicBlock *H = getHeader(); 215 for (BasicBlock *BB : this->blocks()) { 216 TerminatorInst *TI = BB->getTerminator(); 217 MDNode *MD = nullptr; 218 219 // Check if this terminator branches to the loop header. 220 for (BasicBlock *Successor : TI->successors()) { 221 if (Successor == H) { 222 MD = TI->getMetadata(LLVMContext::MD_loop); 223 break; 224 } 225 } 226 if (!MD) 227 return nullptr; 228 229 if (!LoopID) 230 LoopID = MD; 231 else if (MD != LoopID) 232 return nullptr; 233 } 234 } 235 if (!LoopID || LoopID->getNumOperands() == 0 || 236 LoopID->getOperand(0) != LoopID) 237 return nullptr; 238 return LoopID; 239} 240 241void Loop::setLoopID(MDNode *LoopID) const { 242 assert(LoopID && "Loop ID should not be null"); 243 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); 244 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); 245 246 if (isLoopSimplifyForm()) { 247 getLoopLatch()->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 248 return; 249 } 250 251 BasicBlock *H = getHeader(); 252 for (BasicBlock *BB : this->blocks()) { 253 TerminatorInst *TI = BB->getTerminator(); 254 for (BasicBlock *Successor : TI->successors()) { 255 if (Successor == H) 256 TI->setMetadata(LLVMContext::MD_loop, LoopID); 257 } 258 } 259} 260 261bool Loop::isAnnotatedParallel() const { 262 MDNode *DesiredLoopIdMetadata = getLoopID(); 263 264 if (!DesiredLoopIdMetadata) 265 return false; 266 267 // The loop branch contains the parallel loop metadata. In order to ensure 268 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 269 // dependencies (thus converted the loop back to a sequential loop), check 270 // that all the memory instructions in the loop contain parallelism metadata 271 // that point to the same unique "loop id metadata" the loop branch does. 272 for (BasicBlock *BB : this->blocks()) { 273 for (Instruction &I : *BB) { 274 if (!I.mayReadOrWriteMemory()) 275 continue; 276 277 // The memory instruction can refer to the loop identifier metadata 278 // directly or indirectly through another list metadata (in case of 279 // nested parallel loops). The loop identifier metadata refers to 280 // itself so we can check both cases with the same routine. 281 MDNode *LoopIdMD = 282 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 283 284 if (!LoopIdMD) 285 return false; 286 287 bool LoopIdMDFound = false; 288 for (const MDOperand &MDOp : LoopIdMD->operands()) { 289 if (MDOp == DesiredLoopIdMetadata) { 290 LoopIdMDFound = true; 291 break; 292 } 293 } 294 295 if (!LoopIdMDFound) 296 return false; 297 } 298 } 299 return true; 300} 301 302DebugLoc Loop::getStartLoc() const { 303 // If we have a debug location in the loop ID, then use it. 304 if (MDNode *LoopID = getLoopID()) 305 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 306 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) 307 return DebugLoc(L); 308 309 // Try the pre-header first. 310 if (BasicBlock *PHeadBB = getLoopPreheader()) 311 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 312 return DL; 313 314 // If we have no pre-header or there are no instructions with debug 315 // info in it, try the header. 316 if (BasicBlock *HeadBB = getHeader()) 317 return HeadBB->getTerminator()->getDebugLoc(); 318 319 return DebugLoc(); 320} 321 322bool Loop::hasDedicatedExits() const { 323 // Each predecessor of each exit block of a normal loop is contained 324 // within the loop. 325 SmallVector<BasicBlock *, 4> ExitBlocks; 326 getExitBlocks(ExitBlocks); 327 for (BasicBlock *BB : ExitBlocks) 328 for (BasicBlock *Predecessor : predecessors(BB)) 329 if (!contains(Predecessor)) 330 return false; 331 // All the requirements are met. 332 return true; 333} 334 335void 336Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { 337 assert(hasDedicatedExits() && 338 "getUniqueExitBlocks assumes the loop has canonical form exits!"); 339 340 SmallVector<BasicBlock *, 32> SwitchExitBlocks; 341 for (BasicBlock *BB : this->blocks()) { 342 SwitchExitBlocks.clear(); 343 for (BasicBlock *Successor : successors(BB)) { 344 // If block is inside the loop then it is not an exit block. 345 if (contains(Successor)) 346 continue; 347 348 pred_iterator PI = pred_begin(Successor); 349 BasicBlock *FirstPred = *PI; 350 351 // If current basic block is this exit block's first predecessor 352 // then only insert exit block in to the output ExitBlocks vector. 353 // This ensures that same exit block is not inserted twice into 354 // ExitBlocks vector. 355 if (BB != FirstPred) 356 continue; 357 358 // If a terminator has more then two successors, for example SwitchInst, 359 // then it is possible that there are multiple edges from current block 360 // to one exit block. 361 if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) { 362 ExitBlocks.push_back(Successor); 363 continue; 364 } 365 366 // In case of multiple edges from current block to exit block, collect 367 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of 368 // duplicate edges. 369 if (std::find(SwitchExitBlocks.begin(), SwitchExitBlocks.end(), Successor) 370 == SwitchExitBlocks.end()) { 371 SwitchExitBlocks.push_back(Successor); 372 ExitBlocks.push_back(Successor); 373 } 374 } 375 } 376} 377 378BasicBlock *Loop::getUniqueExitBlock() const { 379 SmallVector<BasicBlock *, 8> UniqueExitBlocks; 380 getUniqueExitBlocks(UniqueExitBlocks); 381 if (UniqueExitBlocks.size() == 1) 382 return UniqueExitBlocks[0]; 383 return nullptr; 384} 385 386#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 387LLVM_DUMP_METHOD void Loop::dump() const { 388 print(dbgs()); 389} 390#endif 391 392//===----------------------------------------------------------------------===// 393// UnloopUpdater implementation 394// 395 396namespace { 397/// Find the new parent loop for all blocks within the "unloop" whose last 398/// backedges has just been removed. 399class UnloopUpdater { 400 Loop &Unloop; 401 LoopInfo *LI; 402 403 LoopBlocksDFS DFS; 404 405 // Map unloop's immediate subloops to their nearest reachable parents. Nested 406 // loops within these subloops will not change parents. However, an immediate 407 // subloop's new parent will be the nearest loop reachable from either its own 408 // exits *or* any of its nested loop's exits. 409 DenseMap<Loop*, Loop*> SubloopParents; 410 411 // Flag the presence of an irreducible backedge whose destination is a block 412 // directly contained by the original unloop. 413 bool FoundIB; 414 415public: 416 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : 417 Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 418 419 void updateBlockParents(); 420 421 void removeBlocksFromAncestors(); 422 423 void updateSubloopParents(); 424 425protected: 426 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 427}; 428} // end anonymous namespace 429 430/// Update the parent loop for all blocks that are directly contained within the 431/// original "unloop". 432void UnloopUpdater::updateBlockParents() { 433 if (Unloop.getNumBlocks()) { 434 // Perform a post order CFG traversal of all blocks within this loop, 435 // propagating the nearest loop from sucessors to predecessors. 436 LoopBlocksTraversal Traversal(DFS, LI); 437 for (BasicBlock *POI : Traversal) { 438 439 Loop *L = LI->getLoopFor(POI); 440 Loop *NL = getNearestLoop(POI, L); 441 442 if (NL != L) { 443 // For reducible loops, NL is now an ancestor of Unloop. 444 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 445 "uninitialized successor"); 446 LI->changeLoopFor(POI, NL); 447 } 448 else { 449 // Or the current block is part of a subloop, in which case its parent 450 // is unchanged. 451 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 452 } 453 } 454 } 455 // Each irreducible loop within the unloop induces a round of iteration using 456 // the DFS result cached by Traversal. 457 bool Changed = FoundIB; 458 for (unsigned NIters = 0; Changed; ++NIters) { 459 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 460 461 // Iterate over the postorder list of blocks, propagating the nearest loop 462 // from successors to predecessors as before. 463 Changed = false; 464 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 465 POE = DFS.endPostorder(); POI != POE; ++POI) { 466 467 Loop *L = LI->getLoopFor(*POI); 468 Loop *NL = getNearestLoop(*POI, L); 469 if (NL != L) { 470 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 471 "uninitialized successor"); 472 LI->changeLoopFor(*POI, NL); 473 Changed = true; 474 } 475 } 476 } 477} 478 479/// Remove unloop's blocks from all ancestors below their new parents. 480void UnloopUpdater::removeBlocksFromAncestors() { 481 // Remove all unloop's blocks (including those in nested subloops) from 482 // ancestors below the new parent loop. 483 for (Loop::block_iterator BI = Unloop.block_begin(), 484 BE = Unloop.block_end(); BI != BE; ++BI) { 485 Loop *OuterParent = LI->getLoopFor(*BI); 486 if (Unloop.contains(OuterParent)) { 487 while (OuterParent->getParentLoop() != &Unloop) 488 OuterParent = OuterParent->getParentLoop(); 489 OuterParent = SubloopParents[OuterParent]; 490 } 491 // Remove blocks from former Ancestors except Unloop itself which will be 492 // deleted. 493 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 494 OldParent = OldParent->getParentLoop()) { 495 assert(OldParent && "new loop is not an ancestor of the original"); 496 OldParent->removeBlockFromLoop(*BI); 497 } 498 } 499} 500 501/// Update the parent loop for all subloops directly nested within unloop. 502void UnloopUpdater::updateSubloopParents() { 503 while (!Unloop.empty()) { 504 Loop *Subloop = *std::prev(Unloop.end()); 505 Unloop.removeChildLoop(std::prev(Unloop.end())); 506 507 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 508 if (Loop *Parent = SubloopParents[Subloop]) 509 Parent->addChildLoop(Subloop); 510 else 511 LI->addTopLevelLoop(Subloop); 512 } 513} 514 515/// Return the nearest parent loop among this block's successors. If a successor 516/// is a subloop header, consider its parent to be the nearest parent of the 517/// subloop's exits. 518/// 519/// For subloop blocks, simply update SubloopParents and return NULL. 520Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 521 522 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 523 // is considered uninitialized. 524 Loop *NearLoop = BBLoop; 525 526 Loop *Subloop = nullptr; 527 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 528 Subloop = NearLoop; 529 // Find the subloop ancestor that is directly contained within Unloop. 530 while (Subloop->getParentLoop() != &Unloop) { 531 Subloop = Subloop->getParentLoop(); 532 assert(Subloop && "subloop is not an ancestor of the original loop"); 533 } 534 // Get the current nearest parent of the Subloop exits, initially Unloop. 535 NearLoop = 536 SubloopParents.insert(std::make_pair(Subloop, &Unloop)).first->second; 537 } 538 539 succ_iterator I = succ_begin(BB), E = succ_end(BB); 540 if (I == E) { 541 assert(!Subloop && "subloop blocks must have a successor"); 542 NearLoop = nullptr; // unloop blocks may now exit the function. 543 } 544 for (; I != E; ++I) { 545 if (*I == BB) 546 continue; // self loops are uninteresting 547 548 Loop *L = LI->getLoopFor(*I); 549 if (L == &Unloop) { 550 // This successor has not been processed. This path must lead to an 551 // irreducible backedge. 552 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 553 FoundIB = true; 554 } 555 if (L != &Unloop && Unloop.contains(L)) { 556 // Successor is in a subloop. 557 if (Subloop) 558 continue; // Branching within subloops. Ignore it. 559 560 // BB branches from the original into a subloop header. 561 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 562 563 // Get the current nearest parent of the Subloop's exits. 564 L = SubloopParents[L]; 565 // L could be Unloop if the only exit was an irreducible backedge. 566 } 567 if (L == &Unloop) { 568 continue; 569 } 570 // Handle critical edges from Unloop into a sibling loop. 571 if (L && !L->contains(&Unloop)) { 572 L = L->getParentLoop(); 573 } 574 // Remember the nearest parent loop among successors or subloop exits. 575 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 576 NearLoop = L; 577 } 578 if (Subloop) { 579 SubloopParents[Subloop] = NearLoop; 580 return BBLoop; 581 } 582 return NearLoop; 583} 584 585LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) { 586 analyze(DomTree); 587} 588 589void LoopInfo::markAsRemoved(Loop *Unloop) { 590 assert(!Unloop->isInvalid() && "Loop has already been removed"); 591 Unloop->invalidate(); 592 RemovedLoops.push_back(Unloop); 593 594 // First handle the special case of no parent loop to simplify the algorithm. 595 if (!Unloop->getParentLoop()) { 596 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 597 for (Loop::block_iterator I = Unloop->block_begin(), 598 E = Unloop->block_end(); 599 I != E; ++I) { 600 601 // Don't reparent blocks in subloops. 602 if (getLoopFor(*I) != Unloop) 603 continue; 604 605 // Blocks no longer have a parent but are still referenced by Unloop until 606 // the Unloop object is deleted. 607 changeLoopFor(*I, nullptr); 608 } 609 610 // Remove the loop from the top-level LoopInfo object. 611 for (iterator I = begin();; ++I) { 612 assert(I != end() && "Couldn't find loop"); 613 if (*I == Unloop) { 614 removeLoop(I); 615 break; 616 } 617 } 618 619 // Move all of the subloops to the top-level. 620 while (!Unloop->empty()) 621 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 622 623 return; 624 } 625 626 // Update the parent loop for all blocks within the loop. Blocks within 627 // subloops will not change parents. 628 UnloopUpdater Updater(Unloop, this); 629 Updater.updateBlockParents(); 630 631 // Remove blocks from former ancestor loops. 632 Updater.removeBlocksFromAncestors(); 633 634 // Add direct subloops as children in their new parent loop. 635 Updater.updateSubloopParents(); 636 637 // Remove unloop from its parent loop. 638 Loop *ParentLoop = Unloop->getParentLoop(); 639 for (Loop::iterator I = ParentLoop->begin();; ++I) { 640 assert(I != ParentLoop->end() && "Couldn't find loop"); 641 if (*I == Unloop) { 642 ParentLoop->removeChildLoop(I); 643 break; 644 } 645 } 646} 647 648char LoopAnalysis::PassID; 649 650LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> &AM) { 651 // FIXME: Currently we create a LoopInfo from scratch for every function. 652 // This may prove to be too wasteful due to deallocating and re-allocating 653 // memory each time for the underlying map and vector datastructures. At some 654 // point it may prove worthwhile to use a freelist and recycle LoopInfo 655 // objects. I don't want to add that kind of complexity until the scope of 656 // the problem is better understood. 657 LoopInfo LI; 658 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 659 return LI; 660} 661 662PreservedAnalyses LoopPrinterPass::run(Function &F, 663 AnalysisManager<Function> &AM) { 664 AM.getResult<LoopAnalysis>(F).print(OS); 665 return PreservedAnalyses::all(); 666} 667 668PrintLoopPass::PrintLoopPass() : OS(dbgs()) {} 669PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner) 670 : OS(OS), Banner(Banner) {} 671 672PreservedAnalyses PrintLoopPass::run(Loop &L, AnalysisManager<Loop> &) { 673 OS << Banner; 674 for (auto *Block : L.blocks()) 675 if (Block) 676 Block->print(OS); 677 else 678 OS << "Printing <null> block"; 679 return PreservedAnalyses::all(); 680} 681 682//===----------------------------------------------------------------------===// 683// LoopInfo implementation 684// 685 686char LoopInfoWrapperPass::ID = 0; 687INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 688 true, true) 689INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 690INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 691 true, true) 692 693bool LoopInfoWrapperPass::runOnFunction(Function &) { 694 releaseMemory(); 695 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 696 return false; 697} 698 699void LoopInfoWrapperPass::verifyAnalysis() const { 700 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 701 // function each time verifyAnalysis is called is very expensive. The 702 // -verify-loop-info option can enable this. In order to perform some 703 // checking by default, LoopPass has been taught to call verifyLoop manually 704 // during loop pass sequences. 705 if (VerifyLoopInfo) 706 LI.verify(); 707} 708 709void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 710 AU.setPreservesAll(); 711 AU.addRequired<DominatorTreeWrapperPass>(); 712} 713 714void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 715 LI.print(OS); 716} 717 718//===----------------------------------------------------------------------===// 719// LoopBlocksDFS implementation 720// 721 722/// Traverse the loop blocks and store the DFS result. 723/// Useful for clients that just want the final DFS result and don't need to 724/// visit blocks during the initial traversal. 725void LoopBlocksDFS::perform(LoopInfo *LI) { 726 LoopBlocksTraversal Traversal(*this, LI); 727 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 728 POE = Traversal.end(); POI != POE; ++POI) ; 729} 730