1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines several CodeGen-specific LLVM IR analysis utilities.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/Analysis.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineModuleInfo.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Module.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetSubtargetInfo.h"
30#include "llvm/Transforms/Utils/GlobalStatus.h"
31
32using namespace llvm;
33
34/// Compute the linearized index of a member in a nested aggregate/struct/array
35/// by recursing and accumulating CurIndex as long as there are indices in the
36/// index list.
37unsigned llvm::ComputeLinearIndex(Type *Ty,
38                                  const unsigned *Indices,
39                                  const unsigned *IndicesEnd,
40                                  unsigned CurIndex) {
41  // Base case: We're done.
42  if (Indices && Indices == IndicesEnd)
43    return CurIndex;
44
45  // Given a struct type, recursively traverse the elements.
46  if (StructType *STy = dyn_cast<StructType>(Ty)) {
47    for (StructType::element_iterator EB = STy->element_begin(),
48                                      EI = EB,
49                                      EE = STy->element_end();
50        EI != EE; ++EI) {
51      if (Indices && *Indices == unsigned(EI - EB))
52        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
53      CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
54    }
55    assert(!Indices && "Unexpected out of bound");
56    return CurIndex;
57  }
58  // Given an array type, recursively traverse the elements.
59  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
60    Type *EltTy = ATy->getElementType();
61    unsigned NumElts = ATy->getNumElements();
62    // Compute the Linear offset when jumping one element of the array
63    unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
64    if (Indices) {
65      assert(*Indices < NumElts && "Unexpected out of bound");
66      // If the indice is inside the array, compute the index to the requested
67      // elt and recurse inside the element with the end of the indices list
68      CurIndex += EltLinearOffset* *Indices;
69      return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
70    }
71    CurIndex += EltLinearOffset*NumElts;
72    return CurIndex;
73  }
74  // We haven't found the type we're looking for, so keep searching.
75  return CurIndex + 1;
76}
77
78/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
79/// EVTs that represent all the individual underlying
80/// non-aggregate types that comprise it.
81///
82/// If Offsets is non-null, it points to a vector to be filled in
83/// with the in-memory offsets of each of the individual values.
84///
85void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
86                           Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
87                           SmallVectorImpl<uint64_t> *Offsets,
88                           uint64_t StartingOffset) {
89  // Given a struct type, recursively traverse the elements.
90  if (StructType *STy = dyn_cast<StructType>(Ty)) {
91    const StructLayout *SL = DL.getStructLayout(STy);
92    for (StructType::element_iterator EB = STy->element_begin(),
93                                      EI = EB,
94                                      EE = STy->element_end();
95         EI != EE; ++EI)
96      ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
97                      StartingOffset + SL->getElementOffset(EI - EB));
98    return;
99  }
100  // Given an array type, recursively traverse the elements.
101  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
102    Type *EltTy = ATy->getElementType();
103    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
104    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
105      ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
106                      StartingOffset + i * EltSize);
107    return;
108  }
109  // Interpret void as zero return values.
110  if (Ty->isVoidTy())
111    return;
112  // Base case: we can get an EVT for this LLVM IR type.
113  ValueVTs.push_back(TLI.getValueType(DL, Ty));
114  if (Offsets)
115    Offsets->push_back(StartingOffset);
116}
117
118/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
119GlobalValue *llvm::ExtractTypeInfo(Value *V) {
120  V = V->stripPointerCasts();
121  GlobalValue *GV = dyn_cast<GlobalValue>(V);
122  GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
123
124  if (Var && Var->getName() == "llvm.eh.catch.all.value") {
125    assert(Var->hasInitializer() &&
126           "The EH catch-all value must have an initializer");
127    Value *Init = Var->getInitializer();
128    GV = dyn_cast<GlobalValue>(Init);
129    if (!GV) V = cast<ConstantPointerNull>(Init);
130  }
131
132  assert((GV || isa<ConstantPointerNull>(V)) &&
133         "TypeInfo must be a global variable or NULL");
134  return GV;
135}
136
137/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
138/// processed uses a memory 'm' constraint.
139bool
140llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
141                                const TargetLowering &TLI) {
142  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
143    InlineAsm::ConstraintInfo &CI = CInfos[i];
144    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
145      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
146      if (CType == TargetLowering::C_Memory)
147        return true;
148    }
149
150    // Indirect operand accesses access memory.
151    if (CI.isIndirect)
152      return true;
153  }
154
155  return false;
156}
157
158/// getFCmpCondCode - Return the ISD condition code corresponding to
159/// the given LLVM IR floating-point condition code.  This includes
160/// consideration of global floating-point math flags.
161///
162ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
163  switch (Pred) {
164  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
165  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
166  case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
167  case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
168  case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
169  case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
170  case FCmpInst::FCMP_ONE:   return ISD::SETONE;
171  case FCmpInst::FCMP_ORD:   return ISD::SETO;
172  case FCmpInst::FCMP_UNO:   return ISD::SETUO;
173  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
174  case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
175  case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
176  case FCmpInst::FCMP_ULT:   return ISD::SETULT;
177  case FCmpInst::FCMP_ULE:   return ISD::SETULE;
178  case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
179  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
180  default: llvm_unreachable("Invalid FCmp predicate opcode!");
181  }
182}
183
184ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
185  switch (CC) {
186    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
187    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
188    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
189    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
190    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
191    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
192    default: return CC;
193  }
194}
195
196/// getICmpCondCode - Return the ISD condition code corresponding to
197/// the given LLVM IR integer condition code.
198///
199ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
200  switch (Pred) {
201  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
202  case ICmpInst::ICMP_NE:  return ISD::SETNE;
203  case ICmpInst::ICMP_SLE: return ISD::SETLE;
204  case ICmpInst::ICMP_ULE: return ISD::SETULE;
205  case ICmpInst::ICMP_SGE: return ISD::SETGE;
206  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
207  case ICmpInst::ICMP_SLT: return ISD::SETLT;
208  case ICmpInst::ICMP_ULT: return ISD::SETULT;
209  case ICmpInst::ICMP_SGT: return ISD::SETGT;
210  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
211  default:
212    llvm_unreachable("Invalid ICmp predicate opcode!");
213  }
214}
215
216static bool isNoopBitcast(Type *T1, Type *T2,
217                          const TargetLoweringBase& TLI) {
218  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
219         (isa<VectorType>(T1) && isa<VectorType>(T2) &&
220          TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
221}
222
223/// Look through operations that will be free to find the earliest source of
224/// this value.
225///
226/// @param ValLoc If V has aggegate type, we will be interested in a particular
227/// scalar component. This records its address; the reverse of this list gives a
228/// sequence of indices appropriate for an extractvalue to locate the important
229/// value. This value is updated during the function and on exit will indicate
230/// similar information for the Value returned.
231///
232/// @param DataBits If this function looks through truncate instructions, this
233/// will record the smallest size attained.
234static const Value *getNoopInput(const Value *V,
235                                 SmallVectorImpl<unsigned> &ValLoc,
236                                 unsigned &DataBits,
237                                 const TargetLoweringBase &TLI,
238                                 const DataLayout &DL) {
239  while (true) {
240    // Try to look through V1; if V1 is not an instruction, it can't be looked
241    // through.
242    const Instruction *I = dyn_cast<Instruction>(V);
243    if (!I || I->getNumOperands() == 0) return V;
244    const Value *NoopInput = nullptr;
245
246    Value *Op = I->getOperand(0);
247    if (isa<BitCastInst>(I)) {
248      // Look through truly no-op bitcasts.
249      if (isNoopBitcast(Op->getType(), I->getType(), TLI))
250        NoopInput = Op;
251    } else if (isa<GetElementPtrInst>(I)) {
252      // Look through getelementptr
253      if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
254        NoopInput = Op;
255    } else if (isa<IntToPtrInst>(I)) {
256      // Look through inttoptr.
257      // Make sure this isn't a truncating or extending cast.  We could
258      // support this eventually, but don't bother for now.
259      if (!isa<VectorType>(I->getType()) &&
260          DL.getPointerSizeInBits() ==
261              cast<IntegerType>(Op->getType())->getBitWidth())
262        NoopInput = Op;
263    } else if (isa<PtrToIntInst>(I)) {
264      // Look through ptrtoint.
265      // Make sure this isn't a truncating or extending cast.  We could
266      // support this eventually, but don't bother for now.
267      if (!isa<VectorType>(I->getType()) &&
268          DL.getPointerSizeInBits() ==
269              cast<IntegerType>(I->getType())->getBitWidth())
270        NoopInput = Op;
271    } else if (isa<TruncInst>(I) &&
272               TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
273      DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
274      NoopInput = Op;
275    } else if (isa<CallInst>(I)) {
276      // Look through call (skipping callee)
277      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
278           i != e; ++i) {
279        unsigned attrInd = i - I->op_begin() + 1;
280        if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
281            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
282          NoopInput = *i;
283          break;
284        }
285      }
286    } else if (isa<InvokeInst>(I)) {
287      // Look through invoke (skipping BB, BB, Callee)
288      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
289           i != e; ++i) {
290        unsigned attrInd = i - I->op_begin() + 1;
291        if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
292            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
293          NoopInput = *i;
294          break;
295        }
296      }
297    } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
298      // Value may come from either the aggregate or the scalar
299      ArrayRef<unsigned> InsertLoc = IVI->getIndices();
300      if (ValLoc.size() >= InsertLoc.size() &&
301          std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
302        // The type being inserted is a nested sub-type of the aggregate; we
303        // have to remove those initial indices to get the location we're
304        // interested in for the operand.
305        ValLoc.resize(ValLoc.size() - InsertLoc.size());
306        NoopInput = IVI->getInsertedValueOperand();
307      } else {
308        // The struct we're inserting into has the value we're interested in, no
309        // change of address.
310        NoopInput = Op;
311      }
312    } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
313      // The part we're interested in will inevitably be some sub-section of the
314      // previous aggregate. Combine the two paths to obtain the true address of
315      // our element.
316      ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
317      ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
318      NoopInput = Op;
319    }
320    // Terminate if we couldn't find anything to look through.
321    if (!NoopInput)
322      return V;
323
324    V = NoopInput;
325  }
326}
327
328/// Return true if this scalar return value only has bits discarded on its path
329/// from the "tail call" to the "ret". This includes the obvious noop
330/// instructions handled by getNoopInput above as well as free truncations (or
331/// extensions prior to the call).
332static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
333                                 SmallVectorImpl<unsigned> &RetIndices,
334                                 SmallVectorImpl<unsigned> &CallIndices,
335                                 bool AllowDifferingSizes,
336                                 const TargetLoweringBase &TLI,
337                                 const DataLayout &DL) {
338
339  // Trace the sub-value needed by the return value as far back up the graph as
340  // possible, in the hope that it will intersect with the value produced by the
341  // call. In the simple case with no "returned" attribute, the hope is actually
342  // that we end up back at the tail call instruction itself.
343  unsigned BitsRequired = UINT_MAX;
344  RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
345
346  // If this slot in the value returned is undef, it doesn't matter what the
347  // call puts there, it'll be fine.
348  if (isa<UndefValue>(RetVal))
349    return true;
350
351  // Now do a similar search up through the graph to find where the value
352  // actually returned by the "tail call" comes from. In the simple case without
353  // a "returned" attribute, the search will be blocked immediately and the loop
354  // a Noop.
355  unsigned BitsProvided = UINT_MAX;
356  CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
357
358  // There's no hope if we can't actually trace them to (the same part of!) the
359  // same value.
360  if (CallVal != RetVal || CallIndices != RetIndices)
361    return false;
362
363  // However, intervening truncates may have made the call non-tail. Make sure
364  // all the bits that are needed by the "ret" have been provided by the "tail
365  // call". FIXME: with sufficiently cunning bit-tracking, we could look through
366  // extensions too.
367  if (BitsProvided < BitsRequired ||
368      (!AllowDifferingSizes && BitsProvided != BitsRequired))
369    return false;
370
371  return true;
372}
373
374/// For an aggregate type, determine whether a given index is within bounds or
375/// not.
376static bool indexReallyValid(CompositeType *T, unsigned Idx) {
377  if (ArrayType *AT = dyn_cast<ArrayType>(T))
378    return Idx < AT->getNumElements();
379
380  return Idx < cast<StructType>(T)->getNumElements();
381}
382
383/// Move the given iterators to the next leaf type in depth first traversal.
384///
385/// Performs a depth-first traversal of the type as specified by its arguments,
386/// stopping at the next leaf node (which may be a legitimate scalar type or an
387/// empty struct or array).
388///
389/// @param SubTypes List of the partial components making up the type from
390/// outermost to innermost non-empty aggregate. The element currently
391/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
392///
393/// @param Path Set of extractvalue indices leading from the outermost type
394/// (SubTypes[0]) to the leaf node currently represented.
395///
396/// @returns true if a new type was found, false otherwise. Calling this
397/// function again on a finished iterator will repeatedly return
398/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
399/// aggregate or a non-aggregate
400static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
401                                  SmallVectorImpl<unsigned> &Path) {
402  // First march back up the tree until we can successfully increment one of the
403  // coordinates in Path.
404  while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
405    Path.pop_back();
406    SubTypes.pop_back();
407  }
408
409  // If we reached the top, then the iterator is done.
410  if (Path.empty())
411    return false;
412
413  // We know there's *some* valid leaf now, so march back down the tree picking
414  // out the left-most element at each node.
415  ++Path.back();
416  Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
417  while (DeeperType->isAggregateType()) {
418    CompositeType *CT = cast<CompositeType>(DeeperType);
419    if (!indexReallyValid(CT, 0))
420      return true;
421
422    SubTypes.push_back(CT);
423    Path.push_back(0);
424
425    DeeperType = CT->getTypeAtIndex(0U);
426  }
427
428  return true;
429}
430
431/// Find the first non-empty, scalar-like type in Next and setup the iterator
432/// components.
433///
434/// Assuming Next is an aggregate of some kind, this function will traverse the
435/// tree from left to right (i.e. depth-first) looking for the first
436/// non-aggregate type which will play a role in function return.
437///
438/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
439/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
440/// i32 in that type.
441static bool firstRealType(Type *Next,
442                          SmallVectorImpl<CompositeType *> &SubTypes,
443                          SmallVectorImpl<unsigned> &Path) {
444  // First initialise the iterator components to the first "leaf" node
445  // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
446  // despite nominally being an aggregate).
447  while (Next->isAggregateType() &&
448         indexReallyValid(cast<CompositeType>(Next), 0)) {
449    SubTypes.push_back(cast<CompositeType>(Next));
450    Path.push_back(0);
451    Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
452  }
453
454  // If there's no Path now, Next was originally scalar already (or empty
455  // leaf). We're done.
456  if (Path.empty())
457    return true;
458
459  // Otherwise, use normal iteration to keep looking through the tree until we
460  // find a non-aggregate type.
461  while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
462    if (!advanceToNextLeafType(SubTypes, Path))
463      return false;
464  }
465
466  return true;
467}
468
469/// Set the iterator data-structures to the next non-empty, non-aggregate
470/// subtype.
471static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
472                         SmallVectorImpl<unsigned> &Path) {
473  do {
474    if (!advanceToNextLeafType(SubTypes, Path))
475      return false;
476
477    assert(!Path.empty() && "found a leaf but didn't set the path?");
478  } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
479
480  return true;
481}
482
483
484/// Test if the given instruction is in a position to be optimized
485/// with a tail-call. This roughly means that it's in a block with
486/// a return and there's nothing that needs to be scheduled
487/// between it and the return.
488///
489/// This function only tests target-independent requirements.
490bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
491  const Instruction *I = CS.getInstruction();
492  const BasicBlock *ExitBB = I->getParent();
493  const TerminatorInst *Term = ExitBB->getTerminator();
494  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
495
496  // The block must end in a return statement or unreachable.
497  //
498  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
499  // an unreachable, for now. The way tailcall optimization is currently
500  // implemented means it will add an epilogue followed by a jump. That is
501  // not profitable. Also, if the callee is a special function (e.g.
502  // longjmp on x86), it can end up causing miscompilation that has not
503  // been fully understood.
504  if (!Ret &&
505      (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
506    return false;
507
508  // If I will have a chain, make sure no other instruction that will have a
509  // chain interposes between I and the return.
510  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
511      !isSafeToSpeculativelyExecute(I))
512    for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
513      if (&*BBI == I)
514        break;
515      // Debug info intrinsics do not get in the way of tail call optimization.
516      if (isa<DbgInfoIntrinsic>(BBI))
517        continue;
518      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
519          !isSafeToSpeculativelyExecute(&*BBI))
520        return false;
521    }
522
523  const Function *F = ExitBB->getParent();
524  return returnTypeIsEligibleForTailCall(
525      F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
526}
527
528bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
529                                           const Instruction *I,
530                                           const ReturnInst *Ret,
531                                           const TargetLoweringBase &TLI) {
532  // If the block ends with a void return or unreachable, it doesn't matter
533  // what the call's return type is.
534  if (!Ret || Ret->getNumOperands() == 0) return true;
535
536  // If the return value is undef, it doesn't matter what the call's
537  // return type is.
538  if (isa<UndefValue>(Ret->getOperand(0))) return true;
539
540  // Make sure the attributes attached to each return are compatible.
541  AttrBuilder CallerAttrs(F->getAttributes(),
542                          AttributeSet::ReturnIndex);
543  AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
544                          AttributeSet::ReturnIndex);
545
546  // Noalias is completely benign as far as calling convention goes, it
547  // shouldn't affect whether the call is a tail call.
548  CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
549  CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
550
551  bool AllowDifferingSizes = true;
552  if (CallerAttrs.contains(Attribute::ZExt)) {
553    if (!CalleeAttrs.contains(Attribute::ZExt))
554      return false;
555
556    AllowDifferingSizes = false;
557    CallerAttrs.removeAttribute(Attribute::ZExt);
558    CalleeAttrs.removeAttribute(Attribute::ZExt);
559  } else if (CallerAttrs.contains(Attribute::SExt)) {
560    if (!CalleeAttrs.contains(Attribute::SExt))
561      return false;
562
563    AllowDifferingSizes = false;
564    CallerAttrs.removeAttribute(Attribute::SExt);
565    CalleeAttrs.removeAttribute(Attribute::SExt);
566  }
567
568  // If they're still different, there's some facet we don't understand
569  // (currently only "inreg", but in future who knows). It may be OK but the
570  // only safe option is to reject the tail call.
571  if (CallerAttrs != CalleeAttrs)
572    return false;
573
574  const Value *RetVal = Ret->getOperand(0), *CallVal = I;
575  SmallVector<unsigned, 4> RetPath, CallPath;
576  SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
577
578  bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
579  bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
580
581  // Nothing's actually returned, it doesn't matter what the callee put there
582  // it's a valid tail call.
583  if (RetEmpty)
584    return true;
585
586  // Iterate pairwise through each of the value types making up the tail call
587  // and the corresponding return. For each one we want to know whether it's
588  // essentially going directly from the tail call to the ret, via operations
589  // that end up not generating any code.
590  //
591  // We allow a certain amount of covariance here. For example it's permitted
592  // for the tail call to define more bits than the ret actually cares about
593  // (e.g. via a truncate).
594  do {
595    if (CallEmpty) {
596      // We've exhausted the values produced by the tail call instruction, the
597      // rest are essentially undef. The type doesn't really matter, but we need
598      // *something*.
599      Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
600      CallVal = UndefValue::get(SlotType);
601    }
602
603    // The manipulations performed when we're looking through an insertvalue or
604    // an extractvalue would happen at the front of the RetPath list, so since
605    // we have to copy it anyway it's more efficient to create a reversed copy.
606    SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
607    SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
608
609    // Finally, we can check whether the value produced by the tail call at this
610    // index is compatible with the value we return.
611    if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
612                              AllowDifferingSizes, TLI,
613                              F->getParent()->getDataLayout()))
614      return false;
615
616    CallEmpty  = !nextRealType(CallSubTypes, CallPath);
617  } while(nextRealType(RetSubTypes, RetPath));
618
619  return true;
620}
621
622bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
623  if (!GV->hasLinkOnceODRLinkage())
624    return false;
625
626  // We assume that anyone who sets global unnamed_addr on a non-constant knows
627  // what they're doing.
628  if (GV->hasGlobalUnnamedAddr())
629    return true;
630
631  // If it is a non constant variable, it needs to be uniqued across shared
632  // objects.
633  if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
634    if (!Var->isConstant())
635      return false;
636  }
637
638  return GV->hasAtLeastLocalUnnamedAddr();
639}
640
641static void collectFuncletMembers(
642    DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet,
643    const MachineBasicBlock *MBB) {
644  SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
645  while (!Worklist.empty()) {
646    const MachineBasicBlock *Visiting = Worklist.pop_back_val();
647    // Don't follow blocks which start new funclets.
648    if (Visiting->isEHPad() && Visiting != MBB)
649      continue;
650
651    // Add this MBB to our funclet.
652    auto P = FuncletMembership.insert(std::make_pair(Visiting, Funclet));
653
654    // Don't revisit blocks.
655    if (!P.second) {
656      assert(P.first->second == Funclet && "MBB is part of two funclets!");
657      continue;
658    }
659
660    // Returns are boundaries where funclet transfer can occur, don't follow
661    // successors.
662    if (Visiting->isReturnBlock())
663      continue;
664
665    for (const MachineBasicBlock *Succ : Visiting->successors())
666      Worklist.push_back(Succ);
667  }
668}
669
670DenseMap<const MachineBasicBlock *, int>
671llvm::getFuncletMembership(const MachineFunction &MF) {
672  DenseMap<const MachineBasicBlock *, int> FuncletMembership;
673
674  // We don't have anything to do if there aren't any EH pads.
675  if (!MF.getMMI().hasEHFunclets())
676    return FuncletMembership;
677
678  int EntryBBNumber = MF.front().getNumber();
679  bool IsSEH = isAsynchronousEHPersonality(
680      classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
681
682  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
683  SmallVector<const MachineBasicBlock *, 16> FuncletBlocks;
684  SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
685  SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
686  SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
687  for (const MachineBasicBlock &MBB : MF) {
688    if (MBB.isEHFuncletEntry()) {
689      FuncletBlocks.push_back(&MBB);
690    } else if (IsSEH && MBB.isEHPad()) {
691      SEHCatchPads.push_back(&MBB);
692    } else if (MBB.pred_empty()) {
693      UnreachableBlocks.push_back(&MBB);
694    }
695
696    MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
697    // CatchPads are not funclets for SEH so do not consider CatchRet to
698    // transfer control to another funclet.
699    if (MBBI->getOpcode() != TII->getCatchReturnOpcode())
700      continue;
701
702    // FIXME: SEH CatchPads are not necessarily in the parent function:
703    // they could be inside a finally block.
704    const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
705    const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
706    CatchRetSuccessors.push_back(
707        {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
708  }
709
710  // We don't have anything to do if there aren't any EH pads.
711  if (FuncletBlocks.empty())
712    return FuncletMembership;
713
714  // Identify all the basic blocks reachable from the function entry.
715  collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front());
716  // All blocks not part of a funclet are in the parent function.
717  for (const MachineBasicBlock *MBB : UnreachableBlocks)
718    collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
719  // Next, identify all the blocks inside the funclets.
720  for (const MachineBasicBlock *MBB : FuncletBlocks)
721    collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB);
722  // SEH CatchPads aren't really funclets, handle them separately.
723  for (const MachineBasicBlock *MBB : SEHCatchPads)
724    collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
725  // Finally, identify all the targets of a catchret.
726  for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
727       CatchRetSuccessors)
728    collectFuncletMembers(FuncletMembership, CatchRetPair.second,
729                          CatchRetPair.first);
730  return FuncletMembership;
731}
732