1//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// The LiveRangeEdit class represents changes done to a virtual register when it 11// is spilled or split. 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/LiveRangeEdit.h" 15#include "llvm/ADT/Statistic.h" 16#include "llvm/CodeGen/CalcSpillWeights.h" 17#include "llvm/CodeGen/LiveIntervalAnalysis.h" 18#include "llvm/CodeGen/MachineRegisterInfo.h" 19#include "llvm/CodeGen/VirtRegMap.h" 20#include "llvm/Support/Debug.h" 21#include "llvm/Support/raw_ostream.h" 22#include "llvm/Target/TargetInstrInfo.h" 23 24using namespace llvm; 25 26#define DEBUG_TYPE "regalloc" 27 28STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 29STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 30STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 31 32void LiveRangeEdit::Delegate::anchor() { } 33 34LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) { 35 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 36 if (VRM) { 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 } 39 LiveInterval &LI = LIS.createEmptyInterval(VReg); 40 return LI; 41} 42 43unsigned LiveRangeEdit::createFrom(unsigned OldReg) { 44 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 45 if (VRM) { 46 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 47 } 48 return VReg; 49} 50 51bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 52 const MachineInstr *DefMI, 53 AliasAnalysis *aa) { 54 assert(DefMI && "Missing instruction"); 55 ScannedRemattable = true; 56 if (!TII.isTriviallyReMaterializable(*DefMI, aa)) 57 return false; 58 Remattable.insert(VNI); 59 return true; 60} 61 62void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { 63 for (VNInfo *VNI : getParent().valnos) { 64 if (VNI->isUnused()) 65 continue; 66 unsigned Original = VRM->getOriginal(getReg()); 67 LiveInterval &OrigLI = LIS.getInterval(Original); 68 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 69 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 70 if (!DefMI) 71 continue; 72 checkRematerializable(OrigVNI, DefMI, aa); 73 } 74 ScannedRemattable = true; 75} 76 77bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { 78 if (!ScannedRemattable) 79 scanRemattable(aa); 80 return !Remattable.empty(); 81} 82 83/// allUsesAvailableAt - Return true if all registers used by OrigMI at 84/// OrigIdx are also available with the same value at UseIdx. 85bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 86 SlotIndex OrigIdx, 87 SlotIndex UseIdx) const { 88 OrigIdx = OrigIdx.getRegSlot(true); 89 UseIdx = UseIdx.getRegSlot(true); 90 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 91 const MachineOperand &MO = OrigMI->getOperand(i); 92 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 93 continue; 94 95 // We can't remat physreg uses, unless it is a constant. 96 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 97 if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent())) 98 continue; 99 return false; 100 } 101 102 LiveInterval &li = LIS.getInterval(MO.getReg()); 103 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 104 if (!OVNI) 105 continue; 106 107 // Don't allow rematerialization immediately after the original def. 108 // It would be incorrect if OrigMI redefines the register. 109 // See PR14098. 110 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 111 return false; 112 113 if (OVNI != li.getVNInfoAt(UseIdx)) 114 return false; 115 } 116 return true; 117} 118 119bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 120 SlotIndex UseIdx, bool cheapAsAMove) { 121 assert(ScannedRemattable && "Call anyRematerializable first"); 122 123 // Use scanRemattable info. 124 if (!Remattable.count(OrigVNI)) 125 return false; 126 127 // No defining instruction provided. 128 SlotIndex DefIdx; 129 assert(RM.OrigMI && "No defining instruction for remattable value"); 130 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 131 132 // If only cheap remats were requested, bail out early. 133 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) 134 return false; 135 136 // Verify that all used registers are available with the same values. 137 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 138 return false; 139 140 return true; 141} 142 143SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 144 MachineBasicBlock::iterator MI, 145 unsigned DestReg, 146 const Remat &RM, 147 const TargetRegisterInfo &tri, 148 bool Late) { 149 assert(RM.OrigMI && "Invalid remat"); 150 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); 151 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 152 // to false anyway in case the isDead flag of RM.OrigMI's dest register 153 // is true. 154 (*--MI).getOperand(0).setIsDead(false); 155 Rematted.insert(RM.ParentVNI); 156 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 157} 158 159void LiveRangeEdit::eraseVirtReg(unsigned Reg) { 160 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 161 LIS.removeInterval(Reg); 162} 163 164bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 165 SmallVectorImpl<MachineInstr*> &Dead) { 166 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 167 168 // Check that there is a single def and a single use. 169 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 170 MachineInstr *MI = MO.getParent(); 171 if (MO.isDef()) { 172 if (DefMI && DefMI != MI) 173 return false; 174 if (!MI->canFoldAsLoad()) 175 return false; 176 DefMI = MI; 177 } else if (!MO.isUndef()) { 178 if (UseMI && UseMI != MI) 179 return false; 180 // FIXME: Targets don't know how to fold subreg uses. 181 if (MO.getSubReg()) 182 return false; 183 UseMI = MI; 184 } 185 } 186 if (!DefMI || !UseMI) 187 return false; 188 189 // Since we're moving the DefMI load, make sure we're not extending any live 190 // ranges. 191 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 192 LIS.getInstructionIndex(*UseMI))) 193 return false; 194 195 // We also need to make sure it is safe to move the load. 196 // Assume there are stores between DefMI and UseMI. 197 bool SawStore = true; 198 if (!DefMI->isSafeToMove(nullptr, SawStore)) 199 return false; 200 201 DEBUG(dbgs() << "Try to fold single def: " << *DefMI 202 << " into single use: " << *UseMI); 203 204 SmallVector<unsigned, 8> Ops; 205 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 206 return false; 207 208 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); 209 if (!FoldMI) 210 return false; 211 DEBUG(dbgs() << " folded: " << *FoldMI); 212 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 213 UseMI->eraseFromParent(); 214 DefMI->addRegisterDead(LI->reg, nullptr); 215 Dead.push_back(DefMI); 216 ++NumDCEFoldedLoads; 217 return true; 218} 219 220bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 221 const MachineOperand &MO) const { 222 const MachineInstr &MI = *MO.getParent(); 223 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 224 if (LI.Query(Idx).isKill()) 225 return true; 226 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 227 unsigned SubReg = MO.getSubReg(); 228 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 229 for (const LiveInterval::SubRange &S : LI.subranges()) { 230 if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill()) 231 return true; 232 } 233 return false; 234} 235 236/// Find all live intervals that need to shrink, then remove the instruction. 237void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, 238 AliasAnalysis *AA) { 239 assert(MI->allDefsAreDead() && "Def isn't really dead"); 240 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 241 242 // Never delete a bundled instruction. 243 if (MI->isBundled()) { 244 return; 245 } 246 // Never delete inline asm. 247 if (MI->isInlineAsm()) { 248 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 249 return; 250 } 251 252 // Use the same criteria as DeadMachineInstructionElim. 253 bool SawStore = false; 254 if (!MI->isSafeToMove(nullptr, SawStore)) { 255 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 256 return; 257 } 258 259 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 260 261 // Collect virtual registers to be erased after MI is gone. 262 SmallVector<unsigned, 8> RegsToErase; 263 bool ReadsPhysRegs = false; 264 bool isOrigDef = false; 265 unsigned Dest; 266 if (VRM && MI->getOperand(0).isReg()) { 267 Dest = MI->getOperand(0).getReg(); 268 unsigned Original = VRM->getOriginal(Dest); 269 LiveInterval &OrigLI = LIS.getInterval(Original); 270 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 271 // The original live-range may have been shrunk to 272 // an empty live-range. It happens when it is dead, but 273 // we still keep it around to be able to rematerialize 274 // other values that depend on it. 275 if (OrigVNI) 276 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 277 } 278 279 // Check for live intervals that may shrink 280 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 281 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 282 if (!MOI->isReg()) 283 continue; 284 unsigned Reg = MOI->getReg(); 285 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 286 // Check if MI reads any unreserved physregs. 287 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 288 ReadsPhysRegs = true; 289 else if (MOI->isDef()) 290 LIS.removePhysRegDefAt(Reg, Idx); 291 continue; 292 } 293 LiveInterval &LI = LIS.getInterval(Reg); 294 295 // Shrink read registers, unless it is likely to be expensive and 296 // unlikely to change anything. We typically don't want to shrink the 297 // PIC base register that has lots of uses everywhere. 298 // Always shrink COPY uses that probably come from live range splitting. 299 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || 300 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) 301 ToShrink.insert(&LI); 302 303 // Remove defined value. 304 if (MOI->isDef()) { 305 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 306 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 307 LIS.removeVRegDefAt(LI, Idx); 308 if (LI.empty()) 309 RegsToErase.push_back(Reg); 310 } 311 } 312 313 // Currently, we don't support DCE of physreg live ranges. If MI reads 314 // any unreserved physregs, don't erase the instruction, but turn it into 315 // a KILL instead. This way, the physreg live ranges don't end up 316 // dangling. 317 // FIXME: It would be better to have something like shrinkToUses() for 318 // physregs. That could potentially enable more DCE and it would free up 319 // the physreg. It would not happen often, though. 320 if (ReadsPhysRegs) { 321 MI->setDesc(TII.get(TargetOpcode::KILL)); 322 // Remove all operands that aren't physregs. 323 for (unsigned i = MI->getNumOperands(); i; --i) { 324 const MachineOperand &MO = MI->getOperand(i-1); 325 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 326 continue; 327 MI->RemoveOperand(i-1); 328 } 329 DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 330 } else { 331 // If the dest of MI is an original reg and MI is reMaterializable, 332 // don't delete the inst. Replace the dest with a new reg, and keep 333 // the inst for remat of other siblings. The inst is saved in 334 // LiveRangeEdit::DeadRemats and will be deleted after all the 335 // allocations of the func are done. 336 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) { 337 LiveInterval &NewLI = createEmptyIntervalFrom(Dest); 338 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); 339 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 340 pop_back(); 341 markDeadRemat(MI); 342 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 343 MI->substituteRegister(Dest, NewLI.reg, 0, TRI); 344 MI->getOperand(0).setIsDead(true); 345 } else { 346 if (TheDelegate) 347 TheDelegate->LRE_WillEraseInstruction(MI); 348 LIS.RemoveMachineInstrFromMaps(*MI); 349 MI->eraseFromParent(); 350 ++NumDCEDeleted; 351 } 352 } 353 354 // Erase any virtregs that are now empty and unused. There may be <undef> 355 // uses around. Keep the empty live range in that case. 356 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 357 unsigned Reg = RegsToErase[i]; 358 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 359 ToShrink.remove(&LIS.getInterval(Reg)); 360 eraseVirtReg(Reg); 361 } 362 } 363} 364 365void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 366 ArrayRef<unsigned> RegsBeingSpilled, 367 AliasAnalysis *AA) { 368 ToShrinkSet ToShrink; 369 370 for (;;) { 371 // Erase all dead defs. 372 while (!Dead.empty()) 373 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); 374 375 if (ToShrink.empty()) 376 break; 377 378 // Shrink just one live interval. Then delete new dead defs. 379 LiveInterval *LI = ToShrink.back(); 380 ToShrink.pop_back(); 381 if (foldAsLoad(LI, Dead)) 382 continue; 383 unsigned VReg = LI->reg; 384 if (TheDelegate) 385 TheDelegate->LRE_WillShrinkVirtReg(VReg); 386 if (!LIS.shrinkToUses(LI, &Dead)) 387 continue; 388 389 // Don't create new intervals for a register being spilled. 390 // The new intervals would have to be spilled anyway so its not worth it. 391 // Also they currently aren't spilled so creating them and not spilling 392 // them results in incorrect code. 393 bool BeingSpilled = false; 394 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 395 if (VReg == RegsBeingSpilled[i]) { 396 BeingSpilled = true; 397 break; 398 } 399 } 400 401 if (BeingSpilled) continue; 402 403 // LI may have been separated, create new intervals. 404 LI->RenumberValues(); 405 SmallVector<LiveInterval*, 8> SplitLIs; 406 LIS.splitSeparateComponents(*LI, SplitLIs); 407 if (!SplitLIs.empty()) 408 ++NumFracRanges; 409 410 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; 411 for (const LiveInterval *SplitLI : SplitLIs) { 412 // If LI is an original interval that hasn't been split yet, make the new 413 // intervals their own originals instead of referring to LI. The original 414 // interval must contain all the split products, and LI doesn't. 415 if (Original != VReg && Original != 0) 416 VRM->setIsSplitFromReg(SplitLI->reg, Original); 417 if (TheDelegate) 418 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); 419 } 420 } 421} 422 423// Keep track of new virtual registers created via 424// MachineRegisterInfo::createVirtualRegister. 425void 426LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) 427{ 428 if (VRM) 429 VRM->grow(); 430 431 NewRegs.push_back(VReg); 432} 433 434void 435LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 436 const MachineLoopInfo &Loops, 437 const MachineBlockFrequencyInfo &MBFI) { 438 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); 439 for (unsigned I = 0, Size = size(); I < Size; ++I) { 440 LiveInterval &LI = LIS.getInterval(get(I)); 441 if (MRI.recomputeRegClass(LI.reg)) 442 DEBUG({ 443 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 444 dbgs() << "Inflated " << PrintReg(LI.reg) << " to " 445 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; 446 }); 447 VRAI.calculateSpillWeightAndHint(LI); 448 } 449} 450