1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AllocationOrder.h"
16#include "InterferenceCache.h"
17#include "LiveDebugVariables.h"
18#include "RegAllocBase.h"
19#include "SpillPlacement.h"
20#include "Spiller.h"
21#include "SplitKit.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/CalcSpillWeights.h"
25#include "llvm/CodeGen/EdgeBundles.h"
26#include "llvm/CodeGen/LiveIntervalAnalysis.h"
27#include "llvm/CodeGen/LiveRangeEdit.h"
28#include "llvm/CodeGen/LiveRegMatrix.h"
29#include "llvm/CodeGen/LiveStackAnalysis.h"
30#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31#include "llvm/CodeGen/MachineDominators.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/CodeGen/RegAllocRegistry.h"
37#include "llvm/CodeGen/RegisterClassInfo.h"
38#include "llvm/CodeGen/VirtRegMap.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/PassAnalysisSupport.h"
41#include "llvm/Support/BranchProbability.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/Timer.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetSubtargetInfo.h"
49#include <queue>
50
51using namespace llvm;
52
53#define DEBUG_TYPE "regalloc"
54
55STATISTIC(NumGlobalSplits, "Number of split global live ranges");
56STATISTIC(NumLocalSplits,  "Number of split local live ranges");
57STATISTIC(NumEvicted,      "Number of interferences evicted");
58
59static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
60    "split-spill-mode", cl::Hidden,
61    cl::desc("Spill mode for splitting live ranges"),
62    cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
63               clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
64               clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
65               clEnumValEnd),
66    cl::init(SplitEditor::SM_Speed));
67
68static cl::opt<unsigned>
69LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
70                             cl::desc("Last chance recoloring max depth"),
71                             cl::init(5));
72
73static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
74    "lcr-max-interf", cl::Hidden,
75    cl::desc("Last chance recoloring maximum number of considered"
76             " interference at a time"),
77    cl::init(8));
78
79static cl::opt<bool>
80ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
81                 cl::desc("Exhaustive Search for registers bypassing the depth "
82                          "and interference cutoffs of last chance recoloring"));
83
84static cl::opt<bool> EnableLocalReassignment(
85    "enable-local-reassign", cl::Hidden,
86    cl::desc("Local reassignment can yield better allocation decisions, but "
87             "may be compile time intensive"),
88    cl::init(false));
89
90static cl::opt<bool> EnableDeferredSpilling(
91    "enable-deferred-spilling", cl::Hidden,
92    cl::desc("Instead of spilling a variable right away, defer the actual "
93             "code insertion to the end of the allocation. That way the "
94             "allocator might still find a suitable coloring for this "
95             "variable because of other evicted variables."),
96    cl::init(false));
97
98// FIXME: Find a good default for this flag and remove the flag.
99static cl::opt<unsigned>
100CSRFirstTimeCost("regalloc-csr-first-time-cost",
101              cl::desc("Cost for first time use of callee-saved register."),
102              cl::init(0), cl::Hidden);
103
104static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
105                                       createGreedyRegisterAllocator);
106
107namespace {
108class RAGreedy : public MachineFunctionPass,
109                 public RegAllocBase,
110                 private LiveRangeEdit::Delegate {
111  // Convenient shortcuts.
112  typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
113  typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
114  typedef SmallSet<unsigned, 16> SmallVirtRegSet;
115
116  // context
117  MachineFunction *MF;
118
119  // Shortcuts to some useful interface.
120  const TargetInstrInfo *TII;
121  const TargetRegisterInfo *TRI;
122  RegisterClassInfo RCI;
123
124  // analyses
125  SlotIndexes *Indexes;
126  MachineBlockFrequencyInfo *MBFI;
127  MachineDominatorTree *DomTree;
128  MachineLoopInfo *Loops;
129  EdgeBundles *Bundles;
130  SpillPlacement *SpillPlacer;
131  LiveDebugVariables *DebugVars;
132  AliasAnalysis *AA;
133
134  // state
135  std::unique_ptr<Spiller> SpillerInstance;
136  PQueue Queue;
137  unsigned NextCascade;
138
139  // Live ranges pass through a number of stages as we try to allocate them.
140  // Some of the stages may also create new live ranges:
141  //
142  // - Region splitting.
143  // - Per-block splitting.
144  // - Local splitting.
145  // - Spilling.
146  //
147  // Ranges produced by one of the stages skip the previous stages when they are
148  // dequeued. This improves performance because we can skip interference checks
149  // that are unlikely to give any results. It also guarantees that the live
150  // range splitting algorithm terminates, something that is otherwise hard to
151  // ensure.
152  enum LiveRangeStage {
153    /// Newly created live range that has never been queued.
154    RS_New,
155
156    /// Only attempt assignment and eviction. Then requeue as RS_Split.
157    RS_Assign,
158
159    /// Attempt live range splitting if assignment is impossible.
160    RS_Split,
161
162    /// Attempt more aggressive live range splitting that is guaranteed to make
163    /// progress.  This is used for split products that may not be making
164    /// progress.
165    RS_Split2,
166
167    /// Live range will be spilled.  No more splitting will be attempted.
168    RS_Spill,
169
170
171    /// Live range is in memory. Because of other evictions, it might get moved
172    /// in a register in the end.
173    RS_Memory,
174
175    /// There is nothing more we can do to this live range.  Abort compilation
176    /// if it can't be assigned.
177    RS_Done
178  };
179
180  // Enum CutOffStage to keep a track whether the register allocation failed
181  // because of the cutoffs encountered in last chance recoloring.
182  // Note: This is used as bitmask. New value should be next power of 2.
183  enum CutOffStage {
184    // No cutoffs encountered
185    CO_None = 0,
186
187    // lcr-max-depth cutoff encountered
188    CO_Depth = 1,
189
190    // lcr-max-interf cutoff encountered
191    CO_Interf = 2
192  };
193
194  uint8_t CutOffInfo;
195
196#ifndef NDEBUG
197  static const char *const StageName[];
198#endif
199
200  // RegInfo - Keep additional information about each live range.
201  struct RegInfo {
202    LiveRangeStage Stage;
203
204    // Cascade - Eviction loop prevention. See canEvictInterference().
205    unsigned Cascade;
206
207    RegInfo() : Stage(RS_New), Cascade(0) {}
208  };
209
210  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
211
212  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
213    return ExtraRegInfo[VirtReg.reg].Stage;
214  }
215
216  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
217    ExtraRegInfo.resize(MRI->getNumVirtRegs());
218    ExtraRegInfo[VirtReg.reg].Stage = Stage;
219  }
220
221  template<typename Iterator>
222  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
223    ExtraRegInfo.resize(MRI->getNumVirtRegs());
224    for (;Begin != End; ++Begin) {
225      unsigned Reg = *Begin;
226      if (ExtraRegInfo[Reg].Stage == RS_New)
227        ExtraRegInfo[Reg].Stage = NewStage;
228    }
229  }
230
231  /// Cost of evicting interference.
232  struct EvictionCost {
233    unsigned BrokenHints; ///< Total number of broken hints.
234    float MaxWeight;      ///< Maximum spill weight evicted.
235
236    EvictionCost(): BrokenHints(0), MaxWeight(0) {}
237
238    bool isMax() const { return BrokenHints == ~0u; }
239
240    void setMax() { BrokenHints = ~0u; }
241
242    void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
243
244    bool operator<(const EvictionCost &O) const {
245      return std::tie(BrokenHints, MaxWeight) <
246             std::tie(O.BrokenHints, O.MaxWeight);
247    }
248  };
249
250  // splitting state.
251  std::unique_ptr<SplitAnalysis> SA;
252  std::unique_ptr<SplitEditor> SE;
253
254  /// Cached per-block interference maps
255  InterferenceCache IntfCache;
256
257  /// All basic blocks where the current register has uses.
258  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
259
260  /// Global live range splitting candidate info.
261  struct GlobalSplitCandidate {
262    // Register intended for assignment, or 0.
263    unsigned PhysReg;
264
265    // SplitKit interval index for this candidate.
266    unsigned IntvIdx;
267
268    // Interference for PhysReg.
269    InterferenceCache::Cursor Intf;
270
271    // Bundles where this candidate should be live.
272    BitVector LiveBundles;
273    SmallVector<unsigned, 8> ActiveBlocks;
274
275    void reset(InterferenceCache &Cache, unsigned Reg) {
276      PhysReg = Reg;
277      IntvIdx = 0;
278      Intf.setPhysReg(Cache, Reg);
279      LiveBundles.clear();
280      ActiveBlocks.clear();
281    }
282
283    // Set B[i] = C for every live bundle where B[i] was NoCand.
284    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
285      unsigned Count = 0;
286      for (int i = LiveBundles.find_first(); i >= 0;
287           i = LiveBundles.find_next(i))
288        if (B[i] == NoCand) {
289          B[i] = C;
290          Count++;
291        }
292      return Count;
293    }
294  };
295
296  /// Candidate info for each PhysReg in AllocationOrder.
297  /// This vector never shrinks, but grows to the size of the largest register
298  /// class.
299  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
300
301  enum : unsigned { NoCand = ~0u };
302
303  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
304  /// NoCand which indicates the stack interval.
305  SmallVector<unsigned, 32> BundleCand;
306
307  /// Callee-save register cost, calculated once per machine function.
308  BlockFrequency CSRCost;
309
310  /// Run or not the local reassignment heuristic. This information is
311  /// obtained from the TargetSubtargetInfo.
312  bool EnableLocalReassign;
313
314  /// Set of broken hints that may be reconciled later because of eviction.
315  SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
316
317public:
318  RAGreedy();
319
320  /// Return the pass name.
321  const char* getPassName() const override {
322    return "Greedy Register Allocator";
323  }
324
325  /// RAGreedy analysis usage.
326  void getAnalysisUsage(AnalysisUsage &AU) const override;
327  void releaseMemory() override;
328  Spiller &spiller() override { return *SpillerInstance; }
329  void enqueue(LiveInterval *LI) override;
330  LiveInterval *dequeue() override;
331  unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
332  void aboutToRemoveInterval(LiveInterval &) override;
333
334  /// Perform register allocation.
335  bool runOnMachineFunction(MachineFunction &mf) override;
336
337  static char ID;
338
339private:
340  unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
341                             SmallVirtRegSet &, unsigned = 0);
342
343  bool LRE_CanEraseVirtReg(unsigned) override;
344  void LRE_WillShrinkVirtReg(unsigned) override;
345  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
346  void enqueue(PQueue &CurQueue, LiveInterval *LI);
347  LiveInterval *dequeue(PQueue &CurQueue);
348
349  BlockFrequency calcSpillCost();
350  bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
351  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
352  void growRegion(GlobalSplitCandidate &Cand);
353  BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
354  bool calcCompactRegion(GlobalSplitCandidate&);
355  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
356  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
357  unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
358  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
359  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
360  void evictInterference(LiveInterval&, unsigned,
361                         SmallVectorImpl<unsigned>&);
362  bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
363                                  SmallLISet &RecoloringCandidates,
364                                  const SmallVirtRegSet &FixedRegisters);
365
366  unsigned tryAssign(LiveInterval&, AllocationOrder&,
367                     SmallVectorImpl<unsigned>&);
368  unsigned tryEvict(LiveInterval&, AllocationOrder&,
369                    SmallVectorImpl<unsigned>&, unsigned = ~0u);
370  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
371                          SmallVectorImpl<unsigned>&);
372  /// Calculate cost of region splitting.
373  unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
374                                    AllocationOrder &Order,
375                                    BlockFrequency &BestCost,
376                                    unsigned &NumCands, bool IgnoreCSR);
377  /// Perform region splitting.
378  unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
379                         bool HasCompact,
380                         SmallVectorImpl<unsigned> &NewVRegs);
381  /// Check other options before using a callee-saved register for the first
382  /// time.
383  unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
384                                 unsigned PhysReg, unsigned &CostPerUseLimit,
385                                 SmallVectorImpl<unsigned> &NewVRegs);
386  void initializeCSRCost();
387  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
388                         SmallVectorImpl<unsigned>&);
389  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
390                               SmallVectorImpl<unsigned>&);
391  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
392    SmallVectorImpl<unsigned>&);
393  unsigned trySplit(LiveInterval&, AllocationOrder&,
394                    SmallVectorImpl<unsigned>&);
395  unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
396                                   SmallVectorImpl<unsigned> &,
397                                   SmallVirtRegSet &, unsigned);
398  bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
399                               SmallVirtRegSet &, unsigned);
400  void tryHintRecoloring(LiveInterval &);
401  void tryHintsRecoloring();
402
403  /// Model the information carried by one end of a copy.
404  struct HintInfo {
405    /// The frequency of the copy.
406    BlockFrequency Freq;
407    /// The virtual register or physical register.
408    unsigned Reg;
409    /// Its currently assigned register.
410    /// In case of a physical register Reg == PhysReg.
411    unsigned PhysReg;
412    HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
413        : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
414  };
415  typedef SmallVector<HintInfo, 4> HintsInfo;
416  BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
417  void collectHintInfo(unsigned, HintsInfo &);
418
419  bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
420};
421} // end anonymous namespace
422
423char RAGreedy::ID = 0;
424
425#ifndef NDEBUG
426const char *const RAGreedy::StageName[] = {
427    "RS_New",
428    "RS_Assign",
429    "RS_Split",
430    "RS_Split2",
431    "RS_Spill",
432    "RS_Memory",
433    "RS_Done"
434};
435#endif
436
437// Hysteresis to use when comparing floats.
438// This helps stabilize decisions based on float comparisons.
439const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
440
441
442FunctionPass* llvm::createGreedyRegisterAllocator() {
443  return new RAGreedy();
444}
445
446RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
447  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
448  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
449  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
450  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
451  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
452  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
453  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
454  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
455  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
456  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
457  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
458  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
459  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
460}
461
462void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
463  AU.setPreservesCFG();
464  AU.addRequired<MachineBlockFrequencyInfo>();
465  AU.addPreserved<MachineBlockFrequencyInfo>();
466  AU.addRequired<AAResultsWrapperPass>();
467  AU.addPreserved<AAResultsWrapperPass>();
468  AU.addRequired<LiveIntervals>();
469  AU.addPreserved<LiveIntervals>();
470  AU.addRequired<SlotIndexes>();
471  AU.addPreserved<SlotIndexes>();
472  AU.addRequired<LiveDebugVariables>();
473  AU.addPreserved<LiveDebugVariables>();
474  AU.addRequired<LiveStacks>();
475  AU.addPreserved<LiveStacks>();
476  AU.addRequired<MachineDominatorTree>();
477  AU.addPreserved<MachineDominatorTree>();
478  AU.addRequired<MachineLoopInfo>();
479  AU.addPreserved<MachineLoopInfo>();
480  AU.addRequired<VirtRegMap>();
481  AU.addPreserved<VirtRegMap>();
482  AU.addRequired<LiveRegMatrix>();
483  AU.addPreserved<LiveRegMatrix>();
484  AU.addRequired<EdgeBundles>();
485  AU.addRequired<SpillPlacement>();
486  MachineFunctionPass::getAnalysisUsage(AU);
487}
488
489
490//===----------------------------------------------------------------------===//
491//                     LiveRangeEdit delegate methods
492//===----------------------------------------------------------------------===//
493
494bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
495  if (VRM->hasPhys(VirtReg)) {
496    LiveInterval &LI = LIS->getInterval(VirtReg);
497    Matrix->unassign(LI);
498    aboutToRemoveInterval(LI);
499    return true;
500  }
501  // Unassigned virtreg is probably in the priority queue.
502  // RegAllocBase will erase it after dequeueing.
503  return false;
504}
505
506void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
507  if (!VRM->hasPhys(VirtReg))
508    return;
509
510  // Register is assigned, put it back on the queue for reassignment.
511  LiveInterval &LI = LIS->getInterval(VirtReg);
512  Matrix->unassign(LI);
513  enqueue(&LI);
514}
515
516void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
517  // Cloning a register we haven't even heard about yet?  Just ignore it.
518  if (!ExtraRegInfo.inBounds(Old))
519    return;
520
521  // LRE may clone a virtual register because dead code elimination causes it to
522  // be split into connected components. The new components are much smaller
523  // than the original, so they should get a new chance at being assigned.
524  // same stage as the parent.
525  ExtraRegInfo[Old].Stage = RS_Assign;
526  ExtraRegInfo.grow(New);
527  ExtraRegInfo[New] = ExtraRegInfo[Old];
528}
529
530void RAGreedy::releaseMemory() {
531  SpillerInstance.reset();
532  ExtraRegInfo.clear();
533  GlobalCand.clear();
534}
535
536void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
537
538void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
539  // Prioritize live ranges by size, assigning larger ranges first.
540  // The queue holds (size, reg) pairs.
541  const unsigned Size = LI->getSize();
542  const unsigned Reg = LI->reg;
543  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
544         "Can only enqueue virtual registers");
545  unsigned Prio;
546
547  ExtraRegInfo.grow(Reg);
548  if (ExtraRegInfo[Reg].Stage == RS_New)
549    ExtraRegInfo[Reg].Stage = RS_Assign;
550
551  if (ExtraRegInfo[Reg].Stage == RS_Split) {
552    // Unsplit ranges that couldn't be allocated immediately are deferred until
553    // everything else has been allocated.
554    Prio = Size;
555  } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
556    // Memory operand should be considered last.
557    // Change the priority such that Memory operand are assigned in
558    // the reverse order that they came in.
559    // TODO: Make this a member variable and probably do something about hints.
560    static unsigned MemOp = 0;
561    Prio = MemOp++;
562  } else {
563    // Giant live ranges fall back to the global assignment heuristic, which
564    // prevents excessive spilling in pathological cases.
565    bool ReverseLocal = TRI->reverseLocalAssignment();
566    const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
567    bool ForceGlobal = !ReverseLocal &&
568      (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
569
570    if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
571        LIS->intervalIsInOneMBB(*LI)) {
572      // Allocate original local ranges in linear instruction order. Since they
573      // are singly defined, this produces optimal coloring in the absence of
574      // global interference and other constraints.
575      if (!ReverseLocal)
576        Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
577      else {
578        // Allocating bottom up may allow many short LRGs to be assigned first
579        // to one of the cheap registers. This could be much faster for very
580        // large blocks on targets with many physical registers.
581        Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
582      }
583      Prio |= RC.AllocationPriority << 24;
584    } else {
585      // Allocate global and split ranges in long->short order. Long ranges that
586      // don't fit should be spilled (or split) ASAP so they don't create
587      // interference.  Mark a bit to prioritize global above local ranges.
588      Prio = (1u << 29) + Size;
589    }
590    // Mark a higher bit to prioritize global and local above RS_Split.
591    Prio |= (1u << 31);
592
593    // Boost ranges that have a physical register hint.
594    if (VRM->hasKnownPreference(Reg))
595      Prio |= (1u << 30);
596  }
597  // The virtual register number is a tie breaker for same-sized ranges.
598  // Give lower vreg numbers higher priority to assign them first.
599  CurQueue.push(std::make_pair(Prio, ~Reg));
600}
601
602LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
603
604LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
605  if (CurQueue.empty())
606    return nullptr;
607  LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
608  CurQueue.pop();
609  return LI;
610}
611
612
613//===----------------------------------------------------------------------===//
614//                            Direct Assignment
615//===----------------------------------------------------------------------===//
616
617/// tryAssign - Try to assign VirtReg to an available register.
618unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
619                             AllocationOrder &Order,
620                             SmallVectorImpl<unsigned> &NewVRegs) {
621  Order.rewind();
622  unsigned PhysReg;
623  while ((PhysReg = Order.next()))
624    if (!Matrix->checkInterference(VirtReg, PhysReg))
625      break;
626  if (!PhysReg || Order.isHint())
627    return PhysReg;
628
629  // PhysReg is available, but there may be a better choice.
630
631  // If we missed a simple hint, try to cheaply evict interference from the
632  // preferred register.
633  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
634    if (Order.isHint(Hint)) {
635      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
636      EvictionCost MaxCost;
637      MaxCost.setBrokenHints(1);
638      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
639        evictInterference(VirtReg, Hint, NewVRegs);
640        return Hint;
641      }
642    }
643
644  // Try to evict interference from a cheaper alternative.
645  unsigned Cost = TRI->getCostPerUse(PhysReg);
646
647  // Most registers have 0 additional cost.
648  if (!Cost)
649    return PhysReg;
650
651  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
652               << '\n');
653  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
654  return CheapReg ? CheapReg : PhysReg;
655}
656
657
658//===----------------------------------------------------------------------===//
659//                         Interference eviction
660//===----------------------------------------------------------------------===//
661
662unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
663  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
664  unsigned PhysReg;
665  while ((PhysReg = Order.next())) {
666    if (PhysReg == PrevReg)
667      continue;
668
669    MCRegUnitIterator Units(PhysReg, TRI);
670    for (; Units.isValid(); ++Units) {
671      // Instantiate a "subquery", not to be confused with the Queries array.
672      LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
673      if (subQ.checkInterference())
674        break;
675    }
676    // If no units have interference, break out with the current PhysReg.
677    if (!Units.isValid())
678      break;
679  }
680  if (PhysReg)
681    DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
682          << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
683          << '\n');
684  return PhysReg;
685}
686
687/// shouldEvict - determine if A should evict the assigned live range B. The
688/// eviction policy defined by this function together with the allocation order
689/// defined by enqueue() decides which registers ultimately end up being split
690/// and spilled.
691///
692/// Cascade numbers are used to prevent infinite loops if this function is a
693/// cyclic relation.
694///
695/// @param A          The live range to be assigned.
696/// @param IsHint     True when A is about to be assigned to its preferred
697///                   register.
698/// @param B          The live range to be evicted.
699/// @param BreaksHint True when B is already assigned to its preferred register.
700bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
701                           LiveInterval &B, bool BreaksHint) {
702  bool CanSplit = getStage(B) < RS_Spill;
703
704  // Be fairly aggressive about following hints as long as the evictee can be
705  // split.
706  if (CanSplit && IsHint && !BreaksHint)
707    return true;
708
709  if (A.weight > B.weight) {
710    DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
711    return true;
712  }
713  return false;
714}
715
716/// canEvictInterference - Return true if all interferences between VirtReg and
717/// PhysReg can be evicted.
718///
719/// @param VirtReg Live range that is about to be assigned.
720/// @param PhysReg Desired register for assignment.
721/// @param IsHint  True when PhysReg is VirtReg's preferred register.
722/// @param MaxCost Only look for cheaper candidates and update with new cost
723///                when returning true.
724/// @returns True when interference can be evicted cheaper than MaxCost.
725bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
726                                    bool IsHint, EvictionCost &MaxCost) {
727  // It is only possible to evict virtual register interference.
728  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
729    return false;
730
731  bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
732
733  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
734  // involved in an eviction before. If a cascade number was assigned, deny
735  // evicting anything with the same or a newer cascade number. This prevents
736  // infinite eviction loops.
737  //
738  // This works out so a register without a cascade number is allowed to evict
739  // anything, and it can be evicted by anything.
740  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
741  if (!Cascade)
742    Cascade = NextCascade;
743
744  EvictionCost Cost;
745  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
746    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
747    // If there is 10 or more interferences, chances are one is heavier.
748    if (Q.collectInterferingVRegs(10) >= 10)
749      return false;
750
751    // Check if any interfering live range is heavier than MaxWeight.
752    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
753      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
754      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
755             "Only expecting virtual register interference from query");
756      // Never evict spill products. They cannot split or spill.
757      if (getStage(*Intf) == RS_Done)
758        return false;
759      // Once a live range becomes small enough, it is urgent that we find a
760      // register for it. This is indicated by an infinite spill weight. These
761      // urgent live ranges get to evict almost anything.
762      //
763      // Also allow urgent evictions of unspillable ranges from a strictly
764      // larger allocation order.
765      bool Urgent = !VirtReg.isSpillable() &&
766        (Intf->isSpillable() ||
767         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
768         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
769      // Only evict older cascades or live ranges without a cascade.
770      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
771      if (Cascade <= IntfCascade) {
772        if (!Urgent)
773          return false;
774        // We permit breaking cascades for urgent evictions. It should be the
775        // last resort, though, so make it really expensive.
776        Cost.BrokenHints += 10;
777      }
778      // Would this break a satisfied hint?
779      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
780      // Update eviction cost.
781      Cost.BrokenHints += BreaksHint;
782      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
783      // Abort if this would be too expensive.
784      if (!(Cost < MaxCost))
785        return false;
786      if (Urgent)
787        continue;
788      // Apply the eviction policy for non-urgent evictions.
789      if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
790        return false;
791      // If !MaxCost.isMax(), then we're just looking for a cheap register.
792      // Evicting another local live range in this case could lead to suboptimal
793      // coloring.
794      if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
795          (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
796        return false;
797      }
798    }
799  }
800  MaxCost = Cost;
801  return true;
802}
803
804/// evictInterference - Evict any interferring registers that prevent VirtReg
805/// from being assigned to Physreg. This assumes that canEvictInterference
806/// returned true.
807void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
808                                 SmallVectorImpl<unsigned> &NewVRegs) {
809  // Make sure that VirtReg has a cascade number, and assign that cascade
810  // number to every evicted register. These live ranges than then only be
811  // evicted by a newer cascade, preventing infinite loops.
812  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
813  if (!Cascade)
814    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
815
816  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
817               << " interference: Cascade " << Cascade << '\n');
818
819  // Collect all interfering virtregs first.
820  SmallVector<LiveInterval*, 8> Intfs;
821  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
822    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
823    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
824    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
825    Intfs.append(IVR.begin(), IVR.end());
826  }
827
828  // Evict them second. This will invalidate the queries.
829  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
830    LiveInterval *Intf = Intfs[i];
831    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
832    if (!VRM->hasPhys(Intf->reg))
833      continue;
834    Matrix->unassign(*Intf);
835    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
836            VirtReg.isSpillable() < Intf->isSpillable()) &&
837           "Cannot decrease cascade number, illegal eviction");
838    ExtraRegInfo[Intf->reg].Cascade = Cascade;
839    ++NumEvicted;
840    NewVRegs.push_back(Intf->reg);
841  }
842}
843
844/// Returns true if the given \p PhysReg is a callee saved register and has not
845/// been used for allocation yet.
846bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
847  unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
848  if (CSR == 0)
849    return false;
850
851  return !Matrix->isPhysRegUsed(PhysReg);
852}
853
854/// tryEvict - Try to evict all interferences for a physreg.
855/// @param  VirtReg Currently unassigned virtual register.
856/// @param  Order   Physregs to try.
857/// @return         Physreg to assign VirtReg, or 0.
858unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
859                            AllocationOrder &Order,
860                            SmallVectorImpl<unsigned> &NewVRegs,
861                            unsigned CostPerUseLimit) {
862  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
863
864  // Keep track of the cheapest interference seen so far.
865  EvictionCost BestCost;
866  BestCost.setMax();
867  unsigned BestPhys = 0;
868  unsigned OrderLimit = Order.getOrder().size();
869
870  // When we are just looking for a reduced cost per use, don't break any
871  // hints, and only evict smaller spill weights.
872  if (CostPerUseLimit < ~0u) {
873    BestCost.BrokenHints = 0;
874    BestCost.MaxWeight = VirtReg.weight;
875
876    // Check of any registers in RC are below CostPerUseLimit.
877    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
878    unsigned MinCost = RegClassInfo.getMinCost(RC);
879    if (MinCost >= CostPerUseLimit) {
880      DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
881                   << ", no cheaper registers to be found.\n");
882      return 0;
883    }
884
885    // It is normal for register classes to have a long tail of registers with
886    // the same cost. We don't need to look at them if they're too expensive.
887    if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
888      OrderLimit = RegClassInfo.getLastCostChange(RC);
889      DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
890    }
891  }
892
893  Order.rewind();
894  while (unsigned PhysReg = Order.next(OrderLimit)) {
895    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
896      continue;
897    // The first use of a callee-saved register in a function has cost 1.
898    // Don't start using a CSR when the CostPerUseLimit is low.
899    if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
900      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
901            << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
902            << '\n');
903      continue;
904    }
905
906    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
907      continue;
908
909    // Best so far.
910    BestPhys = PhysReg;
911
912    // Stop if the hint can be used.
913    if (Order.isHint())
914      break;
915  }
916
917  if (!BestPhys)
918    return 0;
919
920  evictInterference(VirtReg, BestPhys, NewVRegs);
921  return BestPhys;
922}
923
924
925//===----------------------------------------------------------------------===//
926//                              Region Splitting
927//===----------------------------------------------------------------------===//
928
929/// addSplitConstraints - Fill out the SplitConstraints vector based on the
930/// interference pattern in Physreg and its aliases. Add the constraints to
931/// SpillPlacement and return the static cost of this split in Cost, assuming
932/// that all preferences in SplitConstraints are met.
933/// Return false if there are no bundles with positive bias.
934bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
935                                   BlockFrequency &Cost) {
936  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
937
938  // Reset interference dependent info.
939  SplitConstraints.resize(UseBlocks.size());
940  BlockFrequency StaticCost = 0;
941  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
942    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
943    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
944
945    BC.Number = BI.MBB->getNumber();
946    Intf.moveToBlock(BC.Number);
947    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
948    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
949    BC.ChangesValue = BI.FirstDef.isValid();
950
951    if (!Intf.hasInterference())
952      continue;
953
954    // Number of spill code instructions to insert.
955    unsigned Ins = 0;
956
957    // Interference for the live-in value.
958    if (BI.LiveIn) {
959      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
960        BC.Entry = SpillPlacement::MustSpill;
961        ++Ins;
962      } else if (Intf.first() < BI.FirstInstr) {
963        BC.Entry = SpillPlacement::PrefSpill;
964        ++Ins;
965      } else if (Intf.first() < BI.LastInstr) {
966        ++Ins;
967      }
968    }
969
970    // Interference for the live-out value.
971    if (BI.LiveOut) {
972      if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
973        BC.Exit = SpillPlacement::MustSpill;
974        ++Ins;
975      } else if (Intf.last() > BI.LastInstr) {
976        BC.Exit = SpillPlacement::PrefSpill;
977        ++Ins;
978      } else if (Intf.last() > BI.FirstInstr) {
979        ++Ins;
980      }
981    }
982
983    // Accumulate the total frequency of inserted spill code.
984    while (Ins--)
985      StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
986  }
987  Cost = StaticCost;
988
989  // Add constraints for use-blocks. Note that these are the only constraints
990  // that may add a positive bias, it is downhill from here.
991  SpillPlacer->addConstraints(SplitConstraints);
992  return SpillPlacer->scanActiveBundles();
993}
994
995
996/// addThroughConstraints - Add constraints and links to SpillPlacer from the
997/// live-through blocks in Blocks.
998void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
999                                     ArrayRef<unsigned> Blocks) {
1000  const unsigned GroupSize = 8;
1001  SpillPlacement::BlockConstraint BCS[GroupSize];
1002  unsigned TBS[GroupSize];
1003  unsigned B = 0, T = 0;
1004
1005  for (unsigned i = 0; i != Blocks.size(); ++i) {
1006    unsigned Number = Blocks[i];
1007    Intf.moveToBlock(Number);
1008
1009    if (!Intf.hasInterference()) {
1010      assert(T < GroupSize && "Array overflow");
1011      TBS[T] = Number;
1012      if (++T == GroupSize) {
1013        SpillPlacer->addLinks(makeArrayRef(TBS, T));
1014        T = 0;
1015      }
1016      continue;
1017    }
1018
1019    assert(B < GroupSize && "Array overflow");
1020    BCS[B].Number = Number;
1021
1022    // Interference for the live-in value.
1023    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1024      BCS[B].Entry = SpillPlacement::MustSpill;
1025    else
1026      BCS[B].Entry = SpillPlacement::PrefSpill;
1027
1028    // Interference for the live-out value.
1029    if (Intf.last() >= SA->getLastSplitPoint(Number))
1030      BCS[B].Exit = SpillPlacement::MustSpill;
1031    else
1032      BCS[B].Exit = SpillPlacement::PrefSpill;
1033
1034    if (++B == GroupSize) {
1035      SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1036      B = 0;
1037    }
1038  }
1039
1040  SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1041  SpillPlacer->addLinks(makeArrayRef(TBS, T));
1042}
1043
1044void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1045  // Keep track of through blocks that have not been added to SpillPlacer.
1046  BitVector Todo = SA->getThroughBlocks();
1047  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1048  unsigned AddedTo = 0;
1049#ifndef NDEBUG
1050  unsigned Visited = 0;
1051#endif
1052
1053  for (;;) {
1054    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1055    // Find new through blocks in the periphery of PrefRegBundles.
1056    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1057      unsigned Bundle = NewBundles[i];
1058      // Look at all blocks connected to Bundle in the full graph.
1059      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1060      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1061           I != E; ++I) {
1062        unsigned Block = *I;
1063        if (!Todo.test(Block))
1064          continue;
1065        Todo.reset(Block);
1066        // This is a new through block. Add it to SpillPlacer later.
1067        ActiveBlocks.push_back(Block);
1068#ifndef NDEBUG
1069        ++Visited;
1070#endif
1071      }
1072    }
1073    // Any new blocks to add?
1074    if (ActiveBlocks.size() == AddedTo)
1075      break;
1076
1077    // Compute through constraints from the interference, or assume that all
1078    // through blocks prefer spilling when forming compact regions.
1079    auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1080    if (Cand.PhysReg)
1081      addThroughConstraints(Cand.Intf, NewBlocks);
1082    else
1083      // Provide a strong negative bias on through blocks to prevent unwanted
1084      // liveness on loop backedges.
1085      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1086    AddedTo = ActiveBlocks.size();
1087
1088    // Perhaps iterating can enable more bundles?
1089    SpillPlacer->iterate();
1090  }
1091  DEBUG(dbgs() << ", v=" << Visited);
1092}
1093
1094/// calcCompactRegion - Compute the set of edge bundles that should be live
1095/// when splitting the current live range into compact regions.  Compact
1096/// regions can be computed without looking at interference.  They are the
1097/// regions formed by removing all the live-through blocks from the live range.
1098///
1099/// Returns false if the current live range is already compact, or if the
1100/// compact regions would form single block regions anyway.
1101bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1102  // Without any through blocks, the live range is already compact.
1103  if (!SA->getNumThroughBlocks())
1104    return false;
1105
1106  // Compact regions don't correspond to any physreg.
1107  Cand.reset(IntfCache, 0);
1108
1109  DEBUG(dbgs() << "Compact region bundles");
1110
1111  // Use the spill placer to determine the live bundles. GrowRegion pretends
1112  // that all the through blocks have interference when PhysReg is unset.
1113  SpillPlacer->prepare(Cand.LiveBundles);
1114
1115  // The static split cost will be zero since Cand.Intf reports no interference.
1116  BlockFrequency Cost;
1117  if (!addSplitConstraints(Cand.Intf, Cost)) {
1118    DEBUG(dbgs() << ", none.\n");
1119    return false;
1120  }
1121
1122  growRegion(Cand);
1123  SpillPlacer->finish();
1124
1125  if (!Cand.LiveBundles.any()) {
1126    DEBUG(dbgs() << ", none.\n");
1127    return false;
1128  }
1129
1130  DEBUG({
1131    for (int i = Cand.LiveBundles.find_first(); i>=0;
1132         i = Cand.LiveBundles.find_next(i))
1133    dbgs() << " EB#" << i;
1134    dbgs() << ".\n";
1135  });
1136  return true;
1137}
1138
1139/// calcSpillCost - Compute how expensive it would be to split the live range in
1140/// SA around all use blocks instead of forming bundle regions.
1141BlockFrequency RAGreedy::calcSpillCost() {
1142  BlockFrequency Cost = 0;
1143  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1144  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1145    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1146    unsigned Number = BI.MBB->getNumber();
1147    // We normally only need one spill instruction - a load or a store.
1148    Cost += SpillPlacer->getBlockFrequency(Number);
1149
1150    // Unless the value is redefined in the block.
1151    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1152      Cost += SpillPlacer->getBlockFrequency(Number);
1153  }
1154  return Cost;
1155}
1156
1157/// calcGlobalSplitCost - Return the global split cost of following the split
1158/// pattern in LiveBundles. This cost should be added to the local cost of the
1159/// interference pattern in SplitConstraints.
1160///
1161BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1162  BlockFrequency GlobalCost = 0;
1163  const BitVector &LiveBundles = Cand.LiveBundles;
1164  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1165  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1166    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1167    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1168    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1169    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1170    unsigned Ins = 0;
1171
1172    if (BI.LiveIn)
1173      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1174    if (BI.LiveOut)
1175      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1176    while (Ins--)
1177      GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1178  }
1179
1180  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1181    unsigned Number = Cand.ActiveBlocks[i];
1182    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1183    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1184    if (!RegIn && !RegOut)
1185      continue;
1186    if (RegIn && RegOut) {
1187      // We need double spill code if this block has interference.
1188      Cand.Intf.moveToBlock(Number);
1189      if (Cand.Intf.hasInterference()) {
1190        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1191        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1192      }
1193      continue;
1194    }
1195    // live-in / stack-out or stack-in live-out.
1196    GlobalCost += SpillPlacer->getBlockFrequency(Number);
1197  }
1198  return GlobalCost;
1199}
1200
1201/// splitAroundRegion - Split the current live range around the regions
1202/// determined by BundleCand and GlobalCand.
1203///
1204/// Before calling this function, GlobalCand and BundleCand must be initialized
1205/// so each bundle is assigned to a valid candidate, or NoCand for the
1206/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1207/// objects must be initialized for the current live range, and intervals
1208/// created for the used candidates.
1209///
1210/// @param LREdit    The LiveRangeEdit object handling the current split.
1211/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1212///                  must appear in this list.
1213void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1214                                 ArrayRef<unsigned> UsedCands) {
1215  // These are the intervals created for new global ranges. We may create more
1216  // intervals for local ranges.
1217  const unsigned NumGlobalIntvs = LREdit.size();
1218  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1219  assert(NumGlobalIntvs && "No global intervals configured");
1220
1221  // Isolate even single instructions when dealing with a proper sub-class.
1222  // That guarantees register class inflation for the stack interval because it
1223  // is all copies.
1224  unsigned Reg = SA->getParent().reg;
1225  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1226
1227  // First handle all the blocks with uses.
1228  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1229  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1230    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1231    unsigned Number = BI.MBB->getNumber();
1232    unsigned IntvIn = 0, IntvOut = 0;
1233    SlotIndex IntfIn, IntfOut;
1234    if (BI.LiveIn) {
1235      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1236      if (CandIn != NoCand) {
1237        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1238        IntvIn = Cand.IntvIdx;
1239        Cand.Intf.moveToBlock(Number);
1240        IntfIn = Cand.Intf.first();
1241      }
1242    }
1243    if (BI.LiveOut) {
1244      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1245      if (CandOut != NoCand) {
1246        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1247        IntvOut = Cand.IntvIdx;
1248        Cand.Intf.moveToBlock(Number);
1249        IntfOut = Cand.Intf.last();
1250      }
1251    }
1252
1253    // Create separate intervals for isolated blocks with multiple uses.
1254    if (!IntvIn && !IntvOut) {
1255      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1256      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1257        SE->splitSingleBlock(BI);
1258      continue;
1259    }
1260
1261    if (IntvIn && IntvOut)
1262      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1263    else if (IntvIn)
1264      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1265    else
1266      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1267  }
1268
1269  // Handle live-through blocks. The relevant live-through blocks are stored in
1270  // the ActiveBlocks list with each candidate. We need to filter out
1271  // duplicates.
1272  BitVector Todo = SA->getThroughBlocks();
1273  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1274    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1275    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1276      unsigned Number = Blocks[i];
1277      if (!Todo.test(Number))
1278        continue;
1279      Todo.reset(Number);
1280
1281      unsigned IntvIn = 0, IntvOut = 0;
1282      SlotIndex IntfIn, IntfOut;
1283
1284      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1285      if (CandIn != NoCand) {
1286        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1287        IntvIn = Cand.IntvIdx;
1288        Cand.Intf.moveToBlock(Number);
1289        IntfIn = Cand.Intf.first();
1290      }
1291
1292      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1293      if (CandOut != NoCand) {
1294        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1295        IntvOut = Cand.IntvIdx;
1296        Cand.Intf.moveToBlock(Number);
1297        IntfOut = Cand.Intf.last();
1298      }
1299      if (!IntvIn && !IntvOut)
1300        continue;
1301      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1302    }
1303  }
1304
1305  ++NumGlobalSplits;
1306
1307  SmallVector<unsigned, 8> IntvMap;
1308  SE->finish(&IntvMap);
1309  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1310
1311  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1312  unsigned OrigBlocks = SA->getNumLiveBlocks();
1313
1314  // Sort out the new intervals created by splitting. We get four kinds:
1315  // - Remainder intervals should not be split again.
1316  // - Candidate intervals can be assigned to Cand.PhysReg.
1317  // - Block-local splits are candidates for local splitting.
1318  // - DCE leftovers should go back on the queue.
1319  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1320    LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1321
1322    // Ignore old intervals from DCE.
1323    if (getStage(Reg) != RS_New)
1324      continue;
1325
1326    // Remainder interval. Don't try splitting again, spill if it doesn't
1327    // allocate.
1328    if (IntvMap[i] == 0) {
1329      setStage(Reg, RS_Spill);
1330      continue;
1331    }
1332
1333    // Global intervals. Allow repeated splitting as long as the number of live
1334    // blocks is strictly decreasing.
1335    if (IntvMap[i] < NumGlobalIntvs) {
1336      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1337        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1338                     << " blocks as original.\n");
1339        // Don't allow repeated splitting as a safe guard against looping.
1340        setStage(Reg, RS_Split2);
1341      }
1342      continue;
1343    }
1344
1345    // Other intervals are treated as new. This includes local intervals created
1346    // for blocks with multiple uses, and anything created by DCE.
1347  }
1348
1349  if (VerifyEnabled)
1350    MF->verify(this, "After splitting live range around region");
1351}
1352
1353unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1354                                  SmallVectorImpl<unsigned> &NewVRegs) {
1355  unsigned NumCands = 0;
1356  BlockFrequency BestCost;
1357
1358  // Check if we can split this live range around a compact region.
1359  bool HasCompact = calcCompactRegion(GlobalCand.front());
1360  if (HasCompact) {
1361    // Yes, keep GlobalCand[0] as the compact region candidate.
1362    NumCands = 1;
1363    BestCost = BlockFrequency::getMaxFrequency();
1364  } else {
1365    // No benefit from the compact region, our fallback will be per-block
1366    // splitting. Make sure we find a solution that is cheaper than spilling.
1367    BestCost = calcSpillCost();
1368    DEBUG(dbgs() << "Cost of isolating all blocks = ";
1369                 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1370  }
1371
1372  unsigned BestCand =
1373      calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1374                               false/*IgnoreCSR*/);
1375
1376  // No solutions found, fall back to single block splitting.
1377  if (!HasCompact && BestCand == NoCand)
1378    return 0;
1379
1380  return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1381}
1382
1383unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1384                                            AllocationOrder &Order,
1385                                            BlockFrequency &BestCost,
1386                                            unsigned &NumCands,
1387                                            bool IgnoreCSR) {
1388  unsigned BestCand = NoCand;
1389  Order.rewind();
1390  while (unsigned PhysReg = Order.next()) {
1391    if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1392      continue;
1393
1394    // Discard bad candidates before we run out of interference cache cursors.
1395    // This will only affect register classes with a lot of registers (>32).
1396    if (NumCands == IntfCache.getMaxCursors()) {
1397      unsigned WorstCount = ~0u;
1398      unsigned Worst = 0;
1399      for (unsigned i = 0; i != NumCands; ++i) {
1400        if (i == BestCand || !GlobalCand[i].PhysReg)
1401          continue;
1402        unsigned Count = GlobalCand[i].LiveBundles.count();
1403        if (Count < WorstCount) {
1404          Worst = i;
1405          WorstCount = Count;
1406        }
1407      }
1408      --NumCands;
1409      GlobalCand[Worst] = GlobalCand[NumCands];
1410      if (BestCand == NumCands)
1411        BestCand = Worst;
1412    }
1413
1414    if (GlobalCand.size() <= NumCands)
1415      GlobalCand.resize(NumCands+1);
1416    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1417    Cand.reset(IntfCache, PhysReg);
1418
1419    SpillPlacer->prepare(Cand.LiveBundles);
1420    BlockFrequency Cost;
1421    if (!addSplitConstraints(Cand.Intf, Cost)) {
1422      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1423      continue;
1424    }
1425    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1426                 MBFI->printBlockFreq(dbgs(), Cost));
1427    if (Cost >= BestCost) {
1428      DEBUG({
1429        if (BestCand == NoCand)
1430          dbgs() << " worse than no bundles\n";
1431        else
1432          dbgs() << " worse than "
1433                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1434      });
1435      continue;
1436    }
1437    growRegion(Cand);
1438
1439    SpillPlacer->finish();
1440
1441    // No live bundles, defer to splitSingleBlocks().
1442    if (!Cand.LiveBundles.any()) {
1443      DEBUG(dbgs() << " no bundles.\n");
1444      continue;
1445    }
1446
1447    Cost += calcGlobalSplitCost(Cand);
1448    DEBUG({
1449      dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1450                                << " with bundles";
1451      for (int i = Cand.LiveBundles.find_first(); i>=0;
1452           i = Cand.LiveBundles.find_next(i))
1453        dbgs() << " EB#" << i;
1454      dbgs() << ".\n";
1455    });
1456    if (Cost < BestCost) {
1457      BestCand = NumCands;
1458      BestCost = Cost;
1459    }
1460    ++NumCands;
1461  }
1462  return BestCand;
1463}
1464
1465unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1466                                 bool HasCompact,
1467                                 SmallVectorImpl<unsigned> &NewVRegs) {
1468  SmallVector<unsigned, 8> UsedCands;
1469  // Prepare split editor.
1470  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1471  SE->reset(LREdit, SplitSpillMode);
1472
1473  // Assign all edge bundles to the preferred candidate, or NoCand.
1474  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1475
1476  // Assign bundles for the best candidate region.
1477  if (BestCand != NoCand) {
1478    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1479    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1480      UsedCands.push_back(BestCand);
1481      Cand.IntvIdx = SE->openIntv();
1482      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1483                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1484      (void)B;
1485    }
1486  }
1487
1488  // Assign bundles for the compact region.
1489  if (HasCompact) {
1490    GlobalSplitCandidate &Cand = GlobalCand.front();
1491    assert(!Cand.PhysReg && "Compact region has no physreg");
1492    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1493      UsedCands.push_back(0);
1494      Cand.IntvIdx = SE->openIntv();
1495      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1496                   << Cand.IntvIdx << ".\n");
1497      (void)B;
1498    }
1499  }
1500
1501  splitAroundRegion(LREdit, UsedCands);
1502  return 0;
1503}
1504
1505
1506//===----------------------------------------------------------------------===//
1507//                            Per-Block Splitting
1508//===----------------------------------------------------------------------===//
1509
1510/// tryBlockSplit - Split a global live range around every block with uses. This
1511/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1512/// they don't allocate.
1513unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1514                                 SmallVectorImpl<unsigned> &NewVRegs) {
1515  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1516  unsigned Reg = VirtReg.reg;
1517  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1518  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1519  SE->reset(LREdit, SplitSpillMode);
1520  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1521  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1522    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1523    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1524      SE->splitSingleBlock(BI);
1525  }
1526  // No blocks were split.
1527  if (LREdit.empty())
1528    return 0;
1529
1530  // We did split for some blocks.
1531  SmallVector<unsigned, 8> IntvMap;
1532  SE->finish(&IntvMap);
1533
1534  // Tell LiveDebugVariables about the new ranges.
1535  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1536
1537  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1538
1539  // Sort out the new intervals created by splitting. The remainder interval
1540  // goes straight to spilling, the new local ranges get to stay RS_New.
1541  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1542    LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1543    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1544      setStage(LI, RS_Spill);
1545  }
1546
1547  if (VerifyEnabled)
1548    MF->verify(this, "After splitting live range around basic blocks");
1549  return 0;
1550}
1551
1552
1553//===----------------------------------------------------------------------===//
1554//                         Per-Instruction Splitting
1555//===----------------------------------------------------------------------===//
1556
1557/// Get the number of allocatable registers that match the constraints of \p Reg
1558/// on \p MI and that are also in \p SuperRC.
1559static unsigned getNumAllocatableRegsForConstraints(
1560    const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1561    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1562    const RegisterClassInfo &RCI) {
1563  assert(SuperRC && "Invalid register class");
1564
1565  const TargetRegisterClass *ConstrainedRC =
1566      MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1567                                             /* ExploreBundle */ true);
1568  if (!ConstrainedRC)
1569    return 0;
1570  return RCI.getNumAllocatableRegs(ConstrainedRC);
1571}
1572
1573/// tryInstructionSplit - Split a live range around individual instructions.
1574/// This is normally not worthwhile since the spiller is doing essentially the
1575/// same thing. However, when the live range is in a constrained register
1576/// class, it may help to insert copies such that parts of the live range can
1577/// be moved to a larger register class.
1578///
1579/// This is similar to spilling to a larger register class.
1580unsigned
1581RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1582                              SmallVectorImpl<unsigned> &NewVRegs) {
1583  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1584  // There is no point to this if there are no larger sub-classes.
1585  if (!RegClassInfo.isProperSubClass(CurRC))
1586    return 0;
1587
1588  // Always enable split spill mode, since we're effectively spilling to a
1589  // register.
1590  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1591  SE->reset(LREdit, SplitEditor::SM_Size);
1592
1593  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1594  if (Uses.size() <= 1)
1595    return 0;
1596
1597  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1598
1599  const TargetRegisterClass *SuperRC =
1600      TRI->getLargestLegalSuperClass(CurRC, *MF);
1601  unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1602  // Split around every non-copy instruction if this split will relax
1603  // the constraints on the virtual register.
1604  // Otherwise, splitting just inserts uncoalescable copies that do not help
1605  // the allocation.
1606  for (unsigned i = 0; i != Uses.size(); ++i) {
1607    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1608      if (MI->isFullCopy() ||
1609          SuperRCNumAllocatableRegs ==
1610              getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1611                                                  TRI, RCI)) {
1612        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1613        continue;
1614      }
1615    SE->openIntv();
1616    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1617    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1618    SE->useIntv(SegStart, SegStop);
1619  }
1620
1621  if (LREdit.empty()) {
1622    DEBUG(dbgs() << "All uses were copies.\n");
1623    return 0;
1624  }
1625
1626  SmallVector<unsigned, 8> IntvMap;
1627  SE->finish(&IntvMap);
1628  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1629  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1630
1631  // Assign all new registers to RS_Spill. This was the last chance.
1632  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1633  return 0;
1634}
1635
1636
1637//===----------------------------------------------------------------------===//
1638//                             Local Splitting
1639//===----------------------------------------------------------------------===//
1640
1641
1642/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1643/// in order to use PhysReg between two entries in SA->UseSlots.
1644///
1645/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1646///
1647void RAGreedy::calcGapWeights(unsigned PhysReg,
1648                              SmallVectorImpl<float> &GapWeight) {
1649  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1650  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1651  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1652  const unsigned NumGaps = Uses.size()-1;
1653
1654  // Start and end points for the interference check.
1655  SlotIndex StartIdx =
1656    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1657  SlotIndex StopIdx =
1658    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1659
1660  GapWeight.assign(NumGaps, 0.0f);
1661
1662  // Add interference from each overlapping register.
1663  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1664    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1665          .checkInterference())
1666      continue;
1667
1668    // We know that VirtReg is a continuous interval from FirstInstr to
1669    // LastInstr, so we don't need InterferenceQuery.
1670    //
1671    // Interference that overlaps an instruction is counted in both gaps
1672    // surrounding the instruction. The exception is interference before
1673    // StartIdx and after StopIdx.
1674    //
1675    LiveIntervalUnion::SegmentIter IntI =
1676      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1677    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1678      // Skip the gaps before IntI.
1679      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1680        if (++Gap == NumGaps)
1681          break;
1682      if (Gap == NumGaps)
1683        break;
1684
1685      // Update the gaps covered by IntI.
1686      const float weight = IntI.value()->weight;
1687      for (; Gap != NumGaps; ++Gap) {
1688        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1689        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1690          break;
1691      }
1692      if (Gap == NumGaps)
1693        break;
1694    }
1695  }
1696
1697  // Add fixed interference.
1698  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1699    const LiveRange &LR = LIS->getRegUnit(*Units);
1700    LiveRange::const_iterator I = LR.find(StartIdx);
1701    LiveRange::const_iterator E = LR.end();
1702
1703    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1704    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1705      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1706        if (++Gap == NumGaps)
1707          break;
1708      if (Gap == NumGaps)
1709        break;
1710
1711      for (; Gap != NumGaps; ++Gap) {
1712        GapWeight[Gap] = llvm::huge_valf;
1713        if (Uses[Gap+1].getBaseIndex() >= I->end)
1714          break;
1715      }
1716      if (Gap == NumGaps)
1717        break;
1718    }
1719  }
1720}
1721
1722/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1723/// basic block.
1724///
1725unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1726                                 SmallVectorImpl<unsigned> &NewVRegs) {
1727  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1728  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1729
1730  // Note that it is possible to have an interval that is live-in or live-out
1731  // while only covering a single block - A phi-def can use undef values from
1732  // predecessors, and the block could be a single-block loop.
1733  // We don't bother doing anything clever about such a case, we simply assume
1734  // that the interval is continuous from FirstInstr to LastInstr. We should
1735  // make sure that we don't do anything illegal to such an interval, though.
1736
1737  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1738  if (Uses.size() <= 2)
1739    return 0;
1740  const unsigned NumGaps = Uses.size()-1;
1741
1742  DEBUG({
1743    dbgs() << "tryLocalSplit: ";
1744    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1745      dbgs() << ' ' << Uses[i];
1746    dbgs() << '\n';
1747  });
1748
1749  // If VirtReg is live across any register mask operands, compute a list of
1750  // gaps with register masks.
1751  SmallVector<unsigned, 8> RegMaskGaps;
1752  if (Matrix->checkRegMaskInterference(VirtReg)) {
1753    // Get regmask slots for the whole block.
1754    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1755    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1756    // Constrain to VirtReg's live range.
1757    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1758                                   Uses.front().getRegSlot()) - RMS.begin();
1759    unsigned re = RMS.size();
1760    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1761      // Look for Uses[i] <= RMS <= Uses[i+1].
1762      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1763      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1764        continue;
1765      // Skip a regmask on the same instruction as the last use. It doesn't
1766      // overlap the live range.
1767      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1768        break;
1769      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1770      RegMaskGaps.push_back(i);
1771      // Advance ri to the next gap. A regmask on one of the uses counts in
1772      // both gaps.
1773      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1774        ++ri;
1775    }
1776    DEBUG(dbgs() << '\n');
1777  }
1778
1779  // Since we allow local split results to be split again, there is a risk of
1780  // creating infinite loops. It is tempting to require that the new live
1781  // ranges have less instructions than the original. That would guarantee
1782  // convergence, but it is too strict. A live range with 3 instructions can be
1783  // split 2+3 (including the COPY), and we want to allow that.
1784  //
1785  // Instead we use these rules:
1786  //
1787  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1788  //    noop split, of course).
1789  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1790  //    the new ranges must have fewer instructions than before the split.
1791  // 3. New ranges with the same number of instructions are marked RS_Split2,
1792  //    smaller ranges are marked RS_New.
1793  //
1794  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1795  // excessive splitting and infinite loops.
1796  //
1797  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1798
1799  // Best split candidate.
1800  unsigned BestBefore = NumGaps;
1801  unsigned BestAfter = 0;
1802  float BestDiff = 0;
1803
1804  const float blockFreq =
1805    SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1806    (1.0f / MBFI->getEntryFreq());
1807  SmallVector<float, 8> GapWeight;
1808
1809  Order.rewind();
1810  while (unsigned PhysReg = Order.next()) {
1811    // Keep track of the largest spill weight that would need to be evicted in
1812    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1813    calcGapWeights(PhysReg, GapWeight);
1814
1815    // Remove any gaps with regmask clobbers.
1816    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1817      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1818        GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1819
1820    // Try to find the best sequence of gaps to close.
1821    // The new spill weight must be larger than any gap interference.
1822
1823    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1824    unsigned SplitBefore = 0, SplitAfter = 1;
1825
1826    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1827    // It is the spill weight that needs to be evicted.
1828    float MaxGap = GapWeight[0];
1829
1830    for (;;) {
1831      // Live before/after split?
1832      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1833      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1834
1835      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1836                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1837                   << " i=" << MaxGap);
1838
1839      // Stop before the interval gets so big we wouldn't be making progress.
1840      if (!LiveBefore && !LiveAfter) {
1841        DEBUG(dbgs() << " all\n");
1842        break;
1843      }
1844      // Should the interval be extended or shrunk?
1845      bool Shrink = true;
1846
1847      // How many gaps would the new range have?
1848      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1849
1850      // Legally, without causing looping?
1851      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1852
1853      if (Legal && MaxGap < llvm::huge_valf) {
1854        // Estimate the new spill weight. Each instruction reads or writes the
1855        // register. Conservatively assume there are no read-modify-write
1856        // instructions.
1857        //
1858        // Try to guess the size of the new interval.
1859        const float EstWeight = normalizeSpillWeight(
1860            blockFreq * (NewGaps + 1),
1861            Uses[SplitBefore].distance(Uses[SplitAfter]) +
1862                (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1863            1);
1864        // Would this split be possible to allocate?
1865        // Never allocate all gaps, we wouldn't be making progress.
1866        DEBUG(dbgs() << " w=" << EstWeight);
1867        if (EstWeight * Hysteresis >= MaxGap) {
1868          Shrink = false;
1869          float Diff = EstWeight - MaxGap;
1870          if (Diff > BestDiff) {
1871            DEBUG(dbgs() << " (best)");
1872            BestDiff = Hysteresis * Diff;
1873            BestBefore = SplitBefore;
1874            BestAfter = SplitAfter;
1875          }
1876        }
1877      }
1878
1879      // Try to shrink.
1880      if (Shrink) {
1881        if (++SplitBefore < SplitAfter) {
1882          DEBUG(dbgs() << " shrink\n");
1883          // Recompute the max when necessary.
1884          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1885            MaxGap = GapWeight[SplitBefore];
1886            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1887              MaxGap = std::max(MaxGap, GapWeight[i]);
1888          }
1889          continue;
1890        }
1891        MaxGap = 0;
1892      }
1893
1894      // Try to extend the interval.
1895      if (SplitAfter >= NumGaps) {
1896        DEBUG(dbgs() << " end\n");
1897        break;
1898      }
1899
1900      DEBUG(dbgs() << " extend\n");
1901      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1902    }
1903  }
1904
1905  // Didn't find any candidates?
1906  if (BestBefore == NumGaps)
1907    return 0;
1908
1909  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1910               << '-' << Uses[BestAfter] << ", " << BestDiff
1911               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1912
1913  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1914  SE->reset(LREdit);
1915
1916  SE->openIntv();
1917  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1918  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1919  SE->useIntv(SegStart, SegStop);
1920  SmallVector<unsigned, 8> IntvMap;
1921  SE->finish(&IntvMap);
1922  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1923
1924  // If the new range has the same number of instructions as before, mark it as
1925  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1926  // leave the new intervals as RS_New so they can compete.
1927  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1928  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1929  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1930  if (NewGaps >= NumGaps) {
1931    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1932    assert(!ProgressRequired && "Didn't make progress when it was required.");
1933    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1934      if (IntvMap[i] == 1) {
1935        setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1936        DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1937      }
1938    DEBUG(dbgs() << '\n');
1939  }
1940  ++NumLocalSplits;
1941
1942  return 0;
1943}
1944
1945//===----------------------------------------------------------------------===//
1946//                          Live Range Splitting
1947//===----------------------------------------------------------------------===//
1948
1949/// trySplit - Try to split VirtReg or one of its interferences, making it
1950/// assignable.
1951/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1952unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1953                            SmallVectorImpl<unsigned>&NewVRegs) {
1954  // Ranges must be Split2 or less.
1955  if (getStage(VirtReg) >= RS_Spill)
1956    return 0;
1957
1958  // Local intervals are handled separately.
1959  if (LIS->intervalIsInOneMBB(VirtReg)) {
1960    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1961    SA->analyze(&VirtReg);
1962    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1963    if (PhysReg || !NewVRegs.empty())
1964      return PhysReg;
1965    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1966  }
1967
1968  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1969
1970  SA->analyze(&VirtReg);
1971
1972  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1973  // coalescer. That may cause the range to become allocatable which means that
1974  // tryRegionSplit won't be making progress. This check should be replaced with
1975  // an assertion when the coalescer is fixed.
1976  if (SA->didRepairRange()) {
1977    // VirtReg has changed, so all cached queries are invalid.
1978    Matrix->invalidateVirtRegs();
1979    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1980      return PhysReg;
1981  }
1982
1983  // First try to split around a region spanning multiple blocks. RS_Split2
1984  // ranges already made dubious progress with region splitting, so they go
1985  // straight to single block splitting.
1986  if (getStage(VirtReg) < RS_Split2) {
1987    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1988    if (PhysReg || !NewVRegs.empty())
1989      return PhysReg;
1990  }
1991
1992  // Then isolate blocks.
1993  return tryBlockSplit(VirtReg, Order, NewVRegs);
1994}
1995
1996//===----------------------------------------------------------------------===//
1997//                          Last Chance Recoloring
1998//===----------------------------------------------------------------------===//
1999
2000/// mayRecolorAllInterferences - Check if the virtual registers that
2001/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2002/// recolored to free \p PhysReg.
2003/// When true is returned, \p RecoloringCandidates has been augmented with all
2004/// the live intervals that need to be recolored in order to free \p PhysReg
2005/// for \p VirtReg.
2006/// \p FixedRegisters contains all the virtual registers that cannot be
2007/// recolored.
2008bool
2009RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2010                                     SmallLISet &RecoloringCandidates,
2011                                     const SmallVirtRegSet &FixedRegisters) {
2012  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2013
2014  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2015    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2016    // If there is LastChanceRecoloringMaxInterference or more interferences,
2017    // chances are one would not be recolorable.
2018    if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2019        LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2020      DEBUG(dbgs() << "Early abort: too many interferences.\n");
2021      CutOffInfo |= CO_Interf;
2022      return false;
2023    }
2024    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2025      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2026      // If Intf is done and sit on the same register class as VirtReg,
2027      // it would not be recolorable as it is in the same state as VirtReg.
2028      if ((getStage(*Intf) == RS_Done &&
2029           MRI->getRegClass(Intf->reg) == CurRC) ||
2030          FixedRegisters.count(Intf->reg)) {
2031        DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
2032        return false;
2033      }
2034      RecoloringCandidates.insert(Intf);
2035    }
2036  }
2037  return true;
2038}
2039
2040/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2041/// its interferences.
2042/// Last chance recoloring chooses a color for \p VirtReg and recolors every
2043/// virtual register that was using it. The recoloring process may recursively
2044/// use the last chance recoloring. Therefore, when a virtual register has been
2045/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2046/// be last-chance-recolored again during this recoloring "session".
2047/// E.g.,
2048/// Let
2049/// vA can use {R1, R2    }
2050/// vB can use {    R2, R3}
2051/// vC can use {R1        }
2052/// Where vA, vB, and vC cannot be split anymore (they are reloads for
2053/// instance) and they all interfere.
2054///
2055/// vA is assigned R1
2056/// vB is assigned R2
2057/// vC tries to evict vA but vA is already done.
2058/// Regular register allocation fails.
2059///
2060/// Last chance recoloring kicks in:
2061/// vC does as if vA was evicted => vC uses R1.
2062/// vC is marked as fixed.
2063/// vA needs to find a color.
2064/// None are available.
2065/// vA cannot evict vC: vC is a fixed virtual register now.
2066/// vA does as if vB was evicted => vA uses R2.
2067/// vB needs to find a color.
2068/// R3 is available.
2069/// Recoloring => vC = R1, vA = R2, vB = R3
2070///
2071/// \p Order defines the preferred allocation order for \p VirtReg.
2072/// \p NewRegs will contain any new virtual register that have been created
2073/// (split, spill) during the process and that must be assigned.
2074/// \p FixedRegisters contains all the virtual registers that cannot be
2075/// recolored.
2076/// \p Depth gives the current depth of the last chance recoloring.
2077/// \return a physical register that can be used for VirtReg or ~0u if none
2078/// exists.
2079unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2080                                           AllocationOrder &Order,
2081                                           SmallVectorImpl<unsigned> &NewVRegs,
2082                                           SmallVirtRegSet &FixedRegisters,
2083                                           unsigned Depth) {
2084  DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2085  // Ranges must be Done.
2086  assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2087         "Last chance recoloring should really be last chance");
2088  // Set the max depth to LastChanceRecoloringMaxDepth.
2089  // We may want to reconsider that if we end up with a too large search space
2090  // for target with hundreds of registers.
2091  // Indeed, in that case we may want to cut the search space earlier.
2092  if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2093    DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2094    CutOffInfo |= CO_Depth;
2095    return ~0u;
2096  }
2097
2098  // Set of Live intervals that will need to be recolored.
2099  SmallLISet RecoloringCandidates;
2100  // Record the original mapping virtual register to physical register in case
2101  // the recoloring fails.
2102  DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2103  // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2104  // this recoloring "session".
2105  FixedRegisters.insert(VirtReg.reg);
2106
2107  Order.rewind();
2108  while (unsigned PhysReg = Order.next()) {
2109    DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2110                 << PrintReg(PhysReg, TRI) << '\n');
2111    RecoloringCandidates.clear();
2112    VirtRegToPhysReg.clear();
2113
2114    // It is only possible to recolor virtual register interference.
2115    if (Matrix->checkInterference(VirtReg, PhysReg) >
2116        LiveRegMatrix::IK_VirtReg) {
2117      DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2118
2119      continue;
2120    }
2121
2122    // Early give up on this PhysReg if it is obvious we cannot recolor all
2123    // the interferences.
2124    if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2125                                    FixedRegisters)) {
2126      DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2127      continue;
2128    }
2129
2130    // RecoloringCandidates contains all the virtual registers that interfer
2131    // with VirtReg on PhysReg (or one of its aliases).
2132    // Enqueue them for recoloring and perform the actual recoloring.
2133    PQueue RecoloringQueue;
2134    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2135                              EndIt = RecoloringCandidates.end();
2136         It != EndIt; ++It) {
2137      unsigned ItVirtReg = (*It)->reg;
2138      enqueue(RecoloringQueue, *It);
2139      assert(VRM->hasPhys(ItVirtReg) &&
2140             "Interferences are supposed to be with allocated vairables");
2141
2142      // Record the current allocation.
2143      VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2144      // unset the related struct.
2145      Matrix->unassign(**It);
2146    }
2147
2148    // Do as if VirtReg was assigned to PhysReg so that the underlying
2149    // recoloring has the right information about the interferes and
2150    // available colors.
2151    Matrix->assign(VirtReg, PhysReg);
2152
2153    // Save the current recoloring state.
2154    // If we cannot recolor all the interferences, we will have to start again
2155    // at this point for the next physical register.
2156    SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2157    if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
2158                                Depth)) {
2159      // Do not mess up with the global assignment process.
2160      // I.e., VirtReg must be unassigned.
2161      Matrix->unassign(VirtReg);
2162      return PhysReg;
2163    }
2164
2165    DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2166                 << PrintReg(PhysReg, TRI) << '\n');
2167
2168    // The recoloring attempt failed, undo the changes.
2169    FixedRegisters = SaveFixedRegisters;
2170    Matrix->unassign(VirtReg);
2171
2172    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2173                              EndIt = RecoloringCandidates.end();
2174         It != EndIt; ++It) {
2175      unsigned ItVirtReg = (*It)->reg;
2176      if (VRM->hasPhys(ItVirtReg))
2177        Matrix->unassign(**It);
2178      unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2179      Matrix->assign(**It, ItPhysReg);
2180    }
2181  }
2182
2183  // Last chance recoloring did not worked either, give up.
2184  return ~0u;
2185}
2186
2187/// tryRecoloringCandidates - Try to assign a new color to every register
2188/// in \RecoloringQueue.
2189/// \p NewRegs will contain any new virtual register created during the
2190/// recoloring process.
2191/// \p FixedRegisters[in/out] contains all the registers that have been
2192/// recolored.
2193/// \return true if all virtual registers in RecoloringQueue were successfully
2194/// recolored, false otherwise.
2195bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2196                                       SmallVectorImpl<unsigned> &NewVRegs,
2197                                       SmallVirtRegSet &FixedRegisters,
2198                                       unsigned Depth) {
2199  while (!RecoloringQueue.empty()) {
2200    LiveInterval *LI = dequeue(RecoloringQueue);
2201    DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2202    unsigned PhysReg;
2203    PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2204    if (PhysReg == ~0u || !PhysReg)
2205      return false;
2206    DEBUG(dbgs() << "Recoloring of " << *LI
2207                 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2208    Matrix->assign(*LI, PhysReg);
2209    FixedRegisters.insert(LI->reg);
2210  }
2211  return true;
2212}
2213
2214//===----------------------------------------------------------------------===//
2215//                            Main Entry Point
2216//===----------------------------------------------------------------------===//
2217
2218unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2219                                 SmallVectorImpl<unsigned> &NewVRegs) {
2220  CutOffInfo = CO_None;
2221  LLVMContext &Ctx = MF->getFunction()->getContext();
2222  SmallVirtRegSet FixedRegisters;
2223  unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2224  if (Reg == ~0U && (CutOffInfo != CO_None)) {
2225    uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2226    if (CutOffEncountered == CO_Depth)
2227      Ctx.emitError("register allocation failed: maximum depth for recoloring "
2228                    "reached. Use -fexhaustive-register-search to skip "
2229                    "cutoffs");
2230    else if (CutOffEncountered == CO_Interf)
2231      Ctx.emitError("register allocation failed: maximum interference for "
2232                    "recoloring reached. Use -fexhaustive-register-search "
2233                    "to skip cutoffs");
2234    else if (CutOffEncountered == (CO_Depth | CO_Interf))
2235      Ctx.emitError("register allocation failed: maximum interference and "
2236                    "depth for recoloring reached. Use "
2237                    "-fexhaustive-register-search to skip cutoffs");
2238  }
2239  return Reg;
2240}
2241
2242/// Using a CSR for the first time has a cost because it causes push|pop
2243/// to be added to prologue|epilogue. Splitting a cold section of the live
2244/// range can have lower cost than using the CSR for the first time;
2245/// Spilling a live range in the cold path can have lower cost than using
2246/// the CSR for the first time. Returns the physical register if we decide
2247/// to use the CSR; otherwise return 0.
2248unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2249                                         AllocationOrder &Order,
2250                                         unsigned PhysReg,
2251                                         unsigned &CostPerUseLimit,
2252                                         SmallVectorImpl<unsigned> &NewVRegs) {
2253  if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2254    // We choose spill over using the CSR for the first time if the spill cost
2255    // is lower than CSRCost.
2256    SA->analyze(&VirtReg);
2257    if (calcSpillCost() >= CSRCost)
2258      return PhysReg;
2259
2260    // We are going to spill, set CostPerUseLimit to 1 to make sure that
2261    // we will not use a callee-saved register in tryEvict.
2262    CostPerUseLimit = 1;
2263    return 0;
2264  }
2265  if (getStage(VirtReg) < RS_Split) {
2266    // We choose pre-splitting over using the CSR for the first time if
2267    // the cost of splitting is lower than CSRCost.
2268    SA->analyze(&VirtReg);
2269    unsigned NumCands = 0;
2270    BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2271    unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2272                                                 NumCands, true /*IgnoreCSR*/);
2273    if (BestCand == NoCand)
2274      // Use the CSR if we can't find a region split below CSRCost.
2275      return PhysReg;
2276
2277    // Perform the actual pre-splitting.
2278    doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2279    return 0;
2280  }
2281  return PhysReg;
2282}
2283
2284void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2285  // Do not keep invalid information around.
2286  SetOfBrokenHints.remove(&LI);
2287}
2288
2289void RAGreedy::initializeCSRCost() {
2290  // We use the larger one out of the command-line option and the value report
2291  // by TRI.
2292  CSRCost = BlockFrequency(
2293      std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2294  if (!CSRCost.getFrequency())
2295    return;
2296
2297  // Raw cost is relative to Entry == 2^14; scale it appropriately.
2298  uint64_t ActualEntry = MBFI->getEntryFreq();
2299  if (!ActualEntry) {
2300    CSRCost = 0;
2301    return;
2302  }
2303  uint64_t FixedEntry = 1 << 14;
2304  if (ActualEntry < FixedEntry)
2305    CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2306  else if (ActualEntry <= UINT32_MAX)
2307    // Invert the fraction and divide.
2308    CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2309  else
2310    // Can't use BranchProbability in general, since it takes 32-bit numbers.
2311    CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2312}
2313
2314/// \brief Collect the hint info for \p Reg.
2315/// The results are stored into \p Out.
2316/// \p Out is not cleared before being populated.
2317void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2318  for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2319    if (!Instr.isFullCopy())
2320      continue;
2321    // Look for the other end of the copy.
2322    unsigned OtherReg = Instr.getOperand(0).getReg();
2323    if (OtherReg == Reg) {
2324      OtherReg = Instr.getOperand(1).getReg();
2325      if (OtherReg == Reg)
2326        continue;
2327    }
2328    // Get the current assignment.
2329    unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2330                                ? OtherReg
2331                                : VRM->getPhys(OtherReg);
2332    // Push the collected information.
2333    Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2334                           OtherPhysReg));
2335  }
2336}
2337
2338/// \brief Using the given \p List, compute the cost of the broken hints if
2339/// \p PhysReg was used.
2340/// \return The cost of \p List for \p PhysReg.
2341BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2342                                           unsigned PhysReg) {
2343  BlockFrequency Cost = 0;
2344  for (const HintInfo &Info : List) {
2345    if (Info.PhysReg != PhysReg)
2346      Cost += Info.Freq;
2347  }
2348  return Cost;
2349}
2350
2351/// \brief Using the register assigned to \p VirtReg, try to recolor
2352/// all the live ranges that are copy-related with \p VirtReg.
2353/// The recoloring is then propagated to all the live-ranges that have
2354/// been recolored and so on, until no more copies can be coalesced or
2355/// it is not profitable.
2356/// For a given live range, profitability is determined by the sum of the
2357/// frequencies of the non-identity copies it would introduce with the old
2358/// and new register.
2359void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2360  // We have a broken hint, check if it is possible to fix it by
2361  // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2362  // some register and PhysReg may be available for the other live-ranges.
2363  SmallSet<unsigned, 4> Visited;
2364  SmallVector<unsigned, 2> RecoloringCandidates;
2365  HintsInfo Info;
2366  unsigned Reg = VirtReg.reg;
2367  unsigned PhysReg = VRM->getPhys(Reg);
2368  // Start the recoloring algorithm from the input live-interval, then
2369  // it will propagate to the ones that are copy-related with it.
2370  Visited.insert(Reg);
2371  RecoloringCandidates.push_back(Reg);
2372
2373  DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2374               << PrintReg(PhysReg, TRI) << ")\n");
2375
2376  do {
2377    Reg = RecoloringCandidates.pop_back_val();
2378
2379    // We cannot recolor physcal register.
2380    if (TargetRegisterInfo::isPhysicalRegister(Reg))
2381      continue;
2382
2383    assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2384
2385    // Get the live interval mapped with this virtual register to be able
2386    // to check for the interference with the new color.
2387    LiveInterval &LI = LIS->getInterval(Reg);
2388    unsigned CurrPhys = VRM->getPhys(Reg);
2389    // Check that the new color matches the register class constraints and
2390    // that it is free for this live range.
2391    if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2392                                Matrix->checkInterference(LI, PhysReg)))
2393      continue;
2394
2395    DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2396                 << ") is recolorable.\n");
2397
2398    // Gather the hint info.
2399    Info.clear();
2400    collectHintInfo(Reg, Info);
2401    // Check if recoloring the live-range will increase the cost of the
2402    // non-identity copies.
2403    if (CurrPhys != PhysReg) {
2404      DEBUG(dbgs() << "Checking profitability:\n");
2405      BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2406      BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2407      DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2408                   << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2409      if (OldCopiesCost < NewCopiesCost) {
2410        DEBUG(dbgs() << "=> Not profitable.\n");
2411        continue;
2412      }
2413      // At this point, the cost is either cheaper or equal. If it is
2414      // equal, we consider this is profitable because it may expose
2415      // more recoloring opportunities.
2416      DEBUG(dbgs() << "=> Profitable.\n");
2417      // Recolor the live-range.
2418      Matrix->unassign(LI);
2419      Matrix->assign(LI, PhysReg);
2420    }
2421    // Push all copy-related live-ranges to keep reconciling the broken
2422    // hints.
2423    for (const HintInfo &HI : Info) {
2424      if (Visited.insert(HI.Reg).second)
2425        RecoloringCandidates.push_back(HI.Reg);
2426    }
2427  } while (!RecoloringCandidates.empty());
2428}
2429
2430/// \brief Try to recolor broken hints.
2431/// Broken hints may be repaired by recoloring when an evicted variable
2432/// freed up a register for a larger live-range.
2433/// Consider the following example:
2434/// BB1:
2435///   a =
2436///   b =
2437/// BB2:
2438///   ...
2439///   = b
2440///   = a
2441/// Let us assume b gets split:
2442/// BB1:
2443///   a =
2444///   b =
2445/// BB2:
2446///   c = b
2447///   ...
2448///   d = c
2449///   = d
2450///   = a
2451/// Because of how the allocation work, b, c, and d may be assigned different
2452/// colors. Now, if a gets evicted later:
2453/// BB1:
2454///   a =
2455///   st a, SpillSlot
2456///   b =
2457/// BB2:
2458///   c = b
2459///   ...
2460///   d = c
2461///   = d
2462///   e = ld SpillSlot
2463///   = e
2464/// This is likely that we can assign the same register for b, c, and d,
2465/// getting rid of 2 copies.
2466void RAGreedy::tryHintsRecoloring() {
2467  for (LiveInterval *LI : SetOfBrokenHints) {
2468    assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2469           "Recoloring is possible only for virtual registers");
2470    // Some dead defs may be around (e.g., because of debug uses).
2471    // Ignore those.
2472    if (!VRM->hasPhys(LI->reg))
2473      continue;
2474    tryHintRecoloring(*LI);
2475  }
2476}
2477
2478unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2479                                     SmallVectorImpl<unsigned> &NewVRegs,
2480                                     SmallVirtRegSet &FixedRegisters,
2481                                     unsigned Depth) {
2482  unsigned CostPerUseLimit = ~0u;
2483  // First try assigning a free register.
2484  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2485  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2486    // When NewVRegs is not empty, we may have made decisions such as evicting
2487    // a virtual register, go with the earlier decisions and use the physical
2488    // register.
2489    if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2490        NewVRegs.empty()) {
2491      unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2492                                              CostPerUseLimit, NewVRegs);
2493      if (CSRReg || !NewVRegs.empty())
2494        // Return now if we decide to use a CSR or create new vregs due to
2495        // pre-splitting.
2496        return CSRReg;
2497    } else
2498      return PhysReg;
2499  }
2500
2501  LiveRangeStage Stage = getStage(VirtReg);
2502  DEBUG(dbgs() << StageName[Stage]
2503               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2504
2505  // Try to evict a less worthy live range, but only for ranges from the primary
2506  // queue. The RS_Split ranges already failed to do this, and they should not
2507  // get a second chance until they have been split.
2508  if (Stage != RS_Split)
2509    if (unsigned PhysReg =
2510            tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2511      unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2512      // If VirtReg has a hint and that hint is broken record this
2513      // virtual register as a recoloring candidate for broken hint.
2514      // Indeed, since we evicted a variable in its neighborhood it is
2515      // likely we can at least partially recolor some of the
2516      // copy-related live-ranges.
2517      if (Hint && Hint != PhysReg)
2518        SetOfBrokenHints.insert(&VirtReg);
2519      return PhysReg;
2520    }
2521
2522  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
2523
2524  // The first time we see a live range, don't try to split or spill.
2525  // Wait until the second time, when all smaller ranges have been allocated.
2526  // This gives a better picture of the interference to split around.
2527  if (Stage < RS_Split) {
2528    setStage(VirtReg, RS_Split);
2529    DEBUG(dbgs() << "wait for second round\n");
2530    NewVRegs.push_back(VirtReg.reg);
2531    return 0;
2532  }
2533
2534  // If we couldn't allocate a register from spilling, there is probably some
2535  // invalid inline assembly. The base class wil report it.
2536  if (Stage >= RS_Done || !VirtReg.isSpillable())
2537    return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2538                                   Depth);
2539
2540  // Try splitting VirtReg or interferences.
2541  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2542  if (PhysReg || !NewVRegs.empty())
2543    return PhysReg;
2544
2545  // Finally spill VirtReg itself.
2546  if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
2547    // TODO: This is experimental and in particular, we do not model
2548    // the live range splitting done by spilling correctly.
2549    // We would need a deep integration with the spiller to do the
2550    // right thing here. Anyway, that is still good for early testing.
2551    setStage(VirtReg, RS_Memory);
2552    DEBUG(dbgs() << "Do as if this register is in memory\n");
2553    NewVRegs.push_back(VirtReg.reg);
2554  } else {
2555    NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
2556    LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2557    spiller().spill(LRE);
2558    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2559
2560    if (VerifyEnabled)
2561      MF->verify(this, "After spilling");
2562  }
2563
2564  // The live virtual register requesting allocation was spilled, so tell
2565  // the caller not to allocate anything during this round.
2566  return 0;
2567}
2568
2569bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2570  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2571               << "********** Function: " << mf.getName() << '\n');
2572
2573  MF = &mf;
2574  TRI = MF->getSubtarget().getRegisterInfo();
2575  TII = MF->getSubtarget().getInstrInfo();
2576  RCI.runOnMachineFunction(mf);
2577
2578  EnableLocalReassign = EnableLocalReassignment ||
2579                        MF->getSubtarget().enableRALocalReassignment(
2580                            MF->getTarget().getOptLevel());
2581
2582  if (VerifyEnabled)
2583    MF->verify(this, "Before greedy register allocator");
2584
2585  RegAllocBase::init(getAnalysis<VirtRegMap>(),
2586                     getAnalysis<LiveIntervals>(),
2587                     getAnalysis<LiveRegMatrix>());
2588  Indexes = &getAnalysis<SlotIndexes>();
2589  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2590  DomTree = &getAnalysis<MachineDominatorTree>();
2591  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2592  Loops = &getAnalysis<MachineLoopInfo>();
2593  Bundles = &getAnalysis<EdgeBundles>();
2594  SpillPlacer = &getAnalysis<SpillPlacement>();
2595  DebugVars = &getAnalysis<LiveDebugVariables>();
2596  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2597
2598  initializeCSRCost();
2599
2600  calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
2601
2602  DEBUG(LIS->dump());
2603
2604  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2605  SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
2606  ExtraRegInfo.clear();
2607  ExtraRegInfo.resize(MRI->getNumVirtRegs());
2608  NextCascade = 1;
2609  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2610  GlobalCand.resize(32);  // This will grow as needed.
2611  SetOfBrokenHints.clear();
2612
2613  allocatePhysRegs();
2614  tryHintsRecoloring();
2615  postOptimization();
2616
2617  releaseMemory();
2618  return true;
2619}
2620