ScheduleDAGInstrs.cpp revision 851bb2c9cbbd3b1847def5ca7ea8dadf457298b5
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16#include "llvm/CodeGen/ScheduleDAGInstrs.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/RegisterPressure.h"
28#include "llvm/CodeGen/ScheduleDFS.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <queue>
40
41using namespace llvm;
42
43static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
44    cl::ZeroOrMore, cl::init(false),
45    cl::desc("Enable use of AA during MI GAD construction"));
46
47ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
48                                     const MachineLoopInfo &mli,
49                                     const MachineDominatorTree &mdt,
50                                     bool IsPostRAFlag,
51                                     LiveIntervals *lis)
52  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
53    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
54  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
55  DbgValues.clear();
56  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
57         "Virtual registers must be removed prior to PostRA scheduling");
58
59  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
60  SchedModel.init(*ST.getSchedModel(), &ST, TII);
61}
62
63/// getUnderlyingObjectFromInt - This is the function that does the work of
64/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
65static const Value *getUnderlyingObjectFromInt(const Value *V) {
66  do {
67    if (const Operator *U = dyn_cast<Operator>(V)) {
68      // If we find a ptrtoint, we can transfer control back to the
69      // regular getUnderlyingObjectFromInt.
70      if (U->getOpcode() == Instruction::PtrToInt)
71        return U->getOperand(0);
72      // If we find an add of a constant, a multiplied value, or a phi, it's
73      // likely that the other operand will lead us to the base
74      // object. We don't have to worry about the case where the
75      // object address is somehow being computed by the multiply,
76      // because our callers only care when the result is an
77      // identifiable object.
78      if (U->getOpcode() != Instruction::Add ||
79          (!isa<ConstantInt>(U->getOperand(1)) &&
80           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
81           !isa<PHINode>(U->getOperand(1))))
82        return V;
83      V = U->getOperand(0);
84    } else {
85      return V;
86    }
87    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
88  } while (1);
89}
90
91/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
92/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
93static void getUnderlyingObjects(const Value *V,
94                                 SmallVectorImpl<Value *> &Objects) {
95  SmallPtrSet<const Value*, 16> Visited;
96  SmallVector<const Value *, 4> Working(1, V);
97  do {
98    V = Working.pop_back_val();
99
100    SmallVector<Value *, 4> Objs;
101    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
102
103    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
104         I != IE; ++I) {
105      V = *I;
106      if (!Visited.insert(V))
107        continue;
108      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
109        const Value *O =
110          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
111        if (O->getType()->isPointerTy()) {
112          Working.push_back(O);
113          continue;
114        }
115      }
116      Objects.push_back(const_cast<Value *>(V));
117    }
118  } while (!Working.empty());
119}
120
121typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4>
122UnderlyingObjectsVector;
123
124/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
125/// information and it can be tracked to a normal reference to a known
126/// object, return the Value for that object.
127static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
128                                         const MachineFrameInfo *MFI,
129                                         UnderlyingObjectsVector &Objects) {
130  if (!MI->hasOneMemOperand() ||
131      !(*MI->memoperands_begin())->getValue() ||
132      (*MI->memoperands_begin())->isVolatile())
133    return;
134
135  const Value *V = (*MI->memoperands_begin())->getValue();
136  if (!V)
137    return;
138
139  SmallVector<Value *, 4> Objs;
140  getUnderlyingObjects(V, Objs);
141
142  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
143         I != IE; ++I) {
144    bool MayAlias = true;
145    V = *I;
146
147    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
148      // For now, ignore PseudoSourceValues which may alias LLVM IR values
149      // because the code that uses this function has no way to cope with
150      // such aliases.
151
152      if (PSV->isAliased(MFI)) {
153        Objects.clear();
154        return;
155      }
156
157      MayAlias = PSV->mayAlias(MFI);
158    } else if (!isIdentifiedObject(V)) {
159      Objects.clear();
160      return;
161    }
162
163    Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias));
164  }
165}
166
167void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
168  BB = bb;
169}
170
171void ScheduleDAGInstrs::finishBlock() {
172  // Subclasses should no longer refer to the old block.
173  BB = 0;
174}
175
176/// Initialize the DAG and common scheduler state for the current scheduling
177/// region. This does not actually create the DAG, only clears it. The
178/// scheduling driver may call BuildSchedGraph multiple times per scheduling
179/// region.
180void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
181                                    MachineBasicBlock::iterator begin,
182                                    MachineBasicBlock::iterator end,
183                                    unsigned regioninstrs) {
184  assert(bb == BB && "startBlock should set BB");
185  RegionBegin = begin;
186  RegionEnd = end;
187  NumRegionInstrs = regioninstrs;
188  MISUnitMap.clear();
189
190  ScheduleDAG::clearDAG();
191}
192
193/// Close the current scheduling region. Don't clear any state in case the
194/// driver wants to refer to the previous scheduling region.
195void ScheduleDAGInstrs::exitRegion() {
196  // Nothing to do.
197}
198
199/// addSchedBarrierDeps - Add dependencies from instructions in the current
200/// list of instructions being scheduled to scheduling barrier by adding
201/// the exit SU to the register defs and use list. This is because we want to
202/// make sure instructions which define registers that are either used by
203/// the terminator or are live-out are properly scheduled. This is
204/// especially important when the definition latency of the return value(s)
205/// are too high to be hidden by the branch or when the liveout registers
206/// used by instructions in the fallthrough block.
207void ScheduleDAGInstrs::addSchedBarrierDeps() {
208  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
209  ExitSU.setInstr(ExitMI);
210  bool AllDepKnown = ExitMI &&
211    (ExitMI->isCall() || ExitMI->isBarrier());
212  if (ExitMI && AllDepKnown) {
213    // If it's a call or a barrier, add dependencies on the defs and uses of
214    // instruction.
215    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
216      const MachineOperand &MO = ExitMI->getOperand(i);
217      if (!MO.isReg() || MO.isDef()) continue;
218      unsigned Reg = MO.getReg();
219      if (Reg == 0) continue;
220
221      if (TRI->isPhysicalRegister(Reg))
222        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
223      else {
224        assert(!IsPostRA && "Virtual register encountered after regalloc.");
225        if (MO.readsReg()) // ignore undef operands
226          addVRegUseDeps(&ExitSU, i);
227      }
228    }
229  } else {
230    // For others, e.g. fallthrough, conditional branch, assume the exit
231    // uses all the registers that are livein to the successor blocks.
232    assert(Uses.empty() && "Uses in set before adding deps?");
233    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
234           SE = BB->succ_end(); SI != SE; ++SI)
235      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
236             E = (*SI)->livein_end(); I != E; ++I) {
237        unsigned Reg = *I;
238        if (!Uses.contains(Reg))
239          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
240      }
241  }
242}
243
244/// MO is an operand of SU's instruction that defines a physical register. Add
245/// data dependencies from SU to any uses of the physical register.
246void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
247  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
248  assert(MO.isDef() && "expect physreg def");
249
250  // Ask the target if address-backscheduling is desirable, and if so how much.
251  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
252
253  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
254       Alias.isValid(); ++Alias) {
255    if (!Uses.contains(*Alias))
256      continue;
257    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
258      SUnit *UseSU = I->SU;
259      if (UseSU == SU)
260        continue;
261
262      // Adjust the dependence latency using operand def/use information,
263      // then allow the target to perform its own adjustments.
264      int UseOp = I->OpIdx;
265      MachineInstr *RegUse = 0;
266      SDep Dep;
267      if (UseOp < 0)
268        Dep = SDep(SU, SDep::Artificial);
269      else {
270        // Set the hasPhysRegDefs only for physreg defs that have a use within
271        // the scheduling region.
272        SU->hasPhysRegDefs = true;
273        Dep = SDep(SU, SDep::Data, *Alias);
274        RegUse = UseSU->getInstr();
275      }
276      Dep.setLatency(
277        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
278                                         UseOp));
279
280      ST.adjustSchedDependency(SU, UseSU, Dep);
281      UseSU->addPred(Dep);
282    }
283  }
284}
285
286/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
287/// this SUnit to following instructions in the same scheduling region that
288/// depend the physical register referenced at OperIdx.
289void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
290  const MachineInstr *MI = SU->getInstr();
291  const MachineOperand &MO = MI->getOperand(OperIdx);
292
293  // Optionally add output and anti dependencies. For anti
294  // dependencies we use a latency of 0 because for a multi-issue
295  // target we want to allow the defining instruction to issue
296  // in the same cycle as the using instruction.
297  // TODO: Using a latency of 1 here for output dependencies assumes
298  //       there's no cost for reusing registers.
299  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
300  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
301       Alias.isValid(); ++Alias) {
302    if (!Defs.contains(*Alias))
303      continue;
304    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
305      SUnit *DefSU = I->SU;
306      if (DefSU == &ExitSU)
307        continue;
308      if (DefSU != SU &&
309          (Kind != SDep::Output || !MO.isDead() ||
310           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
311        if (Kind == SDep::Anti)
312          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
313        else {
314          SDep Dep(SU, Kind, /*Reg=*/*Alias);
315          Dep.setLatency(
316            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
317          DefSU->addPred(Dep);
318        }
319      }
320    }
321  }
322
323  if (!MO.isDef()) {
324    SU->hasPhysRegUses = true;
325    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
326    // retrieve the existing SUnits list for this register's uses.
327    // Push this SUnit on the use list.
328    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
329  }
330  else {
331    addPhysRegDataDeps(SU, OperIdx);
332    unsigned Reg = MO.getReg();
333
334    // clear this register's use list
335    if (Uses.contains(Reg))
336      Uses.eraseAll(Reg);
337
338    if (!MO.isDead()) {
339      Defs.eraseAll(Reg);
340    } else if (SU->isCall) {
341      // Calls will not be reordered because of chain dependencies (see
342      // below). Since call operands are dead, calls may continue to be added
343      // to the DefList making dependence checking quadratic in the size of
344      // the block. Instead, we leave only one call at the back of the
345      // DefList.
346      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
347      Reg2SUnitsMap::iterator B = P.first;
348      Reg2SUnitsMap::iterator I = P.second;
349      for (bool isBegin = I == B; !isBegin; /* empty */) {
350        isBegin = (--I) == B;
351        if (!I->SU->isCall)
352          break;
353        I = Defs.erase(I);
354      }
355    }
356
357    // Defs are pushed in the order they are visited and never reordered.
358    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
359  }
360}
361
362/// addVRegDefDeps - Add register output and data dependencies from this SUnit
363/// to instructions that occur later in the same scheduling region if they read
364/// from or write to the virtual register defined at OperIdx.
365///
366/// TODO: Hoist loop induction variable increments. This has to be
367/// reevaluated. Generally, IV scheduling should be done before coalescing.
368void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
369  const MachineInstr *MI = SU->getInstr();
370  unsigned Reg = MI->getOperand(OperIdx).getReg();
371
372  // Singly defined vregs do not have output/anti dependencies.
373  // The current operand is a def, so we have at least one.
374  // Check here if there are any others...
375  if (MRI.hasOneDef(Reg))
376    return;
377
378  // Add output dependence to the next nearest def of this vreg.
379  //
380  // Unless this definition is dead, the output dependence should be
381  // transitively redundant with antidependencies from this definition's
382  // uses. We're conservative for now until we have a way to guarantee the uses
383  // are not eliminated sometime during scheduling. The output dependence edge
384  // is also useful if output latency exceeds def-use latency.
385  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
386  if (DefI == VRegDefs.end())
387    VRegDefs.insert(VReg2SUnit(Reg, SU));
388  else {
389    SUnit *DefSU = DefI->SU;
390    if (DefSU != SU && DefSU != &ExitSU) {
391      SDep Dep(SU, SDep::Output, Reg);
392      Dep.setLatency(
393        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
394      DefSU->addPred(Dep);
395    }
396    DefI->SU = SU;
397  }
398}
399
400/// addVRegUseDeps - Add a register data dependency if the instruction that
401/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
402/// register antidependency from this SUnit to instructions that occur later in
403/// the same scheduling region if they write the virtual register.
404///
405/// TODO: Handle ExitSU "uses" properly.
406void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
407  MachineInstr *MI = SU->getInstr();
408  unsigned Reg = MI->getOperand(OperIdx).getReg();
409
410  // Record this local VReg use.
411  VRegUses.insert(VReg2SUnit(Reg, SU));
412
413  // Lookup this operand's reaching definition.
414  assert(LIS && "vreg dependencies requires LiveIntervals");
415  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
416  VNInfo *VNI = LRQ.valueIn();
417
418  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
419  assert(VNI && "No value to read by operand");
420  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
421  // Phis and other noninstructions (after coalescing) have a NULL Def.
422  if (Def) {
423    SUnit *DefSU = getSUnit(Def);
424    if (DefSU) {
425      // The reaching Def lives within this scheduling region.
426      // Create a data dependence.
427      SDep dep(DefSU, SDep::Data, Reg);
428      // Adjust the dependence latency using operand def/use information, then
429      // allow the target to perform its own adjustments.
430      int DefOp = Def->findRegisterDefOperandIdx(Reg);
431      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
432
433      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
434      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
435      SU->addPred(dep);
436    }
437  }
438
439  // Add antidependence to the following def of the vreg it uses.
440  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
441  if (DefI != VRegDefs.end() && DefI->SU != SU)
442    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
443}
444
445/// Return true if MI is an instruction we are unable to reason about
446/// (like a call or something with unmodeled side effects).
447static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
448  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
449      (MI->hasOrderedMemoryRef() &&
450       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
451    return true;
452  return false;
453}
454
455// This MI might have either incomplete info, or known to be unsafe
456// to deal with (i.e. volatile object).
457static inline bool isUnsafeMemoryObject(MachineInstr *MI,
458                                        const MachineFrameInfo *MFI) {
459  if (!MI || MI->memoperands_empty())
460    return true;
461  // We purposefully do no check for hasOneMemOperand() here
462  // in hope to trigger an assert downstream in order to
463  // finish implementation.
464  if ((*MI->memoperands_begin())->isVolatile() ||
465       MI->hasUnmodeledSideEffects())
466    return true;
467  const Value *V = (*MI->memoperands_begin())->getValue();
468  if (!V)
469    return true;
470
471  SmallVector<Value *, 4> Objs;
472  getUnderlyingObjects(V, Objs);
473  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
474         IE = Objs.end(); I != IE; ++I) {
475    V = *I;
476
477    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
478      // Similarly to getUnderlyingObjectForInstr:
479      // For now, ignore PseudoSourceValues which may alias LLVM IR values
480      // because the code that uses this function has no way to cope with
481      // such aliases.
482      if (PSV->isAliased(MFI))
483        return true;
484    }
485
486    // Does this pointer refer to a distinct and identifiable object?
487    if (!isIdentifiedObject(V))
488      return true;
489  }
490
491  return false;
492}
493
494/// This returns true if the two MIs need a chain edge betwee them.
495/// If these are not even memory operations, we still may need
496/// chain deps between them. The question really is - could
497/// these two MIs be reordered during scheduling from memory dependency
498/// point of view.
499static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
500                             MachineInstr *MIa,
501                             MachineInstr *MIb) {
502  // Cover a trivial case - no edge is need to itself.
503  if (MIa == MIb)
504    return false;
505
506  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
507    return true;
508
509  // If we are dealing with two "normal" loads, we do not need an edge
510  // between them - they could be reordered.
511  if (!MIa->mayStore() && !MIb->mayStore())
512    return false;
513
514  // To this point analysis is generic. From here on we do need AA.
515  if (!AA)
516    return true;
517
518  MachineMemOperand *MMOa = *MIa->memoperands_begin();
519  MachineMemOperand *MMOb = *MIb->memoperands_begin();
520
521  // FIXME: Need to handle multiple memory operands to support all targets.
522  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
523    llvm_unreachable("Multiple memory operands.");
524
525  // The following interface to AA is fashioned after DAGCombiner::isAlias
526  // and operates with MachineMemOperand offset with some important
527  // assumptions:
528  //   - LLVM fundamentally assumes flat address spaces.
529  //   - MachineOperand offset can *only* result from legalization and
530  //     cannot affect queries other than the trivial case of overlap
531  //     checking.
532  //   - These offsets never wrap and never step outside
533  //     of allocated objects.
534  //   - There should never be any negative offsets here.
535  //
536  // FIXME: Modify API to hide this math from "user"
537  // FIXME: Even before we go to AA we can reason locally about some
538  // memory objects. It can save compile time, and possibly catch some
539  // corner cases not currently covered.
540
541  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
542  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
543
544  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
545  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
546  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
547
548  AliasAnalysis::AliasResult AAResult = AA->alias(
549  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
550                          MMOa->getTBAAInfo()),
551  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
552                          MMOb->getTBAAInfo()));
553
554  return (AAResult != AliasAnalysis::NoAlias);
555}
556
557/// This recursive function iterates over chain deps of SUb looking for
558/// "latest" node that needs a chain edge to SUa.
559static unsigned
560iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
561                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
562                 SmallPtrSet<const SUnit*, 16> &Visited) {
563  if (!SUa || !SUb || SUb == ExitSU)
564    return *Depth;
565
566  // Remember visited nodes.
567  if (!Visited.insert(SUb))
568      return *Depth;
569  // If there is _some_ dependency already in place, do not
570  // descend any further.
571  // TODO: Need to make sure that if that dependency got eliminated or ignored
572  // for any reason in the future, we would not violate DAG topology.
573  // Currently it does not happen, but makes an implicit assumption about
574  // future implementation.
575  //
576  // Independently, if we encounter node that is some sort of global
577  // object (like a call) we already have full set of dependencies to it
578  // and we can stop descending.
579  if (SUa->isSucc(SUb) ||
580      isGlobalMemoryObject(AA, SUb->getInstr()))
581    return *Depth;
582
583  // If we do need an edge, or we have exceeded depth budget,
584  // add that edge to the predecessors chain of SUb,
585  // and stop descending.
586  if (*Depth > 200 ||
587      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
588    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
589    return *Depth;
590  }
591  // Track current depth.
592  (*Depth)++;
593  // Iterate over chain dependencies only.
594  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
595       I != E; ++I)
596    if (I->isCtrl())
597      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
598  return *Depth;
599}
600
601/// This function assumes that "downward" from SU there exist
602/// tail/leaf of already constructed DAG. It iterates downward and
603/// checks whether SU can be aliasing any node dominated
604/// by it.
605static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
606                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
607                            unsigned LatencyToLoad) {
608  if (!SU)
609    return;
610
611  SmallPtrSet<const SUnit*, 16> Visited;
612  unsigned Depth = 0;
613
614  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
615       I != IE; ++I) {
616    if (SU == *I)
617      continue;
618    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
619      SDep Dep(SU, SDep::MayAliasMem);
620      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
621      (*I)->addPred(Dep);
622    }
623    // Now go through all the chain successors and iterate from them.
624    // Keep track of visited nodes.
625    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
626         JE = (*I)->Succs.end(); J != JE; ++J)
627      if (J->isCtrl())
628        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
629                          ExitSU, &Depth, Visited);
630  }
631}
632
633/// Check whether two objects need a chain edge, if so, add it
634/// otherwise remember the rejected SU.
635static inline
636void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
637                         SUnit *SUa, SUnit *SUb,
638                         std::set<SUnit *> &RejectList,
639                         unsigned TrueMemOrderLatency = 0,
640                         bool isNormalMemory = false) {
641  // If this is a false dependency,
642  // do not add the edge, but rememeber the rejected node.
643  if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
644    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
645    Dep.setLatency(TrueMemOrderLatency);
646    SUb->addPred(Dep);
647  }
648  else {
649    // Duplicate entries should be ignored.
650    RejectList.insert(SUb);
651    DEBUG(dbgs() << "\tReject chain dep between SU("
652          << SUa->NodeNum << ") and SU("
653          << SUb->NodeNum << ")\n");
654  }
655}
656
657/// Create an SUnit for each real instruction, numbered in top-down toplological
658/// order. The instruction order A < B, implies that no edge exists from B to A.
659///
660/// Map each real instruction to its SUnit.
661///
662/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
663/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
664/// instead of pointers.
665///
666/// MachineScheduler relies on initSUnits numbering the nodes by their order in
667/// the original instruction list.
668void ScheduleDAGInstrs::initSUnits() {
669  // We'll be allocating one SUnit for each real instruction in the region,
670  // which is contained within a basic block.
671  SUnits.reserve(NumRegionInstrs);
672
673  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
674    MachineInstr *MI = I;
675    if (MI->isDebugValue())
676      continue;
677
678    SUnit *SU = newSUnit(MI);
679    MISUnitMap[MI] = SU;
680
681    SU->isCall = MI->isCall();
682    SU->isCommutable = MI->isCommutable();
683
684    // Assign the Latency field of SU using target-provided information.
685    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
686  }
687}
688
689/// If RegPressure is non null, compute register pressure as a side effect. The
690/// DAG builder is an efficient place to do it because it already visits
691/// operands.
692void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
693                                        RegPressureTracker *RPTracker) {
694  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
695  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
696                                                       : ST.useAA();
697  AliasAnalysis *AAForDep = UseAA ? AA : 0;
698
699  // Create an SUnit for each real instruction.
700  initSUnits();
701
702  // We build scheduling units by walking a block's instruction list from bottom
703  // to top.
704
705  // Remember where a generic side-effecting instruction is as we procede.
706  SUnit *BarrierChain = 0, *AliasChain = 0;
707
708  // Memory references to specific known memory locations are tracked
709  // so that they can be given more precise dependencies. We track
710  // separately the known memory locations that may alias and those
711  // that are known not to alias
712  MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
713  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
714  std::set<SUnit*> RejectMemNodes;
715
716  // Remove any stale debug info; sometimes BuildSchedGraph is called again
717  // without emitting the info from the previous call.
718  DbgValues.clear();
719  FirstDbgValue = NULL;
720
721  assert(Defs.empty() && Uses.empty() &&
722         "Only BuildGraph should update Defs/Uses");
723  Defs.setUniverse(TRI->getNumRegs());
724  Uses.setUniverse(TRI->getNumRegs());
725
726  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
727  VRegUses.clear();
728  VRegDefs.setUniverse(MRI.getNumVirtRegs());
729  VRegUses.setUniverse(MRI.getNumVirtRegs());
730
731  // Model data dependencies between instructions being scheduled and the
732  // ExitSU.
733  addSchedBarrierDeps();
734
735  // Walk the list of instructions, from bottom moving up.
736  MachineInstr *DbgMI = NULL;
737  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
738       MII != MIE; --MII) {
739    MachineInstr *MI = prior(MII);
740    if (MI && DbgMI) {
741      DbgValues.push_back(std::make_pair(DbgMI, MI));
742      DbgMI = NULL;
743    }
744
745    if (MI->isDebugValue()) {
746      DbgMI = MI;
747      continue;
748    }
749    if (RPTracker) {
750      RPTracker->recede();
751      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
752    }
753
754    assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
755           "Cannot schedule terminators or labels!");
756
757    SUnit *SU = MISUnitMap[MI];
758    assert(SU && "No SUnit mapped to this MI");
759
760    // Add register-based dependencies (data, anti, and output).
761    bool HasVRegDef = false;
762    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
763      const MachineOperand &MO = MI->getOperand(j);
764      if (!MO.isReg()) continue;
765      unsigned Reg = MO.getReg();
766      if (Reg == 0) continue;
767
768      if (TRI->isPhysicalRegister(Reg))
769        addPhysRegDeps(SU, j);
770      else {
771        assert(!IsPostRA && "Virtual register encountered!");
772        if (MO.isDef()) {
773          HasVRegDef = true;
774          addVRegDefDeps(SU, j);
775        }
776        else if (MO.readsReg()) // ignore undef operands
777          addVRegUseDeps(SU, j);
778      }
779    }
780    // If we haven't seen any uses in this scheduling region, create a
781    // dependence edge to ExitSU to model the live-out latency. This is required
782    // for vreg defs with no in-region use, and prefetches with no vreg def.
783    //
784    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
785    // check currently relies on being called before adding chain deps.
786    if (SU->NumSuccs == 0 && SU->Latency > 1
787        && (HasVRegDef || MI->mayLoad())) {
788      SDep Dep(SU, SDep::Artificial);
789      Dep.setLatency(SU->Latency - 1);
790      ExitSU.addPred(Dep);
791    }
792
793    // Add chain dependencies.
794    // Chain dependencies used to enforce memory order should have
795    // latency of 0 (except for true dependency of Store followed by
796    // aliased Load... we estimate that with a single cycle of latency
797    // assuming the hardware will bypass)
798    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
799    // after stack slots are lowered to actual addresses.
800    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
801    // produce more precise dependence information.
802    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
803    if (isGlobalMemoryObject(AA, MI)) {
804      // Be conservative with these and add dependencies on all memory
805      // references, even those that are known to not alias.
806      for (MapVector<const Value *, SUnit *>::iterator I =
807             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
808        I->second->addPred(SDep(SU, SDep::Barrier));
809      }
810      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
811             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
812        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
813          SDep Dep(SU, SDep::Barrier);
814          Dep.setLatency(TrueMemOrderLatency);
815          I->second[i]->addPred(Dep);
816        }
817      }
818      // Add SU to the barrier chain.
819      if (BarrierChain)
820        BarrierChain->addPred(SDep(SU, SDep::Barrier));
821      BarrierChain = SU;
822      // This is a barrier event that acts as a pivotal node in the DAG,
823      // so it is safe to clear list of exposed nodes.
824      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
825                      TrueMemOrderLatency);
826      RejectMemNodes.clear();
827      NonAliasMemDefs.clear();
828      NonAliasMemUses.clear();
829
830      // fall-through
831    new_alias_chain:
832      // Chain all possibly aliasing memory references though SU.
833      if (AliasChain) {
834        unsigned ChainLatency = 0;
835        if (AliasChain->getInstr()->mayLoad())
836          ChainLatency = TrueMemOrderLatency;
837        addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
838                           ChainLatency);
839      }
840      AliasChain = SU;
841      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
842        addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
843                           TrueMemOrderLatency);
844      for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
845           E = AliasMemDefs.end(); I != E; ++I)
846        addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
847      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
848           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
849        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
850          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
851                             TrueMemOrderLatency);
852      }
853      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
854                      TrueMemOrderLatency);
855      PendingLoads.clear();
856      AliasMemDefs.clear();
857      AliasMemUses.clear();
858    } else if (MI->mayStore()) {
859      UnderlyingObjectsVector Objs;
860      getUnderlyingObjectsForInstr(MI, MFI, Objs);
861
862      if (Objs.empty()) {
863        // Treat all other stores conservatively.
864        goto new_alias_chain;
865      }
866
867      bool MayAlias = false;
868      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
869           K != KE; ++K) {
870        const Value *V = K->getPointer();
871        bool ThisMayAlias = K->getInt();
872        if (ThisMayAlias)
873          MayAlias = true;
874
875        // A store to a specific PseudoSourceValue. Add precise dependencies.
876        // Record the def in MemDefs, first adding a dep if there is
877        // an existing def.
878        MapVector<const Value *, SUnit *>::iterator I =
879          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
880        MapVector<const Value *, SUnit *>::iterator IE =
881          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
882        if (I != IE) {
883          addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
884                             0, true);
885          I->second = SU;
886        } else {
887          if (ThisMayAlias)
888            AliasMemDefs[V] = SU;
889          else
890            NonAliasMemDefs[V] = SU;
891        }
892        // Handle the uses in MemUses, if there are any.
893        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
894          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
895        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
896          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
897        if (J != JE) {
898          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
899            addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
900                               TrueMemOrderLatency, true);
901          J->second.clear();
902        }
903      }
904      if (MayAlias) {
905        // Add dependencies from all the PendingLoads, i.e. loads
906        // with no underlying object.
907        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
908          addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
909                             TrueMemOrderLatency);
910        // Add dependence on alias chain, if needed.
911        if (AliasChain)
912          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
913        // But we also should check dependent instructions for the
914        // SU in question.
915        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
916                        TrueMemOrderLatency);
917      }
918      // Add dependence on barrier chain, if needed.
919      // There is no point to check aliasing on barrier event. Even if
920      // SU and barrier _could_ be reordered, they should not. In addition,
921      // we have lost all RejectMemNodes below barrier.
922      if (BarrierChain)
923        BarrierChain->addPred(SDep(SU, SDep::Barrier));
924
925      if (!ExitSU.isPred(SU))
926        // Push store's up a bit to avoid them getting in between cmp
927        // and branches.
928        ExitSU.addPred(SDep(SU, SDep::Artificial));
929    } else if (MI->mayLoad()) {
930      bool MayAlias = true;
931      if (MI->isInvariantLoad(AA)) {
932        // Invariant load, no chain dependencies needed!
933      } else {
934        UnderlyingObjectsVector Objs;
935        getUnderlyingObjectsForInstr(MI, MFI, Objs);
936
937        if (Objs.empty()) {
938          // A load with no underlying object. Depend on all
939          // potentially aliasing stores.
940          for (MapVector<const Value *, SUnit *>::iterator I =
941                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
942            addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
943
944          PendingLoads.push_back(SU);
945          MayAlias = true;
946        } else {
947          MayAlias = false;
948        }
949
950        for (UnderlyingObjectsVector::iterator
951             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
952          const Value *V = J->getPointer();
953          bool ThisMayAlias = J->getInt();
954
955          if (ThisMayAlias)
956            MayAlias = true;
957
958          // A load from a specific PseudoSourceValue. Add precise dependencies.
959          MapVector<const Value *, SUnit *>::iterator I =
960            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
961          MapVector<const Value *, SUnit *>::iterator IE =
962            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
963          if (I != IE)
964            addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
965                               0, true);
966          if (ThisMayAlias)
967            AliasMemUses[V].push_back(SU);
968          else
969            NonAliasMemUses[V].push_back(SU);
970        }
971        if (MayAlias)
972          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
973        // Add dependencies on alias and barrier chains, if needed.
974        if (MayAlias && AliasChain)
975          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
976        if (BarrierChain)
977          BarrierChain->addPred(SDep(SU, SDep::Barrier));
978      }
979    }
980  }
981  if (DbgMI)
982    FirstDbgValue = DbgMI;
983
984  Defs.clear();
985  Uses.clear();
986  VRegDefs.clear();
987  PendingLoads.clear();
988}
989
990void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
991#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
992  SU->getInstr()->dump();
993#endif
994}
995
996std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
997  std::string s;
998  raw_string_ostream oss(s);
999  if (SU == &EntrySU)
1000    oss << "<entry>";
1001  else if (SU == &ExitSU)
1002    oss << "<exit>";
1003  else
1004    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
1005  return oss.str();
1006}
1007
1008/// Return the basic block label. It is not necessarilly unique because a block
1009/// contains multiple scheduling regions. But it is fine for visualization.
1010std::string ScheduleDAGInstrs::getDAGName() const {
1011  return "dag." + BB->getFullName();
1012}
1013
1014//===----------------------------------------------------------------------===//
1015// SchedDFSResult Implementation
1016//===----------------------------------------------------------------------===//
1017
1018namespace llvm {
1019/// \brief Internal state used to compute SchedDFSResult.
1020class SchedDFSImpl {
1021  SchedDFSResult &R;
1022
1023  /// Join DAG nodes into equivalence classes by their subtree.
1024  IntEqClasses SubtreeClasses;
1025  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1026  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1027
1028  struct RootData {
1029    unsigned NodeID;
1030    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1031    unsigned SubInstrCount; // Instr count in this tree only, not children.
1032
1033    RootData(unsigned id): NodeID(id),
1034                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1035                           SubInstrCount(0) {}
1036
1037    unsigned getSparseSetIndex() const { return NodeID; }
1038  };
1039
1040  SparseSet<RootData> RootSet;
1041
1042public:
1043  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1044    RootSet.setUniverse(R.DFSNodeData.size());
1045  }
1046
1047  /// Return true if this node been visited by the DFS traversal.
1048  ///
1049  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1050  /// ID. Later, SubtreeID is updated but remains valid.
1051  bool isVisited(const SUnit *SU) const {
1052    return R.DFSNodeData[SU->NodeNum].SubtreeID
1053      != SchedDFSResult::InvalidSubtreeID;
1054  }
1055
1056  /// Initialize this node's instruction count. We don't need to flag the node
1057  /// visited until visitPostorder because the DAG cannot have cycles.
1058  void visitPreorder(const SUnit *SU) {
1059    R.DFSNodeData[SU->NodeNum].InstrCount =
1060      SU->getInstr()->isTransient() ? 0 : 1;
1061  }
1062
1063  /// Called once for each node after all predecessors are visited. Revisit this
1064  /// node's predecessors and potentially join them now that we know the ILP of
1065  /// the other predecessors.
1066  void visitPostorderNode(const SUnit *SU) {
1067    // Mark this node as the root of a subtree. It may be joined with its
1068    // successors later.
1069    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1070    RootData RData(SU->NodeNum);
1071    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1072
1073    // If any predecessors are still in their own subtree, they either cannot be
1074    // joined or are large enough to remain separate. If this parent node's
1075    // total instruction count is not greater than a child subtree by at least
1076    // the subtree limit, then try to join it now since splitting subtrees is
1077    // only useful if multiple high-pressure paths are possible.
1078    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1079    for (SUnit::const_pred_iterator
1080           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1081      if (PI->getKind() != SDep::Data)
1082        continue;
1083      unsigned PredNum = PI->getSUnit()->NodeNum;
1084      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1085        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1086
1087      // Either link or merge the TreeData entry from the child to the parent.
1088      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1089        // If the predecessor's parent is invalid, this is a tree edge and the
1090        // current node is the parent.
1091        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1092          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1093      }
1094      else if (RootSet.count(PredNum)) {
1095        // The predecessor is not a root, but is still in the root set. This
1096        // must be the new parent that it was just joined to. Note that
1097        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1098        // set to the original parent.
1099        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1100        RootSet.erase(PredNum);
1101      }
1102    }
1103    RootSet[SU->NodeNum] = RData;
1104  }
1105
1106  /// Called once for each tree edge after calling visitPostOrderNode on the
1107  /// predecessor. Increment the parent node's instruction count and
1108  /// preemptively join this subtree to its parent's if it is small enough.
1109  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1110    R.DFSNodeData[Succ->NodeNum].InstrCount
1111      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1112    joinPredSubtree(PredDep, Succ);
1113  }
1114
1115  /// Add a connection for cross edges.
1116  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1117    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1118  }
1119
1120  /// Set each node's subtree ID to the representative ID and record connections
1121  /// between trees.
1122  void finalize() {
1123    SubtreeClasses.compress();
1124    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1125    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1126           && "number of roots should match trees");
1127    for (SparseSet<RootData>::const_iterator
1128           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1129      unsigned TreeID = SubtreeClasses[RI->NodeID];
1130      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1131        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1132      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1133      // Note that SubInstrCount may be greater than InstrCount if we joined
1134      // subtrees across a cross edge. InstrCount will be attributed to the
1135      // original parent, while SubInstrCount will be attributed to the joined
1136      // parent.
1137    }
1138    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1139    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1140    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1141    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1142      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1143      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1144            << R.DFSNodeData[Idx].SubtreeID << '\n');
1145    }
1146    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1147           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1148         I != E; ++I) {
1149      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1150      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1151      if (PredTree == SuccTree)
1152        continue;
1153      unsigned Depth = I->first->getDepth();
1154      addConnection(PredTree, SuccTree, Depth);
1155      addConnection(SuccTree, PredTree, Depth);
1156    }
1157  }
1158
1159protected:
1160  /// Join the predecessor subtree with the successor that is its DFS
1161  /// parent. Apply some heuristics before joining.
1162  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1163                       bool CheckLimit = true) {
1164    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1165
1166    // Check if the predecessor is already joined.
1167    const SUnit *PredSU = PredDep.getSUnit();
1168    unsigned PredNum = PredSU->NodeNum;
1169    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1170      return false;
1171
1172    // Four is the magic number of successors before a node is considered a
1173    // pinch point.
1174    unsigned NumDataSucs = 0;
1175    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1176           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1177      if (SI->getKind() == SDep::Data) {
1178        if (++NumDataSucs >= 4)
1179          return false;
1180      }
1181    }
1182    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1183      return false;
1184    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1185    SubtreeClasses.join(Succ->NodeNum, PredNum);
1186    return true;
1187  }
1188
1189  /// Called by finalize() to record a connection between trees.
1190  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1191    if (!Depth)
1192      return;
1193
1194    do {
1195      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1196        R.SubtreeConnections[FromTree];
1197      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1198             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1199        if (I->TreeID == ToTree) {
1200          I->Level = std::max(I->Level, Depth);
1201          return;
1202        }
1203      }
1204      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1205      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1206    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1207  }
1208};
1209} // namespace llvm
1210
1211namespace {
1212/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1213class SchedDAGReverseDFS {
1214  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1215public:
1216  bool isComplete() const { return DFSStack.empty(); }
1217
1218  void follow(const SUnit *SU) {
1219    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1220  }
1221  void advance() { ++DFSStack.back().second; }
1222
1223  const SDep *backtrack() {
1224    DFSStack.pop_back();
1225    return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1226  }
1227
1228  const SUnit *getCurr() const { return DFSStack.back().first; }
1229
1230  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1231
1232  SUnit::const_pred_iterator getPredEnd() const {
1233    return getCurr()->Preds.end();
1234  }
1235};
1236} // anonymous
1237
1238static bool hasDataSucc(const SUnit *SU) {
1239  for (SUnit::const_succ_iterator
1240         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1241    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1242      return true;
1243  }
1244  return false;
1245}
1246
1247/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1248/// search from this root.
1249void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1250  if (!IsBottomUp)
1251    llvm_unreachable("Top-down ILP metric is unimplemnted");
1252
1253  SchedDFSImpl Impl(*this);
1254  for (ArrayRef<SUnit>::const_iterator
1255         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1256    const SUnit *SU = &*SI;
1257    if (Impl.isVisited(SU) || hasDataSucc(SU))
1258      continue;
1259
1260    SchedDAGReverseDFS DFS;
1261    Impl.visitPreorder(SU);
1262    DFS.follow(SU);
1263    for (;;) {
1264      // Traverse the leftmost path as far as possible.
1265      while (DFS.getPred() != DFS.getPredEnd()) {
1266        const SDep &PredDep = *DFS.getPred();
1267        DFS.advance();
1268        // Ignore non-data edges.
1269        if (PredDep.getKind() != SDep::Data
1270            || PredDep.getSUnit()->isBoundaryNode()) {
1271          continue;
1272        }
1273        // An already visited edge is a cross edge, assuming an acyclic DAG.
1274        if (Impl.isVisited(PredDep.getSUnit())) {
1275          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1276          continue;
1277        }
1278        Impl.visitPreorder(PredDep.getSUnit());
1279        DFS.follow(PredDep.getSUnit());
1280      }
1281      // Visit the top of the stack in postorder and backtrack.
1282      const SUnit *Child = DFS.getCurr();
1283      const SDep *PredDep = DFS.backtrack();
1284      Impl.visitPostorderNode(Child);
1285      if (PredDep)
1286        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1287      if (DFS.isComplete())
1288        break;
1289    }
1290  }
1291  Impl.finalize();
1292}
1293
1294/// The root of the given SubtreeID was just scheduled. For all subtrees
1295/// connected to this tree, record the depth of the connection so that the
1296/// nearest connected subtrees can be prioritized.
1297void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1298  for (SmallVectorImpl<Connection>::const_iterator
1299         I = SubtreeConnections[SubtreeID].begin(),
1300         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1301    SubtreeConnectLevels[I->TreeID] =
1302      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1303    DEBUG(dbgs() << "  Tree: " << I->TreeID
1304          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1305  }
1306}
1307
1308#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1309void ILPValue::print(raw_ostream &OS) const {
1310  OS << InstrCount << " / " << Length << " = ";
1311  if (!Length)
1312    OS << "BADILP";
1313  else
1314    OS << format("%g", ((double)InstrCount / Length));
1315}
1316
1317void ILPValue::dump() const {
1318  dbgs() << *this << '\n';
1319}
1320
1321namespace llvm {
1322
1323raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1324  Val.print(OS);
1325  return OS;
1326}
1327
1328} // namespace llvm
1329#endif // !NDEBUG || LLVM_ENABLE_DUMP
1330