ScheduleDAGInstrs.cpp revision a98f600a64b7b70754df58926ce8d60feeb9ce29
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/Operator.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/CodeGen/RegisterPressure.h"
25#include "llvm/CodeGen/ScheduleDAGInstrs.h"
26#include "llvm/MC/MCInstrItineraries.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Target/TargetSubtargetInfo.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallPtrSet.h"
36using namespace llvm;
37
38static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
39    cl::ZeroOrMore, cl::init(false),
40    cl::desc("Enable use of AA during MI GAD construction"));
41
42ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
43                                     const MachineLoopInfo &mli,
44                                     const MachineDominatorTree &mdt,
45                                     bool IsPostRAFlag,
46                                     LiveIntervals *lis)
47  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
48    InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
49    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), LoopRegs(MDT),
50    FirstDbgValue(0) {
51  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
52  DbgValues.clear();
53  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
54         "Virtual registers must be removed prior to PostRA scheduling");
55
56  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
57  SchedModel.init(*ST.getSchedModel(), &ST, TII);
58}
59
60/// getUnderlyingObjectFromInt - This is the function that does the work of
61/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
62static const Value *getUnderlyingObjectFromInt(const Value *V) {
63  do {
64    if (const Operator *U = dyn_cast<Operator>(V)) {
65      // If we find a ptrtoint, we can transfer control back to the
66      // regular getUnderlyingObjectFromInt.
67      if (U->getOpcode() == Instruction::PtrToInt)
68        return U->getOperand(0);
69      // If we find an add of a constant or a multiplied value, it's
70      // likely that the other operand will lead us to the base
71      // object. We don't have to worry about the case where the
72      // object address is somehow being computed by the multiply,
73      // because our callers only care when the result is an
74      // identifibale object.
75      if (U->getOpcode() != Instruction::Add ||
76          (!isa<ConstantInt>(U->getOperand(1)) &&
77           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
78        return V;
79      V = U->getOperand(0);
80    } else {
81      return V;
82    }
83    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
84  } while (1);
85}
86
87/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
88/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
89static const Value *getUnderlyingObject(const Value *V) {
90  // First just call Value::getUnderlyingObject to let it do what it does.
91  do {
92    V = GetUnderlyingObject(V);
93    // If it found an inttoptr, use special code to continue climing.
94    if (Operator::getOpcode(V) != Instruction::IntToPtr)
95      break;
96    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
97    // If that succeeded in finding a pointer, continue the search.
98    if (!O->getType()->isPointerTy())
99      break;
100    V = O;
101  } while (1);
102  return V;
103}
104
105/// getUnderlyingObjectForInstr - If this machine instr has memory reference
106/// information and it can be tracked to a normal reference to a known
107/// object, return the Value for that object. Otherwise return null.
108static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
109                                                const MachineFrameInfo *MFI,
110                                                bool &MayAlias) {
111  MayAlias = true;
112  if (!MI->hasOneMemOperand() ||
113      !(*MI->memoperands_begin())->getValue() ||
114      (*MI->memoperands_begin())->isVolatile())
115    return 0;
116
117  const Value *V = (*MI->memoperands_begin())->getValue();
118  if (!V)
119    return 0;
120
121  V = getUnderlyingObject(V);
122  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
123    // For now, ignore PseudoSourceValues which may alias LLVM IR values
124    // because the code that uses this function has no way to cope with
125    // such aliases.
126    if (PSV->isAliased(MFI))
127      return 0;
128
129    MayAlias = PSV->mayAlias(MFI);
130    return V;
131  }
132
133  if (isIdentifiedObject(V))
134    return V;
135
136  return 0;
137}
138
139void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
140  BB = bb;
141  LoopRegs.Deps.clear();
142  if (MachineLoop *ML = MLI.getLoopFor(BB))
143    if (BB == ML->getLoopLatch())
144      LoopRegs.VisitLoop(ML);
145}
146
147void ScheduleDAGInstrs::finishBlock() {
148  // Subclasses should no longer refer to the old block.
149  BB = 0;
150}
151
152/// Initialize the map with the number of registers.
153void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
154  PhysRegSet.setUniverse(Limit);
155  SUnits.resize(Limit);
156}
157
158/// Clear the map without deallocating storage.
159void Reg2SUnitsMap::clear() {
160  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
161    SUnits[*I].clear();
162  }
163  PhysRegSet.clear();
164}
165
166/// Initialize the DAG and common scheduler state for the current scheduling
167/// region. This does not actually create the DAG, only clears it. The
168/// scheduling driver may call BuildSchedGraph multiple times per scheduling
169/// region.
170void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
171                                    MachineBasicBlock::iterator begin,
172                                    MachineBasicBlock::iterator end,
173                                    unsigned endcount) {
174  assert(bb == BB && "startBlock should set BB");
175  RegionBegin = begin;
176  RegionEnd = end;
177  EndIndex = endcount;
178  MISUnitMap.clear();
179
180  ScheduleDAG::clearDAG();
181}
182
183/// Close the current scheduling region. Don't clear any state in case the
184/// driver wants to refer to the previous scheduling region.
185void ScheduleDAGInstrs::exitRegion() {
186  // Nothing to do.
187}
188
189/// addSchedBarrierDeps - Add dependencies from instructions in the current
190/// list of instructions being scheduled to scheduling barrier by adding
191/// the exit SU to the register defs and use list. This is because we want to
192/// make sure instructions which define registers that are either used by
193/// the terminator or are live-out are properly scheduled. This is
194/// especially important when the definition latency of the return value(s)
195/// are too high to be hidden by the branch or when the liveout registers
196/// used by instructions in the fallthrough block.
197void ScheduleDAGInstrs::addSchedBarrierDeps() {
198  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
199  ExitSU.setInstr(ExitMI);
200  bool AllDepKnown = ExitMI &&
201    (ExitMI->isCall() || ExitMI->isBarrier());
202  if (ExitMI && AllDepKnown) {
203    // If it's a call or a barrier, add dependencies on the defs and uses of
204    // instruction.
205    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
206      const MachineOperand &MO = ExitMI->getOperand(i);
207      if (!MO.isReg() || MO.isDef()) continue;
208      unsigned Reg = MO.getReg();
209      if (Reg == 0) continue;
210
211      if (TRI->isPhysicalRegister(Reg))
212        Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
213      else {
214        assert(!IsPostRA && "Virtual register encountered after regalloc.");
215        addVRegUseDeps(&ExitSU, i);
216      }
217    }
218  } else {
219    // For others, e.g. fallthrough, conditional branch, assume the exit
220    // uses all the registers that are livein to the successor blocks.
221    assert(Uses.empty() && "Uses in set before adding deps?");
222    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
223           SE = BB->succ_end(); SI != SE; ++SI)
224      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
225             E = (*SI)->livein_end(); I != E; ++I) {
226        unsigned Reg = *I;
227        if (!Uses.contains(Reg))
228          Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
229      }
230  }
231}
232
233/// MO is an operand of SU's instruction that defines a physical register. Add
234/// data dependencies from SU to any uses of the physical register.
235void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
236  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
237  assert(MO.isDef() && "expect physreg def");
238
239  // Ask the target if address-backscheduling is desirable, and if so how much.
240  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
241  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
242  unsigned DataLatency = SU->Latency;
243
244  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
245       Alias.isValid(); ++Alias) {
246    if (!Uses.contains(*Alias))
247      continue;
248    std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
249    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
250      SUnit *UseSU = UseList[i].SU;
251      if (UseSU == SU)
252        continue;
253      MachineInstr *UseMI = UseSU->getInstr();
254      int UseOp = UseList[i].OpIdx;
255      unsigned LDataLatency = DataLatency;
256      // Optionally add in a special extra latency for nodes that
257      // feed addresses.
258      // TODO: Perhaps we should get rid of
259      // SpecialAddressLatency and just move this into
260      // adjustSchedDependency for the targets that care about it.
261      if (SpecialAddressLatency != 0 && UseSU != &ExitSU) {
262        const MCInstrDesc &UseMCID = UseMI->getDesc();
263        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
264        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
265        if (RegUseIndex >= 0 &&
266            (UseMI->mayLoad() || UseMI->mayStore()) &&
267            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
268            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
269          LDataLatency += SpecialAddressLatency;
270      }
271      // Adjust the dependence latency using operand def/use
272      // information (if any), and then allow the target to
273      // perform its own adjustments.
274      SDep dep(SU, SDep::Data, LDataLatency, *Alias);
275      MachineInstr *RegUse = UseOp < 0 ? 0 : UseMI;
276      dep.setLatency(
277        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
278                                         RegUse, UseOp, /*FindMin=*/false));
279      dep.setMinLatency(
280        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
281                                         RegUse, UseOp, /*FindMin=*/true));
282
283      ST.adjustSchedDependency(SU, UseSU, dep);
284      UseSU->addPred(dep);
285    }
286  }
287}
288
289/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
290/// this SUnit to following instructions in the same scheduling region that
291/// depend the physical register referenced at OperIdx.
292void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
293  const MachineInstr *MI = SU->getInstr();
294  const MachineOperand &MO = MI->getOperand(OperIdx);
295
296  // Optionally add output and anti dependencies. For anti
297  // dependencies we use a latency of 0 because for a multi-issue
298  // target we want to allow the defining instruction to issue
299  // in the same cycle as the using instruction.
300  // TODO: Using a latency of 1 here for output dependencies assumes
301  //       there's no cost for reusing registers.
302  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
303  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
304       Alias.isValid(); ++Alias) {
305    if (!Defs.contains(*Alias))
306      continue;
307    std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
308    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
309      SUnit *DefSU = DefList[i].SU;
310      if (DefSU == &ExitSU)
311        continue;
312      if (DefSU != SU &&
313          (Kind != SDep::Output || !MO.isDead() ||
314           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
315        if (Kind == SDep::Anti)
316          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
317        else {
318          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
319                                                 DefSU->getInstr());
320          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
321        }
322      }
323    }
324  }
325
326  if (!MO.isDef()) {
327    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
328    // retrieve the existing SUnits list for this register's uses.
329    // Push this SUnit on the use list.
330    Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
331  }
332  else {
333    addPhysRegDataDeps(SU, OperIdx);
334
335    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
336    // retrieve the existing SUnits list for this register's defs.
337    std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
338
339    // If a def is going to wrap back around to the top of the loop,
340    // backschedule it.
341    if (DefList.empty()) {
342      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
343      if (I != LoopRegs.Deps.end()) {
344        const MachineOperand *UseMO = I->second.first;
345        unsigned Count = I->second.second;
346        const MachineInstr *UseMI = UseMO->getParent();
347        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
348        const MCInstrDesc &UseMCID = UseMI->getDesc();
349        const TargetSubtargetInfo &ST =
350          TM.getSubtarget<TargetSubtargetInfo>();
351        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
352        // TODO: If we knew the total depth of the region here, we could
353        // handle the case where the whole loop is inside the region but
354        // is large enough that the isScheduleHigh trick isn't needed.
355        if (UseMOIdx < UseMCID.getNumOperands()) {
356          // Currently, we only support scheduling regions consisting of
357          // single basic blocks. Check to see if the instruction is in
358          // the same region by checking to see if it has the same parent.
359          if (UseMI->getParent() != MI->getParent()) {
360            unsigned Latency = SU->Latency;
361            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
362              Latency += SpecialAddressLatency;
363            // This is a wild guess as to the portion of the latency which
364            // will be overlapped by work done outside the current
365            // scheduling region.
366            Latency -= std::min(Latency, Count);
367            // Add the artificial edge.
368            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
369                                /*Reg=*/0, /*isNormalMemory=*/false,
370                                /*isMustAlias=*/false,
371                                /*isArtificial=*/true));
372          } else if (SpecialAddressLatency > 0 &&
373                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
374            // The entire loop body is within the current scheduling region
375            // and the latency of this operation is assumed to be greater
376            // than the latency of the loop.
377            // TODO: Recursively mark data-edge predecessors as
378            //       isScheduleHigh too.
379            SU->isScheduleHigh = true;
380          }
381        }
382        LoopRegs.Deps.erase(I);
383      }
384    }
385
386    // clear this register's use list
387    if (Uses.contains(MO.getReg()))
388      Uses[MO.getReg()].clear();
389
390    if (!MO.isDead())
391      DefList.clear();
392
393    // Calls will not be reordered because of chain dependencies (see
394    // below). Since call operands are dead, calls may continue to be added
395    // to the DefList making dependence checking quadratic in the size of
396    // the block. Instead, we leave only one call at the back of the
397    // DefList.
398    if (SU->isCall) {
399      while (!DefList.empty() && DefList.back().SU->isCall)
400        DefList.pop_back();
401    }
402    // Defs are pushed in the order they are visited and never reordered.
403    DefList.push_back(PhysRegSUOper(SU, OperIdx));
404  }
405}
406
407/// addVRegDefDeps - Add register output and data dependencies from this SUnit
408/// to instructions that occur later in the same scheduling region if they read
409/// from or write to the virtual register defined at OperIdx.
410///
411/// TODO: Hoist loop induction variable increments. This has to be
412/// reevaluated. Generally, IV scheduling should be done before coalescing.
413void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
414  const MachineInstr *MI = SU->getInstr();
415  unsigned Reg = MI->getOperand(OperIdx).getReg();
416
417  // Singly defined vregs do not have output/anti dependencies.
418  // The current operand is a def, so we have at least one.
419  // Check here if there are any others...
420  if (MRI.hasOneDef(Reg))
421    return;
422
423  // Add output dependence to the next nearest def of this vreg.
424  //
425  // Unless this definition is dead, the output dependence should be
426  // transitively redundant with antidependencies from this definition's
427  // uses. We're conservative for now until we have a way to guarantee the uses
428  // are not eliminated sometime during scheduling. The output dependence edge
429  // is also useful if output latency exceeds def-use latency.
430  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
431  if (DefI == VRegDefs.end())
432    VRegDefs.insert(VReg2SUnit(Reg, SU));
433  else {
434    SUnit *DefSU = DefI->SU;
435    if (DefSU != SU && DefSU != &ExitSU) {
436      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
437                                                  DefSU->getInstr());
438      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
439    }
440    DefI->SU = SU;
441  }
442}
443
444/// addVRegUseDeps - Add a register data dependency if the instruction that
445/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
446/// register antidependency from this SUnit to instructions that occur later in
447/// the same scheduling region if they write the virtual register.
448///
449/// TODO: Handle ExitSU "uses" properly.
450void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
451  MachineInstr *MI = SU->getInstr();
452  unsigned Reg = MI->getOperand(OperIdx).getReg();
453
454  // Lookup this operand's reaching definition.
455  assert(LIS && "vreg dependencies requires LiveIntervals");
456  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
457  VNInfo *VNI = LRQ.valueIn();
458
459  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
460  assert(VNI && "No value to read by operand");
461  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
462  // Phis and other noninstructions (after coalescing) have a NULL Def.
463  if (Def) {
464    SUnit *DefSU = getSUnit(Def);
465    if (DefSU) {
466      // The reaching Def lives within this scheduling region.
467      // Create a data dependence.
468      //
469      // TODO: Handle "special" address latencies cleanly.
470      SDep dep(DefSU, SDep::Data, DefSU->Latency, Reg);
471      // Adjust the dependence latency using operand def/use information, then
472      // allow the target to perform its own adjustments.
473      int DefOp = Def->findRegisterDefOperandIdx(Reg);
474      dep.setLatency(
475        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false));
476      dep.setMinLatency(
477        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true));
478
479      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
480      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
481      SU->addPred(dep);
482    }
483  }
484
485  // Add antidependence to the following def of the vreg it uses.
486  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
487  if (DefI != VRegDefs.end() && DefI->SU != SU)
488    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
489}
490
491/// Return true if MI is an instruction we are unable to reason about
492/// (like a call or something with unmodeled side effects).
493static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
494  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
495      (MI->hasOrderedMemoryRef() &&
496       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
497    return true;
498  return false;
499}
500
501// This MI might have either incomplete info, or known to be unsafe
502// to deal with (i.e. volatile object).
503static inline bool isUnsafeMemoryObject(MachineInstr *MI,
504                                        const MachineFrameInfo *MFI) {
505  if (!MI || MI->memoperands_empty())
506    return true;
507  // We purposefully do no check for hasOneMemOperand() here
508  // in hope to trigger an assert downstream in order to
509  // finish implementation.
510  if ((*MI->memoperands_begin())->isVolatile() ||
511       MI->hasUnmodeledSideEffects())
512    return true;
513
514  const Value *V = (*MI->memoperands_begin())->getValue();
515  if (!V)
516    return true;
517
518  V = getUnderlyingObject(V);
519  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
520    // Similarly to getUnderlyingObjectForInstr:
521    // For now, ignore PseudoSourceValues which may alias LLVM IR values
522    // because the code that uses this function has no way to cope with
523    // such aliases.
524    if (PSV->isAliased(MFI))
525      return true;
526  }
527  // Does this pointer refer to a distinct and identifiable object?
528  if (!isIdentifiedObject(V))
529    return true;
530
531  return false;
532}
533
534/// This returns true if the two MIs need a chain edge betwee them.
535/// If these are not even memory operations, we still may need
536/// chain deps between them. The question really is - could
537/// these two MIs be reordered during scheduling from memory dependency
538/// point of view.
539static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
540                             MachineInstr *MIa,
541                             MachineInstr *MIb) {
542  // Cover a trivial case - no edge is need to itself.
543  if (MIa == MIb)
544    return false;
545
546  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
547    return true;
548
549  // If we are dealing with two "normal" loads, we do not need an edge
550  // between them - they could be reordered.
551  if (!MIa->mayStore() && !MIb->mayStore())
552    return false;
553
554  // To this point analysis is generic. From here on we do need AA.
555  if (!AA)
556    return true;
557
558  MachineMemOperand *MMOa = *MIa->memoperands_begin();
559  MachineMemOperand *MMOb = *MIb->memoperands_begin();
560
561  // FIXME: Need to handle multiple memory operands to support all targets.
562  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
563    llvm_unreachable("Multiple memory operands.");
564
565  // The following interface to AA is fashioned after DAGCombiner::isAlias
566  // and operates with MachineMemOperand offset with some important
567  // assumptions:
568  //   - LLVM fundamentally assumes flat address spaces.
569  //   - MachineOperand offset can *only* result from legalization and
570  //     cannot affect queries other than the trivial case of overlap
571  //     checking.
572  //   - These offsets never wrap and never step outside
573  //     of allocated objects.
574  //   - There should never be any negative offsets here.
575  //
576  // FIXME: Modify API to hide this math from "user"
577  // FIXME: Even before we go to AA we can reason locally about some
578  // memory objects. It can save compile time, and possibly catch some
579  // corner cases not currently covered.
580
581  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
582  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
583
584  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
585  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
586  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
587
588  AliasAnalysis::AliasResult AAResult = AA->alias(
589  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
590                          MMOa->getTBAAInfo()),
591  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
592                          MMOb->getTBAAInfo()));
593
594  return (AAResult != AliasAnalysis::NoAlias);
595}
596
597/// This recursive function iterates over chain deps of SUb looking for
598/// "latest" node that needs a chain edge to SUa.
599static unsigned
600iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
601                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
602                 SmallPtrSet<const SUnit*, 16> &Visited) {
603  if (!SUa || !SUb || SUb == ExitSU)
604    return *Depth;
605
606  // Remember visited nodes.
607  if (!Visited.insert(SUb))
608      return *Depth;
609  // If there is _some_ dependency already in place, do not
610  // descend any further.
611  // TODO: Need to make sure that if that dependency got eliminated or ignored
612  // for any reason in the future, we would not violate DAG topology.
613  // Currently it does not happen, but makes an implicit assumption about
614  // future implementation.
615  //
616  // Independently, if we encounter node that is some sort of global
617  // object (like a call) we already have full set of dependencies to it
618  // and we can stop descending.
619  if (SUa->isSucc(SUb) ||
620      isGlobalMemoryObject(AA, SUb->getInstr()))
621    return *Depth;
622
623  // If we do need an edge, or we have exceeded depth budget,
624  // add that edge to the predecessors chain of SUb,
625  // and stop descending.
626  if (*Depth > 200 ||
627      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
628    SUb->addPred(SDep(SUa, SDep::Order, /*Latency=*/0, /*Reg=*/0,
629                      /*isNormalMemory=*/true));
630    return *Depth;
631  }
632  // Track current depth.
633  (*Depth)++;
634  // Iterate over chain dependencies only.
635  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
636       I != E; ++I)
637    if (I->isCtrl())
638      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
639  return *Depth;
640}
641
642/// This function assumes that "downward" from SU there exist
643/// tail/leaf of already constructed DAG. It iterates downward and
644/// checks whether SU can be aliasing any node dominated
645/// by it.
646static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
647                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
648                            unsigned LatencyToLoad) {
649  if (!SU)
650    return;
651
652  SmallPtrSet<const SUnit*, 16> Visited;
653  unsigned Depth = 0;
654
655  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
656       I != IE; ++I) {
657    if (SU == *I)
658      continue;
659    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
660      unsigned Latency = ((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0;
661      (*I)->addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0,
662                         /*isNormalMemory=*/true));
663    }
664    // Now go through all the chain successors and iterate from them.
665    // Keep track of visited nodes.
666    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
667         JE = (*I)->Succs.end(); J != JE; ++J)
668      if (J->isCtrl())
669        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
670                          ExitSU, &Depth, Visited);
671  }
672}
673
674/// Check whether two objects need a chain edge, if so, add it
675/// otherwise remember the rejected SU.
676static inline
677void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
678                         SUnit *SUa, SUnit *SUb,
679                         std::set<SUnit *> &RejectList,
680                         unsigned TrueMemOrderLatency = 0,
681                         bool isNormalMemory = false) {
682  // If this is a false dependency,
683  // do not add the edge, but rememeber the rejected node.
684  if (!EnableAASchedMI ||
685      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr()))
686    SUb->addPred(SDep(SUa, SDep::Order, TrueMemOrderLatency, /*Reg=*/0,
687                      isNormalMemory));
688  else {
689    // Duplicate entries should be ignored.
690    RejectList.insert(SUb);
691    DEBUG(dbgs() << "\tReject chain dep between SU("
692          << SUa->NodeNum << ") and SU("
693          << SUb->NodeNum << ")\n");
694  }
695}
696
697/// Create an SUnit for each real instruction, numbered in top-down toplological
698/// order. The instruction order A < B, implies that no edge exists from B to A.
699///
700/// Map each real instruction to its SUnit.
701///
702/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
703/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
704/// instead of pointers.
705///
706/// MachineScheduler relies on initSUnits numbering the nodes by their order in
707/// the original instruction list.
708void ScheduleDAGInstrs::initSUnits() {
709  // We'll be allocating one SUnit for each real instruction in the region,
710  // which is contained within a basic block.
711  SUnits.reserve(BB->size());
712
713  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
714    MachineInstr *MI = I;
715    if (MI->isDebugValue())
716      continue;
717
718    SUnit *SU = newSUnit(MI);
719    MISUnitMap[MI] = SU;
720
721    SU->isCall = MI->isCall();
722    SU->isCommutable = MI->isCommutable();
723
724    // Assign the Latency field of SU using target-provided information.
725    computeLatency(SU);
726  }
727}
728
729/// If RegPressure is non null, compute register pressure as a side effect. The
730/// DAG builder is an efficient place to do it because it already visits
731/// operands.
732void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
733                                        RegPressureTracker *RPTracker) {
734  // Create an SUnit for each real instruction.
735  initSUnits();
736
737  // We build scheduling units by walking a block's instruction list from bottom
738  // to top.
739
740  // Remember where a generic side-effecting instruction is as we procede.
741  SUnit *BarrierChain = 0, *AliasChain = 0;
742
743  // Memory references to specific known memory locations are tracked
744  // so that they can be given more precise dependencies. We track
745  // separately the known memory locations that may alias and those
746  // that are known not to alias
747  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
748  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
749  std::set<SUnit*> RejectMemNodes;
750
751  // Remove any stale debug info; sometimes BuildSchedGraph is called again
752  // without emitting the info from the previous call.
753  DbgValues.clear();
754  FirstDbgValue = NULL;
755
756  assert(Defs.empty() && Uses.empty() &&
757         "Only BuildGraph should update Defs/Uses");
758  Defs.setRegLimit(TRI->getNumRegs());
759  Uses.setRegLimit(TRI->getNumRegs());
760
761  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
762  // FIXME: Allow SparseSet to reserve space for the creation of virtual
763  // registers during scheduling. Don't artificially inflate the Universe
764  // because we want to assert that vregs are not created during DAG building.
765  VRegDefs.setUniverse(MRI.getNumVirtRegs());
766
767  // Model data dependencies between instructions being scheduled and the
768  // ExitSU.
769  addSchedBarrierDeps();
770
771  // Walk the list of instructions, from bottom moving up.
772  MachineInstr *PrevMI = NULL;
773  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
774       MII != MIE; --MII) {
775    MachineInstr *MI = prior(MII);
776    if (MI && PrevMI) {
777      DbgValues.push_back(std::make_pair(PrevMI, MI));
778      PrevMI = NULL;
779    }
780
781    if (MI->isDebugValue()) {
782      PrevMI = MI;
783      continue;
784    }
785    if (RPTracker) {
786      RPTracker->recede();
787      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
788    }
789
790    assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
791           "Cannot schedule terminators or labels!");
792
793    SUnit *SU = MISUnitMap[MI];
794    assert(SU && "No SUnit mapped to this MI");
795
796    // Add register-based dependencies (data, anti, and output).
797    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
798      const MachineOperand &MO = MI->getOperand(j);
799      if (!MO.isReg()) continue;
800      unsigned Reg = MO.getReg();
801      if (Reg == 0) continue;
802
803      if (TRI->isPhysicalRegister(Reg))
804        addPhysRegDeps(SU, j);
805      else {
806        assert(!IsPostRA && "Virtual register encountered!");
807        if (MO.isDef())
808          addVRegDefDeps(SU, j);
809        else if (MO.readsReg()) // ignore undef operands
810          addVRegUseDeps(SU, j);
811      }
812    }
813
814    // Add chain dependencies.
815    // Chain dependencies used to enforce memory order should have
816    // latency of 0 (except for true dependency of Store followed by
817    // aliased Load... we estimate that with a single cycle of latency
818    // assuming the hardware will bypass)
819    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
820    // after stack slots are lowered to actual addresses.
821    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
822    // produce more precise dependence information.
823    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
824    if (isGlobalMemoryObject(AA, MI)) {
825      // Be conservative with these and add dependencies on all memory
826      // references, even those that are known to not alias.
827      for (std::map<const Value *, SUnit *>::iterator I =
828             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
829        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
830      }
831      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
832             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
833        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
834          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
835      }
836      // Add SU to the barrier chain.
837      if (BarrierChain)
838        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
839      BarrierChain = SU;
840      // This is a barrier event that acts as a pivotal node in the DAG,
841      // so it is safe to clear list of exposed nodes.
842      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
843                      TrueMemOrderLatency);
844      RejectMemNodes.clear();
845      NonAliasMemDefs.clear();
846      NonAliasMemUses.clear();
847
848      // fall-through
849    new_alias_chain:
850      // Chain all possibly aliasing memory references though SU.
851      if (AliasChain) {
852        unsigned ChainLatency = 0;
853        if (AliasChain->getInstr()->mayLoad())
854          ChainLatency = TrueMemOrderLatency;
855        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
856                           ChainLatency);
857      }
858      AliasChain = SU;
859      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
860        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
861                           TrueMemOrderLatency);
862      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
863           E = AliasMemDefs.end(); I != E; ++I)
864        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
865      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
866           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
867        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
868          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
869                             TrueMemOrderLatency);
870      }
871      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
872                      TrueMemOrderLatency);
873      PendingLoads.clear();
874      AliasMemDefs.clear();
875      AliasMemUses.clear();
876    } else if (MI->mayStore()) {
877      bool MayAlias = true;
878      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
879        // A store to a specific PseudoSourceValue. Add precise dependencies.
880        // Record the def in MemDefs, first adding a dep if there is
881        // an existing def.
882        std::map<const Value *, SUnit *>::iterator I =
883          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
884        std::map<const Value *, SUnit *>::iterator IE =
885          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
886        if (I != IE) {
887          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes,
888                             0, true);
889          I->second = SU;
890        } else {
891          if (MayAlias)
892            AliasMemDefs[V] = SU;
893          else
894            NonAliasMemDefs[V] = SU;
895        }
896        // Handle the uses in MemUses, if there are any.
897        std::map<const Value *, std::vector<SUnit *> >::iterator J =
898          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
899        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
900          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
901        if (J != JE) {
902          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
903            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
904                               TrueMemOrderLatency, true);
905          J->second.clear();
906        }
907        if (MayAlias) {
908          // Add dependencies from all the PendingLoads, i.e. loads
909          // with no underlying object.
910          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
911            addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
912                               TrueMemOrderLatency);
913          // Add dependence on alias chain, if needed.
914          if (AliasChain)
915            addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
916          // But we also should check dependent instructions for the
917          // SU in question.
918          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
919                          TrueMemOrderLatency);
920        }
921        // Add dependence on barrier chain, if needed.
922        // There is no point to check aliasing on barrier event. Even if
923        // SU and barrier _could_ be reordered, they should not. In addition,
924        // we have lost all RejectMemNodes below barrier.
925        if (BarrierChain)
926          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
927      } else {
928        // Treat all other stores conservatively.
929        goto new_alias_chain;
930      }
931
932      if (!ExitSU.isPred(SU))
933        // Push store's up a bit to avoid them getting in between cmp
934        // and branches.
935        ExitSU.addPred(SDep(SU, SDep::Order, 0,
936                            /*Reg=*/0, /*isNormalMemory=*/false,
937                            /*isMustAlias=*/false,
938                            /*isArtificial=*/true));
939    } else if (MI->mayLoad()) {
940      bool MayAlias = true;
941      if (MI->isInvariantLoad(AA)) {
942        // Invariant load, no chain dependencies needed!
943      } else {
944        if (const Value *V =
945            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
946          // A load from a specific PseudoSourceValue. Add precise dependencies.
947          std::map<const Value *, SUnit *>::iterator I =
948            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
949          std::map<const Value *, SUnit *>::iterator IE =
950            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
951          if (I != IE)
952            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
953          if (MayAlias)
954            AliasMemUses[V].push_back(SU);
955          else
956            NonAliasMemUses[V].push_back(SU);
957        } else {
958          // A load with no underlying object. Depend on all
959          // potentially aliasing stores.
960          for (std::map<const Value *, SUnit *>::iterator I =
961                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
962            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
963
964          PendingLoads.push_back(SU);
965          MayAlias = true;
966        }
967        if (MayAlias)
968          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
969        // Add dependencies on alias and barrier chains, if needed.
970        if (MayAlias && AliasChain)
971          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
972        if (BarrierChain)
973          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
974      }
975    }
976  }
977  if (PrevMI)
978    FirstDbgValue = PrevMI;
979
980  Defs.clear();
981  Uses.clear();
982  VRegDefs.clear();
983  PendingLoads.clear();
984}
985
986void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
987  // Compute the latency for the node. We only provide a default for missing
988  // itineraries. Empty itineraries still have latency properties.
989  if (!InstrItins) {
990    SU->Latency = 1;
991
992    // Simplistic target-independent heuristic: assume that loads take
993    // extra time.
994    if (SU->getInstr()->mayLoad())
995      SU->Latency += 2;
996  } else {
997    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
998  }
999}
1000
1001void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1002#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1003  SU->getInstr()->dump();
1004#endif
1005}
1006
1007std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1008  std::string s;
1009  raw_string_ostream oss(s);
1010  if (SU == &EntrySU)
1011    oss << "<entry>";
1012  else if (SU == &ExitSU)
1013    oss << "<exit>";
1014  else
1015    SU->getInstr()->print(oss);
1016  return oss.str();
1017}
1018
1019/// Return the basic block label. It is not necessarilly unique because a block
1020/// contains multiple scheduling regions. But it is fine for visualization.
1021std::string ScheduleDAGInstrs::getDAGName() const {
1022  return "dag." + BB->getFullName();
1023}
1024