ScheduleDAGInstrs.cpp revision c6a4f5e819217e1e12c458aed8e7b122e23a3a58
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/ScheduleDAGInstrs.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ValueTracking.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/RegisterPressure.h"
28#include "llvm/CodeGen/ScheduleDFS.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <queue>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "misched"
44
45static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
46    cl::ZeroOrMore, cl::init(false),
47    cl::desc("Enable use of AA during MI GAD construction"));
48
49static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
50    cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction"));
51
52ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
53                                     const MachineLoopInfo &mli,
54                                     const MachineDominatorTree &mdt,
55                                     bool IsPostRAFlag,
56                                     bool RemoveKillFlags,
57                                     LiveIntervals *lis)
58  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
59    IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
60    CanHandleTerminators(false), FirstDbgValue(nullptr) {
61  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
62  DbgValues.clear();
63  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
64         "Virtual registers must be removed prior to PostRA scheduling");
65
66  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
67  SchedModel.init(*ST.getSchedModel(), &ST, TII);
68}
69
70/// getUnderlyingObjectFromInt - This is the function that does the work of
71/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
72static const Value *getUnderlyingObjectFromInt(const Value *V) {
73  do {
74    if (const Operator *U = dyn_cast<Operator>(V)) {
75      // If we find a ptrtoint, we can transfer control back to the
76      // regular getUnderlyingObjectFromInt.
77      if (U->getOpcode() == Instruction::PtrToInt)
78        return U->getOperand(0);
79      // If we find an add of a constant, a multiplied value, or a phi, it's
80      // likely that the other operand will lead us to the base
81      // object. We don't have to worry about the case where the
82      // object address is somehow being computed by the multiply,
83      // because our callers only care when the result is an
84      // identifiable object.
85      if (U->getOpcode() != Instruction::Add ||
86          (!isa<ConstantInt>(U->getOperand(1)) &&
87           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
88           !isa<PHINode>(U->getOperand(1))))
89        return V;
90      V = U->getOperand(0);
91    } else {
92      return V;
93    }
94    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
95  } while (1);
96}
97
98/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
99/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
100static void getUnderlyingObjects(const Value *V,
101                                 SmallVectorImpl<Value *> &Objects) {
102  SmallPtrSet<const Value *, 16> Visited;
103  SmallVector<const Value *, 4> Working(1, V);
104  do {
105    V = Working.pop_back_val();
106
107    SmallVector<Value *, 4> Objs;
108    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
109
110    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
111         I != IE; ++I) {
112      V = *I;
113      if (!Visited.insert(V))
114        continue;
115      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
116        const Value *O =
117          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
118        if (O->getType()->isPointerTy()) {
119          Working.push_back(O);
120          continue;
121        }
122      }
123      Objects.push_back(const_cast<Value *>(V));
124    }
125  } while (!Working.empty());
126}
127
128typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
129typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
130UnderlyingObjectsVector;
131
132/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
133/// information and it can be tracked to a normal reference to a known
134/// object, return the Value for that object.
135static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
136                                         const MachineFrameInfo *MFI,
137                                         UnderlyingObjectsVector &Objects) {
138  if (!MI->hasOneMemOperand() ||
139      (!(*MI->memoperands_begin())->getValue() &&
140       !(*MI->memoperands_begin())->getPseudoValue()) ||
141      (*MI->memoperands_begin())->isVolatile())
142    return;
143
144  if (const PseudoSourceValue *PSV =
145      (*MI->memoperands_begin())->getPseudoValue()) {
146    // For now, ignore PseudoSourceValues which may alias LLVM IR values
147    // because the code that uses this function has no way to cope with
148    // such aliases.
149    if (!PSV->isAliased(MFI)) {
150      bool MayAlias = PSV->mayAlias(MFI);
151      Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
152    }
153    return;
154  }
155
156  const Value *V = (*MI->memoperands_begin())->getValue();
157  if (!V)
158    return;
159
160  SmallVector<Value *, 4> Objs;
161  getUnderlyingObjects(V, Objs);
162
163  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
164         I != IE; ++I) {
165    V = *I;
166
167    if (!isIdentifiedObject(V)) {
168      Objects.clear();
169      return;
170    }
171
172    Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
173  }
174}
175
176void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
177  BB = bb;
178}
179
180void ScheduleDAGInstrs::finishBlock() {
181  // Subclasses should no longer refer to the old block.
182  BB = nullptr;
183}
184
185/// Initialize the DAG and common scheduler state for the current scheduling
186/// region. This does not actually create the DAG, only clears it. The
187/// scheduling driver may call BuildSchedGraph multiple times per scheduling
188/// region.
189void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                    MachineBasicBlock::iterator begin,
191                                    MachineBasicBlock::iterator end,
192                                    unsigned regioninstrs) {
193  assert(bb == BB && "startBlock should set BB");
194  RegionBegin = begin;
195  RegionEnd = end;
196  NumRegionInstrs = regioninstrs;
197}
198
199/// Close the current scheduling region. Don't clear any state in case the
200/// driver wants to refer to the previous scheduling region.
201void ScheduleDAGInstrs::exitRegion() {
202  // Nothing to do.
203}
204
205/// addSchedBarrierDeps - Add dependencies from instructions in the current
206/// list of instructions being scheduled to scheduling barrier by adding
207/// the exit SU to the register defs and use list. This is because we want to
208/// make sure instructions which define registers that are either used by
209/// the terminator or are live-out are properly scheduled. This is
210/// especially important when the definition latency of the return value(s)
211/// are too high to be hidden by the branch or when the liveout registers
212/// used by instructions in the fallthrough block.
213void ScheduleDAGInstrs::addSchedBarrierDeps() {
214  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
215  ExitSU.setInstr(ExitMI);
216  bool AllDepKnown = ExitMI &&
217    (ExitMI->isCall() || ExitMI->isBarrier());
218  if (ExitMI && AllDepKnown) {
219    // If it's a call or a barrier, add dependencies on the defs and uses of
220    // instruction.
221    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
222      const MachineOperand &MO = ExitMI->getOperand(i);
223      if (!MO.isReg() || MO.isDef()) continue;
224      unsigned Reg = MO.getReg();
225      if (Reg == 0) continue;
226
227      if (TRI->isPhysicalRegister(Reg))
228        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
229      else {
230        assert(!IsPostRA && "Virtual register encountered after regalloc.");
231        if (MO.readsReg()) // ignore undef operands
232          addVRegUseDeps(&ExitSU, i);
233      }
234    }
235  } else {
236    // For others, e.g. fallthrough, conditional branch, assume the exit
237    // uses all the registers that are livein to the successor blocks.
238    assert(Uses.empty() && "Uses in set before adding deps?");
239    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
240           SE = BB->succ_end(); SI != SE; ++SI)
241      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
242             E = (*SI)->livein_end(); I != E; ++I) {
243        unsigned Reg = *I;
244        if (!Uses.contains(Reg))
245          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
246      }
247  }
248}
249
250/// MO is an operand of SU's instruction that defines a physical register. Add
251/// data dependencies from SU to any uses of the physical register.
252void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
253  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
254  assert(MO.isDef() && "expect physreg def");
255
256  // Ask the target if address-backscheduling is desirable, and if so how much.
257  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
258
259  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
260       Alias.isValid(); ++Alias) {
261    if (!Uses.contains(*Alias))
262      continue;
263    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
264      SUnit *UseSU = I->SU;
265      if (UseSU == SU)
266        continue;
267
268      // Adjust the dependence latency using operand def/use information,
269      // then allow the target to perform its own adjustments.
270      int UseOp = I->OpIdx;
271      MachineInstr *RegUse = nullptr;
272      SDep Dep;
273      if (UseOp < 0)
274        Dep = SDep(SU, SDep::Artificial);
275      else {
276        // Set the hasPhysRegDefs only for physreg defs that have a use within
277        // the scheduling region.
278        SU->hasPhysRegDefs = true;
279        Dep = SDep(SU, SDep::Data, *Alias);
280        RegUse = UseSU->getInstr();
281      }
282      Dep.setLatency(
283        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
284                                         UseOp));
285
286      ST.adjustSchedDependency(SU, UseSU, Dep);
287      UseSU->addPred(Dep);
288    }
289  }
290}
291
292/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
293/// this SUnit to following instructions in the same scheduling region that
294/// depend the physical register referenced at OperIdx.
295void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
296  MachineInstr *MI = SU->getInstr();
297  MachineOperand &MO = MI->getOperand(OperIdx);
298
299  // Optionally add output and anti dependencies. For anti
300  // dependencies we use a latency of 0 because for a multi-issue
301  // target we want to allow the defining instruction to issue
302  // in the same cycle as the using instruction.
303  // TODO: Using a latency of 1 here for output dependencies assumes
304  //       there's no cost for reusing registers.
305  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
306  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
307       Alias.isValid(); ++Alias) {
308    if (!Defs.contains(*Alias))
309      continue;
310    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
311      SUnit *DefSU = I->SU;
312      if (DefSU == &ExitSU)
313        continue;
314      if (DefSU != SU &&
315          (Kind != SDep::Output || !MO.isDead() ||
316           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
317        if (Kind == SDep::Anti)
318          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
319        else {
320          SDep Dep(SU, Kind, /*Reg=*/*Alias);
321          Dep.setLatency(
322            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
323          DefSU->addPred(Dep);
324        }
325      }
326    }
327  }
328
329  if (!MO.isDef()) {
330    SU->hasPhysRegUses = true;
331    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
332    // retrieve the existing SUnits list for this register's uses.
333    // Push this SUnit on the use list.
334    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
335    if (RemoveKillFlags)
336      MO.setIsKill(false);
337  }
338  else {
339    addPhysRegDataDeps(SU, OperIdx);
340    unsigned Reg = MO.getReg();
341
342    // clear this register's use list
343    if (Uses.contains(Reg))
344      Uses.eraseAll(Reg);
345
346    if (!MO.isDead()) {
347      Defs.eraseAll(Reg);
348    } else if (SU->isCall) {
349      // Calls will not be reordered because of chain dependencies (see
350      // below). Since call operands are dead, calls may continue to be added
351      // to the DefList making dependence checking quadratic in the size of
352      // the block. Instead, we leave only one call at the back of the
353      // DefList.
354      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
355      Reg2SUnitsMap::iterator B = P.first;
356      Reg2SUnitsMap::iterator I = P.second;
357      for (bool isBegin = I == B; !isBegin; /* empty */) {
358        isBegin = (--I) == B;
359        if (!I->SU->isCall)
360          break;
361        I = Defs.erase(I);
362      }
363    }
364
365    // Defs are pushed in the order they are visited and never reordered.
366    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
367  }
368}
369
370/// addVRegDefDeps - Add register output and data dependencies from this SUnit
371/// to instructions that occur later in the same scheduling region if they read
372/// from or write to the virtual register defined at OperIdx.
373///
374/// TODO: Hoist loop induction variable increments. This has to be
375/// reevaluated. Generally, IV scheduling should be done before coalescing.
376void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
377  const MachineInstr *MI = SU->getInstr();
378  unsigned Reg = MI->getOperand(OperIdx).getReg();
379
380  // Singly defined vregs do not have output/anti dependencies.
381  // The current operand is a def, so we have at least one.
382  // Check here if there are any others...
383  if (MRI.hasOneDef(Reg))
384    return;
385
386  // Add output dependence to the next nearest def of this vreg.
387  //
388  // Unless this definition is dead, the output dependence should be
389  // transitively redundant with antidependencies from this definition's
390  // uses. We're conservative for now until we have a way to guarantee the uses
391  // are not eliminated sometime during scheduling. The output dependence edge
392  // is also useful if output latency exceeds def-use latency.
393  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
394  if (DefI == VRegDefs.end())
395    VRegDefs.insert(VReg2SUnit(Reg, SU));
396  else {
397    SUnit *DefSU = DefI->SU;
398    if (DefSU != SU && DefSU != &ExitSU) {
399      SDep Dep(SU, SDep::Output, Reg);
400      Dep.setLatency(
401        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
402      DefSU->addPred(Dep);
403    }
404    DefI->SU = SU;
405  }
406}
407
408/// addVRegUseDeps - Add a register data dependency if the instruction that
409/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
410/// register antidependency from this SUnit to instructions that occur later in
411/// the same scheduling region if they write the virtual register.
412///
413/// TODO: Handle ExitSU "uses" properly.
414void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
415  MachineInstr *MI = SU->getInstr();
416  unsigned Reg = MI->getOperand(OperIdx).getReg();
417
418  // Record this local VReg use.
419  VReg2UseMap::iterator UI = VRegUses.find(Reg);
420  for (; UI != VRegUses.end(); ++UI) {
421    if (UI->SU == SU)
422      break;
423  }
424  if (UI == VRegUses.end())
425    VRegUses.insert(VReg2SUnit(Reg, SU));
426
427  // Lookup this operand's reaching definition.
428  assert(LIS && "vreg dependencies requires LiveIntervals");
429  LiveQueryResult LRQ
430    = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
431  VNInfo *VNI = LRQ.valueIn();
432
433  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
434  assert(VNI && "No value to read by operand");
435  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
436  // Phis and other noninstructions (after coalescing) have a NULL Def.
437  if (Def) {
438    SUnit *DefSU = getSUnit(Def);
439    if (DefSU) {
440      // The reaching Def lives within this scheduling region.
441      // Create a data dependence.
442      SDep dep(DefSU, SDep::Data, Reg);
443      // Adjust the dependence latency using operand def/use information, then
444      // allow the target to perform its own adjustments.
445      int DefOp = Def->findRegisterDefOperandIdx(Reg);
446      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
447
448      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
449      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
450      SU->addPred(dep);
451    }
452  }
453
454  // Add antidependence to the following def of the vreg it uses.
455  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
456  if (DefI != VRegDefs.end() && DefI->SU != SU)
457    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
458}
459
460/// Return true if MI is an instruction we are unable to reason about
461/// (like a call or something with unmodeled side effects).
462static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
463  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
464      (MI->hasOrderedMemoryRef() &&
465       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
466    return true;
467  return false;
468}
469
470// This MI might have either incomplete info, or known to be unsafe
471// to deal with (i.e. volatile object).
472static inline bool isUnsafeMemoryObject(MachineInstr *MI,
473                                        const MachineFrameInfo *MFI) {
474  if (!MI || MI->memoperands_empty())
475    return true;
476  // We purposefully do no check for hasOneMemOperand() here
477  // in hope to trigger an assert downstream in order to
478  // finish implementation.
479  if ((*MI->memoperands_begin())->isVolatile() ||
480       MI->hasUnmodeledSideEffects())
481    return true;
482
483  if ((*MI->memoperands_begin())->getPseudoValue()) {
484    // Similarly to getUnderlyingObjectForInstr:
485    // For now, ignore PseudoSourceValues which may alias LLVM IR values
486    // because the code that uses this function has no way to cope with
487    // such aliases.
488    return true;
489  }
490
491  const Value *V = (*MI->memoperands_begin())->getValue();
492  if (!V)
493    return true;
494
495  SmallVector<Value *, 4> Objs;
496  getUnderlyingObjects(V, Objs);
497  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
498         IE = Objs.end(); I != IE; ++I) {
499    // Does this pointer refer to a distinct and identifiable object?
500    if (!isIdentifiedObject(*I))
501      return true;
502  }
503
504  return false;
505}
506
507/// This returns true if the two MIs need a chain edge betwee them.
508/// If these are not even memory operations, we still may need
509/// chain deps between them. The question really is - could
510/// these two MIs be reordered during scheduling from memory dependency
511/// point of view.
512static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
513                             MachineInstr *MIa,
514                             MachineInstr *MIb) {
515  // Cover a trivial case - no edge is need to itself.
516  if (MIa == MIb)
517    return false;
518
519  // FIXME: Need to handle multiple memory operands to support all targets.
520  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
521    return true;
522
523  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
524    return true;
525
526  // If we are dealing with two "normal" loads, we do not need an edge
527  // between them - they could be reordered.
528  if (!MIa->mayStore() && !MIb->mayStore())
529    return false;
530
531  // To this point analysis is generic. From here on we do need AA.
532  if (!AA)
533    return true;
534
535  MachineMemOperand *MMOa = *MIa->memoperands_begin();
536  MachineMemOperand *MMOb = *MIb->memoperands_begin();
537
538  if (!MMOa->getValue() || !MMOb->getValue())
539    return true;
540
541  // The following interface to AA is fashioned after DAGCombiner::isAlias
542  // and operates with MachineMemOperand offset with some important
543  // assumptions:
544  //   - LLVM fundamentally assumes flat address spaces.
545  //   - MachineOperand offset can *only* result from legalization and
546  //     cannot affect queries other than the trivial case of overlap
547  //     checking.
548  //   - These offsets never wrap and never step outside
549  //     of allocated objects.
550  //   - There should never be any negative offsets here.
551  //
552  // FIXME: Modify API to hide this math from "user"
553  // FIXME: Even before we go to AA we can reason locally about some
554  // memory objects. It can save compile time, and possibly catch some
555  // corner cases not currently covered.
556
557  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
558  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
559
560  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
561  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
562  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
563
564  AliasAnalysis::AliasResult AAResult = AA->alias(
565      AliasAnalysis::Location(MMOa->getValue(), Overlapa,
566                              UseTBAA ? MMOa->getTBAAInfo() : nullptr),
567      AliasAnalysis::Location(MMOb->getValue(), Overlapb,
568                              UseTBAA ? MMOb->getTBAAInfo() : nullptr));
569
570  return (AAResult != AliasAnalysis::NoAlias);
571}
572
573/// This recursive function iterates over chain deps of SUb looking for
574/// "latest" node that needs a chain edge to SUa.
575static unsigned
576iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
577                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
578                 SmallPtrSet<const SUnit*, 16> &Visited) {
579  if (!SUa || !SUb || SUb == ExitSU)
580    return *Depth;
581
582  // Remember visited nodes.
583  if (!Visited.insert(SUb))
584      return *Depth;
585  // If there is _some_ dependency already in place, do not
586  // descend any further.
587  // TODO: Need to make sure that if that dependency got eliminated or ignored
588  // for any reason in the future, we would not violate DAG topology.
589  // Currently it does not happen, but makes an implicit assumption about
590  // future implementation.
591  //
592  // Independently, if we encounter node that is some sort of global
593  // object (like a call) we already have full set of dependencies to it
594  // and we can stop descending.
595  if (SUa->isSucc(SUb) ||
596      isGlobalMemoryObject(AA, SUb->getInstr()))
597    return *Depth;
598
599  // If we do need an edge, or we have exceeded depth budget,
600  // add that edge to the predecessors chain of SUb,
601  // and stop descending.
602  if (*Depth > 200 ||
603      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
604    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
605    return *Depth;
606  }
607  // Track current depth.
608  (*Depth)++;
609  // Iterate over chain dependencies only.
610  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
611       I != E; ++I)
612    if (I->isCtrl())
613      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
614  return *Depth;
615}
616
617/// This function assumes that "downward" from SU there exist
618/// tail/leaf of already constructed DAG. It iterates downward and
619/// checks whether SU can be aliasing any node dominated
620/// by it.
621static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
622                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
623                            unsigned LatencyToLoad) {
624  if (!SU)
625    return;
626
627  SmallPtrSet<const SUnit*, 16> Visited;
628  unsigned Depth = 0;
629
630  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
631       I != IE; ++I) {
632    if (SU == *I)
633      continue;
634    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
635      SDep Dep(SU, SDep::MayAliasMem);
636      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
637      (*I)->addPred(Dep);
638    }
639    // Now go through all the chain successors and iterate from them.
640    // Keep track of visited nodes.
641    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
642         JE = (*I)->Succs.end(); J != JE; ++J)
643      if (J->isCtrl())
644        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
645                          ExitSU, &Depth, Visited);
646  }
647}
648
649/// Check whether two objects need a chain edge, if so, add it
650/// otherwise remember the rejected SU.
651static inline
652void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
653                         SUnit *SUa, SUnit *SUb,
654                         std::set<SUnit *> &RejectList,
655                         unsigned TrueMemOrderLatency = 0,
656                         bool isNormalMemory = false) {
657  // If this is a false dependency,
658  // do not add the edge, but rememeber the rejected node.
659  if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
660    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
661    Dep.setLatency(TrueMemOrderLatency);
662    SUb->addPred(Dep);
663  }
664  else {
665    // Duplicate entries should be ignored.
666    RejectList.insert(SUb);
667    DEBUG(dbgs() << "\tReject chain dep between SU("
668          << SUa->NodeNum << ") and SU("
669          << SUb->NodeNum << ")\n");
670  }
671}
672
673/// Create an SUnit for each real instruction, numbered in top-down toplological
674/// order. The instruction order A < B, implies that no edge exists from B to A.
675///
676/// Map each real instruction to its SUnit.
677///
678/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
679/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
680/// instead of pointers.
681///
682/// MachineScheduler relies on initSUnits numbering the nodes by their order in
683/// the original instruction list.
684void ScheduleDAGInstrs::initSUnits() {
685  // We'll be allocating one SUnit for each real instruction in the region,
686  // which is contained within a basic block.
687  SUnits.reserve(NumRegionInstrs);
688
689  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
690    MachineInstr *MI = I;
691    if (MI->isDebugValue())
692      continue;
693
694    SUnit *SU = newSUnit(MI);
695    MISUnitMap[MI] = SU;
696
697    SU->isCall = MI->isCall();
698    SU->isCommutable = MI->isCommutable();
699
700    // Assign the Latency field of SU using target-provided information.
701    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
702
703    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
704    //
705    // Reserved resources block an instruction from issuing and stall the
706    // entire pipeline. These are identified by BufferSize=0.
707    //
708    // Unbuffered resources prevent execution of subsequent instructions that
709    // require the same resources. This is used for in-order execution pipelines
710    // within an out-of-order core. These are identified by BufferSize=1.
711    if (SchedModel.hasInstrSchedModel()) {
712      const MCSchedClassDesc *SC = getSchedClass(SU);
713      for (TargetSchedModel::ProcResIter
714             PI = SchedModel.getWriteProcResBegin(SC),
715             PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
716        switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
717        case 0:
718          SU->hasReservedResource = true;
719          break;
720        case 1:
721          SU->isUnbuffered = true;
722          break;
723        default:
724          break;
725        }
726      }
727    }
728  }
729}
730
731/// If RegPressure is non-null, compute register pressure as a side effect. The
732/// DAG builder is an efficient place to do it because it already visits
733/// operands.
734void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
735                                        RegPressureTracker *RPTracker,
736                                        PressureDiffs *PDiffs) {
737  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
738  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
739                                                       : ST.useAA();
740  AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
741
742  MISUnitMap.clear();
743  ScheduleDAG::clearDAG();
744
745  // Create an SUnit for each real instruction.
746  initSUnits();
747
748  if (PDiffs)
749    PDiffs->init(SUnits.size());
750
751  // We build scheduling units by walking a block's instruction list from bottom
752  // to top.
753
754  // Remember where a generic side-effecting instruction is as we procede.
755  SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
756
757  // Memory references to specific known memory locations are tracked
758  // so that they can be given more precise dependencies. We track
759  // separately the known memory locations that may alias and those
760  // that are known not to alias
761  MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
762  MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
763  std::set<SUnit*> RejectMemNodes;
764
765  // Remove any stale debug info; sometimes BuildSchedGraph is called again
766  // without emitting the info from the previous call.
767  DbgValues.clear();
768  FirstDbgValue = nullptr;
769
770  assert(Defs.empty() && Uses.empty() &&
771         "Only BuildGraph should update Defs/Uses");
772  Defs.setUniverse(TRI->getNumRegs());
773  Uses.setUniverse(TRI->getNumRegs());
774
775  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
776  VRegUses.clear();
777  VRegDefs.setUniverse(MRI.getNumVirtRegs());
778  VRegUses.setUniverse(MRI.getNumVirtRegs());
779
780  // Model data dependencies between instructions being scheduled and the
781  // ExitSU.
782  addSchedBarrierDeps();
783
784  // Walk the list of instructions, from bottom moving up.
785  MachineInstr *DbgMI = nullptr;
786  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
787       MII != MIE; --MII) {
788    MachineInstr *MI = std::prev(MII);
789    if (MI && DbgMI) {
790      DbgValues.push_back(std::make_pair(DbgMI, MI));
791      DbgMI = nullptr;
792    }
793
794    if (MI->isDebugValue()) {
795      DbgMI = MI;
796      continue;
797    }
798    SUnit *SU = MISUnitMap[MI];
799    assert(SU && "No SUnit mapped to this MI");
800
801    if (RPTracker) {
802      PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
803      RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
804      assert(RPTracker->getPos() == std::prev(MII) &&
805             "RPTracker can't find MI");
806    }
807
808    assert(
809        (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
810        "Cannot schedule terminators or labels!");
811
812    // Add register-based dependencies (data, anti, and output).
813    bool HasVRegDef = false;
814    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
815      const MachineOperand &MO = MI->getOperand(j);
816      if (!MO.isReg()) continue;
817      unsigned Reg = MO.getReg();
818      if (Reg == 0) continue;
819
820      if (TRI->isPhysicalRegister(Reg))
821        addPhysRegDeps(SU, j);
822      else {
823        assert(!IsPostRA && "Virtual register encountered!");
824        if (MO.isDef()) {
825          HasVRegDef = true;
826          addVRegDefDeps(SU, j);
827        }
828        else if (MO.readsReg()) // ignore undef operands
829          addVRegUseDeps(SU, j);
830      }
831    }
832    // If we haven't seen any uses in this scheduling region, create a
833    // dependence edge to ExitSU to model the live-out latency. This is required
834    // for vreg defs with no in-region use, and prefetches with no vreg def.
835    //
836    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
837    // check currently relies on being called before adding chain deps.
838    if (SU->NumSuccs == 0 && SU->Latency > 1
839        && (HasVRegDef || MI->mayLoad())) {
840      SDep Dep(SU, SDep::Artificial);
841      Dep.setLatency(SU->Latency - 1);
842      ExitSU.addPred(Dep);
843    }
844
845    // Add chain dependencies.
846    // Chain dependencies used to enforce memory order should have
847    // latency of 0 (except for true dependency of Store followed by
848    // aliased Load... we estimate that with a single cycle of latency
849    // assuming the hardware will bypass)
850    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
851    // after stack slots are lowered to actual addresses.
852    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
853    // produce more precise dependence information.
854    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
855    if (isGlobalMemoryObject(AA, MI)) {
856      // Be conservative with these and add dependencies on all memory
857      // references, even those that are known to not alias.
858      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
859             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
860        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
861          I->second[i]->addPred(SDep(SU, SDep::Barrier));
862        }
863      }
864      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
865             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
866        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
867          SDep Dep(SU, SDep::Barrier);
868          Dep.setLatency(TrueMemOrderLatency);
869          I->second[i]->addPred(Dep);
870        }
871      }
872      // Add SU to the barrier chain.
873      if (BarrierChain)
874        BarrierChain->addPred(SDep(SU, SDep::Barrier));
875      BarrierChain = SU;
876      // This is a barrier event that acts as a pivotal node in the DAG,
877      // so it is safe to clear list of exposed nodes.
878      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
879                      TrueMemOrderLatency);
880      RejectMemNodes.clear();
881      NonAliasMemDefs.clear();
882      NonAliasMemUses.clear();
883
884      // fall-through
885    new_alias_chain:
886      // Chain all possibly aliasing memory references though SU.
887      if (AliasChain) {
888        unsigned ChainLatency = 0;
889        if (AliasChain->getInstr()->mayLoad())
890          ChainLatency = TrueMemOrderLatency;
891        addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
892                           ChainLatency);
893      }
894      AliasChain = SU;
895      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
896        addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
897                           TrueMemOrderLatency);
898      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
899           AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
900        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
901          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes);
902      }
903      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
904           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
905        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
906          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
907                             TrueMemOrderLatency);
908      }
909      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
910                      TrueMemOrderLatency);
911      PendingLoads.clear();
912      AliasMemDefs.clear();
913      AliasMemUses.clear();
914    } else if (MI->mayStore()) {
915      UnderlyingObjectsVector Objs;
916      getUnderlyingObjectsForInstr(MI, MFI, Objs);
917
918      if (Objs.empty()) {
919        // Treat all other stores conservatively.
920        goto new_alias_chain;
921      }
922
923      bool MayAlias = false;
924      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
925           K != KE; ++K) {
926        ValueType V = K->getPointer();
927        bool ThisMayAlias = K->getInt();
928        if (ThisMayAlias)
929          MayAlias = true;
930
931        // A store to a specific PseudoSourceValue. Add precise dependencies.
932        // Record the def in MemDefs, first adding a dep if there is
933        // an existing def.
934        MapVector<ValueType, std::vector<SUnit *> >::iterator I =
935          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
936        MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
937          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
938        if (I != IE) {
939          for (unsigned i = 0, e = I->second.size(); i != e; ++i)
940            addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
941                               0, true);
942
943          // If we're not using AA, then we only need one store per object.
944          if (!AAForDep)
945            I->second.clear();
946          I->second.push_back(SU);
947        } else {
948          if (ThisMayAlias) {
949            if (!AAForDep)
950              AliasMemDefs[V].clear();
951            AliasMemDefs[V].push_back(SU);
952          } else {
953            if (!AAForDep)
954              NonAliasMemDefs[V].clear();
955            NonAliasMemDefs[V].push_back(SU);
956          }
957        }
958        // Handle the uses in MemUses, if there are any.
959        MapVector<ValueType, std::vector<SUnit *> >::iterator J =
960          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
961        MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
962          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
963        if (J != JE) {
964          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
965            addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
966                               TrueMemOrderLatency, true);
967          J->second.clear();
968        }
969      }
970      if (MayAlias) {
971        // Add dependencies from all the PendingLoads, i.e. loads
972        // with no underlying object.
973        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
974          addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
975                             TrueMemOrderLatency);
976        // Add dependence on alias chain, if needed.
977        if (AliasChain)
978          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
979        // But we also should check dependent instructions for the
980        // SU in question.
981        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
982                        TrueMemOrderLatency);
983      }
984      // Add dependence on barrier chain, if needed.
985      // There is no point to check aliasing on barrier event. Even if
986      // SU and barrier _could_ be reordered, they should not. In addition,
987      // we have lost all RejectMemNodes below barrier.
988      if (BarrierChain)
989        BarrierChain->addPred(SDep(SU, SDep::Barrier));
990    } else if (MI->mayLoad()) {
991      bool MayAlias = true;
992      if (MI->isInvariantLoad(AA)) {
993        // Invariant load, no chain dependencies needed!
994      } else {
995        UnderlyingObjectsVector Objs;
996        getUnderlyingObjectsForInstr(MI, MFI, Objs);
997
998        if (Objs.empty()) {
999          // A load with no underlying object. Depend on all
1000          // potentially aliasing stores.
1001          for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1002                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1003            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1004              addChainDependency(AAForDep, MFI, SU, I->second[i],
1005                                 RejectMemNodes);
1006
1007          PendingLoads.push_back(SU);
1008          MayAlias = true;
1009        } else {
1010          MayAlias = false;
1011        }
1012
1013        for (UnderlyingObjectsVector::iterator
1014             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1015          ValueType V = J->getPointer();
1016          bool ThisMayAlias = J->getInt();
1017
1018          if (ThisMayAlias)
1019            MayAlias = true;
1020
1021          // A load from a specific PseudoSourceValue. Add precise dependencies.
1022          MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1023            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1024          MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1025            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1026          if (I != IE)
1027            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1028              addChainDependency(AAForDep, MFI, SU, I->second[i],
1029                                 RejectMemNodes, 0, true);
1030          if (ThisMayAlias)
1031            AliasMemUses[V].push_back(SU);
1032          else
1033            NonAliasMemUses[V].push_back(SU);
1034        }
1035        if (MayAlias)
1036          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
1037        // Add dependencies on alias and barrier chains, if needed.
1038        if (MayAlias && AliasChain)
1039          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
1040        if (BarrierChain)
1041          BarrierChain->addPred(SDep(SU, SDep::Barrier));
1042      }
1043    }
1044  }
1045  if (DbgMI)
1046    FirstDbgValue = DbgMI;
1047
1048  Defs.clear();
1049  Uses.clear();
1050  VRegDefs.clear();
1051  PendingLoads.clear();
1052}
1053
1054/// \brief Initialize register live-range state for updating kills.
1055void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1056  // Start with no live registers.
1057  LiveRegs.reset();
1058
1059  // Examine the live-in regs of all successors.
1060  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1061       SE = BB->succ_end(); SI != SE; ++SI) {
1062    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
1063         E = (*SI)->livein_end(); I != E; ++I) {
1064      unsigned Reg = *I;
1065      // Repeat, for reg and all subregs.
1066      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1067           SubRegs.isValid(); ++SubRegs)
1068        LiveRegs.set(*SubRegs);
1069    }
1070  }
1071}
1072
1073bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1074  // Setting kill flag...
1075  if (!MO.isKill()) {
1076    MO.setIsKill(true);
1077    return false;
1078  }
1079
1080  // If MO itself is live, clear the kill flag...
1081  if (LiveRegs.test(MO.getReg())) {
1082    MO.setIsKill(false);
1083    return false;
1084  }
1085
1086  // If any subreg of MO is live, then create an imp-def for that
1087  // subreg and keep MO marked as killed.
1088  MO.setIsKill(false);
1089  bool AllDead = true;
1090  const unsigned SuperReg = MO.getReg();
1091  MachineInstrBuilder MIB(MF, MI);
1092  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1093    if (LiveRegs.test(*SubRegs)) {
1094      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1095      AllDead = false;
1096    }
1097  }
1098
1099  if(AllDead)
1100    MO.setIsKill(true);
1101  return false;
1102}
1103
1104// FIXME: Reuse the LivePhysRegs utility for this.
1105void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1106  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1107
1108  LiveRegs.resize(TRI->getNumRegs());
1109  BitVector killedRegs(TRI->getNumRegs());
1110
1111  startBlockForKills(MBB);
1112
1113  // Examine block from end to start...
1114  unsigned Count = MBB->size();
1115  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1116       I != E; --Count) {
1117    MachineInstr *MI = --I;
1118    if (MI->isDebugValue())
1119      continue;
1120
1121    // Update liveness.  Registers that are defed but not used in this
1122    // instruction are now dead. Mark register and all subregs as they
1123    // are completely defined.
1124    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1125      MachineOperand &MO = MI->getOperand(i);
1126      if (MO.isRegMask())
1127        LiveRegs.clearBitsNotInMask(MO.getRegMask());
1128      if (!MO.isReg()) continue;
1129      unsigned Reg = MO.getReg();
1130      if (Reg == 0) continue;
1131      if (!MO.isDef()) continue;
1132      // Ignore two-addr defs.
1133      if (MI->isRegTiedToUseOperand(i)) continue;
1134
1135      // Repeat for reg and all subregs.
1136      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1137           SubRegs.isValid(); ++SubRegs)
1138        LiveRegs.reset(*SubRegs);
1139    }
1140
1141    // Examine all used registers and set/clear kill flag. When a
1142    // register is used multiple times we only set the kill flag on
1143    // the first use. Don't set kill flags on undef operands.
1144    killedRegs.reset();
1145    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1146      MachineOperand &MO = MI->getOperand(i);
1147      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1148      unsigned Reg = MO.getReg();
1149      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1150
1151      bool kill = false;
1152      if (!killedRegs.test(Reg)) {
1153        kill = true;
1154        // A register is not killed if any subregs are live...
1155        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1156          if (LiveRegs.test(*SubRegs)) {
1157            kill = false;
1158            break;
1159          }
1160        }
1161
1162        // If subreg is not live, then register is killed if it became
1163        // live in this instruction
1164        if (kill)
1165          kill = !LiveRegs.test(Reg);
1166      }
1167
1168      if (MO.isKill() != kill) {
1169        DEBUG(dbgs() << "Fixing " << MO << " in ");
1170        // Warning: toggleKillFlag may invalidate MO.
1171        toggleKillFlag(MI, MO);
1172        DEBUG(MI->dump());
1173      }
1174
1175      killedRegs.set(Reg);
1176    }
1177
1178    // Mark any used register (that is not using undef) and subregs as
1179    // now live...
1180    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1181      MachineOperand &MO = MI->getOperand(i);
1182      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1183      unsigned Reg = MO.getReg();
1184      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1185
1186      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1187           SubRegs.isValid(); ++SubRegs)
1188        LiveRegs.set(*SubRegs);
1189    }
1190  }
1191}
1192
1193void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1194#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1195  SU->getInstr()->dump();
1196#endif
1197}
1198
1199std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1200  std::string s;
1201  raw_string_ostream oss(s);
1202  if (SU == &EntrySU)
1203    oss << "<entry>";
1204  else if (SU == &ExitSU)
1205    oss << "<exit>";
1206  else
1207    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
1208  return oss.str();
1209}
1210
1211/// Return the basic block label. It is not necessarilly unique because a block
1212/// contains multiple scheduling regions. But it is fine for visualization.
1213std::string ScheduleDAGInstrs::getDAGName() const {
1214  return "dag." + BB->getFullName();
1215}
1216
1217//===----------------------------------------------------------------------===//
1218// SchedDFSResult Implementation
1219//===----------------------------------------------------------------------===//
1220
1221namespace llvm {
1222/// \brief Internal state used to compute SchedDFSResult.
1223class SchedDFSImpl {
1224  SchedDFSResult &R;
1225
1226  /// Join DAG nodes into equivalence classes by their subtree.
1227  IntEqClasses SubtreeClasses;
1228  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1229  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1230
1231  struct RootData {
1232    unsigned NodeID;
1233    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1234    unsigned SubInstrCount; // Instr count in this tree only, not children.
1235
1236    RootData(unsigned id): NodeID(id),
1237                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1238                           SubInstrCount(0) {}
1239
1240    unsigned getSparseSetIndex() const { return NodeID; }
1241  };
1242
1243  SparseSet<RootData> RootSet;
1244
1245public:
1246  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1247    RootSet.setUniverse(R.DFSNodeData.size());
1248  }
1249
1250  /// Return true if this node been visited by the DFS traversal.
1251  ///
1252  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1253  /// ID. Later, SubtreeID is updated but remains valid.
1254  bool isVisited(const SUnit *SU) const {
1255    return R.DFSNodeData[SU->NodeNum].SubtreeID
1256      != SchedDFSResult::InvalidSubtreeID;
1257  }
1258
1259  /// Initialize this node's instruction count. We don't need to flag the node
1260  /// visited until visitPostorder because the DAG cannot have cycles.
1261  void visitPreorder(const SUnit *SU) {
1262    R.DFSNodeData[SU->NodeNum].InstrCount =
1263      SU->getInstr()->isTransient() ? 0 : 1;
1264  }
1265
1266  /// Called once for each node after all predecessors are visited. Revisit this
1267  /// node's predecessors and potentially join them now that we know the ILP of
1268  /// the other predecessors.
1269  void visitPostorderNode(const SUnit *SU) {
1270    // Mark this node as the root of a subtree. It may be joined with its
1271    // successors later.
1272    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1273    RootData RData(SU->NodeNum);
1274    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1275
1276    // If any predecessors are still in their own subtree, they either cannot be
1277    // joined or are large enough to remain separate. If this parent node's
1278    // total instruction count is not greater than a child subtree by at least
1279    // the subtree limit, then try to join it now since splitting subtrees is
1280    // only useful if multiple high-pressure paths are possible.
1281    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1282    for (SUnit::const_pred_iterator
1283           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1284      if (PI->getKind() != SDep::Data)
1285        continue;
1286      unsigned PredNum = PI->getSUnit()->NodeNum;
1287      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1288        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1289
1290      // Either link or merge the TreeData entry from the child to the parent.
1291      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1292        // If the predecessor's parent is invalid, this is a tree edge and the
1293        // current node is the parent.
1294        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1295          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1296      }
1297      else if (RootSet.count(PredNum)) {
1298        // The predecessor is not a root, but is still in the root set. This
1299        // must be the new parent that it was just joined to. Note that
1300        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1301        // set to the original parent.
1302        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1303        RootSet.erase(PredNum);
1304      }
1305    }
1306    RootSet[SU->NodeNum] = RData;
1307  }
1308
1309  /// Called once for each tree edge after calling visitPostOrderNode on the
1310  /// predecessor. Increment the parent node's instruction count and
1311  /// preemptively join this subtree to its parent's if it is small enough.
1312  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1313    R.DFSNodeData[Succ->NodeNum].InstrCount
1314      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1315    joinPredSubtree(PredDep, Succ);
1316  }
1317
1318  /// Add a connection for cross edges.
1319  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1320    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1321  }
1322
1323  /// Set each node's subtree ID to the representative ID and record connections
1324  /// between trees.
1325  void finalize() {
1326    SubtreeClasses.compress();
1327    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1328    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1329           && "number of roots should match trees");
1330    for (SparseSet<RootData>::const_iterator
1331           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1332      unsigned TreeID = SubtreeClasses[RI->NodeID];
1333      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1334        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1335      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1336      // Note that SubInstrCount may be greater than InstrCount if we joined
1337      // subtrees across a cross edge. InstrCount will be attributed to the
1338      // original parent, while SubInstrCount will be attributed to the joined
1339      // parent.
1340    }
1341    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1342    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1343    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1344    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1345      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1346      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1347            << R.DFSNodeData[Idx].SubtreeID << '\n');
1348    }
1349    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1350           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1351         I != E; ++I) {
1352      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1353      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1354      if (PredTree == SuccTree)
1355        continue;
1356      unsigned Depth = I->first->getDepth();
1357      addConnection(PredTree, SuccTree, Depth);
1358      addConnection(SuccTree, PredTree, Depth);
1359    }
1360  }
1361
1362protected:
1363  /// Join the predecessor subtree with the successor that is its DFS
1364  /// parent. Apply some heuristics before joining.
1365  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1366                       bool CheckLimit = true) {
1367    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1368
1369    // Check if the predecessor is already joined.
1370    const SUnit *PredSU = PredDep.getSUnit();
1371    unsigned PredNum = PredSU->NodeNum;
1372    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1373      return false;
1374
1375    // Four is the magic number of successors before a node is considered a
1376    // pinch point.
1377    unsigned NumDataSucs = 0;
1378    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1379           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1380      if (SI->getKind() == SDep::Data) {
1381        if (++NumDataSucs >= 4)
1382          return false;
1383      }
1384    }
1385    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1386      return false;
1387    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1388    SubtreeClasses.join(Succ->NodeNum, PredNum);
1389    return true;
1390  }
1391
1392  /// Called by finalize() to record a connection between trees.
1393  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1394    if (!Depth)
1395      return;
1396
1397    do {
1398      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1399        R.SubtreeConnections[FromTree];
1400      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1401             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1402        if (I->TreeID == ToTree) {
1403          I->Level = std::max(I->Level, Depth);
1404          return;
1405        }
1406      }
1407      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1408      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1409    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1410  }
1411};
1412} // namespace llvm
1413
1414namespace {
1415/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1416class SchedDAGReverseDFS {
1417  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1418public:
1419  bool isComplete() const { return DFSStack.empty(); }
1420
1421  void follow(const SUnit *SU) {
1422    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1423  }
1424  void advance() { ++DFSStack.back().second; }
1425
1426  const SDep *backtrack() {
1427    DFSStack.pop_back();
1428    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1429  }
1430
1431  const SUnit *getCurr() const { return DFSStack.back().first; }
1432
1433  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1434
1435  SUnit::const_pred_iterator getPredEnd() const {
1436    return getCurr()->Preds.end();
1437  }
1438};
1439} // anonymous
1440
1441static bool hasDataSucc(const SUnit *SU) {
1442  for (SUnit::const_succ_iterator
1443         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1444    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1445      return true;
1446  }
1447  return false;
1448}
1449
1450/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1451/// search from this root.
1452void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1453  if (!IsBottomUp)
1454    llvm_unreachable("Top-down ILP metric is unimplemnted");
1455
1456  SchedDFSImpl Impl(*this);
1457  for (ArrayRef<SUnit>::const_iterator
1458         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1459    const SUnit *SU = &*SI;
1460    if (Impl.isVisited(SU) || hasDataSucc(SU))
1461      continue;
1462
1463    SchedDAGReverseDFS DFS;
1464    Impl.visitPreorder(SU);
1465    DFS.follow(SU);
1466    for (;;) {
1467      // Traverse the leftmost path as far as possible.
1468      while (DFS.getPred() != DFS.getPredEnd()) {
1469        const SDep &PredDep = *DFS.getPred();
1470        DFS.advance();
1471        // Ignore non-data edges.
1472        if (PredDep.getKind() != SDep::Data
1473            || PredDep.getSUnit()->isBoundaryNode()) {
1474          continue;
1475        }
1476        // An already visited edge is a cross edge, assuming an acyclic DAG.
1477        if (Impl.isVisited(PredDep.getSUnit())) {
1478          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1479          continue;
1480        }
1481        Impl.visitPreorder(PredDep.getSUnit());
1482        DFS.follow(PredDep.getSUnit());
1483      }
1484      // Visit the top of the stack in postorder and backtrack.
1485      const SUnit *Child = DFS.getCurr();
1486      const SDep *PredDep = DFS.backtrack();
1487      Impl.visitPostorderNode(Child);
1488      if (PredDep)
1489        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1490      if (DFS.isComplete())
1491        break;
1492    }
1493  }
1494  Impl.finalize();
1495}
1496
1497/// The root of the given SubtreeID was just scheduled. For all subtrees
1498/// connected to this tree, record the depth of the connection so that the
1499/// nearest connected subtrees can be prioritized.
1500void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1501  for (SmallVectorImpl<Connection>::const_iterator
1502         I = SubtreeConnections[SubtreeID].begin(),
1503         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1504    SubtreeConnectLevels[I->TreeID] =
1505      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1506    DEBUG(dbgs() << "  Tree: " << I->TreeID
1507          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1508  }
1509}
1510
1511LLVM_DUMP_METHOD
1512void ILPValue::print(raw_ostream &OS) const {
1513  OS << InstrCount << " / " << Length << " = ";
1514  if (!Length)
1515    OS << "BADILP";
1516  else
1517    OS << format("%g", ((double)InstrCount / Length));
1518}
1519
1520LLVM_DUMP_METHOD
1521void ILPValue::dump() const {
1522  dbgs() << *this << '\n';
1523}
1524
1525namespace llvm {
1526
1527LLVM_DUMP_METHOD
1528raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1529  Val.print(OS);
1530  return OS;
1531}
1532
1533} // namespace llvm
1534