ScheduleDAGInstrs.cpp revision de5fa932b9bc0eebe803c9549586bf512eeb12f9
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33                                     const MachineLoopInfo &mli,
34                                     const MachineDominatorTree &mdt)
35  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
36    InstrItins(mf.getTarget().getInstrItineraryData()),
37    Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) {
38  DbgValueVec.clear();
39}
40
41/// Run - perform scheduling.
42///
43void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
44                            MachineBasicBlock::iterator begin,
45                            MachineBasicBlock::iterator end,
46                            unsigned endcount) {
47  BB = bb;
48  Begin = begin;
49  InsertPosIndex = endcount;
50
51  ScheduleDAG::Run(bb, end);
52}
53
54/// getUnderlyingObjectFromInt - This is the function that does the work of
55/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
56static const Value *getUnderlyingObjectFromInt(const Value *V) {
57  do {
58    if (const Operator *U = dyn_cast<Operator>(V)) {
59      // If we find a ptrtoint, we can transfer control back to the
60      // regular getUnderlyingObjectFromInt.
61      if (U->getOpcode() == Instruction::PtrToInt)
62        return U->getOperand(0);
63      // If we find an add of a constant or a multiplied value, it's
64      // likely that the other operand will lead us to the base
65      // object. We don't have to worry about the case where the
66      // object address is somehow being computed by the multiply,
67      // because our callers only care when the result is an
68      // identifibale object.
69      if (U->getOpcode() != Instruction::Add ||
70          (!isa<ConstantInt>(U->getOperand(1)) &&
71           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
72        return V;
73      V = U->getOperand(0);
74    } else {
75      return V;
76    }
77    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
78  } while (1);
79}
80
81/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
82/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
83static const Value *getUnderlyingObject(const Value *V) {
84  // First just call Value::getUnderlyingObject to let it do what it does.
85  do {
86    V = V->getUnderlyingObject();
87    // If it found an inttoptr, use special code to continue climing.
88    if (Operator::getOpcode(V) != Instruction::IntToPtr)
89      break;
90    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
91    // If that succeeded in finding a pointer, continue the search.
92    if (!O->getType()->isPointerTy())
93      break;
94    V = O;
95  } while (1);
96  return V;
97}
98
99/// getUnderlyingObjectForInstr - If this machine instr has memory reference
100/// information and it can be tracked to a normal reference to a known
101/// object, return the Value for that object. Otherwise return null.
102static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
103                                                const MachineFrameInfo *MFI,
104                                                bool &MayAlias) {
105  MayAlias = true;
106  if (!MI->hasOneMemOperand() ||
107      !(*MI->memoperands_begin())->getValue() ||
108      (*MI->memoperands_begin())->isVolatile())
109    return 0;
110
111  const Value *V = (*MI->memoperands_begin())->getValue();
112  if (!V)
113    return 0;
114
115  V = getUnderlyingObject(V);
116  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
117    // For now, ignore PseudoSourceValues which may alias LLVM IR values
118    // because the code that uses this function has no way to cope with
119    // such aliases.
120    if (PSV->isAliased(MFI))
121      return 0;
122
123    MayAlias = PSV->mayAlias(MFI);
124    return V;
125  }
126
127  if (isIdentifiedObject(V))
128    return V;
129
130  return 0;
131}
132
133void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
134  if (MachineLoop *ML = MLI.getLoopFor(BB))
135    if (BB == ML->getLoopLatch()) {
136      MachineBasicBlock *Header = ML->getHeader();
137      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
138           E = Header->livein_end(); I != E; ++I)
139        LoopLiveInRegs.insert(*I);
140      LoopRegs.VisitLoop(ML);
141    }
142}
143
144/// AddSchedBarrierDeps - Add dependencies from instructions in the current
145/// list of instructions being scheduled to scheduling barrier by adding
146/// the exit SU to the register defs and use list. This is because we want to
147/// make sure instructions which define registers that are either used by
148/// the terminator or are live-out are properly scheduled. This is
149/// especially important when the definition latency of the return value(s)
150/// are too high to be hidden by the branch or when the liveout registers
151/// used by instructions in the fallthrough block.
152void ScheduleDAGInstrs::AddSchedBarrierDeps() {
153  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
154  ExitSU.setInstr(ExitMI);
155  bool AllDepKnown = ExitMI &&
156    (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
157  if (ExitMI && AllDepKnown) {
158    // If it's a call or a barrier, add dependencies on the defs and uses of
159    // instruction.
160    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
161      const MachineOperand &MO = ExitMI->getOperand(i);
162      if (!MO.isReg() || MO.isDef()) continue;
163      unsigned Reg = MO.getReg();
164      if (Reg == 0) continue;
165
166      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
167      Uses[Reg].push_back(&ExitSU);
168    }
169  } else {
170    // For others, e.g. fallthrough, conditional branch, assume the exit
171    // uses all the registers that are livein to the successor blocks.
172    SmallSet<unsigned, 8> Seen;
173    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
174           SE = BB->succ_end(); SI != SE; ++SI)
175      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
176             E = (*SI)->livein_end(); I != E; ++I) {
177        unsigned Reg = *I;
178        if (Seen.insert(Reg))
179          Uses[Reg].push_back(&ExitSU);
180      }
181  }
182}
183
184void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
185  // We'll be allocating one SUnit for each instruction, plus one for
186  // the region exit node.
187  SUnits.reserve(BB->size());
188
189  // We build scheduling units by walking a block's instruction list from bottom
190  // to top.
191
192  // Remember where a generic side-effecting instruction is as we procede.
193  SUnit *BarrierChain = 0, *AliasChain = 0;
194
195  // Memory references to specific known memory locations are tracked
196  // so that they can be given more precise dependencies. We track
197  // separately the known memory locations that may alias and those
198  // that are known not to alias
199  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
200  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
201
202  // Keep track of dangling debug references to registers.
203  std::vector<std::pair<MachineInstr*, unsigned> >
204    DanglingDebugValue(TRI->getNumRegs(),
205    std::make_pair(static_cast<MachineInstr*>(0), 0));
206
207  // Check to see if the scheduler cares about latencies.
208  bool UnitLatencies = ForceUnitLatencies();
209
210  // Ask the target if address-backscheduling is desirable, and if so how much.
211  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
212  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
213
214  // Remove any stale debug info; sometimes BuildSchedGraph is called again
215  // without emitting the info from the previous call.
216  DbgValueVec.clear();
217
218  // Model data dependencies between instructions being scheduled and the
219  // ExitSU.
220  AddSchedBarrierDeps();
221
222  // Walk the list of instructions, from bottom moving up.
223  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
224       MII != MIE; --MII) {
225    MachineInstr *MI = prior(MII);
226    // DBG_VALUE does not have SUnit's built, so just remember these for later
227    // reinsertion.
228    if (MI->isDebugValue()) {
229      if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
230          MI->getOperand(0).getReg())
231        DanglingDebugValue[MI->getOperand(0).getReg()] =
232             std::make_pair(MI, DbgValueVec.size());
233      DbgValueVec.push_back(MI);
234      continue;
235    }
236    const TargetInstrDesc &TID = MI->getDesc();
237    assert(!TID.isTerminator() && !MI->isLabel() &&
238           "Cannot schedule terminators or labels!");
239    // Create the SUnit for this MI.
240    SUnit *SU = NewSUnit(MI);
241
242    // Assign the Latency field of SU using target-provided information.
243    if (UnitLatencies)
244      SU->Latency = 1;
245    else
246      ComputeLatency(SU);
247
248    // Add register-based dependencies (data, anti, and output).
249    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
250      const MachineOperand &MO = MI->getOperand(j);
251      if (!MO.isReg()) continue;
252      unsigned Reg = MO.getReg();
253      if (Reg == 0) continue;
254
255      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
256
257      if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
258        SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first);
259        DbgValueVec[DanglingDebugValue[Reg].second] = 0;
260        DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
261      }
262
263      std::vector<SUnit *> &UseList = Uses[Reg];
264      std::vector<SUnit *> &DefList = Defs[Reg];
265      // Optionally add output and anti dependencies. For anti
266      // dependencies we use a latency of 0 because for a multi-issue
267      // target we want to allow the defining instruction to issue
268      // in the same cycle as the using instruction.
269      // TODO: Using a latency of 1 here for output dependencies assumes
270      //       there's no cost for reusing registers.
271      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
272      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
273      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
274        SUnit *DefSU = DefList[i];
275        if (DefSU == &ExitSU)
276          continue;
277        if (DefSU != SU &&
278            (Kind != SDep::Output || !MO.isDead() ||
279             !DefSU->getInstr()->registerDefIsDead(Reg)))
280          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
281      }
282      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
283        std::vector<SUnit *> &DefList = Defs[*Alias];
284        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
285          SUnit *DefSU = DefList[i];
286          if (DefSU == &ExitSU)
287            continue;
288          if (DefSU != SU &&
289              (Kind != SDep::Output || !MO.isDead() ||
290               !DefSU->getInstr()->registerDefIsDead(*Alias)))
291            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
292        }
293      }
294
295      if (MO.isDef()) {
296        // Add any data dependencies.
297        unsigned DataLatency = SU->Latency;
298        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
299          SUnit *UseSU = UseList[i];
300          if (UseSU == SU)
301            continue;
302          unsigned LDataLatency = DataLatency;
303          // Optionally add in a special extra latency for nodes that
304          // feed addresses.
305          // TODO: Do this for register aliases too.
306          // TODO: Perhaps we should get rid of
307          // SpecialAddressLatency and just move this into
308          // adjustSchedDependency for the targets that care about it.
309          if (SpecialAddressLatency != 0 && !UnitLatencies &&
310              UseSU != &ExitSU) {
311            MachineInstr *UseMI = UseSU->getInstr();
312            const TargetInstrDesc &UseTID = UseMI->getDesc();
313            int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
314            assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
315            if (RegUseIndex >= 0 &&
316                (UseTID.mayLoad() || UseTID.mayStore()) &&
317                (unsigned)RegUseIndex < UseTID.getNumOperands() &&
318                UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
319              LDataLatency += SpecialAddressLatency;
320          }
321          // Adjust the dependence latency using operand def/use
322          // information (if any), and then allow the target to
323          // perform its own adjustments.
324          const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
325          if (!UnitLatencies) {
326            ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
327            ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
328          }
329          UseSU->addPred(dep);
330        }
331        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
332          std::vector<SUnit *> &UseList = Uses[*Alias];
333          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
334            SUnit *UseSU = UseList[i];
335            if (UseSU == SU)
336              continue;
337            const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
338            if (!UnitLatencies) {
339              ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
340              ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
341            }
342            UseSU->addPred(dep);
343          }
344        }
345
346        // If a def is going to wrap back around to the top of the loop,
347        // backschedule it.
348        if (!UnitLatencies && DefList.empty()) {
349          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
350          if (I != LoopRegs.Deps.end()) {
351            const MachineOperand *UseMO = I->second.first;
352            unsigned Count = I->second.second;
353            const MachineInstr *UseMI = UseMO->getParent();
354            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
355            const TargetInstrDesc &UseTID = UseMI->getDesc();
356            // TODO: If we knew the total depth of the region here, we could
357            // handle the case where the whole loop is inside the region but
358            // is large enough that the isScheduleHigh trick isn't needed.
359            if (UseMOIdx < UseTID.getNumOperands()) {
360              // Currently, we only support scheduling regions consisting of
361              // single basic blocks. Check to see if the instruction is in
362              // the same region by checking to see if it has the same parent.
363              if (UseMI->getParent() != MI->getParent()) {
364                unsigned Latency = SU->Latency;
365                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
366                  Latency += SpecialAddressLatency;
367                // This is a wild guess as to the portion of the latency which
368                // will be overlapped by work done outside the current
369                // scheduling region.
370                Latency -= std::min(Latency, Count);
371                // Add the artifical edge.
372                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
373                                    /*Reg=*/0, /*isNormalMemory=*/false,
374                                    /*isMustAlias=*/false,
375                                    /*isArtificial=*/true));
376              } else if (SpecialAddressLatency > 0 &&
377                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
378                // The entire loop body is within the current scheduling region
379                // and the latency of this operation is assumed to be greater
380                // than the latency of the loop.
381                // TODO: Recursively mark data-edge predecessors as
382                //       isScheduleHigh too.
383                SU->isScheduleHigh = true;
384              }
385            }
386            LoopRegs.Deps.erase(I);
387          }
388        }
389
390        UseList.clear();
391        if (!MO.isDead())
392          DefList.clear();
393        DefList.push_back(SU);
394      } else {
395        UseList.push_back(SU);
396      }
397    }
398
399    // Add chain dependencies.
400    // Chain dependencies used to enforce memory order should have
401    // latency of 0 (except for true dependency of Store followed by
402    // aliased Load... we estimate that with a single cycle of latency
403    // assuming the hardware will bypass)
404    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
405    // after stack slots are lowered to actual addresses.
406    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
407    // produce more precise dependence information.
408#define STORE_LOAD_LATENCY 1
409    unsigned TrueMemOrderLatency = 0;
410    if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
411        (MI->hasVolatileMemoryRef() &&
412         (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
413      // Be conservative with these and add dependencies on all memory
414      // references, even those that are known to not alias.
415      for (std::map<const Value *, SUnit *>::iterator I =
416             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
417        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
418      }
419      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
420             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
421        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
422          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
423      }
424      NonAliasMemDefs.clear();
425      NonAliasMemUses.clear();
426      // Add SU to the barrier chain.
427      if (BarrierChain)
428        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
429      BarrierChain = SU;
430
431      // fall-through
432    new_alias_chain:
433      // Chain all possibly aliasing memory references though SU.
434      if (AliasChain)
435        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
436      AliasChain = SU;
437      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
438        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
439      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
440           E = AliasMemDefs.end(); I != E; ++I) {
441        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
442      }
443      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
444           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
445        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
446          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
447      }
448      PendingLoads.clear();
449      AliasMemDefs.clear();
450      AliasMemUses.clear();
451    } else if (TID.mayStore()) {
452      bool MayAlias = true;
453      TrueMemOrderLatency = STORE_LOAD_LATENCY;
454      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
455        // A store to a specific PseudoSourceValue. Add precise dependencies.
456        // Record the def in MemDefs, first adding a dep if there is
457        // an existing def.
458        std::map<const Value *, SUnit *>::iterator I =
459          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
460        std::map<const Value *, SUnit *>::iterator IE =
461          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
462        if (I != IE) {
463          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
464                                  /*isNormalMemory=*/true));
465          I->second = SU;
466        } else {
467          if (MayAlias)
468            AliasMemDefs[V] = SU;
469          else
470            NonAliasMemDefs[V] = SU;
471        }
472        // Handle the uses in MemUses, if there are any.
473        std::map<const Value *, std::vector<SUnit *> >::iterator J =
474          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
475        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
476          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
477        if (J != JE) {
478          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
479            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
480                                       /*Reg=*/0, /*isNormalMemory=*/true));
481          J->second.clear();
482        }
483        if (MayAlias) {
484          // Add dependencies from all the PendingLoads, i.e. loads
485          // with no underlying object.
486          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
487            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
488          // Add dependence on alias chain, if needed.
489          if (AliasChain)
490            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
491        }
492        // Add dependence on barrier chain, if needed.
493        if (BarrierChain)
494          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
495      } else {
496        // Treat all other stores conservatively.
497        goto new_alias_chain;
498      }
499
500      if (!ExitSU.isPred(SU))
501        // Push store's up a bit to avoid them getting in between cmp
502        // and branches.
503        ExitSU.addPred(SDep(SU, SDep::Order, 0,
504                            /*Reg=*/0, /*isNormalMemory=*/false,
505                            /*isMustAlias=*/false,
506                            /*isArtificial=*/true));
507    } else if (TID.mayLoad()) {
508      bool MayAlias = true;
509      TrueMemOrderLatency = 0;
510      if (MI->isInvariantLoad(AA)) {
511        // Invariant load, no chain dependencies needed!
512      } else {
513        if (const Value *V =
514            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
515          // A load from a specific PseudoSourceValue. Add precise dependencies.
516          std::map<const Value *, SUnit *>::iterator I =
517            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
518          std::map<const Value *, SUnit *>::iterator IE =
519            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
520          if (I != IE)
521            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
522                                    /*isNormalMemory=*/true));
523          if (MayAlias)
524            AliasMemUses[V].push_back(SU);
525          else
526            NonAliasMemUses[V].push_back(SU);
527        } else {
528          // A load with no underlying object. Depend on all
529          // potentially aliasing stores.
530          for (std::map<const Value *, SUnit *>::iterator I =
531                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
532            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
533
534          PendingLoads.push_back(SU);
535          MayAlias = true;
536        }
537
538        // Add dependencies on alias and barrier chains, if needed.
539        if (MayAlias && AliasChain)
540          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
541        if (BarrierChain)
542          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
543      }
544    }
545  }
546
547  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
548    Defs[i].clear();
549    Uses[i].clear();
550  }
551  PendingLoads.clear();
552}
553
554void ScheduleDAGInstrs::FinishBlock() {
555  // Nothing to do.
556}
557
558void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
559  // Compute the latency for the node.
560  if (!InstrItins || InstrItins->isEmpty()) {
561    SU->Latency = 1;
562
563    // Simplistic target-independent heuristic: assume that loads take
564    // extra time.
565    if (SU->getInstr()->getDesc().mayLoad())
566      SU->Latency += 2;
567  } else
568    SU->Latency =
569      InstrItins->getStageLatency(SU->getInstr()->getDesc().getSchedClass());
570}
571
572void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
573                                              SDep& dep) const {
574  if (!InstrItins || InstrItins->isEmpty())
575    return;
576
577  // For a data dependency with a known register...
578  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
579    return;
580
581  const unsigned Reg = dep.getReg();
582
583  // ... find the definition of the register in the defining
584  // instruction
585  MachineInstr *DefMI = Def->getInstr();
586  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
587  if (DefIdx != -1) {
588    const MachineOperand &MO = DefMI->getOperand(DefIdx);
589    if (MO.isReg() && MO.isImplicit() &&
590        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
591      // This is an implicit def, getOperandLatency() won't return the correct
592      // latency. e.g.
593      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
594      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
595      // What we want is to compute latency between def of %D6/%D7 and use of
596      // %Q3 instead.
597      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
598    }
599    MachineInstr *UseMI = Use->getInstr();
600    // For all uses of the register, calculate the maxmimum latency
601    int Latency = -1;
602    if (UseMI) {
603      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
604        const MachineOperand &MO = UseMI->getOperand(i);
605        if (!MO.isReg() || !MO.isUse())
606          continue;
607        unsigned MOReg = MO.getReg();
608        if (MOReg != Reg)
609          continue;
610
611        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
612                                              UseMI, i);
613        Latency = std::max(Latency, UseCycle);
614      }
615    } else {
616      // UseMI is null, then it must be a scheduling barrier.
617      if (!InstrItins || InstrItins->isEmpty())
618        return;
619      unsigned DefClass = DefMI->getDesc().getSchedClass();
620      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
621    }
622
623    // If we found a latency, then replace the existing dependence latency.
624    if (Latency >= 0)
625      dep.setLatency(Latency);
626  }
627}
628
629void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
630  SU->getInstr()->dump();
631}
632
633std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
634  std::string s;
635  raw_string_ostream oss(s);
636  if (SU == &EntrySU)
637    oss << "<entry>";
638  else if (SU == &ExitSU)
639    oss << "<exit>";
640  else
641    SU->getInstr()->print(oss);
642  return oss.str();
643}
644
645// EmitSchedule - Emit the machine code in scheduled order.
646MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
647  // For MachineInstr-based scheduling, we're rescheduling the instructions in
648  // the block, so start by removing them from the block.
649  while (Begin != InsertPos) {
650    MachineBasicBlock::iterator I = Begin;
651    ++Begin;
652    BB->remove(I);
653  }
654
655  // First reinsert any remaining debug_values; these are either constants,
656  // or refer to live-in registers.  The beginning of the block is the right
657  // place for the latter.  The former might reasonably be placed elsewhere
658  // using some kind of ordering algorithm, but right now it doesn't matter.
659  for (int i = DbgValueVec.size()-1; i>=0; --i)
660    if (DbgValueVec[i])
661      BB->insert(InsertPos, DbgValueVec[i]);
662
663  // Then re-insert them according to the given schedule.
664  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
665    SUnit *SU = Sequence[i];
666    if (!SU) {
667      // Null SUnit* is a noop.
668      EmitNoop();
669      continue;
670    }
671
672    BB->insert(InsertPos, SU->getInstr());
673    for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i)
674      BB->insert(InsertPos, SU->DbgInstrList[i]);
675  }
676
677  // Update the Begin iterator, as the first instruction in the block
678  // may have been scheduled later.
679  if (!DbgValueVec.empty()) {
680    for (int i = DbgValueVec.size()-1; i>=0; --i)
681      if (DbgValueVec[i]!=0) {
682        Begin = DbgValueVec[DbgValueVec.size()-1];
683        break;
684      }
685  } else if (!Sequence.empty())
686    Begin = Sequence[0]->getInstr();
687
688  DbgValueVec.clear();
689  return BB;
690}
691