ScheduleDAGInstrs.cpp revision ee1091589225d8de4cb8bc065bff9376bbe661eb
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/SmallSet.h"
31using namespace llvm;
32
33ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
34                                     const MachineLoopInfo &mli,
35                                     const MachineDominatorTree &mdt)
36  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
37    InstrItins(mf.getTarget().getInstrItineraryData()),
38    Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) {
39  DbgValueVec.clear();
40}
41
42/// Run - perform scheduling.
43///
44void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
45                            MachineBasicBlock::iterator begin,
46                            MachineBasicBlock::iterator end,
47                            unsigned endcount) {
48  BB = bb;
49  Begin = begin;
50  InsertPosIndex = endcount;
51
52  ScheduleDAG::Run(bb, end);
53}
54
55/// getUnderlyingObjectFromInt - This is the function that does the work of
56/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
57static const Value *getUnderlyingObjectFromInt(const Value *V) {
58  do {
59    if (const Operator *U = dyn_cast<Operator>(V)) {
60      // If we find a ptrtoint, we can transfer control back to the
61      // regular getUnderlyingObjectFromInt.
62      if (U->getOpcode() == Instruction::PtrToInt)
63        return U->getOperand(0);
64      // If we find an add of a constant or a multiplied value, it's
65      // likely that the other operand will lead us to the base
66      // object. We don't have to worry about the case where the
67      // object address is somehow being computed by the multiply,
68      // because our callers only care when the result is an
69      // identifibale object.
70      if (U->getOpcode() != Instruction::Add ||
71          (!isa<ConstantInt>(U->getOperand(1)) &&
72           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
73        return V;
74      V = U->getOperand(0);
75    } else {
76      return V;
77    }
78    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
79  } while (1);
80}
81
82/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
83/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
84static const Value *getUnderlyingObject(const Value *V) {
85  // First just call Value::getUnderlyingObject to let it do what it does.
86  do {
87    V = GetUnderlyingObject(V);
88    // If it found an inttoptr, use special code to continue climing.
89    if (Operator::getOpcode(V) != Instruction::IntToPtr)
90      break;
91    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
92    // If that succeeded in finding a pointer, continue the search.
93    if (!O->getType()->isPointerTy())
94      break;
95    V = O;
96  } while (1);
97  return V;
98}
99
100/// getUnderlyingObjectForInstr - If this machine instr has memory reference
101/// information and it can be tracked to a normal reference to a known
102/// object, return the Value for that object. Otherwise return null.
103static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
104                                                const MachineFrameInfo *MFI,
105                                                bool &MayAlias) {
106  MayAlias = true;
107  if (!MI->hasOneMemOperand() ||
108      !(*MI->memoperands_begin())->getValue() ||
109      (*MI->memoperands_begin())->isVolatile())
110    return 0;
111
112  const Value *V = (*MI->memoperands_begin())->getValue();
113  if (!V)
114    return 0;
115
116  V = getUnderlyingObject(V);
117  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
118    // For now, ignore PseudoSourceValues which may alias LLVM IR values
119    // because the code that uses this function has no way to cope with
120    // such aliases.
121    if (PSV->isAliased(MFI))
122      return 0;
123
124    MayAlias = PSV->mayAlias(MFI);
125    return V;
126  }
127
128  if (isIdentifiedObject(V))
129    return V;
130
131  return 0;
132}
133
134void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
135  if (MachineLoop *ML = MLI.getLoopFor(BB))
136    if (BB == ML->getLoopLatch()) {
137      MachineBasicBlock *Header = ML->getHeader();
138      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
139           E = Header->livein_end(); I != E; ++I)
140        LoopLiveInRegs.insert(*I);
141      LoopRegs.VisitLoop(ML);
142    }
143}
144
145/// AddSchedBarrierDeps - Add dependencies from instructions in the current
146/// list of instructions being scheduled to scheduling barrier by adding
147/// the exit SU to the register defs and use list. This is because we want to
148/// make sure instructions which define registers that are either used by
149/// the terminator or are live-out are properly scheduled. This is
150/// especially important when the definition latency of the return value(s)
151/// are too high to be hidden by the branch or when the liveout registers
152/// used by instructions in the fallthrough block.
153void ScheduleDAGInstrs::AddSchedBarrierDeps() {
154  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
155  ExitSU.setInstr(ExitMI);
156  bool AllDepKnown = ExitMI &&
157    (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
158  if (ExitMI && AllDepKnown) {
159    // If it's a call or a barrier, add dependencies on the defs and uses of
160    // instruction.
161    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
162      const MachineOperand &MO = ExitMI->getOperand(i);
163      if (!MO.isReg() || MO.isDef()) continue;
164      unsigned Reg = MO.getReg();
165      if (Reg == 0) continue;
166
167      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
168      Uses[Reg].push_back(&ExitSU);
169    }
170  } else {
171    // For others, e.g. fallthrough, conditional branch, assume the exit
172    // uses all the registers that are livein to the successor blocks.
173    SmallSet<unsigned, 8> Seen;
174    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
175           SE = BB->succ_end(); SI != SE; ++SI)
176      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
177             E = (*SI)->livein_end(); I != E; ++I) {
178        unsigned Reg = *I;
179        if (Seen.insert(Reg))
180          Uses[Reg].push_back(&ExitSU);
181      }
182  }
183}
184
185void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
186  // We'll be allocating one SUnit for each instruction, plus one for
187  // the region exit node.
188  SUnits.reserve(BB->size());
189
190  // We build scheduling units by walking a block's instruction list from bottom
191  // to top.
192
193  // Remember where a generic side-effecting instruction is as we procede.
194  SUnit *BarrierChain = 0, *AliasChain = 0;
195
196  // Memory references to specific known memory locations are tracked
197  // so that they can be given more precise dependencies. We track
198  // separately the known memory locations that may alias and those
199  // that are known not to alias
200  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
201  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
202
203  // Keep track of dangling debug references to registers.
204  std::vector<std::pair<MachineInstr*, unsigned> >
205    DanglingDebugValue(TRI->getNumRegs(),
206    std::make_pair(static_cast<MachineInstr*>(0), 0));
207
208  // Check to see if the scheduler cares about latencies.
209  bool UnitLatencies = ForceUnitLatencies();
210
211  // Ask the target if address-backscheduling is desirable, and if so how much.
212  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
213  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
214
215  // Remove any stale debug info; sometimes BuildSchedGraph is called again
216  // without emitting the info from the previous call.
217  DbgValueVec.clear();
218
219  // Model data dependencies between instructions being scheduled and the
220  // ExitSU.
221  AddSchedBarrierDeps();
222
223  // Walk the list of instructions, from bottom moving up.
224  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
225       MII != MIE; --MII) {
226    MachineInstr *MI = prior(MII);
227    // DBG_VALUE does not have SUnit's built, so just remember these for later
228    // reinsertion.
229    if (MI->isDebugValue()) {
230      if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
231          MI->getOperand(0).getReg())
232        DanglingDebugValue[MI->getOperand(0).getReg()] =
233             std::make_pair(MI, DbgValueVec.size());
234      DbgValueVec.push_back(MI);
235      continue;
236    }
237    const TargetInstrDesc &TID = MI->getDesc();
238    assert(!TID.isTerminator() && !MI->isLabel() &&
239           "Cannot schedule terminators or labels!");
240    // Create the SUnit for this MI.
241    SUnit *SU = NewSUnit(MI);
242    SU->isCall = TID.isCall();
243    SU->isCommutable = TID.isCommutable();
244
245    // Assign the Latency field of SU using target-provided information.
246    if (UnitLatencies)
247      SU->Latency = 1;
248    else
249      ComputeLatency(SU);
250
251    // Add register-based dependencies (data, anti, and output).
252    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
253      const MachineOperand &MO = MI->getOperand(j);
254      if (!MO.isReg()) continue;
255      unsigned Reg = MO.getReg();
256      if (Reg == 0) continue;
257
258      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
259
260      if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
261        SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first);
262        DbgValueVec[DanglingDebugValue[Reg].second] = 0;
263        DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
264      }
265
266      std::vector<SUnit *> &UseList = Uses[Reg];
267      std::vector<SUnit *> &DefList = Defs[Reg];
268      // Optionally add output and anti dependencies. For anti
269      // dependencies we use a latency of 0 because for a multi-issue
270      // target we want to allow the defining instruction to issue
271      // in the same cycle as the using instruction.
272      // TODO: Using a latency of 1 here for output dependencies assumes
273      //       there's no cost for reusing registers.
274      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
275      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
276      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
277        SUnit *DefSU = DefList[i];
278        if (DefSU == &ExitSU)
279          continue;
280        if (DefSU != SU &&
281            (Kind != SDep::Output || !MO.isDead() ||
282             !DefSU->getInstr()->registerDefIsDead(Reg)))
283          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
284      }
285      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
286        std::vector<SUnit *> &DefList = Defs[*Alias];
287        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
288          SUnit *DefSU = DefList[i];
289          if (DefSU == &ExitSU)
290            continue;
291          if (DefSU != SU &&
292              (Kind != SDep::Output || !MO.isDead() ||
293               !DefSU->getInstr()->registerDefIsDead(*Alias)))
294            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
295        }
296      }
297
298      if (MO.isDef()) {
299        // Add any data dependencies.
300        unsigned DataLatency = SU->Latency;
301        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
302          SUnit *UseSU = UseList[i];
303          if (UseSU == SU)
304            continue;
305          unsigned LDataLatency = DataLatency;
306          // Optionally add in a special extra latency for nodes that
307          // feed addresses.
308          // TODO: Do this for register aliases too.
309          // TODO: Perhaps we should get rid of
310          // SpecialAddressLatency and just move this into
311          // adjustSchedDependency for the targets that care about it.
312          if (SpecialAddressLatency != 0 && !UnitLatencies &&
313              UseSU != &ExitSU) {
314            MachineInstr *UseMI = UseSU->getInstr();
315            const TargetInstrDesc &UseTID = UseMI->getDesc();
316            int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
317            assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
318            if (RegUseIndex >= 0 &&
319                (UseTID.mayLoad() || UseTID.mayStore()) &&
320                (unsigned)RegUseIndex < UseTID.getNumOperands() &&
321                UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
322              LDataLatency += SpecialAddressLatency;
323          }
324          // Adjust the dependence latency using operand def/use
325          // information (if any), and then allow the target to
326          // perform its own adjustments.
327          const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
328          if (!UnitLatencies) {
329            ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
330            ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
331          }
332          UseSU->addPred(dep);
333        }
334        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
335          std::vector<SUnit *> &UseList = Uses[*Alias];
336          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
337            SUnit *UseSU = UseList[i];
338            if (UseSU == SU)
339              continue;
340            const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
341            if (!UnitLatencies) {
342              ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
343              ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
344            }
345            UseSU->addPred(dep);
346          }
347        }
348
349        // If a def is going to wrap back around to the top of the loop,
350        // backschedule it.
351        if (!UnitLatencies && DefList.empty()) {
352          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
353          if (I != LoopRegs.Deps.end()) {
354            const MachineOperand *UseMO = I->second.first;
355            unsigned Count = I->second.second;
356            const MachineInstr *UseMI = UseMO->getParent();
357            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
358            const TargetInstrDesc &UseTID = UseMI->getDesc();
359            // TODO: If we knew the total depth of the region here, we could
360            // handle the case where the whole loop is inside the region but
361            // is large enough that the isScheduleHigh trick isn't needed.
362            if (UseMOIdx < UseTID.getNumOperands()) {
363              // Currently, we only support scheduling regions consisting of
364              // single basic blocks. Check to see if the instruction is in
365              // the same region by checking to see if it has the same parent.
366              if (UseMI->getParent() != MI->getParent()) {
367                unsigned Latency = SU->Latency;
368                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
369                  Latency += SpecialAddressLatency;
370                // This is a wild guess as to the portion of the latency which
371                // will be overlapped by work done outside the current
372                // scheduling region.
373                Latency -= std::min(Latency, Count);
374                // Add the artificial edge.
375                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
376                                    /*Reg=*/0, /*isNormalMemory=*/false,
377                                    /*isMustAlias=*/false,
378                                    /*isArtificial=*/true));
379              } else if (SpecialAddressLatency > 0 &&
380                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
381                // The entire loop body is within the current scheduling region
382                // and the latency of this operation is assumed to be greater
383                // than the latency of the loop.
384                // TODO: Recursively mark data-edge predecessors as
385                //       isScheduleHigh too.
386                SU->isScheduleHigh = true;
387              }
388            }
389            LoopRegs.Deps.erase(I);
390          }
391        }
392
393        UseList.clear();
394        if (!MO.isDead())
395          DefList.clear();
396
397        // Calls will not be reordered because of chain dependencies (see
398        // below). Since call operands are dead, calls may continue to be added
399        // to the DefList making dependence checking quadratic in the size of
400        // the block. Instead, we leave only one call at the back of the
401        // DefList.
402        //
403        // NOTE: This assumes that the DefList is ordered!
404        if (SU->isCall) {
405          while (!DefList.empty() && DefList.back()->isCall)
406            DefList.pop_back();
407        }
408        DefList.push_back(SU);
409      } else {
410        UseList.push_back(SU);
411      }
412    }
413
414    // Add chain dependencies.
415    // Chain dependencies used to enforce memory order should have
416    // latency of 0 (except for true dependency of Store followed by
417    // aliased Load... we estimate that with a single cycle of latency
418    // assuming the hardware will bypass)
419    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
420    // after stack slots are lowered to actual addresses.
421    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
422    // produce more precise dependence information.
423#define STORE_LOAD_LATENCY 1
424    unsigned TrueMemOrderLatency = 0;
425    if (TID.isCall() || MI->hasUnmodeledSideEffects() ||
426        (MI->hasVolatileMemoryRef() &&
427         (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
428      // Be conservative with these and add dependencies on all memory
429      // references, even those that are known to not alias.
430      for (std::map<const Value *, SUnit *>::iterator I =
431             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
432        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
433      }
434      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
435             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
436        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
437          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
438      }
439      NonAliasMemDefs.clear();
440      NonAliasMemUses.clear();
441      // Add SU to the barrier chain.
442      if (BarrierChain)
443        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
444      BarrierChain = SU;
445
446      // fall-through
447    new_alias_chain:
448      // Chain all possibly aliasing memory references though SU.
449      if (AliasChain)
450        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
451      AliasChain = SU;
452      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
453        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
454      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
455           E = AliasMemDefs.end(); I != E; ++I) {
456        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
457      }
458      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
459           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
460        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
461          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
462      }
463      PendingLoads.clear();
464      AliasMemDefs.clear();
465      AliasMemUses.clear();
466    } else if (TID.mayStore()) {
467      bool MayAlias = true;
468      TrueMemOrderLatency = STORE_LOAD_LATENCY;
469      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
470        // A store to a specific PseudoSourceValue. Add precise dependencies.
471        // Record the def in MemDefs, first adding a dep if there is
472        // an existing def.
473        std::map<const Value *, SUnit *>::iterator I =
474          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
475        std::map<const Value *, SUnit *>::iterator IE =
476          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
477        if (I != IE) {
478          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
479                                  /*isNormalMemory=*/true));
480          I->second = SU;
481        } else {
482          if (MayAlias)
483            AliasMemDefs[V] = SU;
484          else
485            NonAliasMemDefs[V] = SU;
486        }
487        // Handle the uses in MemUses, if there are any.
488        std::map<const Value *, std::vector<SUnit *> >::iterator J =
489          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
490        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
491          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
492        if (J != JE) {
493          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
494            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
495                                       /*Reg=*/0, /*isNormalMemory=*/true));
496          J->second.clear();
497        }
498        if (MayAlias) {
499          // Add dependencies from all the PendingLoads, i.e. loads
500          // with no underlying object.
501          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
502            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
503          // Add dependence on alias chain, if needed.
504          if (AliasChain)
505            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
506        }
507        // Add dependence on barrier chain, if needed.
508        if (BarrierChain)
509          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
510      } else {
511        // Treat all other stores conservatively.
512        goto new_alias_chain;
513      }
514
515      if (!ExitSU.isPred(SU))
516        // Push store's up a bit to avoid them getting in between cmp
517        // and branches.
518        ExitSU.addPred(SDep(SU, SDep::Order, 0,
519                            /*Reg=*/0, /*isNormalMemory=*/false,
520                            /*isMustAlias=*/false,
521                            /*isArtificial=*/true));
522    } else if (TID.mayLoad()) {
523      bool MayAlias = true;
524      TrueMemOrderLatency = 0;
525      if (MI->isInvariantLoad(AA)) {
526        // Invariant load, no chain dependencies needed!
527      } else {
528        if (const Value *V =
529            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
530          // A load from a specific PseudoSourceValue. Add precise dependencies.
531          std::map<const Value *, SUnit *>::iterator I =
532            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
533          std::map<const Value *, SUnit *>::iterator IE =
534            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
535          if (I != IE)
536            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
537                                    /*isNormalMemory=*/true));
538          if (MayAlias)
539            AliasMemUses[V].push_back(SU);
540          else
541            NonAliasMemUses[V].push_back(SU);
542        } else {
543          // A load with no underlying object. Depend on all
544          // potentially aliasing stores.
545          for (std::map<const Value *, SUnit *>::iterator I =
546                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
547            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
548
549          PendingLoads.push_back(SU);
550          MayAlias = true;
551        }
552
553        // Add dependencies on alias and barrier chains, if needed.
554        if (MayAlias && AliasChain)
555          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
556        if (BarrierChain)
557          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
558      }
559    }
560  }
561
562  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
563    Defs[i].clear();
564    Uses[i].clear();
565  }
566  PendingLoads.clear();
567}
568
569void ScheduleDAGInstrs::FinishBlock() {
570  // Nothing to do.
571}
572
573void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
574  // Compute the latency for the node.
575  if (!InstrItins || InstrItins->isEmpty()) {
576    SU->Latency = 1;
577
578    // Simplistic target-independent heuristic: assume that loads take
579    // extra time.
580    if (SU->getInstr()->getDesc().mayLoad())
581      SU->Latency += 2;
582  } else {
583    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
584  }
585}
586
587void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
588                                              SDep& dep) const {
589  if (!InstrItins || InstrItins->isEmpty())
590    return;
591
592  // For a data dependency with a known register...
593  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
594    return;
595
596  const unsigned Reg = dep.getReg();
597
598  // ... find the definition of the register in the defining
599  // instruction
600  MachineInstr *DefMI = Def->getInstr();
601  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
602  if (DefIdx != -1) {
603    const MachineOperand &MO = DefMI->getOperand(DefIdx);
604    if (MO.isReg() && MO.isImplicit() &&
605        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
606      // This is an implicit def, getOperandLatency() won't return the correct
607      // latency. e.g.
608      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
609      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
610      // What we want is to compute latency between def of %D6/%D7 and use of
611      // %Q3 instead.
612      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
613    }
614    MachineInstr *UseMI = Use->getInstr();
615    // For all uses of the register, calculate the maxmimum latency
616    int Latency = -1;
617    if (UseMI) {
618      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
619        const MachineOperand &MO = UseMI->getOperand(i);
620        if (!MO.isReg() || !MO.isUse())
621          continue;
622        unsigned MOReg = MO.getReg();
623        if (MOReg != Reg)
624          continue;
625
626        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
627                                              UseMI, i);
628        Latency = std::max(Latency, UseCycle);
629      }
630    } else {
631      // UseMI is null, then it must be a scheduling barrier.
632      if (!InstrItins || InstrItins->isEmpty())
633        return;
634      unsigned DefClass = DefMI->getDesc().getSchedClass();
635      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
636    }
637
638    // If we found a latency, then replace the existing dependence latency.
639    if (Latency >= 0)
640      dep.setLatency(Latency);
641  }
642}
643
644void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
645  SU->getInstr()->dump();
646}
647
648std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
649  std::string s;
650  raw_string_ostream oss(s);
651  if (SU == &EntrySU)
652    oss << "<entry>";
653  else if (SU == &ExitSU)
654    oss << "<exit>";
655  else
656    SU->getInstr()->print(oss);
657  return oss.str();
658}
659
660// EmitSchedule - Emit the machine code in scheduled order.
661MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
662  // For MachineInstr-based scheduling, we're rescheduling the instructions in
663  // the block, so start by removing them from the block.
664  while (Begin != InsertPos) {
665    MachineBasicBlock::iterator I = Begin;
666    ++Begin;
667    BB->remove(I);
668  }
669
670  // First reinsert any remaining debug_values; these are either constants,
671  // or refer to live-in registers.  The beginning of the block is the right
672  // place for the latter.  The former might reasonably be placed elsewhere
673  // using some kind of ordering algorithm, but right now it doesn't matter.
674  for (int i = DbgValueVec.size()-1; i>=0; --i)
675    if (DbgValueVec[i])
676      BB->insert(InsertPos, DbgValueVec[i]);
677
678  // Then re-insert them according to the given schedule.
679  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
680    SUnit *SU = Sequence[i];
681    if (!SU) {
682      // Null SUnit* is a noop.
683      EmitNoop();
684      continue;
685    }
686
687    BB->insert(InsertPos, SU->getInstr());
688    for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i)
689      BB->insert(InsertPos, SU->DbgInstrList[i]);
690  }
691
692  // Update the Begin iterator, as the first instruction in the block
693  // may have been scheduled later.
694  if (!DbgValueVec.empty()) {
695    for (int i = DbgValueVec.size()-1; i>=0; --i)
696      if (DbgValueVec[i]!=0) {
697        Begin = DbgValueVec[DbgValueVec.size()-1];
698        break;
699      }
700  } else if (!Sequence.empty())
701    Begin = Sequence[0]->getInstr();
702
703  DbgValueVec.clear();
704  return BB;
705}
706