ScheduleDAGInstrs.cpp revision f21831073ca474601620d1a29258176b0deaedb2
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16#include "llvm/CodeGen/ScheduleDAGInstrs.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/RegisterPressure.h"
28#include "llvm/CodeGen/ScheduleDFS.h"
29#include "llvm/MC/MCInstrItineraries.h"
30#include "llvm/Operator.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39using namespace llvm;
40
41static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
42    cl::ZeroOrMore, cl::init(false),
43    cl::desc("Enable use of AA during MI GAD construction"));
44
45ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
46                                     const MachineLoopInfo &mli,
47                                     const MachineDominatorTree &mdt,
48                                     bool IsPostRAFlag,
49                                     LiveIntervals *lis)
50  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
51    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
52  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
53  DbgValues.clear();
54  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
55         "Virtual registers must be removed prior to PostRA scheduling");
56
57  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
58  SchedModel.init(*ST.getSchedModel(), &ST, TII);
59}
60
61/// getUnderlyingObjectFromInt - This is the function that does the work of
62/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
63static const Value *getUnderlyingObjectFromInt(const Value *V) {
64  do {
65    if (const Operator *U = dyn_cast<Operator>(V)) {
66      // If we find a ptrtoint, we can transfer control back to the
67      // regular getUnderlyingObjectFromInt.
68      if (U->getOpcode() == Instruction::PtrToInt)
69        return U->getOperand(0);
70      // If we find an add of a constant, a multiplied value, or a phi, it's
71      // likely that the other operand will lead us to the base
72      // object. We don't have to worry about the case where the
73      // object address is somehow being computed by the multiply,
74      // because our callers only care when the result is an
75      // identifiable object.
76      if (U->getOpcode() != Instruction::Add ||
77          (!isa<ConstantInt>(U->getOperand(1)) &&
78           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
79           !isa<PHINode>(U->getOperand(1))))
80        return V;
81      V = U->getOperand(0);
82    } else {
83      return V;
84    }
85    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
86  } while (1);
87}
88
89/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
90/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
91static void getUnderlyingObjects(const Value *V,
92                                 SmallVectorImpl<Value *> &Objects) {
93  SmallPtrSet<const Value*, 16> Visited;
94  SmallVector<const Value *, 4> Working(1, V);
95  do {
96    V = Working.pop_back_val();
97
98    SmallVector<Value *, 4> Objs;
99    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
100
101    for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
102         I != IE; ++I) {
103      V = *I;
104      if (!Visited.insert(V))
105        continue;
106      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
107        const Value *O =
108          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
109        if (O->getType()->isPointerTy()) {
110          Working.push_back(O);
111          continue;
112        }
113      }
114      Objects.push_back(const_cast<Value *>(V));
115    }
116  } while (!Working.empty());
117}
118
119/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
120/// information and it can be tracked to a normal reference to a known
121/// object, return the Value for that object.
122static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
123              const MachineFrameInfo *MFI,
124              SmallVectorImpl<std::pair<const Value *, bool> > &Objects) {
125  if (!MI->hasOneMemOperand() ||
126      !(*MI->memoperands_begin())->getValue() ||
127      (*MI->memoperands_begin())->isVolatile())
128    return;
129
130  const Value *V = (*MI->memoperands_begin())->getValue();
131  if (!V)
132    return;
133
134  SmallVector<Value *, 4> Objs;
135  getUnderlyingObjects(V, Objs);
136
137  for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
138       I != IE; ++I) {
139    bool MayAlias = true;
140    V = *I;
141
142    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
143      // For now, ignore PseudoSourceValues which may alias LLVM IR values
144      // because the code that uses this function has no way to cope with
145      // such aliases.
146
147      if (PSV->isAliased(MFI)) {
148        Objects.clear();
149        return;
150      }
151
152      MayAlias = PSV->mayAlias(MFI);
153    } else if (!isIdentifiedObject(V)) {
154      Objects.clear();
155      return;
156    }
157
158    Objects.push_back(std::make_pair(V, MayAlias));
159  }
160}
161
162void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
163  BB = bb;
164}
165
166void ScheduleDAGInstrs::finishBlock() {
167  // Subclasses should no longer refer to the old block.
168  BB = 0;
169}
170
171/// Initialize the map with the number of registers.
172void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
173  PhysRegSet.setUniverse(Limit);
174  SUnits.resize(Limit);
175}
176
177/// Clear the map without deallocating storage.
178void Reg2SUnitsMap::clear() {
179  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
180    SUnits[*I].clear();
181  }
182  PhysRegSet.clear();
183}
184
185/// Initialize the DAG and common scheduler state for the current scheduling
186/// region. This does not actually create the DAG, only clears it. The
187/// scheduling driver may call BuildSchedGraph multiple times per scheduling
188/// region.
189void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                    MachineBasicBlock::iterator begin,
191                                    MachineBasicBlock::iterator end,
192                                    unsigned endcount) {
193  assert(bb == BB && "startBlock should set BB");
194  RegionBegin = begin;
195  RegionEnd = end;
196  EndIndex = endcount;
197  MISUnitMap.clear();
198
199  ScheduleDAG::clearDAG();
200}
201
202/// Close the current scheduling region. Don't clear any state in case the
203/// driver wants to refer to the previous scheduling region.
204void ScheduleDAGInstrs::exitRegion() {
205  // Nothing to do.
206}
207
208/// addSchedBarrierDeps - Add dependencies from instructions in the current
209/// list of instructions being scheduled to scheduling barrier by adding
210/// the exit SU to the register defs and use list. This is because we want to
211/// make sure instructions which define registers that are either used by
212/// the terminator or are live-out are properly scheduled. This is
213/// especially important when the definition latency of the return value(s)
214/// are too high to be hidden by the branch or when the liveout registers
215/// used by instructions in the fallthrough block.
216void ScheduleDAGInstrs::addSchedBarrierDeps() {
217  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
218  ExitSU.setInstr(ExitMI);
219  bool AllDepKnown = ExitMI &&
220    (ExitMI->isCall() || ExitMI->isBarrier());
221  if (ExitMI && AllDepKnown) {
222    // If it's a call or a barrier, add dependencies on the defs and uses of
223    // instruction.
224    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
225      const MachineOperand &MO = ExitMI->getOperand(i);
226      if (!MO.isReg() || MO.isDef()) continue;
227      unsigned Reg = MO.getReg();
228      if (Reg == 0) continue;
229
230      if (TRI->isPhysicalRegister(Reg))
231        Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
232      else {
233        assert(!IsPostRA && "Virtual register encountered after regalloc.");
234        if (MO.readsReg()) // ignore undef operands
235          addVRegUseDeps(&ExitSU, i);
236      }
237    }
238  } else {
239    // For others, e.g. fallthrough, conditional branch, assume the exit
240    // uses all the registers that are livein to the successor blocks.
241    assert(Uses.empty() && "Uses in set before adding deps?");
242    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
243           SE = BB->succ_end(); SI != SE; ++SI)
244      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
245             E = (*SI)->livein_end(); I != E; ++I) {
246        unsigned Reg = *I;
247        if (!Uses.contains(Reg))
248          Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
249      }
250  }
251}
252
253/// MO is an operand of SU's instruction that defines a physical register. Add
254/// data dependencies from SU to any uses of the physical register.
255void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
256  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
257  assert(MO.isDef() && "expect physreg def");
258
259  // Ask the target if address-backscheduling is desirable, and if so how much.
260  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
261
262  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
263       Alias.isValid(); ++Alias) {
264    if (!Uses.contains(*Alias))
265      continue;
266    std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
267    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
268      SUnit *UseSU = UseList[i].SU;
269      if (UseSU == SU)
270        continue;
271
272      // Adjust the dependence latency using operand def/use information,
273      // then allow the target to perform its own adjustments.
274      int UseOp = UseList[i].OpIdx;
275      MachineInstr *RegUse = 0;
276      SDep Dep;
277      if (UseOp < 0)
278        Dep = SDep(SU, SDep::Artificial);
279      else {
280        Dep = SDep(SU, SDep::Data, *Alias);
281        RegUse = UseSU->getInstr();
282        Dep.setMinLatency(
283          SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
284                                           RegUse, UseOp, /*FindMin=*/true));
285      }
286      Dep.setLatency(
287        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
288                                         RegUse, UseOp, /*FindMin=*/false));
289
290      ST.adjustSchedDependency(SU, UseSU, Dep);
291      UseSU->addPred(Dep);
292    }
293  }
294}
295
296/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
297/// this SUnit to following instructions in the same scheduling region that
298/// depend the physical register referenced at OperIdx.
299void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
300  const MachineInstr *MI = SU->getInstr();
301  const MachineOperand &MO = MI->getOperand(OperIdx);
302
303  // Optionally add output and anti dependencies. For anti
304  // dependencies we use a latency of 0 because for a multi-issue
305  // target we want to allow the defining instruction to issue
306  // in the same cycle as the using instruction.
307  // TODO: Using a latency of 1 here for output dependencies assumes
308  //       there's no cost for reusing registers.
309  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
310  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
311       Alias.isValid(); ++Alias) {
312    if (!Defs.contains(*Alias))
313      continue;
314    std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
315    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
316      SUnit *DefSU = DefList[i].SU;
317      if (DefSU == &ExitSU)
318        continue;
319      if (DefSU != SU &&
320          (Kind != SDep::Output || !MO.isDead() ||
321           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
322        if (Kind == SDep::Anti)
323          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
324        else {
325          SDep Dep(SU, Kind, /*Reg=*/*Alias);
326          unsigned OutLatency =
327            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
328          Dep.setMinLatency(OutLatency);
329          Dep.setLatency(OutLatency);
330          DefSU->addPred(Dep);
331        }
332      }
333    }
334  }
335
336  if (!MO.isDef()) {
337    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
338    // retrieve the existing SUnits list for this register's uses.
339    // Push this SUnit on the use list.
340    Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
341  }
342  else {
343    addPhysRegDataDeps(SU, OperIdx);
344
345    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
346    // retrieve the existing SUnits list for this register's defs.
347    std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
348
349    // clear this register's use list
350    if (Uses.contains(MO.getReg()))
351      Uses[MO.getReg()].clear();
352
353    if (!MO.isDead())
354      DefList.clear();
355
356    // Calls will not be reordered because of chain dependencies (see
357    // below). Since call operands are dead, calls may continue to be added
358    // to the DefList making dependence checking quadratic in the size of
359    // the block. Instead, we leave only one call at the back of the
360    // DefList.
361    if (SU->isCall) {
362      while (!DefList.empty() && DefList.back().SU->isCall)
363        DefList.pop_back();
364    }
365    // Defs are pushed in the order they are visited and never reordered.
366    DefList.push_back(PhysRegSUOper(SU, OperIdx));
367  }
368}
369
370/// addVRegDefDeps - Add register output and data dependencies from this SUnit
371/// to instructions that occur later in the same scheduling region if they read
372/// from or write to the virtual register defined at OperIdx.
373///
374/// TODO: Hoist loop induction variable increments. This has to be
375/// reevaluated. Generally, IV scheduling should be done before coalescing.
376void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
377  const MachineInstr *MI = SU->getInstr();
378  unsigned Reg = MI->getOperand(OperIdx).getReg();
379
380  // Singly defined vregs do not have output/anti dependencies.
381  // The current operand is a def, so we have at least one.
382  // Check here if there are any others...
383  if (MRI.hasOneDef(Reg))
384    return;
385
386  // Add output dependence to the next nearest def of this vreg.
387  //
388  // Unless this definition is dead, the output dependence should be
389  // transitively redundant with antidependencies from this definition's
390  // uses. We're conservative for now until we have a way to guarantee the uses
391  // are not eliminated sometime during scheduling. The output dependence edge
392  // is also useful if output latency exceeds def-use latency.
393  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
394  if (DefI == VRegDefs.end())
395    VRegDefs.insert(VReg2SUnit(Reg, SU));
396  else {
397    SUnit *DefSU = DefI->SU;
398    if (DefSU != SU && DefSU != &ExitSU) {
399      SDep Dep(SU, SDep::Output, Reg);
400      unsigned OutLatency =
401        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
402      Dep.setMinLatency(OutLatency);
403      Dep.setLatency(OutLatency);
404      DefSU->addPred(Dep);
405    }
406    DefI->SU = SU;
407  }
408}
409
410/// addVRegUseDeps - Add a register data dependency if the instruction that
411/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
412/// register antidependency from this SUnit to instructions that occur later in
413/// the same scheduling region if they write the virtual register.
414///
415/// TODO: Handle ExitSU "uses" properly.
416void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
417  MachineInstr *MI = SU->getInstr();
418  unsigned Reg = MI->getOperand(OperIdx).getReg();
419
420  // Lookup this operand's reaching definition.
421  assert(LIS && "vreg dependencies requires LiveIntervals");
422  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
423  VNInfo *VNI = LRQ.valueIn();
424
425  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
426  assert(VNI && "No value to read by operand");
427  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
428  // Phis and other noninstructions (after coalescing) have a NULL Def.
429  if (Def) {
430    SUnit *DefSU = getSUnit(Def);
431    if (DefSU) {
432      // The reaching Def lives within this scheduling region.
433      // Create a data dependence.
434      SDep dep(DefSU, SDep::Data, Reg);
435      // Adjust the dependence latency using operand def/use information, then
436      // allow the target to perform its own adjustments.
437      int DefOp = Def->findRegisterDefOperandIdx(Reg);
438      dep.setLatency(
439        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false));
440      dep.setMinLatency(
441        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true));
442
443      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
444      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
445      SU->addPred(dep);
446    }
447  }
448
449  // Add antidependence to the following def of the vreg it uses.
450  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
451  if (DefI != VRegDefs.end() && DefI->SU != SU)
452    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
453}
454
455/// Return true if MI is an instruction we are unable to reason about
456/// (like a call or something with unmodeled side effects).
457static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
458  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
459      (MI->hasOrderedMemoryRef() &&
460       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
461    return true;
462  return false;
463}
464
465// This MI might have either incomplete info, or known to be unsafe
466// to deal with (i.e. volatile object).
467static inline bool isUnsafeMemoryObject(MachineInstr *MI,
468                                        const MachineFrameInfo *MFI) {
469  if (!MI || MI->memoperands_empty())
470    return true;
471  // We purposefully do no check for hasOneMemOperand() here
472  // in hope to trigger an assert downstream in order to
473  // finish implementation.
474  if ((*MI->memoperands_begin())->isVolatile() ||
475       MI->hasUnmodeledSideEffects())
476    return true;
477  const Value *V = (*MI->memoperands_begin())->getValue();
478  if (!V)
479    return true;
480
481  SmallVector<Value *, 4> Objs;
482  getUnderlyingObjects(V, Objs);
483  for (SmallVector<Value *, 4>::iterator I = Objs.begin(),
484       IE = Objs.end(); I != IE; ++I) {
485    V = *I;
486
487    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
488      // Similarly to getUnderlyingObjectForInstr:
489      // For now, ignore PseudoSourceValues which may alias LLVM IR values
490      // because the code that uses this function has no way to cope with
491      // such aliases.
492      if (PSV->isAliased(MFI))
493        return true;
494    }
495
496    // Does this pointer refer to a distinct and identifiable object?
497    if (!isIdentifiedObject(V))
498      return true;
499  }
500
501  return false;
502}
503
504/// This returns true if the two MIs need a chain edge betwee them.
505/// If these are not even memory operations, we still may need
506/// chain deps between them. The question really is - could
507/// these two MIs be reordered during scheduling from memory dependency
508/// point of view.
509static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
510                             MachineInstr *MIa,
511                             MachineInstr *MIb) {
512  // Cover a trivial case - no edge is need to itself.
513  if (MIa == MIb)
514    return false;
515
516  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
517    return true;
518
519  // If we are dealing with two "normal" loads, we do not need an edge
520  // between them - they could be reordered.
521  if (!MIa->mayStore() && !MIb->mayStore())
522    return false;
523
524  // To this point analysis is generic. From here on we do need AA.
525  if (!AA)
526    return true;
527
528  MachineMemOperand *MMOa = *MIa->memoperands_begin();
529  MachineMemOperand *MMOb = *MIb->memoperands_begin();
530
531  // FIXME: Need to handle multiple memory operands to support all targets.
532  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
533    llvm_unreachable("Multiple memory operands.");
534
535  // The following interface to AA is fashioned after DAGCombiner::isAlias
536  // and operates with MachineMemOperand offset with some important
537  // assumptions:
538  //   - LLVM fundamentally assumes flat address spaces.
539  //   - MachineOperand offset can *only* result from legalization and
540  //     cannot affect queries other than the trivial case of overlap
541  //     checking.
542  //   - These offsets never wrap and never step outside
543  //     of allocated objects.
544  //   - There should never be any negative offsets here.
545  //
546  // FIXME: Modify API to hide this math from "user"
547  // FIXME: Even before we go to AA we can reason locally about some
548  // memory objects. It can save compile time, and possibly catch some
549  // corner cases not currently covered.
550
551  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
552  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
553
554  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
555  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
556  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
557
558  AliasAnalysis::AliasResult AAResult = AA->alias(
559  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
560                          MMOa->getTBAAInfo()),
561  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
562                          MMOb->getTBAAInfo()));
563
564  return (AAResult != AliasAnalysis::NoAlias);
565}
566
567/// This recursive function iterates over chain deps of SUb looking for
568/// "latest" node that needs a chain edge to SUa.
569static unsigned
570iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
571                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
572                 SmallPtrSet<const SUnit*, 16> &Visited) {
573  if (!SUa || !SUb || SUb == ExitSU)
574    return *Depth;
575
576  // Remember visited nodes.
577  if (!Visited.insert(SUb))
578      return *Depth;
579  // If there is _some_ dependency already in place, do not
580  // descend any further.
581  // TODO: Need to make sure that if that dependency got eliminated or ignored
582  // for any reason in the future, we would not violate DAG topology.
583  // Currently it does not happen, but makes an implicit assumption about
584  // future implementation.
585  //
586  // Independently, if we encounter node that is some sort of global
587  // object (like a call) we already have full set of dependencies to it
588  // and we can stop descending.
589  if (SUa->isSucc(SUb) ||
590      isGlobalMemoryObject(AA, SUb->getInstr()))
591    return *Depth;
592
593  // If we do need an edge, or we have exceeded depth budget,
594  // add that edge to the predecessors chain of SUb,
595  // and stop descending.
596  if (*Depth > 200 ||
597      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
598    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
599    return *Depth;
600  }
601  // Track current depth.
602  (*Depth)++;
603  // Iterate over chain dependencies only.
604  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
605       I != E; ++I)
606    if (I->isCtrl())
607      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
608  return *Depth;
609}
610
611/// This function assumes that "downward" from SU there exist
612/// tail/leaf of already constructed DAG. It iterates downward and
613/// checks whether SU can be aliasing any node dominated
614/// by it.
615static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
616                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
617                            unsigned LatencyToLoad) {
618  if (!SU)
619    return;
620
621  SmallPtrSet<const SUnit*, 16> Visited;
622  unsigned Depth = 0;
623
624  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
625       I != IE; ++I) {
626    if (SU == *I)
627      continue;
628    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
629      SDep Dep(SU, SDep::MayAliasMem);
630      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
631      (*I)->addPred(Dep);
632    }
633    // Now go through all the chain successors and iterate from them.
634    // Keep track of visited nodes.
635    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
636         JE = (*I)->Succs.end(); J != JE; ++J)
637      if (J->isCtrl())
638        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
639                          ExitSU, &Depth, Visited);
640  }
641}
642
643/// Check whether two objects need a chain edge, if so, add it
644/// otherwise remember the rejected SU.
645static inline
646void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
647                         SUnit *SUa, SUnit *SUb,
648                         std::set<SUnit *> &RejectList,
649                         unsigned TrueMemOrderLatency = 0,
650                         bool isNormalMemory = false) {
651  // If this is a false dependency,
652  // do not add the edge, but rememeber the rejected node.
653  if (!EnableAASchedMI ||
654      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
655    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
656    Dep.setLatency(TrueMemOrderLatency);
657    SUb->addPred(Dep);
658  }
659  else {
660    // Duplicate entries should be ignored.
661    RejectList.insert(SUb);
662    DEBUG(dbgs() << "\tReject chain dep between SU("
663          << SUa->NodeNum << ") and SU("
664          << SUb->NodeNum << ")\n");
665  }
666}
667
668/// Create an SUnit for each real instruction, numbered in top-down toplological
669/// order. The instruction order A < B, implies that no edge exists from B to A.
670///
671/// Map each real instruction to its SUnit.
672///
673/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
674/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
675/// instead of pointers.
676///
677/// MachineScheduler relies on initSUnits numbering the nodes by their order in
678/// the original instruction list.
679void ScheduleDAGInstrs::initSUnits() {
680  // We'll be allocating one SUnit for each real instruction in the region,
681  // which is contained within a basic block.
682  SUnits.reserve(BB->size());
683
684  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
685    MachineInstr *MI = I;
686    if (MI->isDebugValue())
687      continue;
688
689    SUnit *SU = newSUnit(MI);
690    MISUnitMap[MI] = SU;
691
692    SU->isCall = MI->isCall();
693    SU->isCommutable = MI->isCommutable();
694
695    // Assign the Latency field of SU using target-provided information.
696    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
697  }
698}
699
700/// If RegPressure is non null, compute register pressure as a side effect. The
701/// DAG builder is an efficient place to do it because it already visits
702/// operands.
703void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
704                                        RegPressureTracker *RPTracker) {
705  // Create an SUnit for each real instruction.
706  initSUnits();
707
708  // We build scheduling units by walking a block's instruction list from bottom
709  // to top.
710
711  // Remember where a generic side-effecting instruction is as we procede.
712  SUnit *BarrierChain = 0, *AliasChain = 0;
713
714  // Memory references to specific known memory locations are tracked
715  // so that they can be given more precise dependencies. We track
716  // separately the known memory locations that may alias and those
717  // that are known not to alias
718  MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
719  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
720  std::set<SUnit*> RejectMemNodes;
721
722  // Remove any stale debug info; sometimes BuildSchedGraph is called again
723  // without emitting the info from the previous call.
724  DbgValues.clear();
725  FirstDbgValue = NULL;
726
727  assert(Defs.empty() && Uses.empty() &&
728         "Only BuildGraph should update Defs/Uses");
729  Defs.setRegLimit(TRI->getNumRegs());
730  Uses.setRegLimit(TRI->getNumRegs());
731
732  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
733  // FIXME: Allow SparseSet to reserve space for the creation of virtual
734  // registers during scheduling. Don't artificially inflate the Universe
735  // because we want to assert that vregs are not created during DAG building.
736  VRegDefs.setUniverse(MRI.getNumVirtRegs());
737
738  // Model data dependencies between instructions being scheduled and the
739  // ExitSU.
740  addSchedBarrierDeps();
741
742  // Walk the list of instructions, from bottom moving up.
743  MachineInstr *DbgMI = NULL;
744  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
745       MII != MIE; --MII) {
746    MachineInstr *MI = prior(MII);
747    if (MI && DbgMI) {
748      DbgValues.push_back(std::make_pair(DbgMI, MI));
749      DbgMI = NULL;
750    }
751
752    if (MI->isDebugValue()) {
753      DbgMI = MI;
754      continue;
755    }
756    if (RPTracker) {
757      RPTracker->recede();
758      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
759    }
760
761    assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
762           "Cannot schedule terminators or labels!");
763
764    SUnit *SU = MISUnitMap[MI];
765    assert(SU && "No SUnit mapped to this MI");
766
767    // Add register-based dependencies (data, anti, and output).
768    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
769      const MachineOperand &MO = MI->getOperand(j);
770      if (!MO.isReg()) continue;
771      unsigned Reg = MO.getReg();
772      if (Reg == 0) continue;
773
774      if (TRI->isPhysicalRegister(Reg))
775        addPhysRegDeps(SU, j);
776      else {
777        assert(!IsPostRA && "Virtual register encountered!");
778        if (MO.isDef())
779          addVRegDefDeps(SU, j);
780        else if (MO.readsReg()) // ignore undef operands
781          addVRegUseDeps(SU, j);
782      }
783    }
784
785    // Add chain dependencies.
786    // Chain dependencies used to enforce memory order should have
787    // latency of 0 (except for true dependency of Store followed by
788    // aliased Load... we estimate that with a single cycle of latency
789    // assuming the hardware will bypass)
790    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
791    // after stack slots are lowered to actual addresses.
792    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
793    // produce more precise dependence information.
794    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
795    if (isGlobalMemoryObject(AA, MI)) {
796      // Be conservative with these and add dependencies on all memory
797      // references, even those that are known to not alias.
798      for (MapVector<const Value *, SUnit *>::iterator I =
799             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
800        I->second->addPred(SDep(SU, SDep::Barrier));
801      }
802      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
803             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
804        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
805          SDep Dep(SU, SDep::Barrier);
806          Dep.setLatency(TrueMemOrderLatency);
807          I->second[i]->addPred(Dep);
808        }
809      }
810      // Add SU to the barrier chain.
811      if (BarrierChain)
812        BarrierChain->addPred(SDep(SU, SDep::Barrier));
813      BarrierChain = SU;
814      // This is a barrier event that acts as a pivotal node in the DAG,
815      // so it is safe to clear list of exposed nodes.
816      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
817                      TrueMemOrderLatency);
818      RejectMemNodes.clear();
819      NonAliasMemDefs.clear();
820      NonAliasMemUses.clear();
821
822      // fall-through
823    new_alias_chain:
824      // Chain all possibly aliasing memory references though SU.
825      if (AliasChain) {
826        unsigned ChainLatency = 0;
827        if (AliasChain->getInstr()->mayLoad())
828          ChainLatency = TrueMemOrderLatency;
829        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
830                           ChainLatency);
831      }
832      AliasChain = SU;
833      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
834        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
835                           TrueMemOrderLatency);
836      for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
837           E = AliasMemDefs.end(); I != E; ++I)
838        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
839      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
840           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
841        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
842          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
843                             TrueMemOrderLatency);
844      }
845      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
846                      TrueMemOrderLatency);
847      PendingLoads.clear();
848      AliasMemDefs.clear();
849      AliasMemUses.clear();
850    } else if (MI->mayStore()) {
851      SmallVector<std::pair<const Value *, bool>, 4> Objs;
852      getUnderlyingObjectsForInstr(MI, MFI, Objs);
853
854      if (Objs.empty()) {
855        // Treat all other stores conservatively.
856        goto new_alias_chain;
857      }
858
859      bool MayAlias = false;
860      for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
861           K = Objs.begin(), KE = Objs.end(); K != KE; ++K) {
862        const Value *V = K->first;
863        bool ThisMayAlias = K->second;
864        if (ThisMayAlias)
865          MayAlias = true;
866
867        // A store to a specific PseudoSourceValue. Add precise dependencies.
868        // Record the def in MemDefs, first adding a dep if there is
869        // an existing def.
870        MapVector<const Value *, SUnit *>::iterator I =
871          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
872        MapVector<const Value *, SUnit *>::iterator IE =
873          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
874        if (I != IE) {
875          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
876          I->second = SU;
877        } else {
878          if (ThisMayAlias)
879            AliasMemDefs[V] = SU;
880          else
881            NonAliasMemDefs[V] = SU;
882        }
883        // Handle the uses in MemUses, if there are any.
884        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
885          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
886        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
887          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
888        if (J != JE) {
889          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
890            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
891                               TrueMemOrderLatency, true);
892          J->second.clear();
893        }
894      }
895      if (MayAlias) {
896        // Add dependencies from all the PendingLoads, i.e. loads
897        // with no underlying object.
898        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
899          addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
900                             TrueMemOrderLatency);
901        // Add dependence on alias chain, if needed.
902        if (AliasChain)
903          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
904        // But we also should check dependent instructions for the
905        // SU in question.
906        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
907                        TrueMemOrderLatency);
908      }
909      // Add dependence on barrier chain, if needed.
910      // There is no point to check aliasing on barrier event. Even if
911      // SU and barrier _could_ be reordered, they should not. In addition,
912      // we have lost all RejectMemNodes below barrier.
913      if (BarrierChain)
914        BarrierChain->addPred(SDep(SU, SDep::Barrier));
915
916      if (!ExitSU.isPred(SU))
917        // Push store's up a bit to avoid them getting in between cmp
918        // and branches.
919        ExitSU.addPred(SDep(SU, SDep::Artificial));
920    } else if (MI->mayLoad()) {
921      bool MayAlias = true;
922      if (MI->isInvariantLoad(AA)) {
923        // Invariant load, no chain dependencies needed!
924      } else {
925        SmallVector<std::pair<const Value *, bool>, 4> Objs;
926        getUnderlyingObjectsForInstr(MI, MFI, Objs);
927
928        if (Objs.empty()) {
929          // A load with no underlying object. Depend on all
930          // potentially aliasing stores.
931          for (MapVector<const Value *, SUnit *>::iterator I =
932                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
933            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
934
935          PendingLoads.push_back(SU);
936          MayAlias = true;
937        } else {
938          MayAlias = false;
939        }
940
941        for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
942             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
943          const Value *V = J->first;
944          bool ThisMayAlias = J->second;
945
946          if (ThisMayAlias)
947            MayAlias = true;
948
949          // A load from a specific PseudoSourceValue. Add precise dependencies.
950          MapVector<const Value *, SUnit *>::iterator I =
951            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
952          MapVector<const Value *, SUnit *>::iterator IE =
953            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
954          if (I != IE)
955            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
956          if (ThisMayAlias)
957            AliasMemUses[V].push_back(SU);
958          else
959            NonAliasMemUses[V].push_back(SU);
960        }
961        if (MayAlias)
962          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
963        // Add dependencies on alias and barrier chains, if needed.
964        if (MayAlias && AliasChain)
965          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
966        if (BarrierChain)
967          BarrierChain->addPred(SDep(SU, SDep::Barrier));
968      }
969    }
970  }
971  if (DbgMI)
972    FirstDbgValue = DbgMI;
973
974  Defs.clear();
975  Uses.clear();
976  VRegDefs.clear();
977  PendingLoads.clear();
978}
979
980void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
981#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
982  SU->getInstr()->dump();
983#endif
984}
985
986std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
987  std::string s;
988  raw_string_ostream oss(s);
989  if (SU == &EntrySU)
990    oss << "<entry>";
991  else if (SU == &ExitSU)
992    oss << "<exit>";
993  else
994    SU->getInstr()->print(oss);
995  return oss.str();
996}
997
998/// Return the basic block label. It is not necessarilly unique because a block
999/// contains multiple scheduling regions. But it is fine for visualization.
1000std::string ScheduleDAGInstrs::getDAGName() const {
1001  return "dag." + BB->getFullName();
1002}
1003
1004//===----------------------------------------------------------------------===//
1005// SchedDFSResult Implementation
1006//===----------------------------------------------------------------------===//
1007
1008namespace llvm {
1009/// \brief Internal state used to compute SchedDFSResult.
1010class SchedDFSImpl {
1011  SchedDFSResult &R;
1012
1013  /// Join DAG nodes into equivalence classes by their subtree.
1014  IntEqClasses SubtreeClasses;
1015  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1016  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1017
1018public:
1019  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSData.size()) {}
1020
1021  /// SubtreID is initialized to zero, set to itself to flag the root of a
1022  /// subtree, set to the parent to indicate an interior node,
1023  /// then set to a representative subtree ID during finalization.
1024  bool isVisited(const SUnit *SU) const {
1025    return R.DFSData[SU->NodeNum].SubtreeID;
1026  }
1027
1028  /// Initialize this node's instruction count. We don't need to flag the node
1029  /// visited until visitPostorder because the DAG cannot have cycles.
1030  void visitPreorder(const SUnit *SU) {
1031    R.DFSData[SU->NodeNum].InstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1032  }
1033
1034  /// Mark this node as either the root of a subtree or an interior
1035  /// node. Increment the parent node's instruction count.
1036  void visitPostorder(const SUnit *SU, const SDep *PredDep, const SUnit *Parent) {
1037    R.DFSData[SU->NodeNum].SubtreeID = SU->NodeNum;
1038
1039    // Join the child to its parent if they are connected via data dependence
1040    // and do not exceed the limit.
1041    if (!Parent || PredDep->getKind() != SDep::Data)
1042      return;
1043
1044    unsigned PredCnt = R.DFSData[SU->NodeNum].InstrCount;
1045    if (PredCnt > R.SubtreeLimit)
1046      return;
1047
1048    R.DFSData[SU->NodeNum].SubtreeID = Parent->NodeNum;
1049
1050    // Add the recently finished predecessor's bottom-up descendent count.
1051    R.DFSData[Parent->NodeNum].InstrCount += PredCnt;
1052    SubtreeClasses.join(Parent->NodeNum, SU->NodeNum);
1053  }
1054
1055  /// Determine whether the DFS cross edge should be considered a subtree edge
1056  /// or a connection between subtrees.
1057  void visitCross(const SDep &PredDep, const SUnit *Succ) {
1058    if (PredDep.getKind() == SDep::Data) {
1059      // If this is a cross edge to a root, join the subtrees. This happens when
1060      // the root was first reached by a non-data dependence.
1061      unsigned NodeNum = PredDep.getSUnit()->NodeNum;
1062      unsigned PredCnt = R.DFSData[NodeNum].InstrCount;
1063      if (R.DFSData[NodeNum].SubtreeID == NodeNum && PredCnt < R.SubtreeLimit) {
1064        R.DFSData[NodeNum].SubtreeID = Succ->NodeNum;
1065        R.DFSData[Succ->NodeNum].InstrCount += PredCnt;
1066        SubtreeClasses.join(Succ->NodeNum, NodeNum);
1067        return;
1068      }
1069    }
1070    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1071  }
1072
1073  /// Set each node's subtree ID to the representative ID and record connections
1074  /// between trees.
1075  void finalize() {
1076    SubtreeClasses.compress();
1077    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1078    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1079    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1080    for (unsigned Idx = 0, End = R.DFSData.size(); Idx != End; ++Idx) {
1081      R.DFSData[Idx].SubtreeID = SubtreeClasses[Idx];
1082      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1083            << R.DFSData[Idx].SubtreeID << '\n');
1084    }
1085    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1086           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1087         I != E; ++I) {
1088      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1089      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1090      if (PredTree == SuccTree)
1091        continue;
1092      unsigned Depth = I->first->getDepth();
1093      addConnection(PredTree, SuccTree, Depth);
1094      addConnection(SuccTree, PredTree, Depth);
1095    }
1096  }
1097
1098protected:
1099  /// Called by finalize() to record a connection between trees.
1100  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1101    if (!Depth)
1102      return;
1103
1104    SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1105      R.SubtreeConnections[FromTree];
1106    for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1107           I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1108      if (I->TreeID == ToTree) {
1109        I->Level = std::max(I->Level, Depth);
1110        return;
1111      }
1112    }
1113    Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1114  }
1115};
1116} // namespace llvm
1117
1118namespace {
1119/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1120class SchedDAGReverseDFS {
1121  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1122public:
1123  bool isComplete() const { return DFSStack.empty(); }
1124
1125  void follow(const SUnit *SU) {
1126    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1127  }
1128  void advance() { ++DFSStack.back().second; }
1129
1130  const SDep *backtrack() {
1131    DFSStack.pop_back();
1132    return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1133  }
1134
1135  const SUnit *getCurr() const { return DFSStack.back().first; }
1136
1137  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1138
1139  SUnit::const_pred_iterator getPredEnd() const {
1140    return getCurr()->Preds.end();
1141  }
1142};
1143} // anonymous
1144
1145/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1146/// search from this root.
1147void SchedDFSResult::compute(ArrayRef<SUnit *> Roots) {
1148  if (!IsBottomUp)
1149    llvm_unreachable("Top-down ILP metric is unimplemnted");
1150
1151  SchedDFSImpl Impl(*this);
1152  for (ArrayRef<const SUnit*>::const_iterator
1153         RootI = Roots.begin(), RootE = Roots.end(); RootI != RootE; ++RootI) {
1154    SchedDAGReverseDFS DFS;
1155    Impl.visitPreorder(*RootI);
1156    DFS.follow(*RootI);
1157    for (;;) {
1158      // Traverse the leftmost path as far as possible.
1159      while (DFS.getPred() != DFS.getPredEnd()) {
1160        const SDep &PredDep = *DFS.getPred();
1161        DFS.advance();
1162        // If the pred is already valid, skip it. We may preorder visit a node
1163        // with InstrCount==0 more than once, but it won't affect heuristics
1164        // because we don't care about cross edges to leaf copies.
1165        if (Impl.isVisited(PredDep.getSUnit())) {
1166          Impl.visitCross(PredDep, DFS.getCurr());
1167          continue;
1168        }
1169        Impl.visitPreorder(PredDep.getSUnit());
1170        DFS.follow(PredDep.getSUnit());
1171      }
1172      // Visit the top of the stack in postorder and backtrack.
1173      const SUnit *Child = DFS.getCurr();
1174      const SDep *PredDep = DFS.backtrack();
1175      Impl.visitPostorder(Child, PredDep, PredDep ? DFS.getCurr() : 0);
1176      if (DFS.isComplete())
1177        break;
1178    }
1179  }
1180  Impl.finalize();
1181}
1182
1183/// The root of the given SubtreeID was just scheduled. For all subtrees
1184/// connected to this tree, record the depth of the connection so that the
1185/// nearest connected subtrees can be prioritized.
1186void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1187  for (SmallVectorImpl<Connection>::const_iterator
1188         I = SubtreeConnections[SubtreeID].begin(),
1189         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1190    SubtreeConnectLevels[I->TreeID] =
1191      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1192    DEBUG(dbgs() << "  Tree: " << I->TreeID
1193          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1194  }
1195}
1196
1197#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1198void ILPValue::print(raw_ostream &OS) const {
1199  OS << InstrCount << " / " << Length << " = ";
1200  if (!Length)
1201    OS << "BADILP";
1202  else
1203    OS << format("%g", ((double)InstrCount / Length));
1204}
1205
1206void ILPValue::dump() const {
1207  dbgs() << *this << '\n';
1208}
1209
1210namespace llvm {
1211
1212raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1213  Val.print(OS);
1214  return OS;
1215}
1216
1217} // namespace llvm
1218#endif // !NDEBUG || LLVM_ENABLE_DUMP
1219