1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the implementation of the FastISel class. 11// 12// "Fast" instruction selection is designed to emit very poor code quickly. 13// Also, it is not designed to be able to do much lowering, so most illegal 14// types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15// also not intended to be able to do much optimization, except in a few cases 16// where doing optimizations reduces overall compile time. For example, folding 17// constants into immediate fields is often done, because it's cheap and it 18// reduces the number of instructions later phases have to examine. 19// 20// "Fast" instruction selection is able to fail gracefully and transfer 21// control to the SelectionDAG selector for operations that it doesn't 22// support. In many cases, this allows us to avoid duplicating a lot of 23// the complicated lowering logic that SelectionDAG currently has. 24// 25// The intended use for "fast" instruction selection is "-O0" mode 26// compilation, where the quality of the generated code is irrelevant when 27// weighed against the speed at which the code can be generated. Also, 28// at -O0, the LLVM optimizers are not running, and this makes the 29// compile time of codegen a much higher portion of the overall compile 30// time. Despite its limitations, "fast" instruction selection is able to 31// handle enough code on its own to provide noticeable overall speedups 32// in -O0 compiles. 33// 34// Basic operations are supported in a target-independent way, by reading 35// the same instruction descriptions that the SelectionDAG selector reads, 36// and identifying simple arithmetic operations that can be directly selected 37// from simple operators. More complicated operations currently require 38// target-specific code. 39// 40//===----------------------------------------------------------------------===// 41 42#include "llvm/ADT/Optional.h" 43#include "llvm/ADT/Statistic.h" 44#include "llvm/Analysis/BranchProbabilityInfo.h" 45#include "llvm/Analysis/Loads.h" 46#include "llvm/Analysis/TargetLibraryInfo.h" 47#include "llvm/CodeGen/Analysis.h" 48#include "llvm/CodeGen/FastISel.h" 49#include "llvm/CodeGen/FunctionLoweringInfo.h" 50#include "llvm/CodeGen/MachineFrameInfo.h" 51#include "llvm/CodeGen/MachineInstrBuilder.h" 52#include "llvm/CodeGen/MachineModuleInfo.h" 53#include "llvm/CodeGen/MachineRegisterInfo.h" 54#include "llvm/CodeGen/StackMaps.h" 55#include "llvm/IR/DataLayout.h" 56#include "llvm/IR/DebugInfo.h" 57#include "llvm/IR/Function.h" 58#include "llvm/IR/GetElementPtrTypeIterator.h" 59#include "llvm/IR/GlobalVariable.h" 60#include "llvm/IR/Instructions.h" 61#include "llvm/IR/IntrinsicInst.h" 62#include "llvm/IR/Mangler.h" 63#include "llvm/IR/Operator.h" 64#include "llvm/Support/Debug.h" 65#include "llvm/Support/ErrorHandling.h" 66#include "llvm/Support/raw_ostream.h" 67#include "llvm/Target/TargetInstrInfo.h" 68#include "llvm/Target/TargetLowering.h" 69#include "llvm/Target/TargetMachine.h" 70#include "llvm/Target/TargetSubtargetInfo.h" 71using namespace llvm; 72 73#define DEBUG_TYPE "isel" 74 75STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 76 "target-independent selector"); 77STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 78 "target-specific selector"); 79STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 80 81void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 92 IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 93 Alignment = CS->getParamAlignment(AttrIdx); 94} 95 96/// Set the current block to which generated machine instructions will be 97/// appended, and clear the local CSE map. 98void FastISel::startNewBlock() { 99 LocalValueMap.clear(); 100 101 // Instructions are appended to FuncInfo.MBB. If the basic block already 102 // contains labels or copies, use the last instruction as the last local 103 // value. 104 EmitStartPt = nullptr; 105 if (!FuncInfo.MBB->empty()) 106 EmitStartPt = &FuncInfo.MBB->back(); 107 LastLocalValue = EmitStartPt; 108} 109 110bool FastISel::lowerArguments() { 111 if (!FuncInfo.CanLowerReturn) 112 // Fallback to SDISel argument lowering code to deal with sret pointer 113 // parameter. 114 return false; 115 116 if (!fastLowerArguments()) 117 return false; 118 119 // Enter arguments into ValueMap for uses in non-entry BBs. 120 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 121 E = FuncInfo.Fn->arg_end(); 122 I != E; ++I) { 123 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 124 assert(VI != LocalValueMap.end() && "Missed an argument?"); 125 FuncInfo.ValueMap[&*I] = VI->second; 126 } 127 return true; 128} 129 130void FastISel::flushLocalValueMap() { 131 LocalValueMap.clear(); 132 LastLocalValue = EmitStartPt; 133 recomputeInsertPt(); 134 SavedInsertPt = FuncInfo.InsertPt; 135} 136 137bool FastISel::hasTrivialKill(const Value *V) { 138 // Don't consider constants or arguments to have trivial kills. 139 const Instruction *I = dyn_cast<Instruction>(V); 140 if (!I) 141 return false; 142 143 // No-op casts are trivially coalesced by fast-isel. 144 if (const auto *Cast = dyn_cast<CastInst>(I)) 145 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 146 !hasTrivialKill(Cast->getOperand(0))) 147 return false; 148 149 // Even the value might have only one use in the LLVM IR, it is possible that 150 // FastISel might fold the use into another instruction and now there is more 151 // than one use at the Machine Instruction level. 152 unsigned Reg = lookUpRegForValue(V); 153 if (Reg && !MRI.use_empty(Reg)) 154 return false; 155 156 // GEPs with all zero indices are trivially coalesced by fast-isel. 157 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 158 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 159 return false; 160 161 // Only instructions with a single use in the same basic block are considered 162 // to have trivial kills. 163 return I->hasOneUse() && 164 !(I->getOpcode() == Instruction::BitCast || 165 I->getOpcode() == Instruction::PtrToInt || 166 I->getOpcode() == Instruction::IntToPtr) && 167 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 168} 169 170unsigned FastISel::getRegForValue(const Value *V) { 171 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 172 // Don't handle non-simple values in FastISel. 173 if (!RealVT.isSimple()) 174 return 0; 175 176 // Ignore illegal types. We must do this before looking up the value 177 // in ValueMap because Arguments are given virtual registers regardless 178 // of whether FastISel can handle them. 179 MVT VT = RealVT.getSimpleVT(); 180 if (!TLI.isTypeLegal(VT)) { 181 // Handle integer promotions, though, because they're common and easy. 182 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 183 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 184 else 185 return 0; 186 } 187 188 // Look up the value to see if we already have a register for it. 189 unsigned Reg = lookUpRegForValue(V); 190 if (Reg) 191 return Reg; 192 193 // In bottom-up mode, just create the virtual register which will be used 194 // to hold the value. It will be materialized later. 195 if (isa<Instruction>(V) && 196 (!isa<AllocaInst>(V) || 197 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 198 return FuncInfo.InitializeRegForValue(V); 199 200 SavePoint SaveInsertPt = enterLocalValueArea(); 201 202 // Materialize the value in a register. Emit any instructions in the 203 // local value area. 204 Reg = materializeRegForValue(V, VT); 205 206 leaveLocalValueArea(SaveInsertPt); 207 208 return Reg; 209} 210 211unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 212 unsigned Reg = 0; 213 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 214 if (CI->getValue().getActiveBits() <= 64) 215 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 216 } else if (isa<AllocaInst>(V)) 217 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 218 else if (isa<ConstantPointerNull>(V)) 219 // Translate this as an integer zero so that it can be 220 // local-CSE'd with actual integer zeros. 221 Reg = getRegForValue( 222 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 223 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 224 if (CF->isNullValue()) 225 Reg = fastMaterializeFloatZero(CF); 226 else 227 // Try to emit the constant directly. 228 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 229 230 if (!Reg) { 231 // Try to emit the constant by using an integer constant with a cast. 232 const APFloat &Flt = CF->getValueAPF(); 233 EVT IntVT = TLI.getPointerTy(DL); 234 235 uint64_t x[2]; 236 uint32_t IntBitWidth = IntVT.getSizeInBits(); 237 bool isExact; 238 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 239 APFloat::rmTowardZero, &isExact); 240 if (isExact) { 241 APInt IntVal(IntBitWidth, x); 242 243 unsigned IntegerReg = 244 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 245 if (IntegerReg != 0) 246 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 247 /*Kill=*/false); 248 } 249 } 250 } else if (const auto *Op = dyn_cast<Operator>(V)) { 251 if (!selectOperator(Op, Op->getOpcode())) 252 if (!isa<Instruction>(Op) || 253 !fastSelectInstruction(cast<Instruction>(Op))) 254 return 0; 255 Reg = lookUpRegForValue(Op); 256 } else if (isa<UndefValue>(V)) { 257 Reg = createResultReg(TLI.getRegClassFor(VT)); 258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 259 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 260 } 261 return Reg; 262} 263 264/// Helper for getRegForValue. This function is called when the value isn't 265/// already available in a register and must be materialized with new 266/// instructions. 267unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 268 unsigned Reg = 0; 269 // Give the target-specific code a try first. 270 if (isa<Constant>(V)) 271 Reg = fastMaterializeConstant(cast<Constant>(V)); 272 273 // If target-specific code couldn't or didn't want to handle the value, then 274 // give target-independent code a try. 275 if (!Reg) 276 Reg = materializeConstant(V, VT); 277 278 // Don't cache constant materializations in the general ValueMap. 279 // To do so would require tracking what uses they dominate. 280 if (Reg) { 281 LocalValueMap[V] = Reg; 282 LastLocalValue = MRI.getVRegDef(Reg); 283 } 284 return Reg; 285} 286 287unsigned FastISel::lookUpRegForValue(const Value *V) { 288 // Look up the value to see if we already have a register for it. We 289 // cache values defined by Instructions across blocks, and other values 290 // only locally. This is because Instructions already have the SSA 291 // def-dominates-use requirement enforced. 292 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 293 if (I != FuncInfo.ValueMap.end()) 294 return I->second; 295 return LocalValueMap[V]; 296} 297 298void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 299 if (!isa<Instruction>(I)) { 300 LocalValueMap[I] = Reg; 301 return; 302 } 303 304 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 305 if (AssignedReg == 0) 306 // Use the new register. 307 AssignedReg = Reg; 308 else if (Reg != AssignedReg) { 309 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 310 for (unsigned i = 0; i < NumRegs; i++) 311 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 312 313 AssignedReg = Reg; 314 } 315} 316 317std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 318 unsigned IdxN = getRegForValue(Idx); 319 if (IdxN == 0) 320 // Unhandled operand. Halt "fast" selection and bail. 321 return std::pair<unsigned, bool>(0, false); 322 323 bool IdxNIsKill = hasTrivialKill(Idx); 324 325 // If the index is smaller or larger than intptr_t, truncate or extend it. 326 MVT PtrVT = TLI.getPointerTy(DL); 327 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 328 if (IdxVT.bitsLT(PtrVT)) { 329 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 330 IdxNIsKill); 331 IdxNIsKill = true; 332 } else if (IdxVT.bitsGT(PtrVT)) { 333 IdxN = 334 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 335 IdxNIsKill = true; 336 } 337 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 338} 339 340void FastISel::recomputeInsertPt() { 341 if (getLastLocalValue()) { 342 FuncInfo.InsertPt = getLastLocalValue(); 343 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 344 ++FuncInfo.InsertPt; 345 } else 346 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 347 348 // Now skip past any EH_LABELs, which must remain at the beginning. 349 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 350 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 351 ++FuncInfo.InsertPt; 352} 353 354void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 355 MachineBasicBlock::iterator E) { 356 assert(static_cast<MachineInstr *>(I) && static_cast<MachineInstr *>(E) && 357 std::distance(I, E) > 0 && "Invalid iterator!"); 358 while (I != E) { 359 MachineInstr *Dead = &*I; 360 ++I; 361 Dead->eraseFromParent(); 362 ++NumFastIselDead; 363 } 364 recomputeInsertPt(); 365} 366 367FastISel::SavePoint FastISel::enterLocalValueArea() { 368 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 369 DebugLoc OldDL = DbgLoc; 370 recomputeInsertPt(); 371 DbgLoc = DebugLoc(); 372 SavePoint SP = {OldInsertPt, OldDL}; 373 return SP; 374} 375 376void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 377 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 378 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 379 380 // Restore the previous insert position. 381 FuncInfo.InsertPt = OldInsertPt.InsertPt; 382 DbgLoc = OldInsertPt.DL; 383} 384 385bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 386 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 387 if (VT == MVT::Other || !VT.isSimple()) 388 // Unhandled type. Halt "fast" selection and bail. 389 return false; 390 391 // We only handle legal types. For example, on x86-32 the instruction 392 // selector contains all of the 64-bit instructions from x86-64, 393 // under the assumption that i64 won't be used if the target doesn't 394 // support it. 395 if (!TLI.isTypeLegal(VT)) { 396 // MVT::i1 is special. Allow AND, OR, or XOR because they 397 // don't require additional zeroing, which makes them easy. 398 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 399 ISDOpcode == ISD::XOR)) 400 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 401 else 402 return false; 403 } 404 405 // Check if the first operand is a constant, and handle it as "ri". At -O0, 406 // we don't have anything that canonicalizes operand order. 407 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 408 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 409 unsigned Op1 = getRegForValue(I->getOperand(1)); 410 if (!Op1) 411 return false; 412 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 413 414 unsigned ResultReg = 415 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 416 CI->getZExtValue(), VT.getSimpleVT()); 417 if (!ResultReg) 418 return false; 419 420 // We successfully emitted code for the given LLVM Instruction. 421 updateValueMap(I, ResultReg); 422 return true; 423 } 424 425 unsigned Op0 = getRegForValue(I->getOperand(0)); 426 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 427 return false; 428 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 429 430 // Check if the second operand is a constant and handle it appropriately. 431 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 432 uint64_t Imm = CI->getSExtValue(); 433 434 // Transform "sdiv exact X, 8" -> "sra X, 3". 435 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 436 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 437 Imm = Log2_64(Imm); 438 ISDOpcode = ISD::SRA; 439 } 440 441 // Transform "urem x, pow2" -> "and x, pow2-1". 442 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 443 isPowerOf2_64(Imm)) { 444 --Imm; 445 ISDOpcode = ISD::AND; 446 } 447 448 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 449 Op0IsKill, Imm, VT.getSimpleVT()); 450 if (!ResultReg) 451 return false; 452 453 // We successfully emitted code for the given LLVM Instruction. 454 updateValueMap(I, ResultReg); 455 return true; 456 } 457 458 // Check if the second operand is a constant float. 459 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 460 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 461 ISDOpcode, Op0, Op0IsKill, CF); 462 if (ResultReg) { 463 // We successfully emitted code for the given LLVM Instruction. 464 updateValueMap(I, ResultReg); 465 return true; 466 } 467 } 468 469 unsigned Op1 = getRegForValue(I->getOperand(1)); 470 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 471 return false; 472 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 473 474 // Now we have both operands in registers. Emit the instruction. 475 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 476 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 477 if (!ResultReg) 478 // Target-specific code wasn't able to find a machine opcode for 479 // the given ISD opcode and type. Halt "fast" selection and bail. 480 return false; 481 482 // We successfully emitted code for the given LLVM Instruction. 483 updateValueMap(I, ResultReg); 484 return true; 485} 486 487bool FastISel::selectGetElementPtr(const User *I) { 488 unsigned N = getRegForValue(I->getOperand(0)); 489 if (!N) // Unhandled operand. Halt "fast" selection and bail. 490 return false; 491 bool NIsKill = hasTrivialKill(I->getOperand(0)); 492 493 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 494 // into a single N = N + TotalOffset. 495 uint64_t TotalOffs = 0; 496 // FIXME: What's a good SWAG number for MaxOffs? 497 uint64_t MaxOffs = 2048; 498 MVT VT = TLI.getPointerTy(DL); 499 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 500 GTI != E; ++GTI) { 501 const Value *Idx = GTI.getOperand(); 502 if (auto *StTy = dyn_cast<StructType>(*GTI)) { 503 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 504 if (Field) { 505 // N = N + Offset 506 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 507 if (TotalOffs >= MaxOffs) { 508 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 509 if (!N) // Unhandled operand. Halt "fast" selection and bail. 510 return false; 511 NIsKill = true; 512 TotalOffs = 0; 513 } 514 } 515 } else { 516 Type *Ty = GTI.getIndexedType(); 517 518 // If this is a constant subscript, handle it quickly. 519 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 520 if (CI->isZero()) 521 continue; 522 // N = N + Offset 523 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 524 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 525 if (TotalOffs >= MaxOffs) { 526 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 527 if (!N) // Unhandled operand. Halt "fast" selection and bail. 528 return false; 529 NIsKill = true; 530 TotalOffs = 0; 531 } 532 continue; 533 } 534 if (TotalOffs) { 535 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 536 if (!N) // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 NIsKill = true; 539 TotalOffs = 0; 540 } 541 542 // N = N + Idx * ElementSize; 543 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 544 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 545 unsigned IdxN = Pair.first; 546 bool IdxNIsKill = Pair.second; 547 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 550 if (ElementSize != 1) { 551 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 552 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 IdxNIsKill = true; 555 } 556 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 } 560 } 561 if (TotalOffs) { 562 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 563 if (!N) // Unhandled operand. Halt "fast" selection and bail. 564 return false; 565 } 566 567 // We successfully emitted code for the given LLVM Instruction. 568 updateValueMap(I, N); 569 return true; 570} 571 572bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 573 const CallInst *CI, unsigned StartIdx) { 574 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 575 Value *Val = CI->getArgOperand(i); 576 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 577 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 578 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 579 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 580 } else if (isa<ConstantPointerNull>(Val)) { 581 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 582 Ops.push_back(MachineOperand::CreateImm(0)); 583 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 584 // Values coming from a stack location also require a sepcial encoding, 585 // but that is added later on by the target specific frame index 586 // elimination implementation. 587 auto SI = FuncInfo.StaticAllocaMap.find(AI); 588 if (SI != FuncInfo.StaticAllocaMap.end()) 589 Ops.push_back(MachineOperand::CreateFI(SI->second)); 590 else 591 return false; 592 } else { 593 unsigned Reg = getRegForValue(Val); 594 if (!Reg) 595 return false; 596 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 597 } 598 } 599 return true; 600} 601 602bool FastISel::selectStackmap(const CallInst *I) { 603 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 604 // [live variables...]) 605 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 606 "Stackmap cannot return a value."); 607 608 // The stackmap intrinsic only records the live variables (the arguments 609 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 610 // intrinsic, this won't be lowered to a function call. This means we don't 611 // have to worry about calling conventions and target-specific lowering code. 612 // Instead we perform the call lowering right here. 613 // 614 // CALLSEQ_START(0...) 615 // STACKMAP(id, nbytes, ...) 616 // CALLSEQ_END(0, 0) 617 // 618 SmallVector<MachineOperand, 32> Ops; 619 620 // Add the <id> and <numBytes> constants. 621 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 622 "Expected a constant integer."); 623 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 624 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 625 626 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 627 "Expected a constant integer."); 628 const auto *NumBytes = 629 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 630 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 631 632 // Push live variables for the stack map (skipping the first two arguments 633 // <id> and <numBytes>). 634 if (!addStackMapLiveVars(Ops, I, 2)) 635 return false; 636 637 // We are not adding any register mask info here, because the stackmap doesn't 638 // clobber anything. 639 640 // Add scratch registers as implicit def and early clobber. 641 CallingConv::ID CC = I->getCallingConv(); 642 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 643 for (unsigned i = 0; ScratchRegs[i]; ++i) 644 Ops.push_back(MachineOperand::CreateReg( 645 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 646 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 647 648 // Issue CALLSEQ_START 649 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 650 auto Builder = 651 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 652 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 653 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 654 Builder.addImm(0); 655 656 // Issue STACKMAP. 657 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 658 TII.get(TargetOpcode::STACKMAP)); 659 for (auto const &MO : Ops) 660 MIB.addOperand(MO); 661 662 // Issue CALLSEQ_END 663 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 665 .addImm(0) 666 .addImm(0); 667 668 // Inform the Frame Information that we have a stackmap in this function. 669 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 670 671 return true; 672} 673 674/// \brief Lower an argument list according to the target calling convention. 675/// 676/// This is a helper for lowering intrinsics that follow a target calling 677/// convention or require stack pointer adjustment. Only a subset of the 678/// intrinsic's operands need to participate in the calling convention. 679bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 680 unsigned NumArgs, const Value *Callee, 681 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 682 ArgListTy Args; 683 Args.reserve(NumArgs); 684 685 // Populate the argument list. 686 // Attributes for args start at offset 1, after the return attribute. 687 ImmutableCallSite CS(CI); 688 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 689 ArgI != ArgE; ++ArgI) { 690 Value *V = CI->getOperand(ArgI); 691 692 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 693 694 ArgListEntry Entry; 695 Entry.Val = V; 696 Entry.Ty = V->getType(); 697 Entry.setAttributes(&CS, AttrI); 698 Args.push_back(Entry); 699 } 700 701 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 702 : CI->getType(); 703 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 704 705 return lowerCallTo(CLI); 706} 707 708FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 709 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 710 const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 711 SmallString<32> MangledName; 712 Mangler::getNameWithPrefix(MangledName, Target, DL); 713 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 714 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 715} 716 717bool FastISel::selectPatchpoint(const CallInst *I) { 718 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 719 // i32 <numBytes>, 720 // i8* <target>, 721 // i32 <numArgs>, 722 // [Args...], 723 // [live variables...]) 724 CallingConv::ID CC = I->getCallingConv(); 725 bool IsAnyRegCC = CC == CallingConv::AnyReg; 726 bool HasDef = !I->getType()->isVoidTy(); 727 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 728 729 // Get the real number of arguments participating in the call <numArgs> 730 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 731 "Expected a constant integer."); 732 const auto *NumArgsVal = 733 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 734 unsigned NumArgs = NumArgsVal->getZExtValue(); 735 736 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 737 // This includes all meta-operands up to but not including CC. 738 unsigned NumMetaOpers = PatchPointOpers::CCPos; 739 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 740 "Not enough arguments provided to the patchpoint intrinsic"); 741 742 // For AnyRegCC the arguments are lowered later on manually. 743 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 744 CallLoweringInfo CLI; 745 CLI.setIsPatchPoint(); 746 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 747 return false; 748 749 assert(CLI.Call && "No call instruction specified."); 750 751 SmallVector<MachineOperand, 32> Ops; 752 753 // Add an explicit result reg if we use the anyreg calling convention. 754 if (IsAnyRegCC && HasDef) { 755 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 756 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 757 CLI.NumResultRegs = 1; 758 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 759 } 760 761 // Add the <id> and <numBytes> constants. 762 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 763 "Expected a constant integer."); 764 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 765 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 766 767 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 768 "Expected a constant integer."); 769 const auto *NumBytes = 770 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 771 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 772 773 // Add the call target. 774 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 775 uint64_t CalleeConstAddr = 776 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 777 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 778 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 779 if (C->getOpcode() == Instruction::IntToPtr) { 780 uint64_t CalleeConstAddr = 781 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 782 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 783 } else 784 llvm_unreachable("Unsupported ConstantExpr."); 785 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 786 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 787 } else if (isa<ConstantPointerNull>(Callee)) 788 Ops.push_back(MachineOperand::CreateImm(0)); 789 else 790 llvm_unreachable("Unsupported callee address."); 791 792 // Adjust <numArgs> to account for any arguments that have been passed on 793 // the stack instead. 794 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 795 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 796 797 // Add the calling convention 798 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 799 800 // Add the arguments we omitted previously. The register allocator should 801 // place these in any free register. 802 if (IsAnyRegCC) { 803 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 804 unsigned Reg = getRegForValue(I->getArgOperand(i)); 805 if (!Reg) 806 return false; 807 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 808 } 809 } 810 811 // Push the arguments from the call instruction. 812 for (auto Reg : CLI.OutRegs) 813 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 814 815 // Push live variables for the stack map. 816 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 817 return false; 818 819 // Push the register mask info. 820 Ops.push_back(MachineOperand::CreateRegMask( 821 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 822 823 // Add scratch registers as implicit def and early clobber. 824 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 825 for (unsigned i = 0; ScratchRegs[i]; ++i) 826 Ops.push_back(MachineOperand::CreateReg( 827 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 828 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 829 830 // Add implicit defs (return values). 831 for (auto Reg : CLI.InRegs) 832 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 833 /*IsImpl=*/true)); 834 835 // Insert the patchpoint instruction before the call generated by the target. 836 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 837 TII.get(TargetOpcode::PATCHPOINT)); 838 839 for (auto &MO : Ops) 840 MIB.addOperand(MO); 841 842 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 843 844 // Delete the original call instruction. 845 CLI.Call->eraseFromParent(); 846 847 // Inform the Frame Information that we have a patchpoint in this function. 848 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 849 850 if (CLI.NumResultRegs) 851 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 852 return true; 853} 854 855/// Returns an AttributeSet representing the attributes applied to the return 856/// value of the given call. 857static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 858 SmallVector<Attribute::AttrKind, 2> Attrs; 859 if (CLI.RetSExt) 860 Attrs.push_back(Attribute::SExt); 861 if (CLI.RetZExt) 862 Attrs.push_back(Attribute::ZExt); 863 if (CLI.IsInReg) 864 Attrs.push_back(Attribute::InReg); 865 866 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 867 Attrs); 868} 869 870bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 871 unsigned NumArgs) { 872 MCContext &Ctx = MF->getContext(); 873 SmallString<32> MangledName; 874 Mangler::getNameWithPrefix(MangledName, SymName, DL); 875 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 876 return lowerCallTo(CI, Sym, NumArgs); 877} 878 879bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 880 unsigned NumArgs) { 881 ImmutableCallSite CS(CI); 882 883 FunctionType *FTy = CS.getFunctionType(); 884 Type *RetTy = CS.getType(); 885 886 ArgListTy Args; 887 Args.reserve(NumArgs); 888 889 // Populate the argument list. 890 // Attributes for args start at offset 1, after the return attribute. 891 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 892 Value *V = CI->getOperand(ArgI); 893 894 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 895 896 ArgListEntry Entry; 897 Entry.Val = V; 898 Entry.Ty = V->getType(); 899 Entry.setAttributes(&CS, ArgI + 1); 900 Args.push_back(Entry); 901 } 902 903 CallLoweringInfo CLI; 904 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 905 906 return lowerCallTo(CLI); 907} 908 909bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 910 // Handle the incoming return values from the call. 911 CLI.clearIns(); 912 SmallVector<EVT, 4> RetTys; 913 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 914 915 SmallVector<ISD::OutputArg, 4> Outs; 916 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 917 918 bool CanLowerReturn = TLI.CanLowerReturn( 919 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 920 921 // FIXME: sret demotion isn't supported yet - bail out. 922 if (!CanLowerReturn) 923 return false; 924 925 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 926 EVT VT = RetTys[I]; 927 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 928 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 929 for (unsigned i = 0; i != NumRegs; ++i) { 930 ISD::InputArg MyFlags; 931 MyFlags.VT = RegisterVT; 932 MyFlags.ArgVT = VT; 933 MyFlags.Used = CLI.IsReturnValueUsed; 934 if (CLI.RetSExt) 935 MyFlags.Flags.setSExt(); 936 if (CLI.RetZExt) 937 MyFlags.Flags.setZExt(); 938 if (CLI.IsInReg) 939 MyFlags.Flags.setInReg(); 940 CLI.Ins.push_back(MyFlags); 941 } 942 } 943 944 // Handle all of the outgoing arguments. 945 CLI.clearOuts(); 946 for (auto &Arg : CLI.getArgs()) { 947 Type *FinalType = Arg.Ty; 948 if (Arg.IsByVal) 949 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 950 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 951 FinalType, CLI.CallConv, CLI.IsVarArg); 952 953 ISD::ArgFlagsTy Flags; 954 if (Arg.IsZExt) 955 Flags.setZExt(); 956 if (Arg.IsSExt) 957 Flags.setSExt(); 958 if (Arg.IsInReg) 959 Flags.setInReg(); 960 if (Arg.IsSRet) 961 Flags.setSRet(); 962 if (Arg.IsSwiftSelf) 963 Flags.setSwiftSelf(); 964 if (Arg.IsSwiftError) 965 Flags.setSwiftError(); 966 if (Arg.IsByVal) 967 Flags.setByVal(); 968 if (Arg.IsInAlloca) { 969 Flags.setInAlloca(); 970 // Set the byval flag for CCAssignFn callbacks that don't know about 971 // inalloca. This way we can know how many bytes we should've allocated 972 // and how many bytes a callee cleanup function will pop. If we port 973 // inalloca to more targets, we'll have to add custom inalloca handling in 974 // the various CC lowering callbacks. 975 Flags.setByVal(); 976 } 977 if (Arg.IsByVal || Arg.IsInAlloca) { 978 PointerType *Ty = cast<PointerType>(Arg.Ty); 979 Type *ElementTy = Ty->getElementType(); 980 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 981 // For ByVal, alignment should come from FE. BE will guess if this info is 982 // not there, but there are cases it cannot get right. 983 unsigned FrameAlign = Arg.Alignment; 984 if (!FrameAlign) 985 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 986 Flags.setByValSize(FrameSize); 987 Flags.setByValAlign(FrameAlign); 988 } 989 if (Arg.IsNest) 990 Flags.setNest(); 991 if (NeedsRegBlock) 992 Flags.setInConsecutiveRegs(); 993 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 994 Flags.setOrigAlign(OriginalAlignment); 995 996 CLI.OutVals.push_back(Arg.Val); 997 CLI.OutFlags.push_back(Flags); 998 } 999 1000 if (!fastLowerCall(CLI)) 1001 return false; 1002 1003 // Set all unused physreg defs as dead. 1004 assert(CLI.Call && "No call instruction specified."); 1005 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1006 1007 if (CLI.NumResultRegs && CLI.CS) 1008 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1009 1010 return true; 1011} 1012 1013bool FastISel::lowerCall(const CallInst *CI) { 1014 ImmutableCallSite CS(CI); 1015 1016 FunctionType *FuncTy = CS.getFunctionType(); 1017 Type *RetTy = CS.getType(); 1018 1019 ArgListTy Args; 1020 ArgListEntry Entry; 1021 Args.reserve(CS.arg_size()); 1022 1023 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1024 i != e; ++i) { 1025 Value *V = *i; 1026 1027 // Skip empty types 1028 if (V->getType()->isEmptyTy()) 1029 continue; 1030 1031 Entry.Val = V; 1032 Entry.Ty = V->getType(); 1033 1034 // Skip the first return-type Attribute to get to params. 1035 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1036 Args.push_back(Entry); 1037 } 1038 1039 // Check if target-independent constraints permit a tail call here. 1040 // Target-dependent constraints are checked within fastLowerCall. 1041 bool IsTailCall = CI->isTailCall(); 1042 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1043 IsTailCall = false; 1044 1045 CallLoweringInfo CLI; 1046 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1047 .setTailCall(IsTailCall); 1048 1049 return lowerCallTo(CLI); 1050} 1051 1052bool FastISel::selectCall(const User *I) { 1053 const CallInst *Call = cast<CallInst>(I); 1054 1055 // Handle simple inline asms. 1056 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1057 // If the inline asm has side effects, then make sure that no local value 1058 // lives across by flushing the local value map. 1059 if (IA->hasSideEffects()) 1060 flushLocalValueMap(); 1061 1062 // Don't attempt to handle constraints. 1063 if (!IA->getConstraintString().empty()) 1064 return false; 1065 1066 unsigned ExtraInfo = 0; 1067 if (IA->hasSideEffects()) 1068 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1069 if (IA->isAlignStack()) 1070 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1071 1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1073 TII.get(TargetOpcode::INLINEASM)) 1074 .addExternalSymbol(IA->getAsmString().c_str()) 1075 .addImm(ExtraInfo); 1076 return true; 1077 } 1078 1079 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1080 ComputeUsesVAFloatArgument(*Call, &MMI); 1081 1082 // Handle intrinsic function calls. 1083 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1084 return selectIntrinsicCall(II); 1085 1086 // Usually, it does not make sense to initialize a value, 1087 // make an unrelated function call and use the value, because 1088 // it tends to be spilled on the stack. So, we move the pointer 1089 // to the last local value to the beginning of the block, so that 1090 // all the values which have already been materialized, 1091 // appear after the call. It also makes sense to skip intrinsics 1092 // since they tend to be inlined. 1093 flushLocalValueMap(); 1094 1095 return lowerCall(Call); 1096} 1097 1098bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1099 switch (II->getIntrinsicID()) { 1100 default: 1101 break; 1102 // At -O0 we don't care about the lifetime intrinsics. 1103 case Intrinsic::lifetime_start: 1104 case Intrinsic::lifetime_end: 1105 // The donothing intrinsic does, well, nothing. 1106 case Intrinsic::donothing: 1107 return true; 1108 case Intrinsic::dbg_declare: { 1109 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1110 assert(DI->getVariable() && "Missing variable"); 1111 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1112 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1113 return true; 1114 } 1115 1116 const Value *Address = DI->getAddress(); 1117 if (!Address || isa<UndefValue>(Address)) { 1118 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1119 return true; 1120 } 1121 1122 unsigned Offset = 0; 1123 Optional<MachineOperand> Op; 1124 if (const auto *Arg = dyn_cast<Argument>(Address)) 1125 // Some arguments' frame index is recorded during argument lowering. 1126 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1127 if (Offset) 1128 Op = MachineOperand::CreateFI(Offset); 1129 if (!Op) 1130 if (unsigned Reg = lookUpRegForValue(Address)) 1131 Op = MachineOperand::CreateReg(Reg, false); 1132 1133 // If we have a VLA that has a "use" in a metadata node that's then used 1134 // here but it has no other uses, then we have a problem. E.g., 1135 // 1136 // int foo (const int *x) { 1137 // char a[*x]; 1138 // return 0; 1139 // } 1140 // 1141 // If we assign 'a' a vreg and fast isel later on has to use the selection 1142 // DAG isel, it will want to copy the value to the vreg. However, there are 1143 // no uses, which goes counter to what selection DAG isel expects. 1144 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1145 (!isa<AllocaInst>(Address) || 1146 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1147 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1148 false); 1149 1150 if (Op) { 1151 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1152 "Expected inlined-at fields to agree"); 1153 if (Op->isReg()) { 1154 Op->setIsDebug(true); 1155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1156 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1157 DI->getVariable(), DI->getExpression()); 1158 } else 1159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1160 TII.get(TargetOpcode::DBG_VALUE)) 1161 .addOperand(*Op) 1162 .addImm(0) 1163 .addMetadata(DI->getVariable()) 1164 .addMetadata(DI->getExpression()); 1165 } else { 1166 // We can't yet handle anything else here because it would require 1167 // generating code, thus altering codegen because of debug info. 1168 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1169 } 1170 return true; 1171 } 1172 case Intrinsic::dbg_value: { 1173 // This form of DBG_VALUE is target-independent. 1174 const DbgValueInst *DI = cast<DbgValueInst>(II); 1175 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1176 const Value *V = DI->getValue(); 1177 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1178 "Expected inlined-at fields to agree"); 1179 if (!V) { 1180 // Currently the optimizer can produce this; insert an undef to 1181 // help debugging. Probably the optimizer should not do this. 1182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1183 .addReg(0U) 1184 .addImm(DI->getOffset()) 1185 .addMetadata(DI->getVariable()) 1186 .addMetadata(DI->getExpression()); 1187 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1188 if (CI->getBitWidth() > 64) 1189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1190 .addCImm(CI) 1191 .addImm(DI->getOffset()) 1192 .addMetadata(DI->getVariable()) 1193 .addMetadata(DI->getExpression()); 1194 else 1195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1196 .addImm(CI->getZExtValue()) 1197 .addImm(DI->getOffset()) 1198 .addMetadata(DI->getVariable()) 1199 .addMetadata(DI->getExpression()); 1200 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1202 .addFPImm(CF) 1203 .addImm(DI->getOffset()) 1204 .addMetadata(DI->getVariable()) 1205 .addMetadata(DI->getExpression()); 1206 } else if (unsigned Reg = lookUpRegForValue(V)) { 1207 // FIXME: This does not handle register-indirect values at offset 0. 1208 bool IsIndirect = DI->getOffset() != 0; 1209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1210 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1211 } else { 1212 // We can't yet handle anything else here because it would require 1213 // generating code, thus altering codegen because of debug info. 1214 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1215 } 1216 return true; 1217 } 1218 case Intrinsic::objectsize: { 1219 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1220 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1221 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1222 unsigned ResultReg = getRegForValue(ResCI); 1223 if (!ResultReg) 1224 return false; 1225 updateValueMap(II, ResultReg); 1226 return true; 1227 } 1228 case Intrinsic::expect: { 1229 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1230 if (!ResultReg) 1231 return false; 1232 updateValueMap(II, ResultReg); 1233 return true; 1234 } 1235 case Intrinsic::experimental_stackmap: 1236 return selectStackmap(II); 1237 case Intrinsic::experimental_patchpoint_void: 1238 case Intrinsic::experimental_patchpoint_i64: 1239 return selectPatchpoint(II); 1240 } 1241 1242 return fastLowerIntrinsicCall(II); 1243} 1244 1245bool FastISel::selectCast(const User *I, unsigned Opcode) { 1246 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1247 EVT DstVT = TLI.getValueType(DL, I->getType()); 1248 1249 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1250 !DstVT.isSimple()) 1251 // Unhandled type. Halt "fast" selection and bail. 1252 return false; 1253 1254 // Check if the destination type is legal. 1255 if (!TLI.isTypeLegal(DstVT)) 1256 return false; 1257 1258 // Check if the source operand is legal. 1259 if (!TLI.isTypeLegal(SrcVT)) 1260 return false; 1261 1262 unsigned InputReg = getRegForValue(I->getOperand(0)); 1263 if (!InputReg) 1264 // Unhandled operand. Halt "fast" selection and bail. 1265 return false; 1266 1267 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1268 1269 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1270 Opcode, InputReg, InputRegIsKill); 1271 if (!ResultReg) 1272 return false; 1273 1274 updateValueMap(I, ResultReg); 1275 return true; 1276} 1277 1278bool FastISel::selectBitCast(const User *I) { 1279 // If the bitcast doesn't change the type, just use the operand value. 1280 if (I->getType() == I->getOperand(0)->getType()) { 1281 unsigned Reg = getRegForValue(I->getOperand(0)); 1282 if (!Reg) 1283 return false; 1284 updateValueMap(I, Reg); 1285 return true; 1286 } 1287 1288 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1289 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1290 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1291 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1292 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1293 // Unhandled type. Halt "fast" selection and bail. 1294 return false; 1295 1296 MVT SrcVT = SrcEVT.getSimpleVT(); 1297 MVT DstVT = DstEVT.getSimpleVT(); 1298 unsigned Op0 = getRegForValue(I->getOperand(0)); 1299 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1300 return false; 1301 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1302 1303 // First, try to perform the bitcast by inserting a reg-reg copy. 1304 unsigned ResultReg = 0; 1305 if (SrcVT == DstVT) { 1306 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1307 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1308 // Don't attempt a cross-class copy. It will likely fail. 1309 if (SrcClass == DstClass) { 1310 ResultReg = createResultReg(DstClass); 1311 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1312 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1313 } 1314 } 1315 1316 // If the reg-reg copy failed, select a BITCAST opcode. 1317 if (!ResultReg) 1318 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1319 1320 if (!ResultReg) 1321 return false; 1322 1323 updateValueMap(I, ResultReg); 1324 return true; 1325} 1326 1327// Return true if we should copy from swift error to the final vreg as specified 1328// by SwiftErrorWorklist. 1329static bool shouldCopySwiftErrorsToFinalVRegs(const TargetLowering &TLI, 1330 FunctionLoweringInfo &FuncInfo) { 1331 if (!TLI.supportSwiftError()) 1332 return false; 1333 return FuncInfo.SwiftErrorWorklist.count(FuncInfo.MBB); 1334} 1335 1336// Remove local value instructions starting from the instruction after 1337// SavedLastLocalValue to the current function insert point. 1338void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1339{ 1340 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1341 if (CurLastLocalValue != SavedLastLocalValue) { 1342 // Find the first local value instruction to be deleted. 1343 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1344 // Otherwise it's the first instruction in the block. 1345 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1346 if (SavedLastLocalValue) 1347 ++FirstDeadInst; 1348 else 1349 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1350 setLastLocalValue(SavedLastLocalValue); 1351 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1352 } 1353} 1354 1355bool FastISel::selectInstruction(const Instruction *I) { 1356 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1357 // Just before the terminator instruction, insert instructions to 1358 // feed PHI nodes in successor blocks. 1359 if (isa<TerminatorInst>(I)) { 1360 // If we need to materialize any vreg from worklist, we bail out of 1361 // FastISel. 1362 if (shouldCopySwiftErrorsToFinalVRegs(TLI, FuncInfo)) 1363 return false; 1364 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1365 // PHI node handling may have generated local value instructions, 1366 // even though it failed to handle all PHI nodes. 1367 // We remove these instructions because SelectionDAGISel will generate 1368 // them again. 1369 removeDeadLocalValueCode(SavedLastLocalValue); 1370 return false; 1371 } 1372 } 1373 1374 // FastISel does not handle any operand bundles except OB_funclet. 1375 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1376 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1377 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1378 return false; 1379 1380 DbgLoc = I->getDebugLoc(); 1381 1382 SavedInsertPt = FuncInfo.InsertPt; 1383 1384 if (const auto *Call = dyn_cast<CallInst>(I)) { 1385 const Function *F = Call->getCalledFunction(); 1386 LibFunc::Func Func; 1387 1388 // As a special case, don't handle calls to builtin library functions that 1389 // may be translated directly to target instructions. 1390 if (F && !F->hasLocalLinkage() && F->hasName() && 1391 LibInfo->getLibFunc(F->getName(), Func) && 1392 LibInfo->hasOptimizedCodeGen(Func)) 1393 return false; 1394 1395 // Don't handle Intrinsic::trap if a trap function is specified. 1396 if (F && F->getIntrinsicID() == Intrinsic::trap && 1397 Call->hasFnAttr("trap-func-name")) 1398 return false; 1399 } 1400 1401 // First, try doing target-independent selection. 1402 if (!SkipTargetIndependentISel) { 1403 if (selectOperator(I, I->getOpcode())) { 1404 ++NumFastIselSuccessIndependent; 1405 DbgLoc = DebugLoc(); 1406 return true; 1407 } 1408 // Remove dead code. 1409 recomputeInsertPt(); 1410 if (SavedInsertPt != FuncInfo.InsertPt) 1411 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1412 SavedInsertPt = FuncInfo.InsertPt; 1413 } 1414 // Next, try calling the target to attempt to handle the instruction. 1415 if (fastSelectInstruction(I)) { 1416 ++NumFastIselSuccessTarget; 1417 DbgLoc = DebugLoc(); 1418 return true; 1419 } 1420 // Remove dead code. 1421 recomputeInsertPt(); 1422 if (SavedInsertPt != FuncInfo.InsertPt) 1423 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1424 1425 DbgLoc = DebugLoc(); 1426 // Undo phi node updates, because they will be added again by SelectionDAG. 1427 if (isa<TerminatorInst>(I)) { 1428 // PHI node handling may have generated local value instructions. 1429 // We remove them because SelectionDAGISel will generate them again. 1430 removeDeadLocalValueCode(SavedLastLocalValue); 1431 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1432 } 1433 return false; 1434} 1435 1436/// Emit an unconditional branch to the given block, unless it is the immediate 1437/// (fall-through) successor, and update the CFG. 1438void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1439 const DebugLoc &DbgLoc) { 1440 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1441 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1442 // For more accurate line information if this is the only instruction 1443 // in the block then emit it, otherwise we have the unconditional 1444 // fall-through case, which needs no instructions. 1445 } else { 1446 // The unconditional branch case. 1447 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1448 SmallVector<MachineOperand, 0>(), DbgLoc); 1449 } 1450 if (FuncInfo.BPI) { 1451 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1452 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1453 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1454 } else 1455 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1456} 1457 1458void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1459 MachineBasicBlock *TrueMBB, 1460 MachineBasicBlock *FalseMBB) { 1461 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1462 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1463 // successor/predecessor lists. 1464 if (TrueMBB != FalseMBB) { 1465 if (FuncInfo.BPI) { 1466 auto BranchProbability = 1467 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1468 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1469 } else 1470 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1471 } 1472 1473 fastEmitBranch(FalseMBB, DbgLoc); 1474} 1475 1476/// Emit an FNeg operation. 1477bool FastISel::selectFNeg(const User *I) { 1478 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1479 if (!OpReg) 1480 return false; 1481 bool OpRegIsKill = hasTrivialKill(I); 1482 1483 // If the target has ISD::FNEG, use it. 1484 EVT VT = TLI.getValueType(DL, I->getType()); 1485 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1486 OpReg, OpRegIsKill); 1487 if (ResultReg) { 1488 updateValueMap(I, ResultReg); 1489 return true; 1490 } 1491 1492 // Bitcast the value to integer, twiddle the sign bit with xor, 1493 // and then bitcast it back to floating-point. 1494 if (VT.getSizeInBits() > 64) 1495 return false; 1496 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1497 if (!TLI.isTypeLegal(IntVT)) 1498 return false; 1499 1500 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1501 ISD::BITCAST, OpReg, OpRegIsKill); 1502 if (!IntReg) 1503 return false; 1504 1505 unsigned IntResultReg = fastEmit_ri_( 1506 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1507 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1508 if (!IntResultReg) 1509 return false; 1510 1511 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1512 IntResultReg, /*IsKill=*/true); 1513 if (!ResultReg) 1514 return false; 1515 1516 updateValueMap(I, ResultReg); 1517 return true; 1518} 1519 1520bool FastISel::selectExtractValue(const User *U) { 1521 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1522 if (!EVI) 1523 return false; 1524 1525 // Make sure we only try to handle extracts with a legal result. But also 1526 // allow i1 because it's easy. 1527 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1528 if (!RealVT.isSimple()) 1529 return false; 1530 MVT VT = RealVT.getSimpleVT(); 1531 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1532 return false; 1533 1534 const Value *Op0 = EVI->getOperand(0); 1535 Type *AggTy = Op0->getType(); 1536 1537 // Get the base result register. 1538 unsigned ResultReg; 1539 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1540 if (I != FuncInfo.ValueMap.end()) 1541 ResultReg = I->second; 1542 else if (isa<Instruction>(Op0)) 1543 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1544 else 1545 return false; // fast-isel can't handle aggregate constants at the moment 1546 1547 // Get the actual result register, which is an offset from the base register. 1548 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1549 1550 SmallVector<EVT, 4> AggValueVTs; 1551 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1552 1553 for (unsigned i = 0; i < VTIndex; i++) 1554 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1555 1556 updateValueMap(EVI, ResultReg); 1557 return true; 1558} 1559 1560bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1561 switch (Opcode) { 1562 case Instruction::Add: 1563 return selectBinaryOp(I, ISD::ADD); 1564 case Instruction::FAdd: 1565 return selectBinaryOp(I, ISD::FADD); 1566 case Instruction::Sub: 1567 return selectBinaryOp(I, ISD::SUB); 1568 case Instruction::FSub: 1569 // FNeg is currently represented in LLVM IR as a special case of FSub. 1570 if (BinaryOperator::isFNeg(I)) 1571 return selectFNeg(I); 1572 return selectBinaryOp(I, ISD::FSUB); 1573 case Instruction::Mul: 1574 return selectBinaryOp(I, ISD::MUL); 1575 case Instruction::FMul: 1576 return selectBinaryOp(I, ISD::FMUL); 1577 case Instruction::SDiv: 1578 return selectBinaryOp(I, ISD::SDIV); 1579 case Instruction::UDiv: 1580 return selectBinaryOp(I, ISD::UDIV); 1581 case Instruction::FDiv: 1582 return selectBinaryOp(I, ISD::FDIV); 1583 case Instruction::SRem: 1584 return selectBinaryOp(I, ISD::SREM); 1585 case Instruction::URem: 1586 return selectBinaryOp(I, ISD::UREM); 1587 case Instruction::FRem: 1588 return selectBinaryOp(I, ISD::FREM); 1589 case Instruction::Shl: 1590 return selectBinaryOp(I, ISD::SHL); 1591 case Instruction::LShr: 1592 return selectBinaryOp(I, ISD::SRL); 1593 case Instruction::AShr: 1594 return selectBinaryOp(I, ISD::SRA); 1595 case Instruction::And: 1596 return selectBinaryOp(I, ISD::AND); 1597 case Instruction::Or: 1598 return selectBinaryOp(I, ISD::OR); 1599 case Instruction::Xor: 1600 return selectBinaryOp(I, ISD::XOR); 1601 1602 case Instruction::GetElementPtr: 1603 return selectGetElementPtr(I); 1604 1605 case Instruction::Br: { 1606 const BranchInst *BI = cast<BranchInst>(I); 1607 1608 if (BI->isUnconditional()) { 1609 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1610 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1611 fastEmitBranch(MSucc, BI->getDebugLoc()); 1612 return true; 1613 } 1614 1615 // Conditional branches are not handed yet. 1616 // Halt "fast" selection and bail. 1617 return false; 1618 } 1619 1620 case Instruction::Unreachable: 1621 if (TM.Options.TrapUnreachable) 1622 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1623 else 1624 return true; 1625 1626 case Instruction::Alloca: 1627 // FunctionLowering has the static-sized case covered. 1628 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1629 return true; 1630 1631 // Dynamic-sized alloca is not handled yet. 1632 return false; 1633 1634 case Instruction::Call: 1635 return selectCall(I); 1636 1637 case Instruction::BitCast: 1638 return selectBitCast(I); 1639 1640 case Instruction::FPToSI: 1641 return selectCast(I, ISD::FP_TO_SINT); 1642 case Instruction::ZExt: 1643 return selectCast(I, ISD::ZERO_EXTEND); 1644 case Instruction::SExt: 1645 return selectCast(I, ISD::SIGN_EXTEND); 1646 case Instruction::Trunc: 1647 return selectCast(I, ISD::TRUNCATE); 1648 case Instruction::SIToFP: 1649 return selectCast(I, ISD::SINT_TO_FP); 1650 1651 case Instruction::IntToPtr: // Deliberate fall-through. 1652 case Instruction::PtrToInt: { 1653 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1654 EVT DstVT = TLI.getValueType(DL, I->getType()); 1655 if (DstVT.bitsGT(SrcVT)) 1656 return selectCast(I, ISD::ZERO_EXTEND); 1657 if (DstVT.bitsLT(SrcVT)) 1658 return selectCast(I, ISD::TRUNCATE); 1659 unsigned Reg = getRegForValue(I->getOperand(0)); 1660 if (!Reg) 1661 return false; 1662 updateValueMap(I, Reg); 1663 return true; 1664 } 1665 1666 case Instruction::ExtractValue: 1667 return selectExtractValue(I); 1668 1669 case Instruction::PHI: 1670 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1671 1672 default: 1673 // Unhandled instruction. Halt "fast" selection and bail. 1674 return false; 1675 } 1676} 1677 1678FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1679 const TargetLibraryInfo *LibInfo, 1680 bool SkipTargetIndependentISel) 1681 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1682 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1683 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1684 TII(*MF->getSubtarget().getInstrInfo()), 1685 TLI(*MF->getSubtarget().getTargetLowering()), 1686 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1687 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1688 1689FastISel::~FastISel() {} 1690 1691bool FastISel::fastLowerArguments() { return false; } 1692 1693bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1694 1695bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1696 return false; 1697} 1698 1699unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1700 1701unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1702 bool /*Op0IsKill*/) { 1703 return 0; 1704} 1705 1706unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1707 bool /*Op0IsKill*/, unsigned /*Op1*/, 1708 bool /*Op1IsKill*/) { 1709 return 0; 1710} 1711 1712unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1713 return 0; 1714} 1715 1716unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1717 const ConstantFP * /*FPImm*/) { 1718 return 0; 1719} 1720 1721unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1722 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1723 return 0; 1724} 1725 1726unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1727 bool /*Op0IsKill*/, 1728 const ConstantFP * /*FPImm*/) { 1729 return 0; 1730} 1731 1732unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1733 bool /*Op0IsKill*/, unsigned /*Op1*/, 1734 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1735 return 0; 1736} 1737 1738/// This method is a wrapper of fastEmit_ri. It first tries to emit an 1739/// instruction with an immediate operand using fastEmit_ri. 1740/// If that fails, it materializes the immediate into a register and try 1741/// fastEmit_rr instead. 1742unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1743 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1744 // If this is a multiply by a power of two, emit this as a shift left. 1745 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1746 Opcode = ISD::SHL; 1747 Imm = Log2_64(Imm); 1748 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1749 // div x, 8 -> srl x, 3 1750 Opcode = ISD::SRL; 1751 Imm = Log2_64(Imm); 1752 } 1753 1754 // Horrible hack (to be removed), check to make sure shift amounts are 1755 // in-range. 1756 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1757 Imm >= VT.getSizeInBits()) 1758 return 0; 1759 1760 // First check if immediate type is legal. If not, we can't use the ri form. 1761 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1762 if (ResultReg) 1763 return ResultReg; 1764 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1765 bool IsImmKill = true; 1766 if (!MaterialReg) { 1767 // This is a bit ugly/slow, but failing here means falling out of 1768 // fast-isel, which would be very slow. 1769 IntegerType *ITy = 1770 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1771 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1772 if (!MaterialReg) 1773 return 0; 1774 // FIXME: If the materialized register here has no uses yet then this 1775 // will be the first use and we should be able to mark it as killed. 1776 // However, the local value area for materialising constant expressions 1777 // grows down, not up, which means that any constant expressions we generate 1778 // later which also use 'Imm' could be after this instruction and therefore 1779 // after this kill. 1780 IsImmKill = false; 1781 } 1782 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1783} 1784 1785unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1786 return MRI.createVirtualRegister(RC); 1787} 1788 1789unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1790 unsigned OpNum) { 1791 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1792 const TargetRegisterClass *RegClass = 1793 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1794 if (!MRI.constrainRegClass(Op, RegClass)) { 1795 // If it's not legal to COPY between the register classes, something 1796 // has gone very wrong before we got here. 1797 unsigned NewOp = createResultReg(RegClass); 1798 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1799 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1800 return NewOp; 1801 } 1802 } 1803 return Op; 1804} 1805 1806unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1807 const TargetRegisterClass *RC) { 1808 unsigned ResultReg = createResultReg(RC); 1809 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1810 1811 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1812 return ResultReg; 1813} 1814 1815unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1816 const TargetRegisterClass *RC, unsigned Op0, 1817 bool Op0IsKill) { 1818 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1819 1820 unsigned ResultReg = createResultReg(RC); 1821 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1822 1823 if (II.getNumDefs() >= 1) 1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1825 .addReg(Op0, getKillRegState(Op0IsKill)); 1826 else { 1827 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1828 .addReg(Op0, getKillRegState(Op0IsKill)); 1829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1830 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1831 } 1832 1833 return ResultReg; 1834} 1835 1836unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1837 const TargetRegisterClass *RC, unsigned Op0, 1838 bool Op0IsKill, unsigned Op1, 1839 bool Op1IsKill) { 1840 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1841 1842 unsigned ResultReg = createResultReg(RC); 1843 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1844 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1845 1846 if (II.getNumDefs() >= 1) 1847 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1848 .addReg(Op0, getKillRegState(Op0IsKill)) 1849 .addReg(Op1, getKillRegState(Op1IsKill)); 1850 else { 1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1852 .addReg(Op0, getKillRegState(Op0IsKill)) 1853 .addReg(Op1, getKillRegState(Op1IsKill)); 1854 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1855 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1856 } 1857 return ResultReg; 1858} 1859 1860unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1861 const TargetRegisterClass *RC, unsigned Op0, 1862 bool Op0IsKill, unsigned Op1, 1863 bool Op1IsKill, unsigned Op2, 1864 bool Op2IsKill) { 1865 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1866 1867 unsigned ResultReg = createResultReg(RC); 1868 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1869 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1870 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1871 1872 if (II.getNumDefs() >= 1) 1873 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1874 .addReg(Op0, getKillRegState(Op0IsKill)) 1875 .addReg(Op1, getKillRegState(Op1IsKill)) 1876 .addReg(Op2, getKillRegState(Op2IsKill)); 1877 else { 1878 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1879 .addReg(Op0, getKillRegState(Op0IsKill)) 1880 .addReg(Op1, getKillRegState(Op1IsKill)) 1881 .addReg(Op2, getKillRegState(Op2IsKill)); 1882 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1883 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1884 } 1885 return ResultReg; 1886} 1887 1888unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1889 const TargetRegisterClass *RC, unsigned Op0, 1890 bool Op0IsKill, uint64_t Imm) { 1891 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1892 1893 unsigned ResultReg = createResultReg(RC); 1894 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1895 1896 if (II.getNumDefs() >= 1) 1897 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1898 .addReg(Op0, getKillRegState(Op0IsKill)) 1899 .addImm(Imm); 1900 else { 1901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1902 .addReg(Op0, getKillRegState(Op0IsKill)) 1903 .addImm(Imm); 1904 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1905 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1906 } 1907 return ResultReg; 1908} 1909 1910unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1911 const TargetRegisterClass *RC, unsigned Op0, 1912 bool Op0IsKill, uint64_t Imm1, 1913 uint64_t Imm2) { 1914 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1915 1916 unsigned ResultReg = createResultReg(RC); 1917 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1918 1919 if (II.getNumDefs() >= 1) 1920 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1921 .addReg(Op0, getKillRegState(Op0IsKill)) 1922 .addImm(Imm1) 1923 .addImm(Imm2); 1924 else { 1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1926 .addReg(Op0, getKillRegState(Op0IsKill)) 1927 .addImm(Imm1) 1928 .addImm(Imm2); 1929 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1930 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1931 } 1932 return ResultReg; 1933} 1934 1935unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1936 const TargetRegisterClass *RC, 1937 const ConstantFP *FPImm) { 1938 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1939 1940 unsigned ResultReg = createResultReg(RC); 1941 1942 if (II.getNumDefs() >= 1) 1943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1944 .addFPImm(FPImm); 1945 else { 1946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1947 .addFPImm(FPImm); 1948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1949 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1950 } 1951 return ResultReg; 1952} 1953 1954unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1955 const TargetRegisterClass *RC, unsigned Op0, 1956 bool Op0IsKill, unsigned Op1, 1957 bool Op1IsKill, uint64_t Imm) { 1958 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1959 1960 unsigned ResultReg = createResultReg(RC); 1961 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1962 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1963 1964 if (II.getNumDefs() >= 1) 1965 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1966 .addReg(Op0, getKillRegState(Op0IsKill)) 1967 .addReg(Op1, getKillRegState(Op1IsKill)) 1968 .addImm(Imm); 1969 else { 1970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1971 .addReg(Op0, getKillRegState(Op0IsKill)) 1972 .addReg(Op1, getKillRegState(Op1IsKill)) 1973 .addImm(Imm); 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1975 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1976 } 1977 return ResultReg; 1978} 1979 1980unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1981 const TargetRegisterClass *RC, uint64_t Imm) { 1982 unsigned ResultReg = createResultReg(RC); 1983 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1984 1985 if (II.getNumDefs() >= 1) 1986 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1987 .addImm(Imm); 1988 else { 1989 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1991 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1992 } 1993 return ResultReg; 1994} 1995 1996unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1997 bool Op0IsKill, uint32_t Idx) { 1998 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1999 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2000 "Cannot yet extract from physregs"); 2001 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2002 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2004 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2005 return ResultReg; 2006} 2007 2008/// Emit MachineInstrs to compute the value of Op with all but the least 2009/// significant bit set to zero. 2010unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2011 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2012} 2013 2014/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2015/// Emit code to ensure constants are copied into registers when needed. 2016/// Remember the virtual registers that need to be added to the Machine PHI 2017/// nodes as input. We cannot just directly add them, because expansion 2018/// might result in multiple MBB's for one BB. As such, the start of the 2019/// BB might correspond to a different MBB than the end. 2020bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2021 const TerminatorInst *TI = LLVMBB->getTerminator(); 2022 2023 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2024 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2025 2026 // Check successor nodes' PHI nodes that expect a constant to be available 2027 // from this block. 2028 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2029 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2030 if (!isa<PHINode>(SuccBB->begin())) 2031 continue; 2032 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2033 2034 // If this terminator has multiple identical successors (common for 2035 // switches), only handle each succ once. 2036 if (!SuccsHandled.insert(SuccMBB).second) 2037 continue; 2038 2039 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2040 2041 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2042 // nodes and Machine PHI nodes, but the incoming operands have not been 2043 // emitted yet. 2044 for (BasicBlock::const_iterator I = SuccBB->begin(); 2045 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2046 2047 // Ignore dead phi's. 2048 if (PN->use_empty()) 2049 continue; 2050 2051 // Only handle legal types. Two interesting things to note here. First, 2052 // by bailing out early, we may leave behind some dead instructions, 2053 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2054 // own moves. Second, this check is necessary because FastISel doesn't 2055 // use CreateRegs to create registers, so it always creates 2056 // exactly one register for each non-void instruction. 2057 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2058 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2059 // Handle integer promotions, though, because they're common and easy. 2060 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2061 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2062 return false; 2063 } 2064 } 2065 2066 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2067 2068 // Set the DebugLoc for the copy. Prefer the location of the operand 2069 // if there is one; use the location of the PHI otherwise. 2070 DbgLoc = PN->getDebugLoc(); 2071 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2072 DbgLoc = Inst->getDebugLoc(); 2073 2074 unsigned Reg = getRegForValue(PHIOp); 2075 if (!Reg) { 2076 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2077 return false; 2078 } 2079 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2080 DbgLoc = DebugLoc(); 2081 } 2082 } 2083 2084 return true; 2085} 2086 2087bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2088 assert(LI->hasOneUse() && 2089 "tryToFoldLoad expected a LoadInst with a single use"); 2090 // We know that the load has a single use, but don't know what it is. If it 2091 // isn't one of the folded instructions, then we can't succeed here. Handle 2092 // this by scanning the single-use users of the load until we get to FoldInst. 2093 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2094 2095 const Instruction *TheUser = LI->user_back(); 2096 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2097 // Stay in the right block. 2098 TheUser->getParent() == FoldInst->getParent() && 2099 --MaxUsers) { // Don't scan too far. 2100 // If there are multiple or no uses of this instruction, then bail out. 2101 if (!TheUser->hasOneUse()) 2102 return false; 2103 2104 TheUser = TheUser->user_back(); 2105 } 2106 2107 // If we didn't find the fold instruction, then we failed to collapse the 2108 // sequence. 2109 if (TheUser != FoldInst) 2110 return false; 2111 2112 // Don't try to fold volatile loads. Target has to deal with alignment 2113 // constraints. 2114 if (LI->isVolatile()) 2115 return false; 2116 2117 // Figure out which vreg this is going into. If there is no assigned vreg yet 2118 // then there actually was no reference to it. Perhaps the load is referenced 2119 // by a dead instruction. 2120 unsigned LoadReg = getRegForValue(LI); 2121 if (!LoadReg) 2122 return false; 2123 2124 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2125 // may mean that the instruction got lowered to multiple MIs, or the use of 2126 // the loaded value ended up being multiple operands of the result. 2127 if (!MRI.hasOneUse(LoadReg)) 2128 return false; 2129 2130 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2131 MachineInstr *User = RI->getParent(); 2132 2133 // Set the insertion point properly. Folding the load can cause generation of 2134 // other random instructions (like sign extends) for addressing modes; make 2135 // sure they get inserted in a logical place before the new instruction. 2136 FuncInfo.InsertPt = User; 2137 FuncInfo.MBB = User->getParent(); 2138 2139 // Ask the target to try folding the load. 2140 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2141} 2142 2143bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2144 // Must be an add. 2145 if (!isa<AddOperator>(Add)) 2146 return false; 2147 // Type size needs to match. 2148 if (DL.getTypeSizeInBits(GEP->getType()) != 2149 DL.getTypeSizeInBits(Add->getType())) 2150 return false; 2151 // Must be in the same basic block. 2152 if (isa<Instruction>(Add) && 2153 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2154 return false; 2155 // Must have a constant operand. 2156 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2157} 2158 2159MachineMemOperand * 2160FastISel::createMachineMemOperandFor(const Instruction *I) const { 2161 const Value *Ptr; 2162 Type *ValTy; 2163 unsigned Alignment; 2164 unsigned Flags; 2165 bool IsVolatile; 2166 2167 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2168 Alignment = LI->getAlignment(); 2169 IsVolatile = LI->isVolatile(); 2170 Flags = MachineMemOperand::MOLoad; 2171 Ptr = LI->getPointerOperand(); 2172 ValTy = LI->getType(); 2173 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2174 Alignment = SI->getAlignment(); 2175 IsVolatile = SI->isVolatile(); 2176 Flags = MachineMemOperand::MOStore; 2177 Ptr = SI->getPointerOperand(); 2178 ValTy = SI->getValueOperand()->getType(); 2179 } else 2180 return nullptr; 2181 2182 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2183 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2184 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2185 2186 AAMDNodes AAInfo; 2187 I->getAAMetadata(AAInfo); 2188 2189 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2190 Alignment = DL.getABITypeAlignment(ValTy); 2191 2192 unsigned Size = DL.getTypeStoreSize(ValTy); 2193 2194 if (IsVolatile) 2195 Flags |= MachineMemOperand::MOVolatile; 2196 if (IsNonTemporal) 2197 Flags |= MachineMemOperand::MONonTemporal; 2198 if (IsInvariant) 2199 Flags |= MachineMemOperand::MOInvariant; 2200 2201 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2202 Alignment, AAInfo, Ranges); 2203} 2204 2205CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2206 // If both operands are the same, then try to optimize or fold the cmp. 2207 CmpInst::Predicate Predicate = CI->getPredicate(); 2208 if (CI->getOperand(0) != CI->getOperand(1)) 2209 return Predicate; 2210 2211 switch (Predicate) { 2212 default: llvm_unreachable("Invalid predicate!"); 2213 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2214 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2215 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2216 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2217 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2218 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2219 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2220 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2221 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2222 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2223 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2224 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2225 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2226 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2227 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2228 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2229 2230 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2231 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2232 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2233 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2234 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2235 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2236 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2237 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2238 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2239 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2240 } 2241 2242 return Predicate; 2243} 2244