1//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::LegalizeVectors method.
11//
12// The vector legalizer looks for vector operations which might need to be
13// scalarized and legalizes them. This is a separate step from Legalize because
14// scalarizing can introduce illegal types.  For example, suppose we have an
15// ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17// operation, which introduces nodes with the illegal type i64 which must be
18// expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19// the operation must be unrolled, which introduces nodes with the illegal
20// type i8 which must be promoted.
21//
22// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23// or operations that happen to take a vector which are custom-lowered;
24// the legalization for such operations never produces nodes
25// with illegal types, so it's okay to put off legalizing them until
26// SelectionDAG::Legalize runs.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/Target/TargetLowering.h"
32using namespace llvm;
33
34namespace {
35class VectorLegalizer {
36  SelectionDAG& DAG;
37  const TargetLowering &TLI;
38  bool Changed; // Keep track of whether anything changed
39
40  /// For nodes that are of legal width, and that have more than one use, this
41  /// map indicates what regularized operand to use.  This allows us to avoid
42  /// legalizing the same thing more than once.
43  SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44
45  /// \brief Adds a node to the translation cache.
46  void AddLegalizedOperand(SDValue From, SDValue To) {
47    LegalizedNodes.insert(std::make_pair(From, To));
48    // If someone requests legalization of the new node, return itself.
49    if (From != To)
50      LegalizedNodes.insert(std::make_pair(To, To));
51  }
52
53  /// \brief Legalizes the given node.
54  SDValue LegalizeOp(SDValue Op);
55
56  /// \brief Assuming the node is legal, "legalize" the results.
57  SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58
59  /// \brief Implements unrolling a VSETCC.
60  SDValue UnrollVSETCC(SDValue Op);
61
62  /// \brief Implement expand-based legalization of vector operations.
63  ///
64  /// This is just a high-level routine to dispatch to specific code paths for
65  /// operations to legalize them.
66  SDValue Expand(SDValue Op);
67
68  /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69  /// FSUB isn't legal.
70  ///
71  /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72  /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73  SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74
75  /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76  SDValue ExpandSEXTINREG(SDValue Op);
77
78  /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79  ///
80  /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81  /// type. The contents of the bits in the extended part of each element are
82  /// undef.
83  SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84
85  /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86  ///
87  /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88  /// type, then shifts left and arithmetic shifts right to introduce a sign
89  /// extension.
90  SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91
92  /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93  ///
94  /// Shuffles the low lanes of the operand into place and blends zeros into
95  /// the remaining lanes, finally bitcasting to the proper type.
96  SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97
98  /// \brief Expand bswap of vectors into a shuffle if legal.
99  SDValue ExpandBSWAP(SDValue Op);
100
101  /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102  /// supported by the target.
103  SDValue ExpandVSELECT(SDValue Op);
104  SDValue ExpandSELECT(SDValue Op);
105  SDValue ExpandLoad(SDValue Op);
106  SDValue ExpandStore(SDValue Op);
107  SDValue ExpandFNEG(SDValue Op);
108  SDValue ExpandBITREVERSE(SDValue Op);
109  SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op);
110
111  /// \brief Implements vector promotion.
112  ///
113  /// This is essentially just bitcasting the operands to a different type and
114  /// bitcasting the result back to the original type.
115  SDValue Promote(SDValue Op);
116
117  /// \brief Implements [SU]INT_TO_FP vector promotion.
118  ///
119  /// This is a [zs]ext of the input operand to the next size up.
120  SDValue PromoteINT_TO_FP(SDValue Op);
121
122  /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
123  ///
124  /// It is promoted to the next size up integer type.  The result is then
125  /// truncated back to the original type.
126  SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
127
128public:
129  /// \brief Begin legalizer the vector operations in the DAG.
130  bool Run();
131  VectorLegalizer(SelectionDAG& dag) :
132      DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
133};
134
135bool VectorLegalizer::Run() {
136  // Before we start legalizing vector nodes, check if there are any vectors.
137  bool HasVectors = false;
138  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
139       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
140    // Check if the values of the nodes contain vectors. We don't need to check
141    // the operands because we are going to check their values at some point.
142    for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
143         J != E; ++J)
144      HasVectors |= J->isVector();
145
146    // If we found a vector node we can start the legalization.
147    if (HasVectors)
148      break;
149  }
150
151  // If this basic block has no vectors then no need to legalize vectors.
152  if (!HasVectors)
153    return false;
154
155  // The legalize process is inherently a bottom-up recursive process (users
156  // legalize their uses before themselves).  Given infinite stack space, we
157  // could just start legalizing on the root and traverse the whole graph.  In
158  // practice however, this causes us to run out of stack space on large basic
159  // blocks.  To avoid this problem, compute an ordering of the nodes where each
160  // node is only legalized after all of its operands are legalized.
161  DAG.AssignTopologicalOrder();
162  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
163       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
164    LegalizeOp(SDValue(&*I, 0));
165
166  // Finally, it's possible the root changed.  Get the new root.
167  SDValue OldRoot = DAG.getRoot();
168  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
169  DAG.setRoot(LegalizedNodes[OldRoot]);
170
171  LegalizedNodes.clear();
172
173  // Remove dead nodes now.
174  DAG.RemoveDeadNodes();
175
176  return Changed;
177}
178
179SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
180  // Generic legalization: just pass the operand through.
181  for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
182    AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
183  return Result.getValue(Op.getResNo());
184}
185
186SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
187  // Note that LegalizeOp may be reentered even from single-use nodes, which
188  // means that we always must cache transformed nodes.
189  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
190  if (I != LegalizedNodes.end()) return I->second;
191
192  SDNode* Node = Op.getNode();
193
194  // Legalize the operands
195  SmallVector<SDValue, 8> Ops;
196  for (const SDValue &Op : Node->op_values())
197    Ops.push_back(LegalizeOp(Op));
198
199  SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
200
201  bool HasVectorValue = false;
202  if (Op.getOpcode() == ISD::LOAD) {
203    LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
204    ISD::LoadExtType ExtType = LD->getExtensionType();
205    if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
206      switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
207                                   LD->getMemoryVT())) {
208      default: llvm_unreachable("This action is not supported yet!");
209      case TargetLowering::Legal:
210        return TranslateLegalizeResults(Op, Result);
211      case TargetLowering::Custom:
212        if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
213          if (Lowered == Result)
214            return TranslateLegalizeResults(Op, Lowered);
215          Changed = true;
216          if (Lowered->getNumValues() != Op->getNumValues()) {
217            // This expanded to something other than the load. Assume the
218            // lowering code took care of any chain values, and just handle the
219            // returned value.
220            assert(Result.getValue(1).use_empty() &&
221                   "There are still live users of the old chain!");
222            return LegalizeOp(Lowered);
223          }
224          return TranslateLegalizeResults(Op, Lowered);
225        }
226      case TargetLowering::Expand:
227        Changed = true;
228        return LegalizeOp(ExpandLoad(Op));
229      }
230  } else if (Op.getOpcode() == ISD::STORE) {
231    StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
232    EVT StVT = ST->getMemoryVT();
233    MVT ValVT = ST->getValue().getSimpleValueType();
234    if (StVT.isVector() && ST->isTruncatingStore())
235      switch (TLI.getTruncStoreAction(ValVT, StVT)) {
236      default: llvm_unreachable("This action is not supported yet!");
237      case TargetLowering::Legal:
238        return TranslateLegalizeResults(Op, Result);
239      case TargetLowering::Custom: {
240        SDValue Lowered = TLI.LowerOperation(Result, DAG);
241        Changed = Lowered != Result;
242        return TranslateLegalizeResults(Op, Lowered);
243      }
244      case TargetLowering::Expand:
245        Changed = true;
246        return LegalizeOp(ExpandStore(Op));
247      }
248  } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
249    HasVectorValue = true;
250
251  for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
252       J != E;
253       ++J)
254    HasVectorValue |= J->isVector();
255  if (!HasVectorValue)
256    return TranslateLegalizeResults(Op, Result);
257
258  EVT QueryType;
259  switch (Op.getOpcode()) {
260  default:
261    return TranslateLegalizeResults(Op, Result);
262  case ISD::ADD:
263  case ISD::SUB:
264  case ISD::MUL:
265  case ISD::SDIV:
266  case ISD::UDIV:
267  case ISD::SREM:
268  case ISD::UREM:
269  case ISD::SDIVREM:
270  case ISD::UDIVREM:
271  case ISD::FADD:
272  case ISD::FSUB:
273  case ISD::FMUL:
274  case ISD::FDIV:
275  case ISD::FREM:
276  case ISD::AND:
277  case ISD::OR:
278  case ISD::XOR:
279  case ISD::SHL:
280  case ISD::SRA:
281  case ISD::SRL:
282  case ISD::ROTL:
283  case ISD::ROTR:
284  case ISD::BSWAP:
285  case ISD::BITREVERSE:
286  case ISD::CTLZ:
287  case ISD::CTTZ:
288  case ISD::CTLZ_ZERO_UNDEF:
289  case ISD::CTTZ_ZERO_UNDEF:
290  case ISD::CTPOP:
291  case ISD::SELECT:
292  case ISD::VSELECT:
293  case ISD::SELECT_CC:
294  case ISD::SETCC:
295  case ISD::ZERO_EXTEND:
296  case ISD::ANY_EXTEND:
297  case ISD::TRUNCATE:
298  case ISD::SIGN_EXTEND:
299  case ISD::FP_TO_SINT:
300  case ISD::FP_TO_UINT:
301  case ISD::FNEG:
302  case ISD::FABS:
303  case ISD::FMINNUM:
304  case ISD::FMAXNUM:
305  case ISD::FMINNAN:
306  case ISD::FMAXNAN:
307  case ISD::FCOPYSIGN:
308  case ISD::FSQRT:
309  case ISD::FSIN:
310  case ISD::FCOS:
311  case ISD::FPOWI:
312  case ISD::FPOW:
313  case ISD::FLOG:
314  case ISD::FLOG2:
315  case ISD::FLOG10:
316  case ISD::FEXP:
317  case ISD::FEXP2:
318  case ISD::FCEIL:
319  case ISD::FTRUNC:
320  case ISD::FRINT:
321  case ISD::FNEARBYINT:
322  case ISD::FROUND:
323  case ISD::FFLOOR:
324  case ISD::FP_ROUND:
325  case ISD::FP_EXTEND:
326  case ISD::FMA:
327  case ISD::SIGN_EXTEND_INREG:
328  case ISD::ANY_EXTEND_VECTOR_INREG:
329  case ISD::SIGN_EXTEND_VECTOR_INREG:
330  case ISD::ZERO_EXTEND_VECTOR_INREG:
331  case ISD::SMIN:
332  case ISD::SMAX:
333  case ISD::UMIN:
334  case ISD::UMAX:
335    QueryType = Node->getValueType(0);
336    break;
337  case ISD::FP_ROUND_INREG:
338    QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
339    break;
340  case ISD::SINT_TO_FP:
341  case ISD::UINT_TO_FP:
342    QueryType = Node->getOperand(0).getValueType();
343    break;
344  case ISD::MSCATTER:
345    QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
346    break;
347  case ISD::MSTORE:
348    QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
349    break;
350  }
351
352  switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
353  default: llvm_unreachable("This action is not supported yet!");
354  case TargetLowering::Promote:
355    Result = Promote(Op);
356    Changed = true;
357    break;
358  case TargetLowering::Legal:
359    break;
360  case TargetLowering::Custom: {
361    if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
362      Result = Tmp1;
363      break;
364    }
365    // FALL THROUGH
366  }
367  case TargetLowering::Expand:
368    Result = Expand(Op);
369  }
370
371  // Make sure that the generated code is itself legal.
372  if (Result != Op) {
373    Result = LegalizeOp(Result);
374    Changed = true;
375  }
376
377  // Note that LegalizeOp may be reentered even from single-use nodes, which
378  // means that we always must cache transformed nodes.
379  AddLegalizedOperand(Op, Result);
380  return Result;
381}
382
383SDValue VectorLegalizer::Promote(SDValue Op) {
384  // For a few operations there is a specific concept for promotion based on
385  // the operand's type.
386  switch (Op.getOpcode()) {
387  case ISD::SINT_TO_FP:
388  case ISD::UINT_TO_FP:
389    // "Promote" the operation by extending the operand.
390    return PromoteINT_TO_FP(Op);
391  case ISD::FP_TO_UINT:
392  case ISD::FP_TO_SINT:
393    // Promote the operation by extending the operand.
394    return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
395  }
396
397  // There are currently two cases of vector promotion:
398  // 1) Bitcasting a vector of integers to a different type to a vector of the
399  //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
400  // 2) Extending a vector of floats to a vector of the same number of larger
401  //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
402  MVT VT = Op.getSimpleValueType();
403  assert(Op.getNode()->getNumValues() == 1 &&
404         "Can't promote a vector with multiple results!");
405  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
406  SDLoc dl(Op);
407  SmallVector<SDValue, 4> Operands(Op.getNumOperands());
408
409  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
410    if (Op.getOperand(j).getValueType().isVector())
411      if (Op.getOperand(j)
412              .getValueType()
413              .getVectorElementType()
414              .isFloatingPoint() &&
415          NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
416        Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
417      else
418        Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
419    else
420      Operands[j] = Op.getOperand(j);
421  }
422
423  Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
424  if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
425      (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
426       NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
427    return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
428  else
429    return DAG.getNode(ISD::BITCAST, dl, VT, Op);
430}
431
432SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
433  // INT_TO_FP operations may require the input operand be promoted even
434  // when the type is otherwise legal.
435  EVT VT = Op.getOperand(0).getValueType();
436  assert(Op.getNode()->getNumValues() == 1 &&
437         "Can't promote a vector with multiple results!");
438
439  // Normal getTypeToPromoteTo() doesn't work here, as that will promote
440  // by widening the vector w/ the same element width and twice the number
441  // of elements. We want the other way around, the same number of elements,
442  // each twice the width.
443  //
444  // Increase the bitwidth of the element to the next pow-of-two
445  // (which is greater than 8 bits).
446
447  EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
448  assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
449  SDLoc dl(Op);
450  SmallVector<SDValue, 4> Operands(Op.getNumOperands());
451
452  unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
453    ISD::SIGN_EXTEND;
454  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
455    if (Op.getOperand(j).getValueType().isVector())
456      Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
457    else
458      Operands[j] = Op.getOperand(j);
459  }
460
461  return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
462}
463
464// For FP_TO_INT we promote the result type to a vector type with wider
465// elements and then truncate the result.  This is different from the default
466// PromoteVector which uses bitcast to promote thus assumning that the
467// promoted vector type has the same overall size.
468SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
469  assert(Op.getNode()->getNumValues() == 1 &&
470         "Can't promote a vector with multiple results!");
471  EVT VT = Op.getValueType();
472
473  EVT NewVT;
474  unsigned NewOpc;
475  while (1) {
476    NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
477    assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
478    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
479      NewOpc = ISD::FP_TO_SINT;
480      break;
481    }
482    if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
483      NewOpc = ISD::FP_TO_UINT;
484      break;
485    }
486  }
487
488  SDLoc loc(Op);
489  SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
490  return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
491}
492
493
494SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
495  LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
496
497  EVT SrcVT = LD->getMemoryVT();
498  EVT SrcEltVT = SrcVT.getScalarType();
499  unsigned NumElem = SrcVT.getVectorNumElements();
500
501
502  SDValue NewChain;
503  SDValue Value;
504  if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
505    SDLoc dl(Op);
506
507    SmallVector<SDValue, 8> Vals;
508    SmallVector<SDValue, 8> LoadChains;
509
510    EVT DstEltVT = LD->getValueType(0).getScalarType();
511    SDValue Chain = LD->getChain();
512    SDValue BasePTR = LD->getBasePtr();
513    ISD::LoadExtType ExtType = LD->getExtensionType();
514
515    // When elements in a vector is not byte-addressable, we cannot directly
516    // load each element by advancing pointer, which could only address bytes.
517    // Instead, we load all significant words, mask bits off, and concatenate
518    // them to form each element. Finally, they are extended to destination
519    // scalar type to build the destination vector.
520    EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
521
522    assert(WideVT.isRound() &&
523           "Could not handle the sophisticated case when the widest integer is"
524           " not power of 2.");
525    assert(WideVT.bitsGE(SrcEltVT) &&
526           "Type is not legalized?");
527
528    unsigned WideBytes = WideVT.getStoreSize();
529    unsigned Offset = 0;
530    unsigned RemainingBytes = SrcVT.getStoreSize();
531    SmallVector<SDValue, 8> LoadVals;
532
533    while (RemainingBytes > 0) {
534      SDValue ScalarLoad;
535      unsigned LoadBytes = WideBytes;
536
537      if (RemainingBytes >= LoadBytes) {
538        ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
539                                 LD->getPointerInfo().getWithOffset(Offset),
540                                 LD->isVolatile(), LD->isNonTemporal(),
541                                 LD->isInvariant(),
542                                 MinAlign(LD->getAlignment(), Offset),
543                                 LD->getAAInfo());
544      } else {
545        EVT LoadVT = WideVT;
546        while (RemainingBytes < LoadBytes) {
547          LoadBytes >>= 1; // Reduce the load size by half.
548          LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
549        }
550        ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
551                                    LD->getPointerInfo().getWithOffset(Offset),
552                                    LoadVT, LD->isVolatile(),
553                                    LD->isNonTemporal(), LD->isInvariant(),
554                                    MinAlign(LD->getAlignment(), Offset),
555                                    LD->getAAInfo());
556      }
557
558      RemainingBytes -= LoadBytes;
559      Offset += LoadBytes;
560      BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
561                            DAG.getConstant(LoadBytes, dl,
562                                            BasePTR.getValueType()));
563
564      LoadVals.push_back(ScalarLoad.getValue(0));
565      LoadChains.push_back(ScalarLoad.getValue(1));
566    }
567
568    // Extract bits, pack and extend/trunc them into destination type.
569    unsigned SrcEltBits = SrcEltVT.getSizeInBits();
570    SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
571
572    unsigned BitOffset = 0;
573    unsigned WideIdx = 0;
574    unsigned WideBits = WideVT.getSizeInBits();
575
576    for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
577      SDValue Lo, Hi, ShAmt;
578
579      if (BitOffset < WideBits) {
580        ShAmt = DAG.getConstant(
581            BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
582        Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
583        Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
584      }
585
586      BitOffset += SrcEltBits;
587      if (BitOffset >= WideBits) {
588        WideIdx++;
589        BitOffset -= WideBits;
590        if (BitOffset > 0) {
591          ShAmt = DAG.getConstant(
592              SrcEltBits - BitOffset, dl,
593              TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
594          Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
595          Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
596        }
597      }
598
599      if (Hi.getNode())
600        Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
601
602      switch (ExtType) {
603      default: llvm_unreachable("Unknown extended-load op!");
604      case ISD::EXTLOAD:
605        Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
606        break;
607      case ISD::ZEXTLOAD:
608        Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
609        break;
610      case ISD::SEXTLOAD:
611        ShAmt =
612            DAG.getConstant(WideBits - SrcEltBits, dl,
613                            TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
614        Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
615        Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
616        Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
617        break;
618      }
619      Vals.push_back(Lo);
620    }
621
622    NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
623    Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
624                        Op.getNode()->getValueType(0), Vals);
625  } else {
626    SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
627
628    NewChain = Scalarized.getValue(1);
629    Value = Scalarized.getValue(0);
630  }
631
632  AddLegalizedOperand(Op.getValue(0), Value);
633  AddLegalizedOperand(Op.getValue(1), NewChain);
634
635  return (Op.getResNo() ? NewChain : Value);
636}
637
638SDValue VectorLegalizer::ExpandStore(SDValue Op) {
639  StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
640
641  EVT StVT = ST->getMemoryVT();
642  EVT MemSclVT = StVT.getScalarType();
643  unsigned ScalarSize = MemSclVT.getSizeInBits();
644
645  // Round odd types to the next pow of two.
646  if (!isPowerOf2_32(ScalarSize)) {
647    // FIXME: This is completely broken and inconsistent with ExpandLoad
648    // handling.
649
650    // For sub-byte element sizes, this ends up with 0 stride between elements,
651    // so the same element just gets re-written to the same location. There seem
652    // to be tests explicitly testing for this broken behavior though.  tests
653    // for this broken behavior.
654
655    LLVMContext &Ctx = *DAG.getContext();
656
657    EVT NewMemVT
658      = EVT::getVectorVT(Ctx,
659                         MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)),
660                         StVT.getVectorNumElements());
661
662    SDValue NewVectorStore
663      = DAG.getTruncStore(ST->getChain(), SDLoc(Op), ST->getValue(),
664                          ST->getBasePtr(),
665                          ST->getPointerInfo(), NewMemVT,
666                          ST->isVolatile(), ST->isNonTemporal(),
667                          ST->getAlignment(),
668                          ST->getAAInfo());
669    ST = cast<StoreSDNode>(NewVectorStore.getNode());
670  }
671
672  SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
673  AddLegalizedOperand(Op, TF);
674  return TF;
675}
676
677SDValue VectorLegalizer::Expand(SDValue Op) {
678  switch (Op->getOpcode()) {
679  case ISD::SIGN_EXTEND_INREG:
680    return ExpandSEXTINREG(Op);
681  case ISD::ANY_EXTEND_VECTOR_INREG:
682    return ExpandANY_EXTEND_VECTOR_INREG(Op);
683  case ISD::SIGN_EXTEND_VECTOR_INREG:
684    return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
685  case ISD::ZERO_EXTEND_VECTOR_INREG:
686    return ExpandZERO_EXTEND_VECTOR_INREG(Op);
687  case ISD::BSWAP:
688    return ExpandBSWAP(Op);
689  case ISD::VSELECT:
690    return ExpandVSELECT(Op);
691  case ISD::SELECT:
692    return ExpandSELECT(Op);
693  case ISD::UINT_TO_FP:
694    return ExpandUINT_TO_FLOAT(Op);
695  case ISD::FNEG:
696    return ExpandFNEG(Op);
697  case ISD::SETCC:
698    return UnrollVSETCC(Op);
699  case ISD::BITREVERSE:
700    return ExpandBITREVERSE(Op);
701  case ISD::CTLZ_ZERO_UNDEF:
702  case ISD::CTTZ_ZERO_UNDEF:
703    return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op);
704  default:
705    return DAG.UnrollVectorOp(Op.getNode());
706  }
707}
708
709SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
710  // Lower a select instruction where the condition is a scalar and the
711  // operands are vectors. Lower this select to VSELECT and implement it
712  // using XOR AND OR. The selector bit is broadcasted.
713  EVT VT = Op.getValueType();
714  SDLoc DL(Op);
715
716  SDValue Mask = Op.getOperand(0);
717  SDValue Op1 = Op.getOperand(1);
718  SDValue Op2 = Op.getOperand(2);
719
720  assert(VT.isVector() && !Mask.getValueType().isVector()
721         && Op1.getValueType() == Op2.getValueType() && "Invalid type");
722
723  unsigned NumElem = VT.getVectorNumElements();
724
725  // If we can't even use the basic vector operations of
726  // AND,OR,XOR, we will have to scalarize the op.
727  // Notice that the operation may be 'promoted' which means that it is
728  // 'bitcasted' to another type which is handled.
729  // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
730  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
731      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
732      TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
733      TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
734    return DAG.UnrollVectorOp(Op.getNode());
735
736  // Generate a mask operand.
737  EVT MaskTy = VT.changeVectorElementTypeToInteger();
738
739  // What is the size of each element in the vector mask.
740  EVT BitTy = MaskTy.getScalarType();
741
742  Mask = DAG.getSelect(DL, BitTy, Mask,
743          DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
744                          BitTy),
745          DAG.getConstant(0, DL, BitTy));
746
747  // Broadcast the mask so that the entire vector is all-one or all zero.
748  SmallVector<SDValue, 8> Ops(NumElem, Mask);
749  Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
750
751  // Bitcast the operands to be the same type as the mask.
752  // This is needed when we select between FP types because
753  // the mask is a vector of integers.
754  Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
755  Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
756
757  SDValue AllOnes = DAG.getConstant(
758            APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
759  SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
760
761  Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
762  Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
763  SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
764  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
765}
766
767SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
768  EVT VT = Op.getValueType();
769
770  // Make sure that the SRA and SHL instructions are available.
771  if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
772      TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
773    return DAG.UnrollVectorOp(Op.getNode());
774
775  SDLoc DL(Op);
776  EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
777
778  unsigned BW = VT.getScalarType().getSizeInBits();
779  unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
780  SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
781
782  Op = Op.getOperand(0);
783  Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
784  return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
785}
786
787// Generically expand a vector anyext in register to a shuffle of the relevant
788// lanes into the appropriate locations, with other lanes left undef.
789SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
790  SDLoc DL(Op);
791  EVT VT = Op.getValueType();
792  int NumElements = VT.getVectorNumElements();
793  SDValue Src = Op.getOperand(0);
794  EVT SrcVT = Src.getValueType();
795  int NumSrcElements = SrcVT.getVectorNumElements();
796
797  // Build a base mask of undef shuffles.
798  SmallVector<int, 16> ShuffleMask;
799  ShuffleMask.resize(NumSrcElements, -1);
800
801  // Place the extended lanes into the correct locations.
802  int ExtLaneScale = NumSrcElements / NumElements;
803  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
804  for (int i = 0; i < NumElements; ++i)
805    ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
806
807  return DAG.getNode(
808      ISD::BITCAST, DL, VT,
809      DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
810}
811
812SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
813  SDLoc DL(Op);
814  EVT VT = Op.getValueType();
815  SDValue Src = Op.getOperand(0);
816  EVT SrcVT = Src.getValueType();
817
818  // First build an any-extend node which can be legalized above when we
819  // recurse through it.
820  Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
821
822  // Now we need sign extend. Do this by shifting the elements. Even if these
823  // aren't legal operations, they have a better chance of being legalized
824  // without full scalarization than the sign extension does.
825  unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
826  unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
827  SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
828  return DAG.getNode(ISD::SRA, DL, VT,
829                     DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
830                     ShiftAmount);
831}
832
833// Generically expand a vector zext in register to a shuffle of the relevant
834// lanes into the appropriate locations, a blend of zero into the high bits,
835// and a bitcast to the wider element type.
836SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
837  SDLoc DL(Op);
838  EVT VT = Op.getValueType();
839  int NumElements = VT.getVectorNumElements();
840  SDValue Src = Op.getOperand(0);
841  EVT SrcVT = Src.getValueType();
842  int NumSrcElements = SrcVT.getVectorNumElements();
843
844  // Build up a zero vector to blend into this one.
845  SDValue Zero = DAG.getConstant(0, DL, SrcVT);
846
847  // Shuffle the incoming lanes into the correct position, and pull all other
848  // lanes from the zero vector.
849  SmallVector<int, 16> ShuffleMask;
850  ShuffleMask.reserve(NumSrcElements);
851  for (int i = 0; i < NumSrcElements; ++i)
852    ShuffleMask.push_back(i);
853
854  int ExtLaneScale = NumSrcElements / NumElements;
855  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
856  for (int i = 0; i < NumElements; ++i)
857    ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
858
859  return DAG.getNode(ISD::BITCAST, DL, VT,
860                     DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
861}
862
863static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
864  int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
865  for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
866    for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
867      ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
868}
869
870SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
871  EVT VT = Op.getValueType();
872
873  // Generate a byte wise shuffle mask for the BSWAP.
874  SmallVector<int, 16> ShuffleMask;
875  createBSWAPShuffleMask(VT, ShuffleMask);
876  EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
877
878  // Only emit a shuffle if the mask is legal.
879  if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
880    return DAG.UnrollVectorOp(Op.getNode());
881
882  SDLoc DL(Op);
883  Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
884  Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
885  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
886}
887
888SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
889  EVT VT = Op.getValueType();
890
891  // If we have the scalar operation, it's probably cheaper to unroll it.
892  if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
893    return DAG.UnrollVectorOp(Op.getNode());
894
895  // If the vector element width is a whole number of bytes, test if its legal
896  // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
897  // vector. This greatly reduces the number of bit shifts necessary.
898  unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
899  if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
900    SmallVector<int, 16> BSWAPMask;
901    createBSWAPShuffleMask(VT, BSWAPMask);
902
903    EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
904    if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
905        (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
906         (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
907          TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
908          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
909          TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
910      SDLoc DL(Op);
911      Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
912      Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
913                                BSWAPMask);
914      Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
915      return DAG.getNode(ISD::BITCAST, DL, VT, Op);
916    }
917  }
918
919  // If we have the appropriate vector bit operations, it is better to use them
920  // than unrolling and expanding each component.
921  if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
922      !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
923      !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
924      !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
925    return DAG.UnrollVectorOp(Op.getNode());
926
927  // Let LegalizeDAG handle this later.
928  return Op;
929}
930
931SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
932  // Implement VSELECT in terms of XOR, AND, OR
933  // on platforms which do not support blend natively.
934  SDLoc DL(Op);
935
936  SDValue Mask = Op.getOperand(0);
937  SDValue Op1 = Op.getOperand(1);
938  SDValue Op2 = Op.getOperand(2);
939
940  EVT VT = Mask.getValueType();
941
942  // If we can't even use the basic vector operations of
943  // AND,OR,XOR, we will have to scalarize the op.
944  // Notice that the operation may be 'promoted' which means that it is
945  // 'bitcasted' to another type which is handled.
946  // This operation also isn't safe with AND, OR, XOR when the boolean
947  // type is 0/1 as we need an all ones vector constant to mask with.
948  // FIXME: Sign extend 1 to all ones if thats legal on the target.
949  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
950      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
951      TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
952      TLI.getBooleanContents(Op1.getValueType()) !=
953          TargetLowering::ZeroOrNegativeOneBooleanContent)
954    return DAG.UnrollVectorOp(Op.getNode());
955
956  // If the mask and the type are different sizes, unroll the vector op. This
957  // can occur when getSetCCResultType returns something that is different in
958  // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
959  if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
960    return DAG.UnrollVectorOp(Op.getNode());
961
962  // Bitcast the operands to be the same type as the mask.
963  // This is needed when we select between FP types because
964  // the mask is a vector of integers.
965  Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
966  Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
967
968  SDValue AllOnes = DAG.getConstant(
969    APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
970  SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
971
972  Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
973  Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
974  SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
975  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
976}
977
978SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
979  EVT VT = Op.getOperand(0).getValueType();
980  SDLoc DL(Op);
981
982  // Make sure that the SINT_TO_FP and SRL instructions are available.
983  if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
984      TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
985    return DAG.UnrollVectorOp(Op.getNode());
986
987 EVT SVT = VT.getScalarType();
988  assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
989      "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
990
991  unsigned BW = SVT.getSizeInBits();
992  SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
993
994  // Constants to clear the upper part of the word.
995  // Notice that we can also use SHL+SHR, but using a constant is slightly
996  // faster on x86.
997  uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
998  SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
999
1000  // Two to the power of half-word-size.
1001  SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
1002
1003  // Clear upper part of LO, lower HI
1004  SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1005  SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1006
1007  // Convert hi and lo to floats
1008  // Convert the hi part back to the upper values
1009  // TODO: Can any fast-math-flags be set on these nodes?
1010  SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1011          fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1012  SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1013
1014  // Add the two halves
1015  return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1016}
1017
1018
1019SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1020  if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1021    SDLoc DL(Op);
1022    SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1023    // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1024    return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1025                       Zero, Op.getOperand(0));
1026  }
1027  return DAG.UnrollVectorOp(Op.getNode());
1028}
1029
1030SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) {
1031  // If the non-ZERO_UNDEF version is supported we can use that instead.
1032  unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ;
1033  if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType())) {
1034    SDLoc DL(Op);
1035    return DAG.getNode(Opc, DL, Op.getValueType(), Op.getOperand(0));
1036  }
1037
1038  // Otherwise go ahead and unroll.
1039  return DAG.UnrollVectorOp(Op.getNode());
1040}
1041
1042SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1043  EVT VT = Op.getValueType();
1044  unsigned NumElems = VT.getVectorNumElements();
1045  EVT EltVT = VT.getVectorElementType();
1046  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1047  EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1048  SDLoc dl(Op);
1049  SmallVector<SDValue, 8> Ops(NumElems);
1050  for (unsigned i = 0; i < NumElems; ++i) {
1051    SDValue LHSElem = DAG.getNode(
1052        ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1053        DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1054    SDValue RHSElem = DAG.getNode(
1055        ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1056        DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1057    Ops[i] = DAG.getNode(ISD::SETCC, dl,
1058                         TLI.getSetCCResultType(DAG.getDataLayout(),
1059                                                *DAG.getContext(), TmpEltVT),
1060                         LHSElem, RHSElem, CC);
1061    Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1062                           DAG.getConstant(APInt::getAllOnesValue
1063                                           (EltVT.getSizeInBits()), dl, EltVT),
1064                           DAG.getConstant(0, dl, EltVT));
1065  }
1066  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1067}
1068
1069}
1070
1071bool SelectionDAG::LegalizeVectors() {
1072  return VectorLegalizer(*this).Run();
1073}
1074