1//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file performs vector type splitting and scalarization for LegalizeTypes.
11// Scalarization is the act of changing a computation in an illegal one-element
12// vector type to be a computation in its scalar element type.  For example,
13// implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14// as a base case when scalarizing vector arithmetic like <4 x f32>, which
15// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16// types.
17// Splitting is the act of changing a computation in an invalid vector type to
18// be a computation in two vectors of half the size.  For example, implementing
19// <128 x f32> operations in terms of two <64 x f32> operations.
20//
21//===----------------------------------------------------------------------===//
22
23#include "LegalizeTypes.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29#define DEBUG_TYPE "legalize-types"
30
31//===----------------------------------------------------------------------===//
32//  Result Vector Scalarization: <1 x ty> -> ty.
33//===----------------------------------------------------------------------===//
34
35void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
36  DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
37        N->dump(&DAG);
38        dbgs() << "\n");
39  SDValue R = SDValue();
40
41  switch (N->getOpcode()) {
42  default:
43#ifndef NDEBUG
44    dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
45    N->dump(&DAG);
46    dbgs() << "\n";
47#endif
48    report_fatal_error("Do not know how to scalarize the result of this "
49                       "operator!\n");
50
51  case ISD::MERGE_VALUES:      R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
52  case ISD::BITCAST:           R = ScalarizeVecRes_BITCAST(N); break;
53  case ISD::BUILD_VECTOR:      R = ScalarizeVecRes_BUILD_VECTOR(N); break;
54  case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
55  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
56  case ISD::FP_ROUND:          R = ScalarizeVecRes_FP_ROUND(N); break;
57  case ISD::FP_ROUND_INREG:    R = ScalarizeVecRes_InregOp(N); break;
58  case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
59  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
60  case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
61  case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
62  case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
63  case ISD::VSELECT:           R = ScalarizeVecRes_VSELECT(N); break;
64  case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
65  case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
66  case ISD::SETCC:             R = ScalarizeVecRes_SETCC(N); break;
67  case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
68  case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
69  case ISD::ANY_EXTEND:
70  case ISD::BITREVERSE:
71  case ISD::BSWAP:
72  case ISD::CTLZ:
73  case ISD::CTLZ_ZERO_UNDEF:
74  case ISD::CTPOP:
75  case ISD::CTTZ:
76  case ISD::CTTZ_ZERO_UNDEF:
77  case ISD::FABS:
78  case ISD::FCEIL:
79  case ISD::FCOS:
80  case ISD::FEXP:
81  case ISD::FEXP2:
82  case ISD::FFLOOR:
83  case ISD::FLOG:
84  case ISD::FLOG10:
85  case ISD::FLOG2:
86  case ISD::FNEARBYINT:
87  case ISD::FNEG:
88  case ISD::FP_EXTEND:
89  case ISD::FP_TO_SINT:
90  case ISD::FP_TO_UINT:
91  case ISD::FRINT:
92  case ISD::FROUND:
93  case ISD::FSIN:
94  case ISD::FSQRT:
95  case ISD::FTRUNC:
96  case ISD::SIGN_EXTEND:
97  case ISD::SINT_TO_FP:
98  case ISD::TRUNCATE:
99  case ISD::UINT_TO_FP:
100  case ISD::ZERO_EXTEND:
101    R = ScalarizeVecRes_UnaryOp(N);
102    break;
103
104  case ISD::ADD:
105  case ISD::AND:
106  case ISD::FADD:
107  case ISD::FCOPYSIGN:
108  case ISD::FDIV:
109  case ISD::FMUL:
110  case ISD::FMINNUM:
111  case ISD::FMAXNUM:
112  case ISD::FMINNAN:
113  case ISD::FMAXNAN:
114  case ISD::SMIN:
115  case ISD::SMAX:
116  case ISD::UMIN:
117  case ISD::UMAX:
118
119  case ISD::FPOW:
120  case ISD::FREM:
121  case ISD::FSUB:
122  case ISD::MUL:
123  case ISD::OR:
124  case ISD::SDIV:
125  case ISD::SREM:
126  case ISD::SUB:
127  case ISD::UDIV:
128  case ISD::UREM:
129  case ISD::XOR:
130  case ISD::SHL:
131  case ISD::SRA:
132  case ISD::SRL:
133    R = ScalarizeVecRes_BinOp(N);
134    break;
135  case ISD::FMA:
136    R = ScalarizeVecRes_TernaryOp(N);
137    break;
138  }
139
140  // If R is null, the sub-method took care of registering the result.
141  if (R.getNode())
142    SetScalarizedVector(SDValue(N, ResNo), R);
143}
144
145SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
146  SDValue LHS = GetScalarizedVector(N->getOperand(0));
147  SDValue RHS = GetScalarizedVector(N->getOperand(1));
148  return DAG.getNode(N->getOpcode(), SDLoc(N),
149                     LHS.getValueType(), LHS, RHS, N->getFlags());
150}
151
152SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
153  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
154  SDValue Op1 = GetScalarizedVector(N->getOperand(1));
155  SDValue Op2 = GetScalarizedVector(N->getOperand(2));
156  return DAG.getNode(N->getOpcode(), SDLoc(N),
157                     Op0.getValueType(), Op0, Op1, Op2);
158}
159
160SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
161                                                       unsigned ResNo) {
162  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
163  return GetScalarizedVector(Op);
164}
165
166SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
167  EVT NewVT = N->getValueType(0).getVectorElementType();
168  return DAG.getNode(ISD::BITCAST, SDLoc(N),
169                     NewVT, N->getOperand(0));
170}
171
172SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
173  EVT EltVT = N->getValueType(0).getVectorElementType();
174  SDValue InOp = N->getOperand(0);
175  // The BUILD_VECTOR operands may be of wider element types and
176  // we may need to truncate them back to the requested return type.
177  if (EltVT.isInteger())
178    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
179  return InOp;
180}
181
182SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
183  EVT NewVT = N->getValueType(0).getVectorElementType();
184  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
185  return DAG.getConvertRndSat(NewVT, SDLoc(N),
186                              Op0, DAG.getValueType(NewVT),
187                              DAG.getValueType(Op0.getValueType()),
188                              N->getOperand(3),
189                              N->getOperand(4),
190                              cast<CvtRndSatSDNode>(N)->getCvtCode());
191}
192
193SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
194  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
195                     N->getValueType(0).getVectorElementType(),
196                     N->getOperand(0), N->getOperand(1));
197}
198
199SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
200  EVT NewVT = N->getValueType(0).getVectorElementType();
201  SDValue Op = GetScalarizedVector(N->getOperand(0));
202  return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
203                     NewVT, Op, N->getOperand(1));
204}
205
206SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
207  SDValue Op = GetScalarizedVector(N->getOperand(0));
208  return DAG.getNode(ISD::FPOWI, SDLoc(N),
209                     Op.getValueType(), Op, N->getOperand(1));
210}
211
212SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
213  // The value to insert may have a wider type than the vector element type,
214  // so be sure to truncate it to the element type if necessary.
215  SDValue Op = N->getOperand(1);
216  EVT EltVT = N->getValueType(0).getVectorElementType();
217  if (Op.getValueType() != EltVT)
218    // FIXME: Can this happen for floating point types?
219    Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
220  return Op;
221}
222
223SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
224  assert(N->isUnindexed() && "Indexed vector load?");
225
226  SDValue Result = DAG.getLoad(ISD::UNINDEXED,
227                               N->getExtensionType(),
228                               N->getValueType(0).getVectorElementType(),
229                               SDLoc(N),
230                               N->getChain(), N->getBasePtr(),
231                               DAG.getUNDEF(N->getBasePtr().getValueType()),
232                               N->getPointerInfo(),
233                               N->getMemoryVT().getVectorElementType(),
234                               N->isVolatile(), N->isNonTemporal(),
235                               N->isInvariant(), N->getOriginalAlignment(),
236                               N->getAAInfo());
237
238  // Legalize the chain result - switch anything that used the old chain to
239  // use the new one.
240  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
241  return Result;
242}
243
244SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
245  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
246  EVT DestVT = N->getValueType(0).getVectorElementType();
247  SDValue Op = N->getOperand(0);
248  EVT OpVT = Op.getValueType();
249  SDLoc DL(N);
250  // The result needs scalarizing, but it's not a given that the source does.
251  // This is a workaround for targets where it's impossible to scalarize the
252  // result of a conversion, because the source type is legal.
253  // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
254  // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
255  // legal and was not scalarized.
256  // See the similar logic in ScalarizeVecRes_VSETCC
257  if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
258    Op = GetScalarizedVector(Op);
259  } else {
260    EVT VT = OpVT.getVectorElementType();
261    Op = DAG.getNode(
262        ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
263        DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
264  }
265  return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
266}
267
268SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
269  EVT EltVT = N->getValueType(0).getVectorElementType();
270  EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
271  SDValue LHS = GetScalarizedVector(N->getOperand(0));
272  return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
273                     LHS, DAG.getValueType(ExtVT));
274}
275
276SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
277  // If the operand is wider than the vector element type then it is implicitly
278  // truncated.  Make that explicit here.
279  EVT EltVT = N->getValueType(0).getVectorElementType();
280  SDValue InOp = N->getOperand(0);
281  if (InOp.getValueType() != EltVT)
282    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
283  return InOp;
284}
285
286SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
287  SDValue Cond = GetScalarizedVector(N->getOperand(0));
288  SDValue LHS = GetScalarizedVector(N->getOperand(1));
289  TargetLowering::BooleanContent ScalarBool =
290      TLI.getBooleanContents(false, false);
291  TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
292
293  // If integer and float booleans have different contents then we can't
294  // reliably optimize in all cases. There is a full explanation for this in
295  // DAGCombiner::visitSELECT() where the same issue affects folding
296  // (select C, 0, 1) to (xor C, 1).
297  if (TLI.getBooleanContents(false, false) !=
298      TLI.getBooleanContents(false, true)) {
299    // At least try the common case where the boolean is generated by a
300    // comparison.
301    if (Cond->getOpcode() == ISD::SETCC) {
302      EVT OpVT = Cond->getOperand(0)->getValueType(0);
303      ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
304      VecBool = TLI.getBooleanContents(OpVT);
305    } else
306      ScalarBool = TargetLowering::UndefinedBooleanContent;
307  }
308
309  if (ScalarBool != VecBool) {
310    EVT CondVT = Cond.getValueType();
311    switch (ScalarBool) {
312      case TargetLowering::UndefinedBooleanContent:
313        break;
314      case TargetLowering::ZeroOrOneBooleanContent:
315        assert(VecBool == TargetLowering::UndefinedBooleanContent ||
316               VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
317        // Vector read from all ones, scalar expects a single 1 so mask.
318        Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
319                           Cond, DAG.getConstant(1, SDLoc(N), CondVT));
320        break;
321      case TargetLowering::ZeroOrNegativeOneBooleanContent:
322        assert(VecBool == TargetLowering::UndefinedBooleanContent ||
323               VecBool == TargetLowering::ZeroOrOneBooleanContent);
324        // Vector reads from a one, scalar from all ones so sign extend.
325        Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
326                           Cond, DAG.getValueType(MVT::i1));
327        break;
328    }
329  }
330
331  return DAG.getSelect(SDLoc(N),
332                       LHS.getValueType(), Cond, LHS,
333                       GetScalarizedVector(N->getOperand(2)));
334}
335
336SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
337  SDValue LHS = GetScalarizedVector(N->getOperand(1));
338  return DAG.getSelect(SDLoc(N),
339                       LHS.getValueType(), N->getOperand(0), LHS,
340                       GetScalarizedVector(N->getOperand(2)));
341}
342
343SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
344  SDValue LHS = GetScalarizedVector(N->getOperand(2));
345  return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
346                     N->getOperand(0), N->getOperand(1),
347                     LHS, GetScalarizedVector(N->getOperand(3)),
348                     N->getOperand(4));
349}
350
351SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
352  assert(N->getValueType(0).isVector() ==
353         N->getOperand(0).getValueType().isVector() &&
354         "Scalar/Vector type mismatch");
355
356  if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
357
358  SDValue LHS = GetScalarizedVector(N->getOperand(0));
359  SDValue RHS = GetScalarizedVector(N->getOperand(1));
360  SDLoc DL(N);
361
362  // Turn it into a scalar SETCC.
363  return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
364}
365
366SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
367  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
368}
369
370SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
371  // Figure out if the scalar is the LHS or RHS and return it.
372  SDValue Arg = N->getOperand(2).getOperand(0);
373  if (Arg.isUndef())
374    return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
375  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
376  return GetScalarizedVector(N->getOperand(Op));
377}
378
379SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
380  assert(N->getValueType(0).isVector() &&
381         N->getOperand(0).getValueType().isVector() &&
382         "Operand types must be vectors");
383  SDValue LHS = N->getOperand(0);
384  SDValue RHS = N->getOperand(1);
385  EVT OpVT = LHS.getValueType();
386  EVT NVT = N->getValueType(0).getVectorElementType();
387  SDLoc DL(N);
388
389  // The result needs scalarizing, but it's not a given that the source does.
390  if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
391    LHS = GetScalarizedVector(LHS);
392    RHS = GetScalarizedVector(RHS);
393  } else {
394    EVT VT = OpVT.getVectorElementType();
395    LHS = DAG.getNode(
396        ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
397        DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
398    RHS = DAG.getNode(
399        ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
400        DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
401  }
402
403  // Turn it into a scalar SETCC.
404  SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
405                            N->getOperand(2));
406  // Vectors may have a different boolean contents to scalars.  Promote the
407  // value appropriately.
408  ISD::NodeType ExtendCode =
409      TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
410  return DAG.getNode(ExtendCode, DL, NVT, Res);
411}
412
413
414//===----------------------------------------------------------------------===//
415//  Operand Vector Scalarization <1 x ty> -> ty.
416//===----------------------------------------------------------------------===//
417
418bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
419  DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
420        N->dump(&DAG);
421        dbgs() << "\n");
422  SDValue Res = SDValue();
423
424  if (!Res.getNode()) {
425    switch (N->getOpcode()) {
426    default:
427#ifndef NDEBUG
428      dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
429      N->dump(&DAG);
430      dbgs() << "\n";
431#endif
432      llvm_unreachable("Do not know how to scalarize this operator's operand!");
433    case ISD::BITCAST:
434      Res = ScalarizeVecOp_BITCAST(N);
435      break;
436    case ISD::ANY_EXTEND:
437    case ISD::ZERO_EXTEND:
438    case ISD::SIGN_EXTEND:
439    case ISD::TRUNCATE:
440    case ISD::FP_TO_SINT:
441    case ISD::FP_TO_UINT:
442    case ISD::SINT_TO_FP:
443    case ISD::UINT_TO_FP:
444      Res = ScalarizeVecOp_UnaryOp(N);
445      break;
446    case ISD::CONCAT_VECTORS:
447      Res = ScalarizeVecOp_CONCAT_VECTORS(N);
448      break;
449    case ISD::EXTRACT_VECTOR_ELT:
450      Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
451      break;
452    case ISD::VSELECT:
453      Res = ScalarizeVecOp_VSELECT(N);
454      break;
455    case ISD::STORE:
456      Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
457      break;
458    case ISD::FP_ROUND:
459      Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
460      break;
461    }
462  }
463
464  // If the result is null, the sub-method took care of registering results etc.
465  if (!Res.getNode()) return false;
466
467  // If the result is N, the sub-method updated N in place.  Tell the legalizer
468  // core about this.
469  if (Res.getNode() == N)
470    return true;
471
472  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
473         "Invalid operand expansion");
474
475  ReplaceValueWith(SDValue(N, 0), Res);
476  return false;
477}
478
479/// If the value to convert is a vector that needs to be scalarized, it must be
480/// <1 x ty>. Convert the element instead.
481SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
482  SDValue Elt = GetScalarizedVector(N->getOperand(0));
483  return DAG.getNode(ISD::BITCAST, SDLoc(N),
484                     N->getValueType(0), Elt);
485}
486
487/// If the input is a vector that needs to be scalarized, it must be <1 x ty>.
488/// Do the operation on the element instead.
489SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
490  assert(N->getValueType(0).getVectorNumElements() == 1 &&
491         "Unexpected vector type!");
492  SDValue Elt = GetScalarizedVector(N->getOperand(0));
493  SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
494                           N->getValueType(0).getScalarType(), Elt);
495  // Revectorize the result so the types line up with what the uses of this
496  // expression expect.
497  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Op);
498}
499
500/// The vectors to concatenate have length one - use a BUILD_VECTOR instead.
501SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
502  SmallVector<SDValue, 8> Ops(N->getNumOperands());
503  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
504    Ops[i] = GetScalarizedVector(N->getOperand(i));
505  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Ops);
506}
507
508/// If the input is a vector that needs to be scalarized, it must be <1 x ty>,
509/// so just return the element, ignoring the index.
510SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
511  SDValue Res = GetScalarizedVector(N->getOperand(0));
512  if (Res.getValueType() != N->getValueType(0))
513    Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
514                      Res);
515  return Res;
516}
517
518
519/// If the input condition is a vector that needs to be scalarized, it must be
520/// <1 x i1>, so just convert to a normal ISD::SELECT
521/// (still with vector output type since that was acceptable if we got here).
522SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
523  SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
524  EVT VT = N->getValueType(0);
525
526  return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
527                     N->getOperand(2));
528}
529
530/// If the value to store is a vector that needs to be scalarized, it must be
531/// <1 x ty>. Just store the element.
532SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
533  assert(N->isUnindexed() && "Indexed store of one-element vector?");
534  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
535  SDLoc dl(N);
536
537  if (N->isTruncatingStore())
538    return DAG.getTruncStore(N->getChain(), dl,
539                             GetScalarizedVector(N->getOperand(1)),
540                             N->getBasePtr(), N->getPointerInfo(),
541                             N->getMemoryVT().getVectorElementType(),
542                             N->isVolatile(), N->isNonTemporal(),
543                             N->getAlignment(), N->getAAInfo());
544
545  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
546                      N->getBasePtr(), N->getPointerInfo(),
547                      N->isVolatile(), N->isNonTemporal(),
548                      N->getOriginalAlignment(), N->getAAInfo());
549}
550
551/// If the value to round is a vector that needs to be scalarized, it must be
552/// <1 x ty>. Convert the element instead.
553SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
554  SDValue Elt = GetScalarizedVector(N->getOperand(0));
555  SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
556                            N->getValueType(0).getVectorElementType(), Elt,
557                            N->getOperand(1));
558  return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
559}
560
561//===----------------------------------------------------------------------===//
562//  Result Vector Splitting
563//===----------------------------------------------------------------------===//
564
565/// This method is called when the specified result of the specified node is
566/// found to need vector splitting. At this point, the node may also have
567/// invalid operands or may have other results that need legalization, we just
568/// know that (at least) one result needs vector splitting.
569void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
570  DEBUG(dbgs() << "Split node result: ";
571        N->dump(&DAG);
572        dbgs() << "\n");
573  SDValue Lo, Hi;
574
575  // See if the target wants to custom expand this node.
576  if (CustomLowerNode(N, N->getValueType(ResNo), true))
577    return;
578
579  switch (N->getOpcode()) {
580  default:
581#ifndef NDEBUG
582    dbgs() << "SplitVectorResult #" << ResNo << ": ";
583    N->dump(&DAG);
584    dbgs() << "\n";
585#endif
586    report_fatal_error("Do not know how to split the result of this "
587                       "operator!\n");
588
589  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
590  case ISD::VSELECT:
591  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
592  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
593  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
594  case ISD::BITCAST:           SplitVecRes_BITCAST(N, Lo, Hi); break;
595  case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
596  case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
597  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
598  case ISD::INSERT_SUBVECTOR:  SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
599  case ISD::FP_ROUND_INREG:    SplitVecRes_InregOp(N, Lo, Hi); break;
600  case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
601  case ISD::FCOPYSIGN:         SplitVecRes_FCOPYSIGN(N, Lo, Hi); break;
602  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
603  case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
604  case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
605  case ISD::LOAD:
606    SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
607    break;
608  case ISD::MLOAD:
609    SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
610    break;
611  case ISD::MGATHER:
612    SplitVecRes_MGATHER(cast<MaskedGatherSDNode>(N), Lo, Hi);
613    break;
614  case ISD::SETCC:
615    SplitVecRes_SETCC(N, Lo, Hi);
616    break;
617  case ISD::VECTOR_SHUFFLE:
618    SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
619    break;
620
621  case ISD::ANY_EXTEND_VECTOR_INREG:
622  case ISD::SIGN_EXTEND_VECTOR_INREG:
623  case ISD::ZERO_EXTEND_VECTOR_INREG:
624    SplitVecRes_ExtVecInRegOp(N, Lo, Hi);
625    break;
626
627  case ISD::BITREVERSE:
628  case ISD::BSWAP:
629  case ISD::CONVERT_RNDSAT:
630  case ISD::CTLZ:
631  case ISD::CTTZ:
632  case ISD::CTLZ_ZERO_UNDEF:
633  case ISD::CTTZ_ZERO_UNDEF:
634  case ISD::CTPOP:
635  case ISD::FABS:
636  case ISD::FCEIL:
637  case ISD::FCOS:
638  case ISD::FEXP:
639  case ISD::FEXP2:
640  case ISD::FFLOOR:
641  case ISD::FLOG:
642  case ISD::FLOG10:
643  case ISD::FLOG2:
644  case ISD::FNEARBYINT:
645  case ISD::FNEG:
646  case ISD::FP_EXTEND:
647  case ISD::FP_ROUND:
648  case ISD::FP_TO_SINT:
649  case ISD::FP_TO_UINT:
650  case ISD::FRINT:
651  case ISD::FROUND:
652  case ISD::FSIN:
653  case ISD::FSQRT:
654  case ISD::FTRUNC:
655  case ISD::SINT_TO_FP:
656  case ISD::TRUNCATE:
657  case ISD::UINT_TO_FP:
658    SplitVecRes_UnaryOp(N, Lo, Hi);
659    break;
660
661  case ISD::ANY_EXTEND:
662  case ISD::SIGN_EXTEND:
663  case ISD::ZERO_EXTEND:
664    SplitVecRes_ExtendOp(N, Lo, Hi);
665    break;
666
667  case ISD::ADD:
668  case ISD::SUB:
669  case ISD::MUL:
670  case ISD::MULHS:
671  case ISD::MULHU:
672  case ISD::FADD:
673  case ISD::FSUB:
674  case ISD::FMUL:
675  case ISD::FMINNUM:
676  case ISD::FMAXNUM:
677  case ISD::FMINNAN:
678  case ISD::FMAXNAN:
679  case ISD::SDIV:
680  case ISD::UDIV:
681  case ISD::FDIV:
682  case ISD::FPOW:
683  case ISD::AND:
684  case ISD::OR:
685  case ISD::XOR:
686  case ISD::SHL:
687  case ISD::SRA:
688  case ISD::SRL:
689  case ISD::UREM:
690  case ISD::SREM:
691  case ISD::FREM:
692  case ISD::SMIN:
693  case ISD::SMAX:
694  case ISD::UMIN:
695  case ISD::UMAX:
696    SplitVecRes_BinOp(N, Lo, Hi);
697    break;
698  case ISD::FMA:
699    SplitVecRes_TernaryOp(N, Lo, Hi);
700    break;
701  }
702
703  // If Lo/Hi is null, the sub-method took care of registering results etc.
704  if (Lo.getNode())
705    SetSplitVector(SDValue(N, ResNo), Lo, Hi);
706}
707
708void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
709                                         SDValue &Hi) {
710  SDValue LHSLo, LHSHi;
711  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
712  SDValue RHSLo, RHSHi;
713  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
714  SDLoc dl(N);
715
716  const SDNodeFlags *Flags = N->getFlags();
717  unsigned Opcode = N->getOpcode();
718  Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(), LHSLo, RHSLo, Flags);
719  Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(), LHSHi, RHSHi, Flags);
720}
721
722void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
723                                             SDValue &Hi) {
724  SDValue Op0Lo, Op0Hi;
725  GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
726  SDValue Op1Lo, Op1Hi;
727  GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
728  SDValue Op2Lo, Op2Hi;
729  GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
730  SDLoc dl(N);
731
732  Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
733                   Op0Lo, Op1Lo, Op2Lo);
734  Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
735                   Op0Hi, Op1Hi, Op2Hi);
736}
737
738void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
739                                           SDValue &Hi) {
740  // We know the result is a vector.  The input may be either a vector or a
741  // scalar value.
742  EVT LoVT, HiVT;
743  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
744  SDLoc dl(N);
745
746  SDValue InOp = N->getOperand(0);
747  EVT InVT = InOp.getValueType();
748
749  // Handle some special cases efficiently.
750  switch (getTypeAction(InVT)) {
751  case TargetLowering::TypeLegal:
752  case TargetLowering::TypePromoteInteger:
753  case TargetLowering::TypePromoteFloat:
754  case TargetLowering::TypeSoftenFloat:
755  case TargetLowering::TypeScalarizeVector:
756  case TargetLowering::TypeWidenVector:
757    break;
758  case TargetLowering::TypeExpandInteger:
759  case TargetLowering::TypeExpandFloat:
760    // A scalar to vector conversion, where the scalar needs expansion.
761    // If the vector is being split in two then we can just convert the
762    // expanded pieces.
763    if (LoVT == HiVT) {
764      GetExpandedOp(InOp, Lo, Hi);
765      if (DAG.getDataLayout().isBigEndian())
766        std::swap(Lo, Hi);
767      Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
768      Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
769      return;
770    }
771    break;
772  case TargetLowering::TypeSplitVector:
773    // If the input is a vector that needs to be split, convert each split
774    // piece of the input now.
775    GetSplitVector(InOp, Lo, Hi);
776    Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
777    Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
778    return;
779  }
780
781  // In the general case, convert the input to an integer and split it by hand.
782  EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
783  EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
784  if (DAG.getDataLayout().isBigEndian())
785    std::swap(LoIntVT, HiIntVT);
786
787  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
788
789  if (DAG.getDataLayout().isBigEndian())
790    std::swap(Lo, Hi);
791  Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
792  Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
793}
794
795void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
796                                                SDValue &Hi) {
797  EVT LoVT, HiVT;
798  SDLoc dl(N);
799  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
800  unsigned LoNumElts = LoVT.getVectorNumElements();
801  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
802  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, LoOps);
803
804  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
805  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, HiOps);
806}
807
808void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
809                                                  SDValue &Hi) {
810  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
811  SDLoc dl(N);
812  unsigned NumSubvectors = N->getNumOperands() / 2;
813  if (NumSubvectors == 1) {
814    Lo = N->getOperand(0);
815    Hi = N->getOperand(1);
816    return;
817  }
818
819  EVT LoVT, HiVT;
820  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
821
822  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
823  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
824
825  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
826  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
827}
828
829void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
830                                                     SDValue &Hi) {
831  SDValue Vec = N->getOperand(0);
832  SDValue Idx = N->getOperand(1);
833  SDLoc dl(N);
834
835  EVT LoVT, HiVT;
836  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
837
838  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
839  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
840  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
841                   DAG.getConstant(IdxVal + LoVT.getVectorNumElements(), dl,
842                                   TLI.getVectorIdxTy(DAG.getDataLayout())));
843}
844
845void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
846                                                    SDValue &Hi) {
847  SDValue Vec = N->getOperand(0);
848  SDValue SubVec = N->getOperand(1);
849  SDValue Idx = N->getOperand(2);
850  SDLoc dl(N);
851  GetSplitVector(Vec, Lo, Hi);
852
853  EVT VecVT = Vec.getValueType();
854  EVT VecElemVT = VecVT.getVectorElementType();
855  unsigned VecElems = VecVT.getVectorNumElements();
856  unsigned SubElems = SubVec.getValueType().getVectorNumElements();
857
858  // If we know the index is 0, and we know the subvector doesn't cross the
859  // boundary between the halves, we can avoid spilling the vector, and insert
860  // into the lower half of the split vector directly.
861  // TODO: The IdxVal == 0 constraint is artificial, we could do this whenever
862  // the index is constant and there is no boundary crossing. But those cases
863  // don't seem to get hit in practice.
864  if (ConstantSDNode *ConstIdx = dyn_cast<ConstantSDNode>(Idx)) {
865    unsigned IdxVal = ConstIdx->getZExtValue();
866    if ((IdxVal == 0) && (IdxVal + SubElems <= VecElems / 2)) {
867      EVT LoVT, HiVT;
868      std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
869      Lo = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, LoVT, Lo, SubVec, Idx);
870      return;
871    }
872  }
873
874  // Spill the vector to the stack.
875  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
876  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
877                               MachinePointerInfo(), false, false, 0);
878
879  // Store the new subvector into the specified index.
880  SDValue SubVecPtr = GetVectorElementPointer(StackPtr, VecElemVT, Idx);
881  Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
882  unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
883  Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo(),
884                       false, false, 0);
885
886  // Load the Lo part from the stack slot.
887  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
888                   false, false, false, 0);
889
890  // Increment the pointer to the other part.
891  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
892  StackPtr =
893      DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
894                  DAG.getConstant(IncrementSize, dl, StackPtr.getValueType()));
895
896  // Load the Hi part from the stack slot.
897  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
898                   false, false, false, MinAlign(Alignment, IncrementSize));
899}
900
901void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
902                                         SDValue &Hi) {
903  SDLoc dl(N);
904  GetSplitVector(N->getOperand(0), Lo, Hi);
905  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
906  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
907}
908
909void DAGTypeLegalizer::SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo,
910                                             SDValue &Hi) {
911  SDValue LHSLo, LHSHi;
912  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
913  SDLoc DL(N);
914
915  SDValue RHSLo, RHSHi;
916  SDValue RHS = N->getOperand(1);
917  EVT RHSVT = RHS.getValueType();
918  if (getTypeAction(RHSVT) == TargetLowering::TypeSplitVector)
919    GetSplitVector(RHS, RHSLo, RHSHi);
920  else
921    std::tie(RHSLo, RHSHi) = DAG.SplitVector(RHS, SDLoc(RHS));
922
923
924  Lo = DAG.getNode(ISD::FCOPYSIGN, DL, LHSLo.getValueType(), LHSLo, RHSLo);
925  Hi = DAG.getNode(ISD::FCOPYSIGN, DL, LHSHi.getValueType(), LHSHi, RHSHi);
926}
927
928void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
929                                           SDValue &Hi) {
930  SDValue LHSLo, LHSHi;
931  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
932  SDLoc dl(N);
933
934  EVT LoVT, HiVT;
935  std::tie(LoVT, HiVT) =
936    DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
937
938  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
939                   DAG.getValueType(LoVT));
940  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
941                   DAG.getValueType(HiVT));
942}
943
944void DAGTypeLegalizer::SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo,
945                                                 SDValue &Hi) {
946  unsigned Opcode = N->getOpcode();
947  SDValue N0 = N->getOperand(0);
948
949  SDLoc dl(N);
950  SDValue InLo, InHi;
951  GetSplitVector(N0, InLo, InHi);
952  EVT InLoVT = InLo.getValueType();
953  unsigned InNumElements = InLoVT.getVectorNumElements();
954
955  EVT OutLoVT, OutHiVT;
956  std::tie(OutLoVT, OutHiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
957  unsigned OutNumElements = OutLoVT.getVectorNumElements();
958  assert((2 * OutNumElements) <= InNumElements &&
959         "Illegal extend vector in reg split");
960
961  // *_EXTEND_VECTOR_INREG instructions extend the lowest elements of the
962  // input vector (i.e. we only use InLo):
963  // OutLo will extend the first OutNumElements from InLo.
964  // OutHi will extend the next OutNumElements from InLo.
965
966  // Shuffle the elements from InLo for OutHi into the bottom elements to
967  // create a 'fake' InHi.
968  SmallVector<int, 8> SplitHi(InNumElements, -1);
969  for (unsigned i = 0; i != OutNumElements; ++i)
970    SplitHi[i] = i + OutNumElements;
971  InHi = DAG.getVectorShuffle(InLoVT, dl, InLo, DAG.getUNDEF(InLoVT), SplitHi);
972
973  Lo = DAG.getNode(Opcode, dl, OutLoVT, InLo);
974  Hi = DAG.getNode(Opcode, dl, OutHiVT, InHi);
975}
976
977void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
978                                                     SDValue &Hi) {
979  SDValue Vec = N->getOperand(0);
980  SDValue Elt = N->getOperand(1);
981  SDValue Idx = N->getOperand(2);
982  SDLoc dl(N);
983  GetSplitVector(Vec, Lo, Hi);
984
985  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
986    unsigned IdxVal = CIdx->getZExtValue();
987    unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
988    if (IdxVal < LoNumElts)
989      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
990                       Lo.getValueType(), Lo, Elt, Idx);
991    else
992      Hi =
993          DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
994                      DAG.getConstant(IdxVal - LoNumElts, dl,
995                                      TLI.getVectorIdxTy(DAG.getDataLayout())));
996    return;
997  }
998
999  // See if the target wants to custom expand this node.
1000  if (CustomLowerNode(N, N->getValueType(0), true))
1001    return;
1002
1003  // Spill the vector to the stack.
1004  EVT VecVT = Vec.getValueType();
1005  EVT EltVT = VecVT.getVectorElementType();
1006  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1007  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1008                               MachinePointerInfo(), false, false, 0);
1009
1010  // Store the new element.  This may be larger than the vector element type,
1011  // so use a truncating store.
1012  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1013  Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
1014  unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
1015  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
1016                            false, false, 0);
1017
1018  // Load the Lo part from the stack slot.
1019  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
1020                   false, false, false, 0);
1021
1022  // Increment the pointer to the other part.
1023  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
1024  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
1025                         DAG.getConstant(IncrementSize, dl,
1026                                         StackPtr.getValueType()));
1027
1028  // Load the Hi part from the stack slot.
1029  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
1030                   false, false, false, MinAlign(Alignment, IncrementSize));
1031}
1032
1033void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
1034                                                    SDValue &Hi) {
1035  EVT LoVT, HiVT;
1036  SDLoc dl(N);
1037  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1038  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
1039  Hi = DAG.getUNDEF(HiVT);
1040}
1041
1042void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
1043                                        SDValue &Hi) {
1044  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
1045  EVT LoVT, HiVT;
1046  SDLoc dl(LD);
1047  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
1048
1049  ISD::LoadExtType ExtType = LD->getExtensionType();
1050  SDValue Ch = LD->getChain();
1051  SDValue Ptr = LD->getBasePtr();
1052  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
1053  EVT MemoryVT = LD->getMemoryVT();
1054  unsigned Alignment = LD->getOriginalAlignment();
1055  bool isVolatile = LD->isVolatile();
1056  bool isNonTemporal = LD->isNonTemporal();
1057  bool isInvariant = LD->isInvariant();
1058  AAMDNodes AAInfo = LD->getAAInfo();
1059
1060  EVT LoMemVT, HiMemVT;
1061  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1062
1063  Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
1064                   LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
1065                   isInvariant, Alignment, AAInfo);
1066
1067  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1068  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1069                    DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
1070  Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
1071                   LD->getPointerInfo().getWithOffset(IncrementSize),
1072                   HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
1073                   AAInfo);
1074
1075  // Build a factor node to remember that this load is independent of the
1076  // other one.
1077  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1078                   Hi.getValue(1));
1079
1080  // Legalize the chain result - switch anything that used the old chain to
1081  // use the new one.
1082  ReplaceValueWith(SDValue(LD, 1), Ch);
1083}
1084
1085void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
1086                                         SDValue &Lo, SDValue &Hi) {
1087  EVT LoVT, HiVT;
1088  SDLoc dl(MLD);
1089  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
1090
1091  SDValue Ch = MLD->getChain();
1092  SDValue Ptr = MLD->getBasePtr();
1093  SDValue Mask = MLD->getMask();
1094  SDValue Src0 = MLD->getSrc0();
1095  unsigned Alignment = MLD->getOriginalAlignment();
1096  ISD::LoadExtType ExtType = MLD->getExtensionType();
1097
1098  // if Alignment is equal to the vector size,
1099  // take the half of it for the second part
1100  unsigned SecondHalfAlignment =
1101    (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
1102     Alignment/2 : Alignment;
1103
1104  // Split Mask operand
1105  SDValue MaskLo, MaskHi;
1106  if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1107    GetSplitVector(Mask, MaskLo, MaskHi);
1108  else
1109    std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
1110
1111  EVT MemoryVT = MLD->getMemoryVT();
1112  EVT LoMemVT, HiMemVT;
1113  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1114
1115  SDValue Src0Lo, Src0Hi;
1116  if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
1117    GetSplitVector(Src0, Src0Lo, Src0Hi);
1118  else
1119    std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
1120
1121  MachineMemOperand *MMO = DAG.getMachineFunction().
1122    getMachineMemOperand(MLD->getPointerInfo(),
1123                         MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
1124                         Alignment, MLD->getAAInfo(), MLD->getRanges());
1125
1126  Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
1127                         ExtType);
1128
1129  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1130  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1131                    DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
1132
1133  MMO = DAG.getMachineFunction().
1134    getMachineMemOperand(MLD->getPointerInfo(),
1135                         MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
1136                         SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
1137
1138  Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
1139                         ExtType);
1140
1141
1142  // Build a factor node to remember that this load is independent of the
1143  // other one.
1144  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1145                   Hi.getValue(1));
1146
1147  // Legalize the chain result - switch anything that used the old chain to
1148  // use the new one.
1149  ReplaceValueWith(SDValue(MLD, 1), Ch);
1150
1151}
1152
1153void DAGTypeLegalizer::SplitVecRes_MGATHER(MaskedGatherSDNode *MGT,
1154                                         SDValue &Lo, SDValue &Hi) {
1155  EVT LoVT, HiVT;
1156  SDLoc dl(MGT);
1157  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
1158
1159  SDValue Ch = MGT->getChain();
1160  SDValue Ptr = MGT->getBasePtr();
1161  SDValue Mask = MGT->getMask();
1162  SDValue Src0 = MGT->getValue();
1163  SDValue Index = MGT->getIndex();
1164  unsigned Alignment = MGT->getOriginalAlignment();
1165
1166  // Split Mask operand
1167  SDValue MaskLo, MaskHi;
1168  if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1169    GetSplitVector(Mask, MaskLo, MaskHi);
1170  else
1171    std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
1172
1173  EVT MemoryVT = MGT->getMemoryVT();
1174  EVT LoMemVT, HiMemVT;
1175  // Split MemoryVT
1176  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1177
1178  SDValue Src0Lo, Src0Hi;
1179  if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
1180    GetSplitVector(Src0, Src0Lo, Src0Hi);
1181  else
1182    std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
1183
1184  SDValue IndexHi, IndexLo;
1185  if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
1186    GetSplitVector(Index, IndexLo, IndexHi);
1187  else
1188    std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
1189
1190  MachineMemOperand *MMO = DAG.getMachineFunction().
1191    getMachineMemOperand(MGT->getPointerInfo(),
1192                         MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
1193                         Alignment, MGT->getAAInfo(), MGT->getRanges());
1194
1195  SDValue OpsLo[] = {Ch, Src0Lo, MaskLo, Ptr, IndexLo};
1196  Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl, OpsLo,
1197                           MMO);
1198
1199  SDValue OpsHi[] = {Ch, Src0Hi, MaskHi, Ptr, IndexHi};
1200  Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl, OpsHi,
1201                           MMO);
1202
1203  // Build a factor node to remember that this load is independent of the
1204  // other one.
1205  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1206                   Hi.getValue(1));
1207
1208  // Legalize the chain result - switch anything that used the old chain to
1209  // use the new one.
1210  ReplaceValueWith(SDValue(MGT, 1), Ch);
1211}
1212
1213
1214void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
1215  assert(N->getValueType(0).isVector() &&
1216         N->getOperand(0).getValueType().isVector() &&
1217         "Operand types must be vectors");
1218
1219  EVT LoVT, HiVT;
1220  SDLoc DL(N);
1221  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1222
1223  // Split the input.
1224  SDValue LL, LH, RL, RH;
1225  std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
1226  std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
1227
1228  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
1229  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
1230}
1231
1232void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
1233                                           SDValue &Hi) {
1234  // Get the dest types - they may not match the input types, e.g. int_to_fp.
1235  EVT LoVT, HiVT;
1236  SDLoc dl(N);
1237  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1238
1239  // If the input also splits, handle it directly for a compile time speedup.
1240  // Otherwise split it by hand.
1241  EVT InVT = N->getOperand(0).getValueType();
1242  if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
1243    GetSplitVector(N->getOperand(0), Lo, Hi);
1244  else
1245    std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
1246
1247  if (N->getOpcode() == ISD::FP_ROUND) {
1248    Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
1249    Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
1250  } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
1251    SDValue DTyOpLo = DAG.getValueType(LoVT);
1252    SDValue DTyOpHi = DAG.getValueType(HiVT);
1253    SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
1254    SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
1255    SDValue RndOp = N->getOperand(3);
1256    SDValue SatOp = N->getOperand(4);
1257    ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1258    Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
1259                              CvtCode);
1260    Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
1261                              CvtCode);
1262  } else {
1263    Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
1264    Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
1265  }
1266}
1267
1268void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
1269                                            SDValue &Hi) {
1270  SDLoc dl(N);
1271  EVT SrcVT = N->getOperand(0).getValueType();
1272  EVT DestVT = N->getValueType(0);
1273  EVT LoVT, HiVT;
1274  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
1275
1276  // We can do better than a generic split operation if the extend is doing
1277  // more than just doubling the width of the elements and the following are
1278  // true:
1279  //   - The number of vector elements is even,
1280  //   - the source type is legal,
1281  //   - the type of a split source is illegal,
1282  //   - the type of an extended (by doubling element size) source is legal, and
1283  //   - the type of that extended source when split is legal.
1284  //
1285  // This won't necessarily completely legalize the operation, but it will
1286  // more effectively move in the right direction and prevent falling down
1287  // to scalarization in many cases due to the input vector being split too
1288  // far.
1289  unsigned NumElements = SrcVT.getVectorNumElements();
1290  if ((NumElements & 1) == 0 &&
1291      SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
1292    LLVMContext &Ctx = *DAG.getContext();
1293    EVT NewSrcVT = EVT::getVectorVT(
1294        Ctx, EVT::getIntegerVT(
1295                 Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
1296        NumElements);
1297    EVT SplitSrcVT =
1298        EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
1299    EVT SplitLoVT, SplitHiVT;
1300    std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
1301    if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
1302        TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
1303      DEBUG(dbgs() << "Split vector extend via incremental extend:";
1304            N->dump(&DAG); dbgs() << "\n");
1305      // Extend the source vector by one step.
1306      SDValue NewSrc =
1307          DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
1308      // Get the low and high halves of the new, extended one step, vector.
1309      std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
1310      // Extend those vector halves the rest of the way.
1311      Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
1312      Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
1313      return;
1314    }
1315  }
1316  // Fall back to the generic unary operator splitting otherwise.
1317  SplitVecRes_UnaryOp(N, Lo, Hi);
1318}
1319
1320void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
1321                                                  SDValue &Lo, SDValue &Hi) {
1322  // The low and high parts of the original input give four input vectors.
1323  SDValue Inputs[4];
1324  SDLoc dl(N);
1325  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
1326  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
1327  EVT NewVT = Inputs[0].getValueType();
1328  unsigned NewElts = NewVT.getVectorNumElements();
1329
1330  // If Lo or Hi uses elements from at most two of the four input vectors, then
1331  // express it as a vector shuffle of those two inputs.  Otherwise extract the
1332  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
1333  SmallVector<int, 16> Ops;
1334  for (unsigned High = 0; High < 2; ++High) {
1335    SDValue &Output = High ? Hi : Lo;
1336
1337    // Build a shuffle mask for the output, discovering on the fly which
1338    // input vectors to use as shuffle operands (recorded in InputUsed).
1339    // If building a suitable shuffle vector proves too hard, then bail
1340    // out with useBuildVector set.
1341    unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
1342    unsigned FirstMaskIdx = High * NewElts;
1343    bool useBuildVector = false;
1344    for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
1345      // The mask element.  This indexes into the input.
1346      int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
1347
1348      // The input vector this mask element indexes into.
1349      unsigned Input = (unsigned)Idx / NewElts;
1350
1351      if (Input >= array_lengthof(Inputs)) {
1352        // The mask element does not index into any input vector.
1353        Ops.push_back(-1);
1354        continue;
1355      }
1356
1357      // Turn the index into an offset from the start of the input vector.
1358      Idx -= Input * NewElts;
1359
1360      // Find or create a shuffle vector operand to hold this input.
1361      unsigned OpNo;
1362      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
1363        if (InputUsed[OpNo] == Input) {
1364          // This input vector is already an operand.
1365          break;
1366        } else if (InputUsed[OpNo] == -1U) {
1367          // Create a new operand for this input vector.
1368          InputUsed[OpNo] = Input;
1369          break;
1370        }
1371      }
1372
1373      if (OpNo >= array_lengthof(InputUsed)) {
1374        // More than two input vectors used!  Give up on trying to create a
1375        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
1376        useBuildVector = true;
1377        break;
1378      }
1379
1380      // Add the mask index for the new shuffle vector.
1381      Ops.push_back(Idx + OpNo * NewElts);
1382    }
1383
1384    if (useBuildVector) {
1385      EVT EltVT = NewVT.getVectorElementType();
1386      SmallVector<SDValue, 16> SVOps;
1387
1388      // Extract the input elements by hand.
1389      for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
1390        // The mask element.  This indexes into the input.
1391        int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
1392
1393        // The input vector this mask element indexes into.
1394        unsigned Input = (unsigned)Idx / NewElts;
1395
1396        if (Input >= array_lengthof(Inputs)) {
1397          // The mask element is "undef" or indexes off the end of the input.
1398          SVOps.push_back(DAG.getUNDEF(EltVT));
1399          continue;
1400        }
1401
1402        // Turn the index into an offset from the start of the input vector.
1403        Idx -= Input * NewElts;
1404
1405        // Extract the vector element by hand.
1406        SVOps.push_back(DAG.getNode(
1407            ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Inputs[Input],
1408            DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
1409      }
1410
1411      // Construct the Lo/Hi output using a BUILD_VECTOR.
1412      Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, SVOps);
1413    } else if (InputUsed[0] == -1U) {
1414      // No input vectors were used!  The result is undefined.
1415      Output = DAG.getUNDEF(NewVT);
1416    } else {
1417      SDValue Op0 = Inputs[InputUsed[0]];
1418      // If only one input was used, use an undefined vector for the other.
1419      SDValue Op1 = InputUsed[1] == -1U ?
1420        DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
1421      // At least one input vector was used.  Create a new shuffle vector.
1422      Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, Ops);
1423    }
1424
1425    Ops.clear();
1426  }
1427}
1428
1429
1430//===----------------------------------------------------------------------===//
1431//  Operand Vector Splitting
1432//===----------------------------------------------------------------------===//
1433
1434/// This method is called when the specified operand of the specified node is
1435/// found to need vector splitting. At this point, all of the result types of
1436/// the node are known to be legal, but other operands of the node may need
1437/// legalization as well as the specified one.
1438bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
1439  DEBUG(dbgs() << "Split node operand: ";
1440        N->dump(&DAG);
1441        dbgs() << "\n");
1442  SDValue Res = SDValue();
1443
1444  // See if the target wants to custom split this node.
1445  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
1446    return false;
1447
1448  if (!Res.getNode()) {
1449    switch (N->getOpcode()) {
1450    default:
1451#ifndef NDEBUG
1452      dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
1453      N->dump(&DAG);
1454      dbgs() << "\n";
1455#endif
1456      report_fatal_error("Do not know how to split this operator's "
1457                         "operand!\n");
1458
1459    case ISD::SETCC:             Res = SplitVecOp_VSETCC(N); break;
1460    case ISD::BITCAST:           Res = SplitVecOp_BITCAST(N); break;
1461    case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
1462    case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
1463    case ISD::CONCAT_VECTORS:    Res = SplitVecOp_CONCAT_VECTORS(N); break;
1464    case ISD::TRUNCATE:
1465      Res = SplitVecOp_TruncateHelper(N);
1466      break;
1467    case ISD::FP_ROUND:          Res = SplitVecOp_FP_ROUND(N); break;
1468    case ISD::FCOPYSIGN:         Res = SplitVecOp_FCOPYSIGN(N); break;
1469    case ISD::STORE:
1470      Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
1471      break;
1472    case ISD::MSTORE:
1473      Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
1474      break;
1475    case ISD::MSCATTER:
1476      Res = SplitVecOp_MSCATTER(cast<MaskedScatterSDNode>(N), OpNo);
1477      break;
1478    case ISD::MGATHER:
1479      Res = SplitVecOp_MGATHER(cast<MaskedGatherSDNode>(N), OpNo);
1480      break;
1481    case ISD::VSELECT:
1482      Res = SplitVecOp_VSELECT(N, OpNo);
1483      break;
1484    case ISD::FP_TO_SINT:
1485    case ISD::FP_TO_UINT:
1486      if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
1487        Res = SplitVecOp_TruncateHelper(N);
1488      else
1489        Res = SplitVecOp_UnaryOp(N);
1490      break;
1491    case ISD::SINT_TO_FP:
1492    case ISD::UINT_TO_FP:
1493      if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
1494        Res = SplitVecOp_TruncateHelper(N);
1495      else
1496        Res = SplitVecOp_UnaryOp(N);
1497      break;
1498    case ISD::CTTZ:
1499    case ISD::CTLZ:
1500    case ISD::CTPOP:
1501    case ISD::FP_EXTEND:
1502    case ISD::SIGN_EXTEND:
1503    case ISD::ZERO_EXTEND:
1504    case ISD::ANY_EXTEND:
1505    case ISD::FTRUNC:
1506      Res = SplitVecOp_UnaryOp(N);
1507      break;
1508    }
1509  }
1510
1511  // If the result is null, the sub-method took care of registering results etc.
1512  if (!Res.getNode()) return false;
1513
1514  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1515  // core about this.
1516  if (Res.getNode() == N)
1517    return true;
1518
1519  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1520         "Invalid operand expansion");
1521
1522  ReplaceValueWith(SDValue(N, 0), Res);
1523  return false;
1524}
1525
1526SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
1527  // The only possibility for an illegal operand is the mask, since result type
1528  // legalization would have handled this node already otherwise.
1529  assert(OpNo == 0 && "Illegal operand must be mask");
1530
1531  SDValue Mask = N->getOperand(0);
1532  SDValue Src0 = N->getOperand(1);
1533  SDValue Src1 = N->getOperand(2);
1534  EVT Src0VT = Src0.getValueType();
1535  SDLoc DL(N);
1536  assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
1537
1538  SDValue Lo, Hi;
1539  GetSplitVector(N->getOperand(0), Lo, Hi);
1540  assert(Lo.getValueType() == Hi.getValueType() &&
1541         "Lo and Hi have differing types");
1542
1543  EVT LoOpVT, HiOpVT;
1544  std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
1545  assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
1546
1547  SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
1548  std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
1549  std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
1550  std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
1551
1552  SDValue LoSelect =
1553    DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
1554  SDValue HiSelect =
1555    DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
1556
1557  return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
1558}
1559
1560SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
1561  // The result has a legal vector type, but the input needs splitting.
1562  EVT ResVT = N->getValueType(0);
1563  SDValue Lo, Hi;
1564  SDLoc dl(N);
1565  GetSplitVector(N->getOperand(0), Lo, Hi);
1566  EVT InVT = Lo.getValueType();
1567
1568  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1569                               InVT.getVectorNumElements());
1570
1571  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
1572  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
1573
1574  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
1575}
1576
1577SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
1578  // For example, i64 = BITCAST v4i16 on alpha.  Typically the vector will
1579  // end up being split all the way down to individual components.  Convert the
1580  // split pieces into integers and reassemble.
1581  SDValue Lo, Hi;
1582  GetSplitVector(N->getOperand(0), Lo, Hi);
1583  Lo = BitConvertToInteger(Lo);
1584  Hi = BitConvertToInteger(Hi);
1585
1586  if (DAG.getDataLayout().isBigEndian())
1587    std::swap(Lo, Hi);
1588
1589  return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
1590                     JoinIntegers(Lo, Hi));
1591}
1592
1593SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1594  // We know that the extracted result type is legal.
1595  EVT SubVT = N->getValueType(0);
1596  SDValue Idx = N->getOperand(1);
1597  SDLoc dl(N);
1598  SDValue Lo, Hi;
1599  GetSplitVector(N->getOperand(0), Lo, Hi);
1600
1601  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1602  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1603
1604  if (IdxVal < LoElts) {
1605    assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1606           "Extracted subvector crosses vector split!");
1607    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1608  } else {
1609    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1610                       DAG.getConstant(IdxVal - LoElts, dl,
1611                                       Idx.getValueType()));
1612  }
1613}
1614
1615SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1616  SDValue Vec = N->getOperand(0);
1617  SDValue Idx = N->getOperand(1);
1618  EVT VecVT = Vec.getValueType();
1619
1620  if (isa<ConstantSDNode>(Idx)) {
1621    uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1622    assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1623
1624    SDValue Lo, Hi;
1625    GetSplitVector(Vec, Lo, Hi);
1626
1627    uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1628
1629    if (IdxVal < LoElts)
1630      return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
1631    return SDValue(DAG.UpdateNodeOperands(N, Hi,
1632                                  DAG.getConstant(IdxVal - LoElts, SDLoc(N),
1633                                                  Idx.getValueType())), 0);
1634  }
1635
1636  // See if the target wants to custom expand this node.
1637  if (CustomLowerNode(N, N->getValueType(0), true))
1638    return SDValue();
1639
1640  // Make the vector elements byte-addressable if they aren't already.
1641  SDLoc dl(N);
1642  EVT EltVT = VecVT.getVectorElementType();
1643  if (EltVT.getSizeInBits() < 8) {
1644    SmallVector<SDValue, 4> ElementOps;
1645    for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i) {
1646      ElementOps.push_back(DAG.getAnyExtOrTrunc(
1647          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vec,
1648                      DAG.getConstant(i, dl, MVT::i8)),
1649          dl, MVT::i8));
1650    }
1651
1652    EltVT = MVT::i8;
1653    VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
1654                             VecVT.getVectorNumElements());
1655    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, ElementOps);
1656  }
1657
1658  // Store the vector to the stack.
1659  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1660  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1661                               MachinePointerInfo(), false, false, 0);
1662
1663  // Load back the required element.
1664  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1665  return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
1666                        MachinePointerInfo(), EltVT, false, false, false, 0);
1667}
1668
1669SDValue DAGTypeLegalizer::SplitVecOp_MGATHER(MaskedGatherSDNode *MGT,
1670                                             unsigned OpNo) {
1671  EVT LoVT, HiVT;
1672  SDLoc dl(MGT);
1673  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
1674
1675  SDValue Ch = MGT->getChain();
1676  SDValue Ptr = MGT->getBasePtr();
1677  SDValue Index = MGT->getIndex();
1678  SDValue Mask = MGT->getMask();
1679  SDValue Src0 = MGT->getValue();
1680  unsigned Alignment = MGT->getOriginalAlignment();
1681
1682  SDValue MaskLo, MaskHi;
1683  if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1684    // Split Mask operand
1685    GetSplitVector(Mask, MaskLo, MaskHi);
1686  else
1687    std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
1688
1689  EVT MemoryVT = MGT->getMemoryVT();
1690  EVT LoMemVT, HiMemVT;
1691  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1692
1693  SDValue Src0Lo, Src0Hi;
1694  if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
1695    GetSplitVector(Src0, Src0Lo, Src0Hi);
1696  else
1697    std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
1698
1699  SDValue IndexHi, IndexLo;
1700  if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
1701    GetSplitVector(Index, IndexLo, IndexHi);
1702  else
1703    std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
1704
1705  MachineMemOperand *MMO = DAG.getMachineFunction().
1706    getMachineMemOperand(MGT->getPointerInfo(),
1707                         MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
1708                         Alignment, MGT->getAAInfo(), MGT->getRanges());
1709
1710  SDValue OpsLo[] = {Ch, Src0Lo, MaskLo, Ptr, IndexLo};
1711  SDValue Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl,
1712                                   OpsLo, MMO);
1713
1714  MMO = DAG.getMachineFunction().
1715    getMachineMemOperand(MGT->getPointerInfo(),
1716                         MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
1717                         Alignment, MGT->getAAInfo(),
1718                         MGT->getRanges());
1719
1720  SDValue OpsHi[] = {Ch, Src0Hi, MaskHi, Ptr, IndexHi};
1721  SDValue Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl,
1722                                   OpsHi, MMO);
1723
1724  // Build a factor node to remember that this load is independent of the
1725  // other one.
1726  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1727                   Hi.getValue(1));
1728
1729  // Legalize the chain result - switch anything that used the old chain to
1730  // use the new one.
1731  ReplaceValueWith(SDValue(MGT, 1), Ch);
1732
1733  SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MGT->getValueType(0), Lo,
1734                            Hi);
1735  ReplaceValueWith(SDValue(MGT, 0), Res);
1736  return SDValue();
1737}
1738
1739SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
1740                                            unsigned OpNo) {
1741  SDValue Ch  = N->getChain();
1742  SDValue Ptr = N->getBasePtr();
1743  SDValue Mask = N->getMask();
1744  SDValue Data = N->getValue();
1745  EVT MemoryVT = N->getMemoryVT();
1746  unsigned Alignment = N->getOriginalAlignment();
1747  SDLoc DL(N);
1748
1749  EVT LoMemVT, HiMemVT;
1750  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1751
1752  SDValue DataLo, DataHi;
1753  if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
1754    // Split Data operand
1755    GetSplitVector(Data, DataLo, DataHi);
1756  else
1757    std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
1758
1759  SDValue MaskLo, MaskHi;
1760  if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1761    // Split Mask operand
1762    GetSplitVector(Mask, MaskLo, MaskHi);
1763  else
1764    std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
1765
1766  MaskLo = PromoteTargetBoolean(MaskLo, DataLo.getValueType());
1767  MaskHi = PromoteTargetBoolean(MaskHi, DataHi.getValueType());
1768
1769  // if Alignment is equal to the vector size,
1770  // take the half of it for the second part
1771  unsigned SecondHalfAlignment =
1772    (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
1773       Alignment/2 : Alignment;
1774
1775  SDValue Lo, Hi;
1776  MachineMemOperand *MMO = DAG.getMachineFunction().
1777    getMachineMemOperand(N->getPointerInfo(),
1778                         MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
1779                         Alignment, N->getAAInfo(), N->getRanges());
1780
1781  Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
1782                          N->isTruncatingStore());
1783
1784  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1785  Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1786                    DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
1787
1788  MMO = DAG.getMachineFunction().
1789    getMachineMemOperand(N->getPointerInfo(),
1790                         MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
1791                         SecondHalfAlignment, N->getAAInfo(), N->getRanges());
1792
1793  Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
1794                          N->isTruncatingStore());
1795
1796  // Build a factor node to remember that this store is independent of the
1797  // other one.
1798  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1799}
1800
1801SDValue DAGTypeLegalizer::SplitVecOp_MSCATTER(MaskedScatterSDNode *N,
1802                                              unsigned OpNo) {
1803  SDValue Ch  = N->getChain();
1804  SDValue Ptr = N->getBasePtr();
1805  SDValue Mask = N->getMask();
1806  SDValue Index = N->getIndex();
1807  SDValue Data = N->getValue();
1808  EVT MemoryVT = N->getMemoryVT();
1809  unsigned Alignment = N->getOriginalAlignment();
1810  SDLoc DL(N);
1811
1812  // Split all operands
1813  EVT LoMemVT, HiMemVT;
1814  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1815
1816  SDValue DataLo, DataHi;
1817  if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
1818    // Split Data operand
1819    GetSplitVector(Data, DataLo, DataHi);
1820  else
1821    std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
1822
1823  SDValue MaskLo, MaskHi;
1824  if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1825    // Split Mask operand
1826    GetSplitVector(Mask, MaskLo, MaskHi);
1827  else
1828    std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
1829
1830  SDValue IndexHi, IndexLo;
1831  if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
1832    GetSplitVector(Index, IndexLo, IndexHi);
1833  else
1834    std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
1835
1836  SDValue Lo, Hi;
1837  MachineMemOperand *MMO = DAG.getMachineFunction().
1838    getMachineMemOperand(N->getPointerInfo(),
1839                         MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
1840                         Alignment, N->getAAInfo(), N->getRanges());
1841
1842  SDValue OpsLo[] = {Ch, DataLo, MaskLo, Ptr, IndexLo};
1843  Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
1844                            DL, OpsLo, MMO);
1845
1846  MMO = DAG.getMachineFunction().
1847    getMachineMemOperand(N->getPointerInfo(),
1848                         MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
1849                         Alignment, N->getAAInfo(), N->getRanges());
1850
1851  SDValue OpsHi[] = {Ch, DataHi, MaskHi, Ptr, IndexHi};
1852  Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
1853                            DL, OpsHi, MMO);
1854
1855  // Build a factor node to remember that this store is independent of the
1856  // other one.
1857  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1858}
1859
1860SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1861  assert(N->isUnindexed() && "Indexed store of vector?");
1862  assert(OpNo == 1 && "Can only split the stored value");
1863  SDLoc DL(N);
1864
1865  bool isTruncating = N->isTruncatingStore();
1866  SDValue Ch  = N->getChain();
1867  SDValue Ptr = N->getBasePtr();
1868  EVT MemoryVT = N->getMemoryVT();
1869  unsigned Alignment = N->getOriginalAlignment();
1870  bool isVol = N->isVolatile();
1871  bool isNT = N->isNonTemporal();
1872  AAMDNodes AAInfo = N->getAAInfo();
1873  SDValue Lo, Hi;
1874  GetSplitVector(N->getOperand(1), Lo, Hi);
1875
1876  EVT LoMemVT, HiMemVT;
1877  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1878
1879  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1880
1881  if (isTruncating)
1882    Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1883                           LoMemVT, isVol, isNT, Alignment, AAInfo);
1884  else
1885    Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1886                      isVol, isNT, Alignment, AAInfo);
1887
1888  // Increment the pointer to the other half.
1889  Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1890                    DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
1891
1892  if (isTruncating)
1893    Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
1894                           N->getPointerInfo().getWithOffset(IncrementSize),
1895                           HiMemVT, isVol, isNT, Alignment, AAInfo);
1896  else
1897    Hi = DAG.getStore(Ch, DL, Hi, Ptr,
1898                      N->getPointerInfo().getWithOffset(IncrementSize),
1899                      isVol, isNT, Alignment, AAInfo);
1900
1901  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1902}
1903
1904SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
1905  SDLoc DL(N);
1906
1907  // The input operands all must have the same type, and we know the result
1908  // type is valid.  Convert this to a buildvector which extracts all the
1909  // input elements.
1910  // TODO: If the input elements are power-two vectors, we could convert this to
1911  // a new CONCAT_VECTORS node with elements that are half-wide.
1912  SmallVector<SDValue, 32> Elts;
1913  EVT EltVT = N->getValueType(0).getVectorElementType();
1914  for (const SDValue &Op : N->op_values()) {
1915    for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
1916         i != e; ++i) {
1917      Elts.push_back(DAG.getNode(
1918          ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op,
1919          DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
1920    }
1921  }
1922
1923  return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), Elts);
1924}
1925
1926SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
1927  // The result type is legal, but the input type is illegal.  If splitting
1928  // ends up with the result type of each half still being legal, just
1929  // do that.  If, however, that would result in an illegal result type,
1930  // we can try to get more clever with power-two vectors. Specifically,
1931  // split the input type, but also widen the result element size, then
1932  // concatenate the halves and truncate again.  For example, consider a target
1933  // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
1934  // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
1935  //   %inlo = v4i32 extract_subvector %in, 0
1936  //   %inhi = v4i32 extract_subvector %in, 4
1937  //   %lo16 = v4i16 trunc v4i32 %inlo
1938  //   %hi16 = v4i16 trunc v4i32 %inhi
1939  //   %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
1940  //   %res = v8i8 trunc v8i16 %in16
1941  //
1942  // Without this transform, the original truncate would end up being
1943  // scalarized, which is pretty much always a last resort.
1944  SDValue InVec = N->getOperand(0);
1945  EVT InVT = InVec->getValueType(0);
1946  EVT OutVT = N->getValueType(0);
1947  unsigned NumElements = OutVT.getVectorNumElements();
1948  bool IsFloat = OutVT.isFloatingPoint();
1949
1950  // Widening should have already made sure this is a power-two vector
1951  // if we're trying to split it at all. assert() that's true, just in case.
1952  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
1953
1954  unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
1955  unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
1956
1957  // If the input elements are only 1/2 the width of the result elements,
1958  // just use the normal splitting. Our trick only work if there's room
1959  // to split more than once.
1960  if (InElementSize <= OutElementSize * 2)
1961    return SplitVecOp_UnaryOp(N);
1962  SDLoc DL(N);
1963
1964  // Extract the halves of the input via extract_subvector.
1965  SDValue InLoVec, InHiVec;
1966  std::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
1967  // Truncate them to 1/2 the element size.
1968  EVT HalfElementVT = IsFloat ?
1969    EVT::getFloatingPointVT(InElementSize/2) :
1970    EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
1971  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
1972                                NumElements/2);
1973  SDValue HalfLo = DAG.getNode(N->getOpcode(), DL, HalfVT, InLoVec);
1974  SDValue HalfHi = DAG.getNode(N->getOpcode(), DL, HalfVT, InHiVec);
1975  // Concatenate them to get the full intermediate truncation result.
1976  EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
1977  SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
1978                                 HalfHi);
1979  // Now finish up by truncating all the way down to the original result
1980  // type. This should normally be something that ends up being legal directly,
1981  // but in theory if a target has very wide vectors and an annoyingly
1982  // restricted set of legal types, this split can chain to build things up.
1983  return IsFloat
1984             ? DAG.getNode(ISD::FP_ROUND, DL, OutVT, InterVec,
1985                           DAG.getTargetConstant(
1986                               0, DL, TLI.getPointerTy(DAG.getDataLayout())))
1987             : DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
1988}
1989
1990SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
1991  assert(N->getValueType(0).isVector() &&
1992         N->getOperand(0).getValueType().isVector() &&
1993         "Operand types must be vectors");
1994  // The result has a legal vector type, but the input needs splitting.
1995  SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
1996  SDLoc DL(N);
1997  GetSplitVector(N->getOperand(0), Lo0, Hi0);
1998  GetSplitVector(N->getOperand(1), Lo1, Hi1);
1999  unsigned PartElements = Lo0.getValueType().getVectorNumElements();
2000  EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
2001  EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
2002
2003  LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
2004  HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
2005  SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
2006  return PromoteTargetBoolean(Con, N->getValueType(0));
2007}
2008
2009
2010SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
2011  // The result has a legal vector type, but the input needs splitting.
2012  EVT ResVT = N->getValueType(0);
2013  SDValue Lo, Hi;
2014  SDLoc DL(N);
2015  GetSplitVector(N->getOperand(0), Lo, Hi);
2016  EVT InVT = Lo.getValueType();
2017
2018  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
2019                               InVT.getVectorNumElements());
2020
2021  Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
2022  Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
2023
2024  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
2025}
2026
2027SDValue DAGTypeLegalizer::SplitVecOp_FCOPYSIGN(SDNode *N) {
2028  // The result (and the first input) has a legal vector type, but the second
2029  // input needs splitting.
2030  return DAG.UnrollVectorOp(N, N->getValueType(0).getVectorNumElements());
2031}
2032
2033
2034//===----------------------------------------------------------------------===//
2035//  Result Vector Widening
2036//===----------------------------------------------------------------------===//
2037
2038void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
2039  DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
2040        N->dump(&DAG);
2041        dbgs() << "\n");
2042
2043  // See if the target wants to custom widen this node.
2044  if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
2045    return;
2046
2047  SDValue Res = SDValue();
2048  switch (N->getOpcode()) {
2049  default:
2050#ifndef NDEBUG
2051    dbgs() << "WidenVectorResult #" << ResNo << ": ";
2052    N->dump(&DAG);
2053    dbgs() << "\n";
2054#endif
2055    llvm_unreachable("Do not know how to widen the result of this operator!");
2056
2057  case ISD::MERGE_VALUES:      Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
2058  case ISD::BITCAST:           Res = WidenVecRes_BITCAST(N); break;
2059  case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
2060  case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
2061  case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
2062  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
2063  case ISD::FP_ROUND_INREG:    Res = WidenVecRes_InregOp(N); break;
2064  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
2065  case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
2066  case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
2067  case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
2068  case ISD::VSELECT:
2069  case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
2070  case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
2071  case ISD::SETCC:             Res = WidenVecRes_SETCC(N); break;
2072  case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
2073  case ISD::VECTOR_SHUFFLE:
2074    Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
2075    break;
2076  case ISD::MLOAD:
2077    Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
2078    break;
2079  case ISD::MGATHER:
2080    Res = WidenVecRes_MGATHER(cast<MaskedGatherSDNode>(N));
2081    break;
2082
2083  case ISD::ADD:
2084  case ISD::AND:
2085  case ISD::MUL:
2086  case ISD::MULHS:
2087  case ISD::MULHU:
2088  case ISD::OR:
2089  case ISD::SUB:
2090  case ISD::XOR:
2091  case ISD::FMINNUM:
2092  case ISD::FMAXNUM:
2093  case ISD::FMINNAN:
2094  case ISD::FMAXNAN:
2095  case ISD::SMIN:
2096  case ISD::SMAX:
2097  case ISD::UMIN:
2098  case ISD::UMAX:
2099    Res = WidenVecRes_Binary(N);
2100    break;
2101
2102  case ISD::FADD:
2103  case ISD::FMUL:
2104  case ISD::FPOW:
2105  case ISD::FSUB:
2106  case ISD::FDIV:
2107  case ISD::FREM:
2108  case ISD::SDIV:
2109  case ISD::UDIV:
2110  case ISD::SREM:
2111  case ISD::UREM:
2112    Res = WidenVecRes_BinaryCanTrap(N);
2113    break;
2114
2115  case ISD::FCOPYSIGN:
2116    Res = WidenVecRes_FCOPYSIGN(N);
2117    break;
2118
2119  case ISD::FPOWI:
2120    Res = WidenVecRes_POWI(N);
2121    break;
2122
2123  case ISD::SHL:
2124  case ISD::SRA:
2125  case ISD::SRL:
2126    Res = WidenVecRes_Shift(N);
2127    break;
2128
2129  case ISD::ANY_EXTEND_VECTOR_INREG:
2130  case ISD::SIGN_EXTEND_VECTOR_INREG:
2131  case ISD::ZERO_EXTEND_VECTOR_INREG:
2132    Res = WidenVecRes_EXTEND_VECTOR_INREG(N);
2133    break;
2134
2135  case ISD::ANY_EXTEND:
2136  case ISD::FP_EXTEND:
2137  case ISD::FP_ROUND:
2138  case ISD::FP_TO_SINT:
2139  case ISD::FP_TO_UINT:
2140  case ISD::SIGN_EXTEND:
2141  case ISD::SINT_TO_FP:
2142  case ISD::TRUNCATE:
2143  case ISD::UINT_TO_FP:
2144  case ISD::ZERO_EXTEND:
2145    Res = WidenVecRes_Convert(N);
2146    break;
2147
2148  case ISD::BITREVERSE:
2149  case ISD::BSWAP:
2150  case ISD::CTLZ:
2151  case ISD::CTPOP:
2152  case ISD::CTTZ:
2153  case ISD::FABS:
2154  case ISD::FCEIL:
2155  case ISD::FCOS:
2156  case ISD::FEXP:
2157  case ISD::FEXP2:
2158  case ISD::FFLOOR:
2159  case ISD::FLOG:
2160  case ISD::FLOG10:
2161  case ISD::FLOG2:
2162  case ISD::FNEARBYINT:
2163  case ISD::FNEG:
2164  case ISD::FRINT:
2165  case ISD::FROUND:
2166  case ISD::FSIN:
2167  case ISD::FSQRT:
2168  case ISD::FTRUNC:
2169    Res = WidenVecRes_Unary(N);
2170    break;
2171  case ISD::FMA:
2172    Res = WidenVecRes_Ternary(N);
2173    break;
2174  }
2175
2176  // If Res is null, the sub-method took care of registering the result.
2177  if (Res.getNode())
2178    SetWidenedVector(SDValue(N, ResNo), Res);
2179}
2180
2181SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
2182  // Ternary op widening.
2183  SDLoc dl(N);
2184  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2185  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2186  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2187  SDValue InOp3 = GetWidenedVector(N->getOperand(2));
2188  return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
2189}
2190
2191SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
2192  // Binary op widening.
2193  SDLoc dl(N);
2194  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2195  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2196  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2197  return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, N->getFlags());
2198}
2199
2200SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
2201  // Binary op widening for operations that can trap.
2202  unsigned Opcode = N->getOpcode();
2203  SDLoc dl(N);
2204  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2205  EVT WidenEltVT = WidenVT.getVectorElementType();
2206  EVT VT = WidenVT;
2207  unsigned NumElts =  VT.getVectorNumElements();
2208  const SDNodeFlags *Flags = N->getFlags();
2209  while (!TLI.isTypeLegal(VT) && NumElts != 1) {
2210    NumElts = NumElts / 2;
2211    VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
2212  }
2213
2214  if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
2215    // Operation doesn't trap so just widen as normal.
2216    SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2217    SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2218    return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, Flags);
2219  }
2220
2221  // No legal vector version so unroll the vector operation and then widen.
2222  if (NumElts == 1)
2223    return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
2224
2225  // Since the operation can trap, apply operation on the original vector.
2226  EVT MaxVT = VT;
2227  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2228  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2229  unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
2230
2231  SmallVector<SDValue, 16> ConcatOps(CurNumElts);
2232  unsigned ConcatEnd = 0;  // Current ConcatOps index.
2233  int Idx = 0;        // Current Idx into input vectors.
2234
2235  // NumElts := greatest legal vector size (at most WidenVT)
2236  // while (orig. vector has unhandled elements) {
2237  //   take munches of size NumElts from the beginning and add to ConcatOps
2238  //   NumElts := next smaller supported vector size or 1
2239  // }
2240  while (CurNumElts != 0) {
2241    while (CurNumElts >= NumElts) {
2242      SDValue EOp1 = DAG.getNode(
2243          ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
2244          DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2245      SDValue EOp2 = DAG.getNode(
2246          ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
2247          DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2248      ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2, Flags);
2249      Idx += NumElts;
2250      CurNumElts -= NumElts;
2251    }
2252    do {
2253      NumElts = NumElts / 2;
2254      VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
2255    } while (!TLI.isTypeLegal(VT) && NumElts != 1);
2256
2257    if (NumElts == 1) {
2258      for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
2259        SDValue EOp1 = DAG.getNode(
2260            ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp1,
2261            DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2262        SDValue EOp2 = DAG.getNode(
2263            ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp2,
2264            DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2265        ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
2266                                             EOp1, EOp2, Flags);
2267      }
2268      CurNumElts = 0;
2269    }
2270  }
2271
2272  // Check to see if we have a single operation with the widen type.
2273  if (ConcatEnd == 1) {
2274    VT = ConcatOps[0].getValueType();
2275    if (VT == WidenVT)
2276      return ConcatOps[0];
2277  }
2278
2279  // while (Some element of ConcatOps is not of type MaxVT) {
2280  //   From the end of ConcatOps, collect elements of the same type and put
2281  //   them into an op of the next larger supported type
2282  // }
2283  while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
2284    Idx = ConcatEnd - 1;
2285    VT = ConcatOps[Idx--].getValueType();
2286    while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
2287      Idx--;
2288
2289    int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
2290    EVT NextVT;
2291    do {
2292      NextSize *= 2;
2293      NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
2294    } while (!TLI.isTypeLegal(NextVT));
2295
2296    if (!VT.isVector()) {
2297      // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
2298      SDValue VecOp = DAG.getUNDEF(NextVT);
2299      unsigned NumToInsert = ConcatEnd - Idx - 1;
2300      for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
2301        VecOp = DAG.getNode(
2302            ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp, ConcatOps[OpIdx],
2303            DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2304      }
2305      ConcatOps[Idx+1] = VecOp;
2306      ConcatEnd = Idx + 2;
2307    } else {
2308      // Vector type, create a CONCAT_VECTORS of type NextVT
2309      SDValue undefVec = DAG.getUNDEF(VT);
2310      unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
2311      SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
2312      unsigned RealVals = ConcatEnd - Idx - 1;
2313      unsigned SubConcatEnd = 0;
2314      unsigned SubConcatIdx = Idx + 1;
2315      while (SubConcatEnd < RealVals)
2316        SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
2317      while (SubConcatEnd < OpsToConcat)
2318        SubConcatOps[SubConcatEnd++] = undefVec;
2319      ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
2320                                            NextVT, SubConcatOps);
2321      ConcatEnd = SubConcatIdx + 1;
2322    }
2323  }
2324
2325  // Check to see if we have a single operation with the widen type.
2326  if (ConcatEnd == 1) {
2327    VT = ConcatOps[0].getValueType();
2328    if (VT == WidenVT)
2329      return ConcatOps[0];
2330  }
2331
2332  // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
2333  unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
2334  if (NumOps != ConcatEnd ) {
2335    SDValue UndefVal = DAG.getUNDEF(MaxVT);
2336    for (unsigned j = ConcatEnd; j < NumOps; ++j)
2337      ConcatOps[j] = UndefVal;
2338  }
2339  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
2340                     makeArrayRef(ConcatOps.data(), NumOps));
2341}
2342
2343SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
2344  SDValue InOp = N->getOperand(0);
2345  SDLoc DL(N);
2346
2347  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2348  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2349
2350  EVT InVT = InOp.getValueType();
2351  EVT InEltVT = InVT.getVectorElementType();
2352  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
2353
2354  unsigned Opcode = N->getOpcode();
2355  unsigned InVTNumElts = InVT.getVectorNumElements();
2356  const SDNodeFlags *Flags = N->getFlags();
2357  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2358    InOp = GetWidenedVector(N->getOperand(0));
2359    InVT = InOp.getValueType();
2360    InVTNumElts = InVT.getVectorNumElements();
2361    if (InVTNumElts == WidenNumElts) {
2362      if (N->getNumOperands() == 1)
2363        return DAG.getNode(Opcode, DL, WidenVT, InOp);
2364      return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1), Flags);
2365    }
2366  }
2367
2368  if (TLI.isTypeLegal(InWidenVT)) {
2369    // Because the result and the input are different vector types, widening
2370    // the result could create a legal type but widening the input might make
2371    // it an illegal type that might lead to repeatedly splitting the input
2372    // and then widening it. To avoid this, we widen the input only if
2373    // it results in a legal type.
2374    if (WidenNumElts % InVTNumElts == 0) {
2375      // Widen the input and call convert on the widened input vector.
2376      unsigned NumConcat = WidenNumElts/InVTNumElts;
2377      SmallVector<SDValue, 16> Ops(NumConcat);
2378      Ops[0] = InOp;
2379      SDValue UndefVal = DAG.getUNDEF(InVT);
2380      for (unsigned i = 1; i != NumConcat; ++i)
2381        Ops[i] = UndefVal;
2382      SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
2383      if (N->getNumOperands() == 1)
2384        return DAG.getNode(Opcode, DL, WidenVT, InVec);
2385      return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1), Flags);
2386    }
2387
2388    if (InVTNumElts % WidenNumElts == 0) {
2389      SDValue InVal = DAG.getNode(
2390          ISD::EXTRACT_SUBVECTOR, DL, InWidenVT, InOp,
2391          DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
2392      // Extract the input and convert the shorten input vector.
2393      if (N->getNumOperands() == 1)
2394        return DAG.getNode(Opcode, DL, WidenVT, InVal);
2395      return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1), Flags);
2396    }
2397  }
2398
2399  // Otherwise unroll into some nasty scalar code and rebuild the vector.
2400  SmallVector<SDValue, 16> Ops(WidenNumElts);
2401  EVT EltVT = WidenVT.getVectorElementType();
2402  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2403  unsigned i;
2404  for (i=0; i < MinElts; ++i) {
2405    SDValue Val = DAG.getNode(
2406        ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
2407        DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
2408    if (N->getNumOperands() == 1)
2409      Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
2410    else
2411      Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1), Flags);
2412  }
2413
2414  SDValue UndefVal = DAG.getUNDEF(EltVT);
2415  for (; i < WidenNumElts; ++i)
2416    Ops[i] = UndefVal;
2417
2418  return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
2419}
2420
2421SDValue DAGTypeLegalizer::WidenVecRes_EXTEND_VECTOR_INREG(SDNode *N) {
2422  unsigned Opcode = N->getOpcode();
2423  SDValue InOp = N->getOperand(0);
2424  SDLoc DL(N);
2425
2426  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2427  EVT WidenSVT = WidenVT.getVectorElementType();
2428  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2429
2430  EVT InVT = InOp.getValueType();
2431  EVT InSVT = InVT.getVectorElementType();
2432  unsigned InVTNumElts = InVT.getVectorNumElements();
2433
2434  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2435    InOp = GetWidenedVector(InOp);
2436    InVT = InOp.getValueType();
2437    if (InVT.getSizeInBits() == WidenVT.getSizeInBits()) {
2438      switch (Opcode) {
2439      case ISD::ANY_EXTEND_VECTOR_INREG:
2440        return DAG.getAnyExtendVectorInReg(InOp, DL, WidenVT);
2441      case ISD::SIGN_EXTEND_VECTOR_INREG:
2442        return DAG.getSignExtendVectorInReg(InOp, DL, WidenVT);
2443      case ISD::ZERO_EXTEND_VECTOR_INREG:
2444        return DAG.getZeroExtendVectorInReg(InOp, DL, WidenVT);
2445      }
2446    }
2447  }
2448
2449  // Unroll, extend the scalars and rebuild the vector.
2450  SmallVector<SDValue, 16> Ops;
2451  for (unsigned i = 0, e = std::min(InVTNumElts, WidenNumElts); i != e; ++i) {
2452    SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InSVT, InOp,
2453      DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
2454    switch (Opcode) {
2455    case ISD::ANY_EXTEND_VECTOR_INREG:
2456      Val = DAG.getNode(ISD::ANY_EXTEND, DL, WidenSVT, Val);
2457      break;
2458    case ISD::SIGN_EXTEND_VECTOR_INREG:
2459      Val = DAG.getNode(ISD::SIGN_EXTEND, DL, WidenSVT, Val);
2460      break;
2461    case ISD::ZERO_EXTEND_VECTOR_INREG:
2462      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenSVT, Val);
2463      break;
2464    default:
2465      llvm_unreachable("A *_EXTEND_VECTOR_INREG node was expected");
2466    }
2467    Ops.push_back(Val);
2468  }
2469
2470  while (Ops.size() != WidenNumElts)
2471    Ops.push_back(DAG.getUNDEF(WidenSVT));
2472
2473  return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
2474}
2475
2476SDValue DAGTypeLegalizer::WidenVecRes_FCOPYSIGN(SDNode *N) {
2477  // If this is an FCOPYSIGN with same input types, we can treat it as a
2478  // normal (can trap) binary op.
2479  if (N->getOperand(0).getValueType() == N->getOperand(1).getValueType())
2480    return WidenVecRes_BinaryCanTrap(N);
2481
2482  // If the types are different, fall back to unrolling.
2483  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2484  return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
2485}
2486
2487SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
2488  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2489  SDValue InOp = GetWidenedVector(N->getOperand(0));
2490  SDValue ShOp = N->getOperand(1);
2491  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
2492}
2493
2494SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
2495  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2496  SDValue InOp = GetWidenedVector(N->getOperand(0));
2497  SDValue ShOp = N->getOperand(1);
2498
2499  EVT ShVT = ShOp.getValueType();
2500  if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
2501    ShOp = GetWidenedVector(ShOp);
2502    ShVT = ShOp.getValueType();
2503  }
2504  EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
2505                                   ShVT.getVectorElementType(),
2506                                   WidenVT.getVectorNumElements());
2507  if (ShVT != ShWidenVT)
2508    ShOp = ModifyToType(ShOp, ShWidenVT);
2509
2510  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
2511}
2512
2513SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
2514  // Unary op widening.
2515  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2516  SDValue InOp = GetWidenedVector(N->getOperand(0));
2517  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
2518}
2519
2520SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
2521  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2522  EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
2523                               cast<VTSDNode>(N->getOperand(1))->getVT()
2524                                 .getVectorElementType(),
2525                               WidenVT.getVectorNumElements());
2526  SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
2527  return DAG.getNode(N->getOpcode(), SDLoc(N),
2528                     WidenVT, WidenLHS, DAG.getValueType(ExtVT));
2529}
2530
2531SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
2532  SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
2533  return GetWidenedVector(WidenVec);
2534}
2535
2536SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
2537  SDValue InOp = N->getOperand(0);
2538  EVT InVT = InOp.getValueType();
2539  EVT VT = N->getValueType(0);
2540  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2541  SDLoc dl(N);
2542
2543  switch (getTypeAction(InVT)) {
2544  case TargetLowering::TypeLegal:
2545    break;
2546  case TargetLowering::TypePromoteInteger:
2547    // If the incoming type is a vector that is being promoted, then
2548    // we know that the elements are arranged differently and that we
2549    // must perform the conversion using a stack slot.
2550    if (InVT.isVector())
2551      break;
2552
2553    // If the InOp is promoted to the same size, convert it.  Otherwise,
2554    // fall out of the switch and widen the promoted input.
2555    InOp = GetPromotedInteger(InOp);
2556    InVT = InOp.getValueType();
2557    if (WidenVT.bitsEq(InVT))
2558      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
2559    break;
2560  case TargetLowering::TypeSoftenFloat:
2561  case TargetLowering::TypePromoteFloat:
2562  case TargetLowering::TypeExpandInteger:
2563  case TargetLowering::TypeExpandFloat:
2564  case TargetLowering::TypeScalarizeVector:
2565  case TargetLowering::TypeSplitVector:
2566    break;
2567  case TargetLowering::TypeWidenVector:
2568    // If the InOp is widened to the same size, convert it.  Otherwise, fall
2569    // out of the switch and widen the widened input.
2570    InOp = GetWidenedVector(InOp);
2571    InVT = InOp.getValueType();
2572    if (WidenVT.bitsEq(InVT))
2573      // The input widens to the same size. Convert to the widen value.
2574      return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
2575    break;
2576  }
2577
2578  unsigned WidenSize = WidenVT.getSizeInBits();
2579  unsigned InSize = InVT.getSizeInBits();
2580  // x86mmx is not an acceptable vector element type, so don't try.
2581  if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
2582    // Determine new input vector type.  The new input vector type will use
2583    // the same element type (if its a vector) or use the input type as a
2584    // vector.  It is the same size as the type to widen to.
2585    EVT NewInVT;
2586    unsigned NewNumElts = WidenSize / InSize;
2587    if (InVT.isVector()) {
2588      EVT InEltVT = InVT.getVectorElementType();
2589      NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
2590                                 WidenSize / InEltVT.getSizeInBits());
2591    } else {
2592      NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
2593    }
2594
2595    if (TLI.isTypeLegal(NewInVT)) {
2596      // Because the result and the input are different vector types, widening
2597      // the result could create a legal type but widening the input might make
2598      // it an illegal type that might lead to repeatedly splitting the input
2599      // and then widening it. To avoid this, we widen the input only if
2600      // it results in a legal type.
2601      SmallVector<SDValue, 16> Ops(NewNumElts);
2602      SDValue UndefVal = DAG.getUNDEF(InVT);
2603      Ops[0] = InOp;
2604      for (unsigned i = 1; i < NewNumElts; ++i)
2605        Ops[i] = UndefVal;
2606
2607      SDValue NewVec;
2608      if (InVT.isVector())
2609        NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
2610      else
2611        NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops);
2612      return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
2613    }
2614  }
2615
2616  return CreateStackStoreLoad(InOp, WidenVT);
2617}
2618
2619SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
2620  SDLoc dl(N);
2621  // Build a vector with undefined for the new nodes.
2622  EVT VT = N->getValueType(0);
2623
2624  // Integer BUILD_VECTOR operands may be larger than the node's vector element
2625  // type. The UNDEFs need to have the same type as the existing operands.
2626  EVT EltVT = N->getOperand(0).getValueType();
2627  unsigned NumElts = VT.getVectorNumElements();
2628
2629  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2630  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2631
2632  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
2633  assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
2634  NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
2635
2636  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, NewOps);
2637}
2638
2639SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
2640  EVT InVT = N->getOperand(0).getValueType();
2641  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2642  SDLoc dl(N);
2643  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2644  unsigned NumInElts = InVT.getVectorNumElements();
2645  unsigned NumOperands = N->getNumOperands();
2646
2647  bool InputWidened = false; // Indicates we need to widen the input.
2648  if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
2649    if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
2650      // Add undef vectors to widen to correct length.
2651      unsigned NumConcat = WidenVT.getVectorNumElements() /
2652                           InVT.getVectorNumElements();
2653      SDValue UndefVal = DAG.getUNDEF(InVT);
2654      SmallVector<SDValue, 16> Ops(NumConcat);
2655      for (unsigned i=0; i < NumOperands; ++i)
2656        Ops[i] = N->getOperand(i);
2657      for (unsigned i = NumOperands; i != NumConcat; ++i)
2658        Ops[i] = UndefVal;
2659      return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
2660    }
2661  } else {
2662    InputWidened = true;
2663    if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
2664      // The inputs and the result are widen to the same value.
2665      unsigned i;
2666      for (i=1; i < NumOperands; ++i)
2667        if (!N->getOperand(i).isUndef())
2668          break;
2669
2670      if (i == NumOperands)
2671        // Everything but the first operand is an UNDEF so just return the
2672        // widened first operand.
2673        return GetWidenedVector(N->getOperand(0));
2674
2675      if (NumOperands == 2) {
2676        // Replace concat of two operands with a shuffle.
2677        SmallVector<int, 16> MaskOps(WidenNumElts, -1);
2678        for (unsigned i = 0; i < NumInElts; ++i) {
2679          MaskOps[i] = i;
2680          MaskOps[i + NumInElts] = i + WidenNumElts;
2681        }
2682        return DAG.getVectorShuffle(WidenVT, dl,
2683                                    GetWidenedVector(N->getOperand(0)),
2684                                    GetWidenedVector(N->getOperand(1)),
2685                                    MaskOps);
2686      }
2687    }
2688  }
2689
2690  // Fall back to use extracts and build vector.
2691  EVT EltVT = WidenVT.getVectorElementType();
2692  SmallVector<SDValue, 16> Ops(WidenNumElts);
2693  unsigned Idx = 0;
2694  for (unsigned i=0; i < NumOperands; ++i) {
2695    SDValue InOp = N->getOperand(i);
2696    if (InputWidened)
2697      InOp = GetWidenedVector(InOp);
2698    for (unsigned j=0; j < NumInElts; ++j)
2699      Ops[Idx++] = DAG.getNode(
2700          ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2701          DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2702  }
2703  SDValue UndefVal = DAG.getUNDEF(EltVT);
2704  for (; Idx < WidenNumElts; ++Idx)
2705    Ops[Idx] = UndefVal;
2706  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2707}
2708
2709SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
2710  SDLoc dl(N);
2711  SDValue InOp  = N->getOperand(0);
2712  SDValue RndOp = N->getOperand(3);
2713  SDValue SatOp = N->getOperand(4);
2714
2715  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2716  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2717
2718  EVT InVT = InOp.getValueType();
2719  EVT InEltVT = InVT.getVectorElementType();
2720  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
2721
2722  SDValue DTyOp = DAG.getValueType(WidenVT);
2723  SDValue STyOp = DAG.getValueType(InWidenVT);
2724  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
2725
2726  unsigned InVTNumElts = InVT.getVectorNumElements();
2727  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2728    InOp = GetWidenedVector(InOp);
2729    InVT = InOp.getValueType();
2730    InVTNumElts = InVT.getVectorNumElements();
2731    if (InVTNumElts == WidenNumElts)
2732      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2733                                  SatOp, CvtCode);
2734  }
2735
2736  if (TLI.isTypeLegal(InWidenVT)) {
2737    // Because the result and the input are different vector types, widening
2738    // the result could create a legal type but widening the input might make
2739    // it an illegal type that might lead to repeatedly splitting the input
2740    // and then widening it. To avoid this, we widen the input only if
2741    // it results in a legal type.
2742    if (WidenNumElts % InVTNumElts == 0) {
2743      // Widen the input and call convert on the widened input vector.
2744      unsigned NumConcat = WidenNumElts/InVTNumElts;
2745      SmallVector<SDValue, 16> Ops(NumConcat);
2746      Ops[0] = InOp;
2747      SDValue UndefVal = DAG.getUNDEF(InVT);
2748      for (unsigned i = 1; i != NumConcat; ++i)
2749        Ops[i] = UndefVal;
2750
2751      InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, Ops);
2752      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2753                                  SatOp, CvtCode);
2754    }
2755
2756    if (InVTNumElts % WidenNumElts == 0) {
2757      // Extract the input and convert the shorten input vector.
2758      InOp = DAG.getNode(
2759          ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
2760          DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2761      return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2762                                  SatOp, CvtCode);
2763    }
2764  }
2765
2766  // Otherwise unroll into some nasty scalar code and rebuild the vector.
2767  SmallVector<SDValue, 16> Ops(WidenNumElts);
2768  EVT EltVT = WidenVT.getVectorElementType();
2769  DTyOp = DAG.getValueType(EltVT);
2770  STyOp = DAG.getValueType(InEltVT);
2771
2772  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2773  unsigned i;
2774  for (i=0; i < MinElts; ++i) {
2775    SDValue ExtVal = DAG.getNode(
2776        ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2777        DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2778    Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
2779                                  SatOp, CvtCode);
2780  }
2781
2782  SDValue UndefVal = DAG.getUNDEF(EltVT);
2783  for (; i < WidenNumElts; ++i)
2784    Ops[i] = UndefVal;
2785
2786  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2787}
2788
2789SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
2790  EVT      VT = N->getValueType(0);
2791  EVT      WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2792  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2793  SDValue  InOp = N->getOperand(0);
2794  SDValue  Idx  = N->getOperand(1);
2795  SDLoc dl(N);
2796
2797  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2798    InOp = GetWidenedVector(InOp);
2799
2800  EVT InVT = InOp.getValueType();
2801
2802  // Check if we can just return the input vector after widening.
2803  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
2804  if (IdxVal == 0 && InVT == WidenVT)
2805    return InOp;
2806
2807  // Check if we can extract from the vector.
2808  unsigned InNumElts = InVT.getVectorNumElements();
2809  if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
2810    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
2811
2812  // We could try widening the input to the right length but for now, extract
2813  // the original elements, fill the rest with undefs and build a vector.
2814  SmallVector<SDValue, 16> Ops(WidenNumElts);
2815  EVT EltVT = VT.getVectorElementType();
2816  unsigned NumElts = VT.getVectorNumElements();
2817  unsigned i;
2818  for (i=0; i < NumElts; ++i)
2819    Ops[i] =
2820        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2821                    DAG.getConstant(IdxVal + i, dl,
2822                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
2823
2824  SDValue UndefVal = DAG.getUNDEF(EltVT);
2825  for (; i < WidenNumElts; ++i)
2826    Ops[i] = UndefVal;
2827  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2828}
2829
2830SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
2831  SDValue InOp = GetWidenedVector(N->getOperand(0));
2832  return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
2833                     InOp.getValueType(), InOp,
2834                     N->getOperand(1), N->getOperand(2));
2835}
2836
2837SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
2838  LoadSDNode *LD = cast<LoadSDNode>(N);
2839  ISD::LoadExtType ExtType = LD->getExtensionType();
2840
2841  SDValue Result;
2842  SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
2843  if (ExtType != ISD::NON_EXTLOAD)
2844    Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
2845  else
2846    Result = GenWidenVectorLoads(LdChain, LD);
2847
2848  // If we generate a single load, we can use that for the chain.  Otherwise,
2849  // build a factor node to remember the multiple loads are independent and
2850  // chain to that.
2851  SDValue NewChain;
2852  if (LdChain.size() == 1)
2853    NewChain = LdChain[0];
2854  else
2855    NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain);
2856
2857  // Modified the chain - switch anything that used the old chain to use
2858  // the new one.
2859  ReplaceValueWith(SDValue(N, 1), NewChain);
2860
2861  return Result;
2862}
2863
2864SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
2865
2866  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),N->getValueType(0));
2867  SDValue Mask = N->getMask();
2868  EVT MaskVT = Mask.getValueType();
2869  SDValue Src0 = GetWidenedVector(N->getSrc0());
2870  ISD::LoadExtType ExtType = N->getExtensionType();
2871  SDLoc dl(N);
2872
2873  if (getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
2874    Mask = GetWidenedVector(Mask);
2875  else {
2876    EVT BoolVT = getSetCCResultType(WidenVT);
2877
2878    // We can't use ModifyToType() because we should fill the mask with
2879    // zeroes
2880    unsigned WidenNumElts = BoolVT.getVectorNumElements();
2881    unsigned MaskNumElts = MaskVT.getVectorNumElements();
2882
2883    unsigned NumConcat = WidenNumElts / MaskNumElts;
2884    SmallVector<SDValue, 16> Ops(NumConcat);
2885    SDValue ZeroVal = DAG.getConstant(0, dl, MaskVT);
2886    Ops[0] = Mask;
2887    for (unsigned i = 1; i != NumConcat; ++i)
2888      Ops[i] = ZeroVal;
2889
2890    Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
2891  }
2892
2893  SDValue Res = DAG.getMaskedLoad(WidenVT, dl, N->getChain(), N->getBasePtr(),
2894                                  Mask, Src0, N->getMemoryVT(),
2895                                  N->getMemOperand(), ExtType);
2896  // Legalize the chain result - switch anything that used the old chain to
2897  // use the new one.
2898  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
2899  return Res;
2900}
2901
2902SDValue DAGTypeLegalizer::WidenVecRes_MGATHER(MaskedGatherSDNode *N) {
2903
2904  EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2905  SDValue Mask = N->getMask();
2906  SDValue Src0 = GetWidenedVector(N->getValue());
2907  unsigned NumElts = WideVT.getVectorNumElements();
2908  SDLoc dl(N);
2909
2910  // The mask should be widened as well
2911  Mask = WidenTargetBoolean(Mask, WideVT, true);
2912
2913  // Widen the Index operand
2914  SDValue Index = N->getIndex();
2915  EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
2916                                     Index.getValueType().getScalarType(),
2917                                     NumElts);
2918  Index = ModifyToType(Index, WideIndexVT);
2919  SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
2920  SDValue Res = DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other),
2921                                    N->getMemoryVT(), dl, Ops,
2922                                    N->getMemOperand());
2923
2924  // Legalize the chain result - switch anything that used the old chain to
2925  // use the new one.
2926  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
2927  return Res;
2928}
2929
2930SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
2931  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2932  return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
2933                     WidenVT, N->getOperand(0));
2934}
2935
2936SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
2937  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2938  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2939
2940  SDValue Cond1 = N->getOperand(0);
2941  EVT CondVT = Cond1.getValueType();
2942  if (CondVT.isVector()) {
2943    EVT CondEltVT = CondVT.getVectorElementType();
2944    EVT CondWidenVT =  EVT::getVectorVT(*DAG.getContext(),
2945                                        CondEltVT, WidenNumElts);
2946    if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
2947      Cond1 = GetWidenedVector(Cond1);
2948
2949    // If we have to split the condition there is no point in widening the
2950    // select. This would result in an cycle of widening the select ->
2951    // widening the condition operand -> splitting the condition operand ->
2952    // splitting the select -> widening the select. Instead split this select
2953    // further and widen the resulting type.
2954    if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) {
2955      SDValue SplitSelect = SplitVecOp_VSELECT(N, 0);
2956      SDValue Res = ModifyToType(SplitSelect, WidenVT);
2957      return Res;
2958    }
2959
2960    if (Cond1.getValueType() != CondWidenVT)
2961      Cond1 = ModifyToType(Cond1, CondWidenVT);
2962  }
2963
2964  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2965  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
2966  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
2967  return DAG.getNode(N->getOpcode(), SDLoc(N),
2968                     WidenVT, Cond1, InOp1, InOp2);
2969}
2970
2971SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
2972  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
2973  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
2974  return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
2975                     InOp1.getValueType(), N->getOperand(0),
2976                     N->getOperand(1), InOp1, InOp2, N->getOperand(4));
2977}
2978
2979SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
2980  assert(N->getValueType(0).isVector() ==
2981         N->getOperand(0).getValueType().isVector() &&
2982         "Scalar/Vector type mismatch");
2983  if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
2984
2985  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2986  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2987  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2988  return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
2989                     InOp1, InOp2, N->getOperand(2));
2990}
2991
2992SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
2993 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2994 return DAG.getUNDEF(WidenVT);
2995}
2996
2997SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
2998  EVT VT = N->getValueType(0);
2999  SDLoc dl(N);
3000
3001  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3002  unsigned NumElts = VT.getVectorNumElements();
3003  unsigned WidenNumElts = WidenVT.getVectorNumElements();
3004
3005  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
3006  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
3007
3008  // Adjust mask based on new input vector length.
3009  SmallVector<int, 16> NewMask;
3010  for (unsigned i = 0; i != NumElts; ++i) {
3011    int Idx = N->getMaskElt(i);
3012    if (Idx < (int)NumElts)
3013      NewMask.push_back(Idx);
3014    else
3015      NewMask.push_back(Idx - NumElts + WidenNumElts);
3016  }
3017  for (unsigned i = NumElts; i != WidenNumElts; ++i)
3018    NewMask.push_back(-1);
3019  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, NewMask);
3020}
3021
3022SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
3023  assert(N->getValueType(0).isVector() &&
3024         N->getOperand(0).getValueType().isVector() &&
3025         "Operands must be vectors");
3026  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
3027  unsigned WidenNumElts = WidenVT.getVectorNumElements();
3028
3029  SDValue InOp1 = N->getOperand(0);
3030  EVT InVT = InOp1.getValueType();
3031  assert(InVT.isVector() && "can not widen non-vector type");
3032  EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
3033                                   InVT.getVectorElementType(), WidenNumElts);
3034
3035  // The input and output types often differ here, and it could be that while
3036  // we'd prefer to widen the result type, the input operands have been split.
3037  // In this case, we also need to split the result of this node as well.
3038  if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
3039    SDValue SplitVSetCC = SplitVecOp_VSETCC(N);
3040    SDValue Res = ModifyToType(SplitVSetCC, WidenVT);
3041    return Res;
3042  }
3043
3044  InOp1 = GetWidenedVector(InOp1);
3045  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
3046
3047  // Assume that the input and output will be widen appropriately.  If not,
3048  // we will have to unroll it at some point.
3049  assert(InOp1.getValueType() == WidenInVT &&
3050         InOp2.getValueType() == WidenInVT &&
3051         "Input not widened to expected type!");
3052  (void)WidenInVT;
3053  return DAG.getNode(ISD::SETCC, SDLoc(N),
3054                     WidenVT, InOp1, InOp2, N->getOperand(2));
3055}
3056
3057
3058//===----------------------------------------------------------------------===//
3059// Widen Vector Operand
3060//===----------------------------------------------------------------------===//
3061bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
3062  DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
3063        N->dump(&DAG);
3064        dbgs() << "\n");
3065  SDValue Res = SDValue();
3066
3067  // See if the target wants to custom widen this node.
3068  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
3069    return false;
3070
3071  switch (N->getOpcode()) {
3072  default:
3073#ifndef NDEBUG
3074    dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
3075    N->dump(&DAG);
3076    dbgs() << "\n";
3077#endif
3078    llvm_unreachable("Do not know how to widen this operator's operand!");
3079
3080  case ISD::BITCAST:            Res = WidenVecOp_BITCAST(N); break;
3081  case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
3082  case ISD::EXTRACT_SUBVECTOR:  Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
3083  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
3084  case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
3085  case ISD::MSTORE:             Res = WidenVecOp_MSTORE(N, OpNo); break;
3086  case ISD::MSCATTER:           Res = WidenVecOp_MSCATTER(N, OpNo); break;
3087  case ISD::SETCC:              Res = WidenVecOp_SETCC(N); break;
3088  case ISD::FCOPYSIGN:          Res = WidenVecOp_FCOPYSIGN(N); break;
3089
3090  case ISD::ANY_EXTEND:
3091  case ISD::SIGN_EXTEND:
3092  case ISD::ZERO_EXTEND:
3093    Res = WidenVecOp_EXTEND(N);
3094    break;
3095
3096  case ISD::FP_EXTEND:
3097  case ISD::FP_TO_SINT:
3098  case ISD::FP_TO_UINT:
3099  case ISD::SINT_TO_FP:
3100  case ISD::UINT_TO_FP:
3101  case ISD::TRUNCATE:
3102    Res = WidenVecOp_Convert(N);
3103    break;
3104  }
3105
3106  // If Res is null, the sub-method took care of registering the result.
3107  if (!Res.getNode()) return false;
3108
3109  // If the result is N, the sub-method updated N in place.  Tell the legalizer
3110  // core about this.
3111  if (Res.getNode() == N)
3112    return true;
3113
3114
3115  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
3116         "Invalid operand expansion");
3117
3118  ReplaceValueWith(SDValue(N, 0), Res);
3119  return false;
3120}
3121
3122SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) {
3123  SDLoc DL(N);
3124  EVT VT = N->getValueType(0);
3125
3126  SDValue InOp = N->getOperand(0);
3127  // If some legalization strategy other than widening is used on the operand,
3128  // we can't safely assume that just extending the low lanes is the correct
3129  // transformation.
3130  if (getTypeAction(InOp.getValueType()) != TargetLowering::TypeWidenVector)
3131    return WidenVecOp_Convert(N);
3132  InOp = GetWidenedVector(InOp);
3133  assert(VT.getVectorNumElements() <
3134             InOp.getValueType().getVectorNumElements() &&
3135         "Input wasn't widened!");
3136
3137  // We may need to further widen the operand until it has the same total
3138  // vector size as the result.
3139  EVT InVT = InOp.getValueType();
3140  if (InVT.getSizeInBits() != VT.getSizeInBits()) {
3141    EVT InEltVT = InVT.getVectorElementType();
3142    for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) {
3143      EVT FixedVT = (MVT::SimpleValueType)i;
3144      EVT FixedEltVT = FixedVT.getVectorElementType();
3145      if (TLI.isTypeLegal(FixedVT) &&
3146          FixedVT.getSizeInBits() == VT.getSizeInBits() &&
3147          FixedEltVT == InEltVT) {
3148        assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() &&
3149               "Not enough elements in the fixed type for the operand!");
3150        assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() &&
3151               "We can't have the same type as we started with!");
3152        if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements())
3153          InOp = DAG.getNode(
3154              ISD::INSERT_SUBVECTOR, DL, FixedVT, DAG.getUNDEF(FixedVT), InOp,
3155              DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3156        else
3157          InOp = DAG.getNode(
3158              ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp,
3159              DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3160        break;
3161      }
3162    }
3163    InVT = InOp.getValueType();
3164    if (InVT.getSizeInBits() != VT.getSizeInBits())
3165      // We couldn't find a legal vector type that was a widening of the input
3166      // and could be extended in-register to the result type, so we have to
3167      // scalarize.
3168      return WidenVecOp_Convert(N);
3169  }
3170
3171  // Use special DAG nodes to represent the operation of extending the
3172  // low lanes.
3173  switch (N->getOpcode()) {
3174  default:
3175    llvm_unreachable("Extend legalization on on extend operation!");
3176  case ISD::ANY_EXTEND:
3177    return DAG.getAnyExtendVectorInReg(InOp, DL, VT);
3178  case ISD::SIGN_EXTEND:
3179    return DAG.getSignExtendVectorInReg(InOp, DL, VT);
3180  case ISD::ZERO_EXTEND:
3181    return DAG.getZeroExtendVectorInReg(InOp, DL, VT);
3182  }
3183}
3184
3185SDValue DAGTypeLegalizer::WidenVecOp_FCOPYSIGN(SDNode *N) {
3186  // The result (and first input) is legal, but the second input is illegal.
3187  // We can't do much to fix that, so just unroll and let the extracts off of
3188  // the second input be widened as needed later.
3189  return DAG.UnrollVectorOp(N);
3190}
3191
3192SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
3193  // Since the result is legal and the input is illegal, it is unlikely that we
3194  // can fix the input to a legal type so unroll the convert into some scalar
3195  // code and create a nasty build vector.
3196  EVT VT = N->getValueType(0);
3197  EVT EltVT = VT.getVectorElementType();
3198  SDLoc dl(N);
3199  unsigned NumElts = VT.getVectorNumElements();
3200  SDValue InOp = N->getOperand(0);
3201  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
3202    InOp = GetWidenedVector(InOp);
3203  EVT InVT = InOp.getValueType();
3204  EVT InEltVT = InVT.getVectorElementType();
3205
3206  unsigned Opcode = N->getOpcode();
3207  SmallVector<SDValue, 16> Ops(NumElts);
3208  for (unsigned i=0; i < NumElts; ++i)
3209    Ops[i] = DAG.getNode(
3210        Opcode, dl, EltVT,
3211        DAG.getNode(
3212            ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
3213            DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3214
3215  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3216}
3217
3218SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
3219  EVT VT = N->getValueType(0);
3220  SDValue InOp = GetWidenedVector(N->getOperand(0));
3221  EVT InWidenVT = InOp.getValueType();
3222  SDLoc dl(N);
3223
3224  // Check if we can convert between two legal vector types and extract.
3225  unsigned InWidenSize = InWidenVT.getSizeInBits();
3226  unsigned Size = VT.getSizeInBits();
3227  // x86mmx is not an acceptable vector element type, so don't try.
3228  if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
3229    unsigned NewNumElts = InWidenSize / Size;
3230    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
3231    if (TLI.isTypeLegal(NewVT)) {
3232      SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
3233      return DAG.getNode(
3234          ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
3235          DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3236    }
3237  }
3238
3239  return CreateStackStoreLoad(InOp, VT);
3240}
3241
3242SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
3243  // If the input vector is not legal, it is likely that we will not find a
3244  // legal vector of the same size. Replace the concatenate vector with a
3245  // nasty build vector.
3246  EVT VT = N->getValueType(0);
3247  EVT EltVT = VT.getVectorElementType();
3248  SDLoc dl(N);
3249  unsigned NumElts = VT.getVectorNumElements();
3250  SmallVector<SDValue, 16> Ops(NumElts);
3251
3252  EVT InVT = N->getOperand(0).getValueType();
3253  unsigned NumInElts = InVT.getVectorNumElements();
3254
3255  unsigned Idx = 0;
3256  unsigned NumOperands = N->getNumOperands();
3257  for (unsigned i=0; i < NumOperands; ++i) {
3258    SDValue InOp = N->getOperand(i);
3259    if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
3260      InOp = GetWidenedVector(InOp);
3261    for (unsigned j=0; j < NumInElts; ++j)
3262      Ops[Idx++] = DAG.getNode(
3263          ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
3264          DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3265  }
3266  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3267}
3268
3269SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
3270  SDValue InOp = GetWidenedVector(N->getOperand(0));
3271  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
3272                     N->getValueType(0), InOp, N->getOperand(1));
3273}
3274
3275SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
3276  SDValue InOp = GetWidenedVector(N->getOperand(0));
3277  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
3278                     N->getValueType(0), InOp, N->getOperand(1));
3279}
3280
3281SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
3282  // We have to widen the value, but we want only to store the original
3283  // vector type.
3284  StoreSDNode *ST = cast<StoreSDNode>(N);
3285
3286  SmallVector<SDValue, 16> StChain;
3287  if (ST->isTruncatingStore())
3288    GenWidenVectorTruncStores(StChain, ST);
3289  else
3290    GenWidenVectorStores(StChain, ST);
3291
3292  if (StChain.size() == 1)
3293    return StChain[0];
3294  else
3295    return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain);
3296}
3297
3298SDValue DAGTypeLegalizer::WidenVecOp_MSTORE(SDNode *N, unsigned OpNo) {
3299  MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
3300  SDValue Mask = MST->getMask();
3301  EVT MaskVT = Mask.getValueType();
3302  SDValue StVal = MST->getValue();
3303  // Widen the value
3304  SDValue WideVal = GetWidenedVector(StVal);
3305  SDLoc dl(N);
3306
3307  if (OpNo == 2 || getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
3308    Mask = GetWidenedVector(Mask);
3309  else {
3310    // The mask should be widened as well.
3311    EVT BoolVT = getSetCCResultType(WideVal.getValueType());
3312    // We can't use ModifyToType() because we should fill the mask with
3313    // zeroes.
3314    unsigned WidenNumElts = BoolVT.getVectorNumElements();
3315    unsigned MaskNumElts = MaskVT.getVectorNumElements();
3316
3317    unsigned NumConcat = WidenNumElts / MaskNumElts;
3318    SmallVector<SDValue, 16> Ops(NumConcat);
3319    SDValue ZeroVal = DAG.getConstant(0, dl, MaskVT);
3320    Ops[0] = Mask;
3321    for (unsigned i = 1; i != NumConcat; ++i)
3322      Ops[i] = ZeroVal;
3323
3324    Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
3325  }
3326  assert(Mask.getValueType().getVectorNumElements() ==
3327         WideVal.getValueType().getVectorNumElements() &&
3328         "Mask and data vectors should have the same number of elements");
3329  return DAG.getMaskedStore(MST->getChain(), dl, WideVal, MST->getBasePtr(),
3330                            Mask, MST->getMemoryVT(), MST->getMemOperand(),
3331                            false);
3332}
3333
3334SDValue DAGTypeLegalizer::WidenVecOp_MSCATTER(SDNode *N, unsigned OpNo) {
3335  assert(OpNo == 1 && "Can widen only data operand of mscatter");
3336  MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
3337  SDValue DataOp = MSC->getValue();
3338  SDValue Mask = MSC->getMask();
3339
3340  // Widen the value.
3341  SDValue WideVal = GetWidenedVector(DataOp);
3342  EVT WideVT = WideVal.getValueType();
3343  unsigned NumElts = WideVal.getValueType().getVectorNumElements();
3344  SDLoc dl(N);
3345
3346  // The mask should be widened as well.
3347  Mask = WidenTargetBoolean(Mask, WideVT, true);
3348
3349  // Widen index.
3350  SDValue Index = MSC->getIndex();
3351  EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
3352                                     Index.getValueType().getScalarType(),
3353                                     NumElts);
3354  Index = ModifyToType(Index, WideIndexVT);
3355
3356  SDValue Ops[] = {MSC->getChain(), WideVal, Mask, MSC->getBasePtr(), Index};
3357  return DAG.getMaskedScatter(DAG.getVTList(MVT::Other),
3358                              MSC->getMemoryVT(), dl, Ops,
3359                              MSC->getMemOperand());
3360}
3361
3362SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
3363  SDValue InOp0 = GetWidenedVector(N->getOperand(0));
3364  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
3365  SDLoc dl(N);
3366
3367  // WARNING: In this code we widen the compare instruction with garbage.
3368  // This garbage may contain denormal floats which may be slow. Is this a real
3369  // concern ? Should we zero the unused lanes if this is a float compare ?
3370
3371  // Get a new SETCC node to compare the newly widened operands.
3372  // Only some of the compared elements are legal.
3373  EVT SVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3374                                   InOp0.getValueType());
3375  SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
3376                     SVT, InOp0, InOp1, N->getOperand(2));
3377
3378  // Extract the needed results from the result vector.
3379  EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
3380                               SVT.getVectorElementType(),
3381                               N->getValueType(0).getVectorNumElements());
3382  SDValue CC = DAG.getNode(
3383      ISD::EXTRACT_SUBVECTOR, dl, ResVT, WideSETCC,
3384      DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3385
3386  return PromoteTargetBoolean(CC, N->getValueType(0));
3387}
3388
3389
3390//===----------------------------------------------------------------------===//
3391// Vector Widening Utilities
3392//===----------------------------------------------------------------------===//
3393
3394// Utility function to find the type to chop up a widen vector for load/store
3395//  TLI:       Target lowering used to determine legal types.
3396//  Width:     Width left need to load/store.
3397//  WidenVT:   The widen vector type to load to/store from
3398//  Align:     If 0, don't allow use of a wider type
3399//  WidenEx:   If Align is not 0, the amount additional we can load/store from.
3400
3401static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
3402                       unsigned Width, EVT WidenVT,
3403                       unsigned Align = 0, unsigned WidenEx = 0) {
3404  EVT WidenEltVT = WidenVT.getVectorElementType();
3405  unsigned WidenWidth = WidenVT.getSizeInBits();
3406  unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
3407  unsigned AlignInBits = Align*8;
3408
3409  // If we have one element to load/store, return it.
3410  EVT RetVT = WidenEltVT;
3411  if (Width == WidenEltWidth)
3412    return RetVT;
3413
3414  // See if there is larger legal integer than the element type to load/store.
3415  unsigned VT;
3416  for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
3417       VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
3418    EVT MemVT((MVT::SimpleValueType) VT);
3419    unsigned MemVTWidth = MemVT.getSizeInBits();
3420    if (MemVT.getSizeInBits() <= WidenEltWidth)
3421      break;
3422    auto Action = TLI.getTypeAction(*DAG.getContext(), MemVT);
3423    if ((Action == TargetLowering::TypeLegal ||
3424         Action == TargetLowering::TypePromoteInteger) &&
3425        (WidenWidth % MemVTWidth) == 0 &&
3426        isPowerOf2_32(WidenWidth / MemVTWidth) &&
3427        (MemVTWidth <= Width ||
3428         (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
3429      RetVT = MemVT;
3430      break;
3431    }
3432  }
3433
3434  // See if there is a larger vector type to load/store that has the same vector
3435  // element type and is evenly divisible with the WidenVT.
3436  for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
3437       VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
3438    EVT MemVT = (MVT::SimpleValueType) VT;
3439    unsigned MemVTWidth = MemVT.getSizeInBits();
3440    if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
3441        (WidenWidth % MemVTWidth) == 0 &&
3442        isPowerOf2_32(WidenWidth / MemVTWidth) &&
3443        (MemVTWidth <= Width ||
3444         (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
3445      if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
3446        return MemVT;
3447    }
3448  }
3449
3450  return RetVT;
3451}
3452
3453// Builds a vector type from scalar loads
3454//  VecTy: Resulting Vector type
3455//  LDOps: Load operators to build a vector type
3456//  [Start,End) the list of loads to use.
3457static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
3458                                     SmallVectorImpl<SDValue> &LdOps,
3459                                     unsigned Start, unsigned End) {
3460  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3461  SDLoc dl(LdOps[Start]);
3462  EVT LdTy = LdOps[Start].getValueType();
3463  unsigned Width = VecTy.getSizeInBits();
3464  unsigned NumElts = Width / LdTy.getSizeInBits();
3465  EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
3466
3467  unsigned Idx = 1;
3468  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
3469
3470  for (unsigned i = Start + 1; i != End; ++i) {
3471    EVT NewLdTy = LdOps[i].getValueType();
3472    if (NewLdTy != LdTy) {
3473      NumElts = Width / NewLdTy.getSizeInBits();
3474      NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
3475      VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
3476      // Readjust position and vector position based on new load type.
3477      Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
3478      LdTy = NewLdTy;
3479    }
3480    VecOp = DAG.getNode(
3481        ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
3482        DAG.getConstant(Idx++, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3483  }
3484  return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
3485}
3486
3487SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
3488                                              LoadSDNode *LD) {
3489  // The strategy assumes that we can efficiently load power-of-two widths.
3490  // The routine chops the vector into the largest vector loads with the same
3491  // element type or scalar loads and then recombines it to the widen vector
3492  // type.
3493  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
3494  unsigned WidenWidth = WidenVT.getSizeInBits();
3495  EVT LdVT    = LD->getMemoryVT();
3496  SDLoc dl(LD);
3497  assert(LdVT.isVector() && WidenVT.isVector());
3498  assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
3499
3500  // Load information
3501  SDValue   Chain = LD->getChain();
3502  SDValue   BasePtr = LD->getBasePtr();
3503  unsigned  Align    = LD->getAlignment();
3504  bool      isVolatile = LD->isVolatile();
3505  bool      isNonTemporal = LD->isNonTemporal();
3506  bool      isInvariant = LD->isInvariant();
3507  AAMDNodes AAInfo = LD->getAAInfo();
3508
3509  int LdWidth = LdVT.getSizeInBits();
3510  int WidthDiff = WidenWidth - LdWidth;
3511  unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads.
3512
3513  // Find the vector type that can load from.
3514  EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
3515  int NewVTWidth = NewVT.getSizeInBits();
3516  SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
3517                             isVolatile, isNonTemporal, isInvariant, Align,
3518                             AAInfo);
3519  LdChain.push_back(LdOp.getValue(1));
3520
3521  // Check if we can load the element with one instruction.
3522  if (LdWidth <= NewVTWidth) {
3523    if (!NewVT.isVector()) {
3524      unsigned NumElts = WidenWidth / NewVTWidth;
3525      EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
3526      SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
3527      return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
3528    }
3529    if (NewVT == WidenVT)
3530      return LdOp;
3531
3532    assert(WidenWidth % NewVTWidth == 0);
3533    unsigned NumConcat = WidenWidth / NewVTWidth;
3534    SmallVector<SDValue, 16> ConcatOps(NumConcat);
3535    SDValue UndefVal = DAG.getUNDEF(NewVT);
3536    ConcatOps[0] = LdOp;
3537    for (unsigned i = 1; i != NumConcat; ++i)
3538      ConcatOps[i] = UndefVal;
3539    return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps);
3540  }
3541
3542  // Load vector by using multiple loads from largest vector to scalar.
3543  SmallVector<SDValue, 16> LdOps;
3544  LdOps.push_back(LdOp);
3545
3546  LdWidth -= NewVTWidth;
3547  unsigned Offset = 0;
3548
3549  while (LdWidth > 0) {
3550    unsigned Increment = NewVTWidth / 8;
3551    Offset += Increment;
3552    BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3553                          DAG.getConstant(Increment, dl, BasePtr.getValueType()));
3554
3555    SDValue L;
3556    if (LdWidth < NewVTWidth) {
3557      // The current type we are using is too large. Find a better size.
3558      NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
3559      NewVTWidth = NewVT.getSizeInBits();
3560      L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
3561                      LD->getPointerInfo().getWithOffset(Offset), isVolatile,
3562                      isNonTemporal, isInvariant, MinAlign(Align, Increment),
3563                      AAInfo);
3564      LdChain.push_back(L.getValue(1));
3565      if (L->getValueType(0).isVector()) {
3566        SmallVector<SDValue, 16> Loads;
3567        Loads.push_back(L);
3568        unsigned size = L->getValueSizeInBits(0);
3569        while (size < LdOp->getValueSizeInBits(0)) {
3570          Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
3571          size += L->getValueSizeInBits(0);
3572        }
3573        L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), Loads);
3574      }
3575    } else {
3576      L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
3577                      LD->getPointerInfo().getWithOffset(Offset), isVolatile,
3578                      isNonTemporal, isInvariant, MinAlign(Align, Increment),
3579                      AAInfo);
3580      LdChain.push_back(L.getValue(1));
3581    }
3582
3583    LdOps.push_back(L);
3584
3585
3586    LdWidth -= NewVTWidth;
3587  }
3588
3589  // Build the vector from the load operations.
3590  unsigned End = LdOps.size();
3591  if (!LdOps[0].getValueType().isVector())
3592    // All the loads are scalar loads.
3593    return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
3594
3595  // If the load contains vectors, build the vector using concat vector.
3596  // All of the vectors used to load are power-of-2, and the scalar loads can be
3597  // combined to make a power-of-2 vector.
3598  SmallVector<SDValue, 16> ConcatOps(End);
3599  int i = End - 1;
3600  int Idx = End;
3601  EVT LdTy = LdOps[i].getValueType();
3602  // First, combine the scalar loads to a vector.
3603  if (!LdTy.isVector())  {
3604    for (--i; i >= 0; --i) {
3605      LdTy = LdOps[i].getValueType();
3606      if (LdTy.isVector())
3607        break;
3608    }
3609    ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i + 1, End);
3610  }
3611  ConcatOps[--Idx] = LdOps[i];
3612  for (--i; i >= 0; --i) {
3613    EVT NewLdTy = LdOps[i].getValueType();
3614    if (NewLdTy != LdTy) {
3615      // Create a larger vector.
3616      ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
3617                                     makeArrayRef(&ConcatOps[Idx], End - Idx));
3618      Idx = End - 1;
3619      LdTy = NewLdTy;
3620    }
3621    ConcatOps[--Idx] = LdOps[i];
3622  }
3623
3624  if (WidenWidth == LdTy.getSizeInBits() * (End - Idx))
3625    return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
3626                       makeArrayRef(&ConcatOps[Idx], End - Idx));
3627
3628  // We need to fill the rest with undefs to build the vector.
3629  unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
3630  SmallVector<SDValue, 16> WidenOps(NumOps);
3631  SDValue UndefVal = DAG.getUNDEF(LdTy);
3632  {
3633    unsigned i = 0;
3634    for (; i != End-Idx; ++i)
3635      WidenOps[i] = ConcatOps[Idx+i];
3636    for (; i != NumOps; ++i)
3637      WidenOps[i] = UndefVal;
3638  }
3639  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps);
3640}
3641
3642SDValue
3643DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
3644                                         LoadSDNode *LD,
3645                                         ISD::LoadExtType ExtType) {
3646  // For extension loads, it may not be more efficient to chop up the vector
3647  // and then extend it. Instead, we unroll the load and build a new vector.
3648  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
3649  EVT LdVT    = LD->getMemoryVT();
3650  SDLoc dl(LD);
3651  assert(LdVT.isVector() && WidenVT.isVector());
3652
3653  // Load information
3654  SDValue   Chain = LD->getChain();
3655  SDValue   BasePtr = LD->getBasePtr();
3656  unsigned  Align    = LD->getAlignment();
3657  bool      isVolatile = LD->isVolatile();
3658  bool      isNonTemporal = LD->isNonTemporal();
3659  bool      isInvariant = LD->isInvariant();
3660  AAMDNodes AAInfo = LD->getAAInfo();
3661
3662  EVT EltVT = WidenVT.getVectorElementType();
3663  EVT LdEltVT = LdVT.getVectorElementType();
3664  unsigned NumElts = LdVT.getVectorNumElements();
3665
3666  // Load each element and widen.
3667  unsigned WidenNumElts = WidenVT.getVectorNumElements();
3668  SmallVector<SDValue, 16> Ops(WidenNumElts);
3669  unsigned Increment = LdEltVT.getSizeInBits() / 8;
3670  Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
3671                          LD->getPointerInfo(),
3672                          LdEltVT, isVolatile, isNonTemporal, isInvariant,
3673                          Align, AAInfo);
3674  LdChain.push_back(Ops[0].getValue(1));
3675  unsigned i = 0, Offset = Increment;
3676  for (i=1; i < NumElts; ++i, Offset += Increment) {
3677    SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
3678                                     BasePtr,
3679                                     DAG.getConstant(Offset, dl,
3680                                                     BasePtr.getValueType()));
3681    Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
3682                            LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
3683                            isVolatile, isNonTemporal, isInvariant, Align,
3684                            AAInfo);
3685    LdChain.push_back(Ops[i].getValue(1));
3686  }
3687
3688  // Fill the rest with undefs.
3689  SDValue UndefVal = DAG.getUNDEF(EltVT);
3690  for (; i != WidenNumElts; ++i)
3691    Ops[i] = UndefVal;
3692
3693  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
3694}
3695
3696
3697void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
3698                                            StoreSDNode *ST) {
3699  // The strategy assumes that we can efficiently store power-of-two widths.
3700  // The routine chops the vector into the largest vector stores with the same
3701  // element type or scalar stores.
3702  SDValue  Chain = ST->getChain();
3703  SDValue  BasePtr = ST->getBasePtr();
3704  unsigned Align = ST->getAlignment();
3705  bool     isVolatile = ST->isVolatile();
3706  bool     isNonTemporal = ST->isNonTemporal();
3707  AAMDNodes AAInfo = ST->getAAInfo();
3708  SDValue  ValOp = GetWidenedVector(ST->getValue());
3709  SDLoc dl(ST);
3710
3711  EVT StVT = ST->getMemoryVT();
3712  unsigned StWidth = StVT.getSizeInBits();
3713  EVT ValVT = ValOp.getValueType();
3714  unsigned ValWidth = ValVT.getSizeInBits();
3715  EVT ValEltVT = ValVT.getVectorElementType();
3716  unsigned ValEltWidth = ValEltVT.getSizeInBits();
3717  assert(StVT.getVectorElementType() == ValEltVT);
3718
3719  int Idx = 0;          // current index to store
3720  unsigned Offset = 0;  // offset from base to store
3721  while (StWidth != 0) {
3722    // Find the largest vector type we can store with.
3723    EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
3724    unsigned NewVTWidth = NewVT.getSizeInBits();
3725    unsigned Increment = NewVTWidth / 8;
3726    if (NewVT.isVector()) {
3727      unsigned NumVTElts = NewVT.getVectorNumElements();
3728      do {
3729        SDValue EOp = DAG.getNode(
3730            ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
3731            DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3732        StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
3733                                    ST->getPointerInfo().getWithOffset(Offset),
3734                                       isVolatile, isNonTemporal,
3735                                       MinAlign(Align, Offset), AAInfo));
3736        StWidth -= NewVTWidth;
3737        Offset += Increment;
3738        Idx += NumVTElts;
3739        BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3740                              DAG.getConstant(Increment, dl,
3741                                              BasePtr.getValueType()));
3742      } while (StWidth != 0 && StWidth >= NewVTWidth);
3743    } else {
3744      // Cast the vector to the scalar type we can store.
3745      unsigned NumElts = ValWidth / NewVTWidth;
3746      EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
3747      SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
3748      // Readjust index position based on new vector type.
3749      Idx = Idx * ValEltWidth / NewVTWidth;
3750      do {
3751        SDValue EOp = DAG.getNode(
3752            ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
3753            DAG.getConstant(Idx++, dl,
3754                            TLI.getVectorIdxTy(DAG.getDataLayout())));
3755        StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
3756                                    ST->getPointerInfo().getWithOffset(Offset),
3757                                       isVolatile, isNonTemporal,
3758                                       MinAlign(Align, Offset), AAInfo));
3759        StWidth -= NewVTWidth;
3760        Offset += Increment;
3761        BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3762                              DAG.getConstant(Increment, dl,
3763                                              BasePtr.getValueType()));
3764      } while (StWidth != 0 && StWidth >= NewVTWidth);
3765      // Restore index back to be relative to the original widen element type.
3766      Idx = Idx * NewVTWidth / ValEltWidth;
3767    }
3768  }
3769}
3770
3771void
3772DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
3773                                            StoreSDNode *ST) {
3774  // For extension loads, it may not be more efficient to truncate the vector
3775  // and then store it. Instead, we extract each element and then store it.
3776  SDValue  Chain = ST->getChain();
3777  SDValue  BasePtr = ST->getBasePtr();
3778  unsigned Align = ST->getAlignment();
3779  bool     isVolatile = ST->isVolatile();
3780  bool     isNonTemporal = ST->isNonTemporal();
3781  AAMDNodes AAInfo = ST->getAAInfo();
3782  SDValue  ValOp = GetWidenedVector(ST->getValue());
3783  SDLoc dl(ST);
3784
3785  EVT StVT = ST->getMemoryVT();
3786  EVT ValVT = ValOp.getValueType();
3787
3788  // It must be true that the wide vector type is bigger than where we need to
3789  // store.
3790  assert(StVT.isVector() && ValOp.getValueType().isVector());
3791  assert(StVT.bitsLT(ValOp.getValueType()));
3792
3793  // For truncating stores, we can not play the tricks of chopping legal vector
3794  // types and bitcast it to the right type. Instead, we unroll the store.
3795  EVT StEltVT  = StVT.getVectorElementType();
3796  EVT ValEltVT = ValVT.getVectorElementType();
3797  unsigned Increment = ValEltVT.getSizeInBits() / 8;
3798  unsigned NumElts = StVT.getVectorNumElements();
3799  SDValue EOp = DAG.getNode(
3800      ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
3801      DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3802  StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
3803                                      ST->getPointerInfo(), StEltVT,
3804                                      isVolatile, isNonTemporal, Align,
3805                                      AAInfo));
3806  unsigned Offset = Increment;
3807  for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
3808    SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
3809                                     BasePtr,
3810                                     DAG.getConstant(Offset, dl,
3811                                                     BasePtr.getValueType()));
3812    SDValue EOp = DAG.getNode(
3813        ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
3814        DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3815    StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
3816                                      ST->getPointerInfo().getWithOffset(Offset),
3817                                        StEltVT, isVolatile, isNonTemporal,
3818                                        MinAlign(Align, Offset), AAInfo));
3819  }
3820}
3821
3822/// Modifies a vector input (widen or narrows) to a vector of NVT.  The
3823/// input vector must have the same element type as NVT.
3824/// FillWithZeroes specifies that the vector should be widened with zeroes.
3825SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT,
3826                                       bool FillWithZeroes) {
3827  // Note that InOp might have been widened so it might already have
3828  // the right width or it might need be narrowed.
3829  EVT InVT = InOp.getValueType();
3830  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
3831         "input and widen element type must match");
3832  SDLoc dl(InOp);
3833
3834  // Check if InOp already has the right width.
3835  if (InVT == NVT)
3836    return InOp;
3837
3838  unsigned InNumElts = InVT.getVectorNumElements();
3839  unsigned WidenNumElts = NVT.getVectorNumElements();
3840  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
3841    unsigned NumConcat = WidenNumElts / InNumElts;
3842    SmallVector<SDValue, 16> Ops(NumConcat);
3843    SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, InVT) :
3844      DAG.getUNDEF(InVT);
3845    Ops[0] = InOp;
3846    for (unsigned i = 1; i != NumConcat; ++i)
3847      Ops[i] = FillVal;
3848
3849    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops);
3850  }
3851
3852  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
3853    return DAG.getNode(
3854        ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
3855        DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3856
3857  // Fall back to extract and build.
3858  SmallVector<SDValue, 16> Ops(WidenNumElts);
3859  EVT EltVT = NVT.getVectorElementType();
3860  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
3861  unsigned Idx;
3862  for (Idx = 0; Idx < MinNumElts; ++Idx)
3863    Ops[Idx] = DAG.getNode(
3864        ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
3865        DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3866
3867  SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
3868    DAG.getUNDEF(EltVT);
3869  for ( ; Idx < WidenNumElts; ++Idx)
3870    Ops[Idx] = FillVal;
3871  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops);
3872}
3873