1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#include "SplitKit.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/CodeGen/LiveIntervalAnalysis.h"
18#include "llvm/CodeGen/LiveRangeEdit.h"
19#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/VirtRegMap.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32#define DEBUG_TYPE "regalloc"
33
34STATISTIC(NumFinished, "Number of splits finished");
35STATISTIC(NumSimple,   "Number of splits that were simple");
36STATISTIC(NumCopies,   "Number of copies inserted for splitting");
37STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
38STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
39
40//===----------------------------------------------------------------------===//
41//                     Last Insert Point Analysis
42//===----------------------------------------------------------------------===//
43
44InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
45                                         unsigned BBNum)
46    : LIS(lis), LastInsertPoint(BBNum) {}
47
48SlotIndex
49InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
50                                            const MachineBasicBlock &MBB) {
51  unsigned Num = MBB.getNumber();
52  std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
53  SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
54
55  SmallVector<const MachineBasicBlock *, 1> EHPadSucessors;
56  for (const MachineBasicBlock *SMBB : MBB.successors())
57    if (SMBB->isEHPad())
58      EHPadSucessors.push_back(SMBB);
59
60  // Compute insert points on the first call. The pair is independent of the
61  // current live interval.
62  if (!LIP.first.isValid()) {
63    MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
64    if (FirstTerm == MBB.end())
65      LIP.first = MBBEnd;
66    else
67      LIP.first = LIS.getInstructionIndex(*FirstTerm);
68
69    // If there is a landing pad successor, also find the call instruction.
70    if (EHPadSucessors.empty())
71      return LIP.first;
72    // There may not be a call instruction (?) in which case we ignore LPad.
73    LIP.second = LIP.first;
74    for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
75         I != E;) {
76      --I;
77      if (I->isCall()) {
78        LIP.second = LIS.getInstructionIndex(*I);
79        break;
80      }
81    }
82  }
83
84  // If CurLI is live into a landing pad successor, move the last insert point
85  // back to the call that may throw.
86  if (!LIP.second)
87    return LIP.first;
88
89  if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) {
90        return LIS.isLiveInToMBB(CurLI, EHPad);
91      }))
92    return LIP.first;
93
94  // Find the value leaving MBB.
95  const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
96  if (!VNI)
97    return LIP.first;
98
99  // If the value leaving MBB was defined after the call in MBB, it can't
100  // really be live-in to the landing pad.  This can happen if the landing pad
101  // has a PHI, and this register is undef on the exceptional edge.
102  // <rdar://problem/10664933>
103  if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
104    return LIP.first;
105
106  // Value is properly live-in to the landing pad.
107  // Only allow inserts before the call.
108  return LIP.second;
109}
110
111MachineBasicBlock::iterator
112InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
113                                            MachineBasicBlock &MBB) {
114  SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
115  if (LIP == LIS.getMBBEndIdx(&MBB))
116    return MBB.end();
117  return LIS.getInstructionFromIndex(LIP);
118}
119
120//===----------------------------------------------------------------------===//
121//                                 Split Analysis
122//===----------------------------------------------------------------------===//
123
124SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
125                             const MachineLoopInfo &mli)
126    : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
127      TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
128      IPA(lis, MF.getNumBlockIDs()) {}
129
130void SplitAnalysis::clear() {
131  UseSlots.clear();
132  UseBlocks.clear();
133  ThroughBlocks.clear();
134  CurLI = nullptr;
135  DidRepairRange = false;
136}
137
138/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
139void SplitAnalysis::analyzeUses() {
140  assert(UseSlots.empty() && "Call clear first");
141
142  // First get all the defs from the interval values. This provides the correct
143  // slots for early clobbers.
144  for (const VNInfo *VNI : CurLI->valnos)
145    if (!VNI->isPHIDef() && !VNI->isUnused())
146      UseSlots.push_back(VNI->def);
147
148  // Get use slots form the use-def chain.
149  const MachineRegisterInfo &MRI = MF.getRegInfo();
150  for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
151    if (!MO.isUndef())
152      UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
153
154  array_pod_sort(UseSlots.begin(), UseSlots.end());
155
156  // Remove duplicates, keeping the smaller slot for each instruction.
157  // That is what we want for early clobbers.
158  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
159                             SlotIndex::isSameInstr),
160                 UseSlots.end());
161
162  // Compute per-live block info.
163  if (!calcLiveBlockInfo()) {
164    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
165    // I am looking at you, RegisterCoalescer!
166    DidRepairRange = true;
167    ++NumRepairs;
168    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
169    const_cast<LiveIntervals&>(LIS)
170      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
171    UseBlocks.clear();
172    ThroughBlocks.clear();
173    bool fixed = calcLiveBlockInfo();
174    (void)fixed;
175    assert(fixed && "Couldn't fix broken live interval");
176  }
177
178  DEBUG(dbgs() << "Analyze counted "
179               << UseSlots.size() << " instrs in "
180               << UseBlocks.size() << " blocks, through "
181               << NumThroughBlocks << " blocks.\n");
182}
183
184/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
185/// where CurLI is live.
186bool SplitAnalysis::calcLiveBlockInfo() {
187  ThroughBlocks.resize(MF.getNumBlockIDs());
188  NumThroughBlocks = NumGapBlocks = 0;
189  if (CurLI->empty())
190    return true;
191
192  LiveInterval::const_iterator LVI = CurLI->begin();
193  LiveInterval::const_iterator LVE = CurLI->end();
194
195  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
196  UseI = UseSlots.begin();
197  UseE = UseSlots.end();
198
199  // Loop over basic blocks where CurLI is live.
200  MachineFunction::iterator MFI =
201      LIS.getMBBFromIndex(LVI->start)->getIterator();
202  for (;;) {
203    BlockInfo BI;
204    BI.MBB = &*MFI;
205    SlotIndex Start, Stop;
206    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
207
208    // If the block contains no uses, the range must be live through. At one
209    // point, RegisterCoalescer could create dangling ranges that ended
210    // mid-block.
211    if (UseI == UseE || *UseI >= Stop) {
212      ++NumThroughBlocks;
213      ThroughBlocks.set(BI.MBB->getNumber());
214      // The range shouldn't end mid-block if there are no uses. This shouldn't
215      // happen.
216      if (LVI->end < Stop)
217        return false;
218    } else {
219      // This block has uses. Find the first and last uses in the block.
220      BI.FirstInstr = *UseI;
221      assert(BI.FirstInstr >= Start);
222      do ++UseI;
223      while (UseI != UseE && *UseI < Stop);
224      BI.LastInstr = UseI[-1];
225      assert(BI.LastInstr < Stop);
226
227      // LVI is the first live segment overlapping MBB.
228      BI.LiveIn = LVI->start <= Start;
229
230      // When not live in, the first use should be a def.
231      if (!BI.LiveIn) {
232        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
233        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
234        BI.FirstDef = BI.FirstInstr;
235      }
236
237      // Look for gaps in the live range.
238      BI.LiveOut = true;
239      while (LVI->end < Stop) {
240        SlotIndex LastStop = LVI->end;
241        if (++LVI == LVE || LVI->start >= Stop) {
242          BI.LiveOut = false;
243          BI.LastInstr = LastStop;
244          break;
245        }
246
247        if (LastStop < LVI->start) {
248          // There is a gap in the live range. Create duplicate entries for the
249          // live-in snippet and the live-out snippet.
250          ++NumGapBlocks;
251
252          // Push the Live-in part.
253          BI.LiveOut = false;
254          UseBlocks.push_back(BI);
255          UseBlocks.back().LastInstr = LastStop;
256
257          // Set up BI for the live-out part.
258          BI.LiveIn = false;
259          BI.LiveOut = true;
260          BI.FirstInstr = BI.FirstDef = LVI->start;
261        }
262
263        // A Segment that starts in the middle of the block must be a def.
264        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
265        if (!BI.FirstDef)
266          BI.FirstDef = LVI->start;
267      }
268
269      UseBlocks.push_back(BI);
270
271      // LVI is now at LVE or LVI->end >= Stop.
272      if (LVI == LVE)
273        break;
274    }
275
276    // Live segment ends exactly at Stop. Move to the next segment.
277    if (LVI->end == Stop && ++LVI == LVE)
278      break;
279
280    // Pick the next basic block.
281    if (LVI->start < Stop)
282      ++MFI;
283    else
284      MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
285  }
286
287  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
288  return true;
289}
290
291unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
292  if (cli->empty())
293    return 0;
294  LiveInterval *li = const_cast<LiveInterval*>(cli);
295  LiveInterval::iterator LVI = li->begin();
296  LiveInterval::iterator LVE = li->end();
297  unsigned Count = 0;
298
299  // Loop over basic blocks where li is live.
300  MachineFunction::const_iterator MFI =
301      LIS.getMBBFromIndex(LVI->start)->getIterator();
302  SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
303  for (;;) {
304    ++Count;
305    LVI = li->advanceTo(LVI, Stop);
306    if (LVI == LVE)
307      return Count;
308    do {
309      ++MFI;
310      Stop = LIS.getMBBEndIdx(&*MFI);
311    } while (Stop <= LVI->start);
312  }
313}
314
315bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
316  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
317  const LiveInterval &Orig = LIS.getInterval(OrigReg);
318  assert(!Orig.empty() && "Splitting empty interval?");
319  LiveInterval::const_iterator I = Orig.find(Idx);
320
321  // Range containing Idx should begin at Idx.
322  if (I != Orig.end() && I->start <= Idx)
323    return I->start == Idx;
324
325  // Range does not contain Idx, previous must end at Idx.
326  return I != Orig.begin() && (--I)->end == Idx;
327}
328
329void SplitAnalysis::analyze(const LiveInterval *li) {
330  clear();
331  CurLI = li;
332  analyzeUses();
333}
334
335
336//===----------------------------------------------------------------------===//
337//                               Split Editor
338//===----------------------------------------------------------------------===//
339
340/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
341SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
342                         LiveIntervals &lis, VirtRegMap &vrm,
343                         MachineDominatorTree &mdt,
344                         MachineBlockFrequencyInfo &mbfi)
345    : SA(sa), AA(aa), LIS(lis), VRM(vrm),
346      MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
347      TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
348      TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
349      MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
350      RegAssign(Allocator) {}
351
352void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
353  Edit = &LRE;
354  SpillMode = SM;
355  OpenIdx = 0;
356  RegAssign.clear();
357  Values.clear();
358
359  // Reset the LiveRangeCalc instances needed for this spill mode.
360  LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
361                  &LIS.getVNInfoAllocator());
362  if (SpillMode)
363    LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
364                    &LIS.getVNInfoAllocator());
365
366  // We don't need an AliasAnalysis since we will only be performing
367  // cheap-as-a-copy remats anyway.
368  Edit->anyRematerializable(nullptr);
369}
370
371#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
372LLVM_DUMP_METHOD void SplitEditor::dump() const {
373  if (RegAssign.empty()) {
374    dbgs() << " empty\n";
375    return;
376  }
377
378  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
379    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
380  dbgs() << '\n';
381}
382#endif
383
384VNInfo *SplitEditor::defValue(unsigned RegIdx,
385                              const VNInfo *ParentVNI,
386                              SlotIndex Idx) {
387  assert(ParentVNI && "Mapping  NULL value");
388  assert(Idx.isValid() && "Invalid SlotIndex");
389  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
390  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
391
392  // Create a new value.
393  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
394
395  // Use insert for lookup, so we can add missing values with a second lookup.
396  std::pair<ValueMap::iterator, bool> InsP =
397    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
398                                 ValueForcePair(VNI, false)));
399
400  // This was the first time (RegIdx, ParentVNI) was mapped.
401  // Keep it as a simple def without any liveness.
402  if (InsP.second)
403    return VNI;
404
405  // If the previous value was a simple mapping, add liveness for it now.
406  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
407    SlotIndex Def = OldVNI->def;
408    LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
409    // No longer a simple mapping.  Switch to a complex, non-forced mapping.
410    InsP.first->second = ValueForcePair();
411  }
412
413  // This is a complex mapping, add liveness for VNI
414  SlotIndex Def = VNI->def;
415  LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
416
417  return VNI;
418}
419
420void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
421  assert(ParentVNI && "Mapping  NULL value");
422  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
423  VNInfo *VNI = VFP.getPointer();
424
425  // ParentVNI was either unmapped or already complex mapped. Either way, just
426  // set the force bit.
427  if (!VNI) {
428    VFP.setInt(true);
429    return;
430  }
431
432  // This was previously a single mapping. Make sure the old def is represented
433  // by a trivial live range.
434  SlotIndex Def = VNI->def;
435  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
436  LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
437  // Mark as complex mapped, forced.
438  VFP = ValueForcePair(nullptr, true);
439}
440
441VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
442                                   VNInfo *ParentVNI,
443                                   SlotIndex UseIdx,
444                                   MachineBasicBlock &MBB,
445                                   MachineBasicBlock::iterator I) {
446  MachineInstr *CopyMI = nullptr;
447  SlotIndex Def;
448  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
449
450  // We may be trying to avoid interference that ends at a deleted instruction,
451  // so always begin RegIdx 0 early and all others late.
452  bool Late = RegIdx != 0;
453
454  // Attempt cheap-as-a-copy rematerialization.
455  unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
456  LiveInterval &OrigLI = LIS.getInterval(Original);
457  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
458  LiveRangeEdit::Remat RM(ParentVNI);
459  RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
460
461  if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
462    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
463    ++NumRemats;
464  } else {
465    // Can't remat, just insert a copy from parent.
466    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
467               .addReg(Edit->getReg());
468    Def = LIS.getSlotIndexes()
469              ->insertMachineInstrInMaps(*CopyMI, Late)
470              .getRegSlot();
471    ++NumCopies;
472  }
473
474  // Define the value in Reg.
475  return defValue(RegIdx, ParentVNI, Def);
476}
477
478/// Create a new virtual register and live interval.
479unsigned SplitEditor::openIntv() {
480  // Create the complement as index 0.
481  if (Edit->empty())
482    Edit->createEmptyInterval();
483
484  // Create the open interval.
485  OpenIdx = Edit->size();
486  Edit->createEmptyInterval();
487  return OpenIdx;
488}
489
490void SplitEditor::selectIntv(unsigned Idx) {
491  assert(Idx != 0 && "Cannot select the complement interval");
492  assert(Idx < Edit->size() && "Can only select previously opened interval");
493  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
494  OpenIdx = Idx;
495}
496
497SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
498  assert(OpenIdx && "openIntv not called before enterIntvBefore");
499  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
500  Idx = Idx.getBaseIndex();
501  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
502  if (!ParentVNI) {
503    DEBUG(dbgs() << ": not live\n");
504    return Idx;
505  }
506  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
507  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
508  assert(MI && "enterIntvBefore called with invalid index");
509
510  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
511  return VNI->def;
512}
513
514SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
515  assert(OpenIdx && "openIntv not called before enterIntvAfter");
516  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
517  Idx = Idx.getBoundaryIndex();
518  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
519  if (!ParentVNI) {
520    DEBUG(dbgs() << ": not live\n");
521    return Idx;
522  }
523  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
524  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
525  assert(MI && "enterIntvAfter called with invalid index");
526
527  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
528                              std::next(MachineBasicBlock::iterator(MI)));
529  return VNI->def;
530}
531
532SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
533  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
534  SlotIndex End = LIS.getMBBEndIdx(&MBB);
535  SlotIndex Last = End.getPrevSlot();
536  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
537  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
538  if (!ParentVNI) {
539    DEBUG(dbgs() << ": not live\n");
540    return End;
541  }
542  DEBUG(dbgs() << ": valno " << ParentVNI->id);
543  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
544                              SA.getLastSplitPointIter(&MBB));
545  RegAssign.insert(VNI->def, End, OpenIdx);
546  DEBUG(dump());
547  return VNI->def;
548}
549
550/// useIntv - indicate that all instructions in MBB should use OpenLI.
551void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
552  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
553}
554
555void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
556  assert(OpenIdx && "openIntv not called before useIntv");
557  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
558  RegAssign.insert(Start, End, OpenIdx);
559  DEBUG(dump());
560}
561
562SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
563  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
564  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
565
566  // The interval must be live beyond the instruction at Idx.
567  SlotIndex Boundary = Idx.getBoundaryIndex();
568  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
569  if (!ParentVNI) {
570    DEBUG(dbgs() << ": not live\n");
571    return Boundary.getNextSlot();
572  }
573  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
574  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
575  assert(MI && "No instruction at index");
576
577  // In spill mode, make live ranges as short as possible by inserting the copy
578  // before MI.  This is only possible if that instruction doesn't redefine the
579  // value.  The inserted COPY is not a kill, and we don't need to recompute
580  // the source live range.  The spiller also won't try to hoist this copy.
581  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
582      MI->readsVirtualRegister(Edit->getReg())) {
583    forceRecompute(0, ParentVNI);
584    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
585    return Idx;
586  }
587
588  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
589                              std::next(MachineBasicBlock::iterator(MI)));
590  return VNI->def;
591}
592
593SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
594  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
595  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
596
597  // The interval must be live into the instruction at Idx.
598  Idx = Idx.getBaseIndex();
599  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
600  if (!ParentVNI) {
601    DEBUG(dbgs() << ": not live\n");
602    return Idx.getNextSlot();
603  }
604  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
605
606  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
607  assert(MI && "No instruction at index");
608  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
609  return VNI->def;
610}
611
612SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
613  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
614  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
615  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
616
617  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
618  if (!ParentVNI) {
619    DEBUG(dbgs() << ": not live\n");
620    return Start;
621  }
622
623  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
624                              MBB.SkipPHIsAndLabels(MBB.begin()));
625  RegAssign.insert(Start, VNI->def, OpenIdx);
626  DEBUG(dump());
627  return VNI->def;
628}
629
630void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
631  assert(OpenIdx && "openIntv not called before overlapIntv");
632  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
633  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
634         "Parent changes value in extended range");
635  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
636         "Range cannot span basic blocks");
637
638  // The complement interval will be extended as needed by LRCalc.extend().
639  if (ParentVNI)
640    forceRecompute(0, ParentVNI);
641  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
642  RegAssign.insert(Start, End, OpenIdx);
643  DEBUG(dump());
644}
645
646//===----------------------------------------------------------------------===//
647//                                  Spill modes
648//===----------------------------------------------------------------------===//
649
650void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
651  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
652  DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
653  RegAssignMap::iterator AssignI;
654  AssignI.setMap(RegAssign);
655
656  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
657    SlotIndex Def = Copies[i]->def;
658    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
659    assert(MI && "No instruction for back-copy");
660
661    MachineBasicBlock *MBB = MI->getParent();
662    MachineBasicBlock::iterator MBBI(MI);
663    bool AtBegin;
664    do AtBegin = MBBI == MBB->begin();
665    while (!AtBegin && (--MBBI)->isDebugValue());
666
667    DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
668    LIS.removeVRegDefAt(*LI, Def);
669    LIS.RemoveMachineInstrFromMaps(*MI);
670    MI->eraseFromParent();
671
672    // Adjust RegAssign if a register assignment is killed at Def. We want to
673    // avoid calculating the live range of the source register if possible.
674    AssignI.find(Def.getPrevSlot());
675    if (!AssignI.valid() || AssignI.start() >= Def)
676      continue;
677    // If MI doesn't kill the assigned register, just leave it.
678    if (AssignI.stop() != Def)
679      continue;
680    unsigned RegIdx = AssignI.value();
681    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
682      DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
683      forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
684    } else {
685      SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
686      DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
687      AssignI.setStop(Kill);
688    }
689  }
690}
691
692MachineBasicBlock*
693SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
694                                  MachineBasicBlock *DefMBB) {
695  if (MBB == DefMBB)
696    return MBB;
697  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
698
699  const MachineLoopInfo &Loops = SA.Loops;
700  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
701  MachineDomTreeNode *DefDomNode = MDT[DefMBB];
702
703  // Best candidate so far.
704  MachineBasicBlock *BestMBB = MBB;
705  unsigned BestDepth = UINT_MAX;
706
707  for (;;) {
708    const MachineLoop *Loop = Loops.getLoopFor(MBB);
709
710    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
711    // higher frequency by definition.
712    if (!Loop) {
713      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
714                   << MBB->getNumber() << " at depth 0\n");
715      return MBB;
716    }
717
718    // We'll never be able to exit the DefLoop.
719    if (Loop == DefLoop) {
720      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
721                   << MBB->getNumber() << " in the same loop\n");
722      return MBB;
723    }
724
725    // Least busy dominator seen so far.
726    unsigned Depth = Loop->getLoopDepth();
727    if (Depth < BestDepth) {
728      BestMBB = MBB;
729      BestDepth = Depth;
730      DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
731                   << MBB->getNumber() << " at depth " << Depth << '\n');
732    }
733
734    // Leave loop by going to the immediate dominator of the loop header.
735    // This is a bigger stride than simply walking up the dominator tree.
736    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
737
738    // Too far up the dominator tree?
739    if (!IDom || !MDT.dominates(DefDomNode, IDom))
740      return BestMBB;
741
742    MBB = IDom->getBlock();
743  }
744}
745
746void SplitEditor::computeRedundantBackCopies(
747    DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
748  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
749  LiveInterval *Parent = &Edit->getParent();
750  SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
751  SmallPtrSet<VNInfo *, 8> DominatedVNIs;
752
753  // Aggregate VNIs having the same value as ParentVNI.
754  for (VNInfo *VNI : LI->valnos) {
755    if (VNI->isUnused())
756      continue;
757    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
758    EqualVNs[ParentVNI->id].insert(VNI);
759  }
760
761  // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
762  // redundant VNIs to BackCopies.
763  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
764    VNInfo *ParentVNI = Parent->getValNumInfo(i);
765    if (!NotToHoistSet.count(ParentVNI->id))
766      continue;
767    SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
768    SmallPtrSetIterator<VNInfo *> It2 = It1;
769    for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
770      It2 = It1;
771      for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
772        if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
773          continue;
774
775        MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
776        MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
777        if (MBB1 == MBB2) {
778          DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
779        } else if (MDT.dominates(MBB1, MBB2)) {
780          DominatedVNIs.insert(*It2);
781        } else if (MDT.dominates(MBB2, MBB1)) {
782          DominatedVNIs.insert(*It1);
783        }
784      }
785    }
786    if (!DominatedVNIs.empty()) {
787      forceRecompute(0, ParentVNI);
788      for (auto VNI : DominatedVNIs) {
789        BackCopies.push_back(VNI);
790      }
791      DominatedVNIs.clear();
792    }
793  }
794}
795
796/// For SM_Size mode, find a common dominator for all the back-copies for
797/// the same ParentVNI and hoist the backcopies to the dominator BB.
798/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
799/// to do the hoisting, simply remove the dominated backcopies for the same
800/// ParentVNI.
801void SplitEditor::hoistCopies() {
802  // Get the complement interval, always RegIdx 0.
803  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
804  LiveInterval *Parent = &Edit->getParent();
805
806  // Track the nearest common dominator for all back-copies for each ParentVNI,
807  // indexed by ParentVNI->id.
808  typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
809  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
810  // The total cost of all the back-copies for each ParentVNI.
811  SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
812  // The ParentVNI->id set for which hoisting back-copies are not beneficial
813  // for Speed.
814  DenseSet<unsigned> NotToHoistSet;
815
816  // Find the nearest common dominator for parent values with multiple
817  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
818  for (VNInfo *VNI : LI->valnos) {
819    if (VNI->isUnused())
820      continue;
821    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
822    assert(ParentVNI && "Parent not live at complement def");
823
824    // Don't hoist remats.  The complement is probably going to disappear
825    // completely anyway.
826    if (Edit->didRematerialize(ParentVNI))
827      continue;
828
829    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
830
831    DomPair &Dom = NearestDom[ParentVNI->id];
832
833    // Keep directly defined parent values.  This is either a PHI or an
834    // instruction in the complement range.  All other copies of ParentVNI
835    // should be eliminated.
836    if (VNI->def == ParentVNI->def) {
837      DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
838      Dom = DomPair(ValMBB, VNI->def);
839      continue;
840    }
841    // Skip the singly mapped values.  There is nothing to gain from hoisting a
842    // single back-copy.
843    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
844      DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
845      continue;
846    }
847
848    if (!Dom.first) {
849      // First time we see ParentVNI.  VNI dominates itself.
850      Dom = DomPair(ValMBB, VNI->def);
851    } else if (Dom.first == ValMBB) {
852      // Two defs in the same block.  Pick the earlier def.
853      if (!Dom.second.isValid() || VNI->def < Dom.second)
854        Dom.second = VNI->def;
855    } else {
856      // Different basic blocks. Check if one dominates.
857      MachineBasicBlock *Near =
858        MDT.findNearestCommonDominator(Dom.first, ValMBB);
859      if (Near == ValMBB)
860        // Def ValMBB dominates.
861        Dom = DomPair(ValMBB, VNI->def);
862      else if (Near != Dom.first)
863        // None dominate. Hoist to common dominator, need new def.
864        Dom = DomPair(Near, SlotIndex());
865      Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
866    }
867
868    DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
869                 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
870                 << " hoist to BB#" << Dom.first->getNumber() << ' '
871                 << Dom.second << '\n');
872  }
873
874  // Insert the hoisted copies.
875  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
876    DomPair &Dom = NearestDom[i];
877    if (!Dom.first || Dom.second.isValid())
878      continue;
879    // This value needs a hoisted copy inserted at the end of Dom.first.
880    VNInfo *ParentVNI = Parent->getValNumInfo(i);
881    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
882    // Get a less loopy dominator than Dom.first.
883    Dom.first = findShallowDominator(Dom.first, DefMBB);
884    if (SpillMode == SM_Speed &&
885        MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
886      NotToHoistSet.insert(ParentVNI->id);
887      continue;
888    }
889    SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
890    Dom.second =
891      defFromParent(0, ParentVNI, Last, *Dom.first,
892                    SA.getLastSplitPointIter(Dom.first))->def;
893  }
894
895  // Remove redundant back-copies that are now known to be dominated by another
896  // def with the same value.
897  SmallVector<VNInfo*, 8> BackCopies;
898  for (VNInfo *VNI : LI->valnos) {
899    if (VNI->isUnused())
900      continue;
901    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
902    const DomPair &Dom = NearestDom[ParentVNI->id];
903    if (!Dom.first || Dom.second == VNI->def ||
904        NotToHoistSet.count(ParentVNI->id))
905      continue;
906    BackCopies.push_back(VNI);
907    forceRecompute(0, ParentVNI);
908  }
909
910  // If it is not beneficial to hoist all the BackCopies, simply remove
911  // redundant BackCopies in speed mode.
912  if (SpillMode == SM_Speed && !NotToHoistSet.empty())
913    computeRedundantBackCopies(NotToHoistSet, BackCopies);
914
915  removeBackCopies(BackCopies);
916}
917
918
919/// transferValues - Transfer all possible values to the new live ranges.
920/// Values that were rematerialized are left alone, they need LRCalc.extend().
921bool SplitEditor::transferValues() {
922  bool Skipped = false;
923  RegAssignMap::const_iterator AssignI = RegAssign.begin();
924  for (const LiveRange::Segment &S : Edit->getParent()) {
925    DEBUG(dbgs() << "  blit " << S << ':');
926    VNInfo *ParentVNI = S.valno;
927    // RegAssign has holes where RegIdx 0 should be used.
928    SlotIndex Start = S.start;
929    AssignI.advanceTo(Start);
930    do {
931      unsigned RegIdx;
932      SlotIndex End = S.end;
933      if (!AssignI.valid()) {
934        RegIdx = 0;
935      } else if (AssignI.start() <= Start) {
936        RegIdx = AssignI.value();
937        if (AssignI.stop() < End) {
938          End = AssignI.stop();
939          ++AssignI;
940        }
941      } else {
942        RegIdx = 0;
943        End = std::min(End, AssignI.start());
944      }
945
946      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
947      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
948      LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
949
950      // Check for a simply defined value that can be blitted directly.
951      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
952      if (VNInfo *VNI = VFP.getPointer()) {
953        DEBUG(dbgs() << ':' << VNI->id);
954        LR.addSegment(LiveInterval::Segment(Start, End, VNI));
955        Start = End;
956        continue;
957      }
958
959      // Skip values with forced recomputation.
960      if (VFP.getInt()) {
961        DEBUG(dbgs() << "(recalc)");
962        Skipped = true;
963        Start = End;
964        continue;
965      }
966
967      LiveRangeCalc &LRC = getLRCalc(RegIdx);
968
969      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
970      // so the live range is accurate. Add live-in blocks in [Start;End) to the
971      // LiveInBlocks.
972      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
973      SlotIndex BlockStart, BlockEnd;
974      std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
975
976      // The first block may be live-in, or it may have its own def.
977      if (Start != BlockStart) {
978        VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
979        assert(VNI && "Missing def for complex mapped value");
980        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
981        // MBB has its own def. Is it also live-out?
982        if (BlockEnd <= End)
983          LRC.setLiveOutValue(&*MBB, VNI);
984
985        // Skip to the next block for live-in.
986        ++MBB;
987        BlockStart = BlockEnd;
988      }
989
990      // Handle the live-in blocks covered by [Start;End).
991      assert(Start <= BlockStart && "Expected live-in block");
992      while (BlockStart < End) {
993        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
994        BlockEnd = LIS.getMBBEndIdx(&*MBB);
995        if (BlockStart == ParentVNI->def) {
996          // This block has the def of a parent PHI, so it isn't live-in.
997          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
998          VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
999          assert(VNI && "Missing def for complex mapped parent PHI");
1000          if (End >= BlockEnd)
1001            LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1002        } else {
1003          // This block needs a live-in value.  The last block covered may not
1004          // be live-out.
1005          if (End < BlockEnd)
1006            LRC.addLiveInBlock(LR, MDT[&*MBB], End);
1007          else {
1008            // Live-through, and we don't know the value.
1009            LRC.addLiveInBlock(LR, MDT[&*MBB]);
1010            LRC.setLiveOutValue(&*MBB, nullptr);
1011          }
1012        }
1013        BlockStart = BlockEnd;
1014        ++MBB;
1015      }
1016      Start = End;
1017    } while (Start != S.end);
1018    DEBUG(dbgs() << '\n');
1019  }
1020
1021  LRCalc[0].calculateValues();
1022  if (SpillMode)
1023    LRCalc[1].calculateValues();
1024
1025  return Skipped;
1026}
1027
1028void SplitEditor::extendPHIKillRanges() {
1029  // Extend live ranges to be live-out for successor PHI values.
1030  for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
1031    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
1032      continue;
1033    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
1034    LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
1035
1036    // Check whether PHI is dead.
1037    const LiveRange::Segment *Segment = LR.getSegmentContaining(PHIVNI->def);
1038    assert(Segment != nullptr && "Missing segment for VNI");
1039    if (Segment->end == PHIVNI->def.getDeadSlot()) {
1040      // This is a dead PHI. Remove it.
1041      LR.removeSegment(*Segment, true);
1042      continue;
1043    }
1044
1045    LiveRangeCalc &LRC = getLRCalc(RegIdx);
1046    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
1047    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
1048         PE = MBB->pred_end(); PI != PE; ++PI) {
1049      SlotIndex End = LIS.getMBBEndIdx(*PI);
1050      SlotIndex LastUse = End.getPrevSlot();
1051      // The predecessor may not have a live-out value. That is OK, like an
1052      // undef PHI operand.
1053      if (Edit->getParent().liveAt(LastUse)) {
1054        assert(RegAssign.lookup(LastUse) == RegIdx &&
1055               "Different register assignment in phi predecessor");
1056        LRC.extend(LR, End);
1057      }
1058    }
1059  }
1060}
1061
1062/// rewriteAssigned - Rewrite all uses of Edit->getReg().
1063void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1064  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1065       RE = MRI.reg_end(); RI != RE;) {
1066    MachineOperand &MO = *RI;
1067    MachineInstr *MI = MO.getParent();
1068    ++RI;
1069    // LiveDebugVariables should have handled all DBG_VALUE instructions.
1070    if (MI->isDebugValue()) {
1071      DEBUG(dbgs() << "Zapping " << *MI);
1072      MO.setReg(0);
1073      continue;
1074    }
1075
1076    // <undef> operands don't really read the register, so it doesn't matter
1077    // which register we choose.  When the use operand is tied to a def, we must
1078    // use the same register as the def, so just do that always.
1079    SlotIndex Idx = LIS.getInstructionIndex(*MI);
1080    if (MO.isDef() || MO.isUndef())
1081      Idx = Idx.getRegSlot(MO.isEarlyClobber());
1082
1083    // Rewrite to the mapped register at Idx.
1084    unsigned RegIdx = RegAssign.lookup(Idx);
1085    LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
1086    MO.setReg(LI->reg);
1087    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
1088                 << Idx << ':' << RegIdx << '\t' << *MI);
1089
1090    // Extend liveness to Idx if the instruction reads reg.
1091    if (!ExtendRanges || MO.isUndef())
1092      continue;
1093
1094    // Skip instructions that don't read Reg.
1095    if (MO.isDef()) {
1096      if (!MO.getSubReg() && !MO.isEarlyClobber())
1097        continue;
1098      // We may wan't to extend a live range for a partial redef, or for a use
1099      // tied to an early clobber.
1100      Idx = Idx.getPrevSlot();
1101      if (!Edit->getParent().liveAt(Idx))
1102        continue;
1103    } else
1104      Idx = Idx.getRegSlot(true);
1105
1106    getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
1107  }
1108}
1109
1110void SplitEditor::deleteRematVictims() {
1111  SmallVector<MachineInstr*, 8> Dead;
1112  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1113    LiveInterval *LI = &LIS.getInterval(*I);
1114    for (const LiveRange::Segment &S : LI->segments) {
1115      // Dead defs end at the dead slot.
1116      if (S.end != S.valno->def.getDeadSlot())
1117        continue;
1118      if (S.valno->isPHIDef())
1119        continue;
1120      MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1121      assert(MI && "Missing instruction for dead def");
1122      MI->addRegisterDead(LI->reg, &TRI);
1123
1124      if (!MI->allDefsAreDead())
1125        continue;
1126
1127      DEBUG(dbgs() << "All defs dead: " << *MI);
1128      Dead.push_back(MI);
1129    }
1130  }
1131
1132  if (Dead.empty())
1133    return;
1134
1135  Edit->eliminateDeadDefs(Dead, None, &AA);
1136}
1137
1138void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1139  ++NumFinished;
1140
1141  // At this point, the live intervals in Edit contain VNInfos corresponding to
1142  // the inserted copies.
1143
1144  // Add the original defs from the parent interval.
1145  for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1146    if (ParentVNI->isUnused())
1147      continue;
1148    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1149    defValue(RegIdx, ParentVNI, ParentVNI->def);
1150
1151    // Force rematted values to be recomputed everywhere.
1152    // The new live ranges may be truncated.
1153    if (Edit->didRematerialize(ParentVNI))
1154      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1155        forceRecompute(i, ParentVNI);
1156  }
1157
1158  // Hoist back-copies to the complement interval when in spill mode.
1159  switch (SpillMode) {
1160  case SM_Partition:
1161    // Leave all back-copies as is.
1162    break;
1163  case SM_Size:
1164  case SM_Speed:
1165    // hoistCopies will behave differently between size and speed.
1166    hoistCopies();
1167  }
1168
1169  // Transfer the simply mapped values, check if any are skipped.
1170  bool Skipped = transferValues();
1171
1172  // Rewrite virtual registers, possibly extending ranges.
1173  rewriteAssigned(Skipped);
1174
1175  if (Skipped)
1176    extendPHIKillRanges();
1177  else
1178    ++NumSimple;
1179
1180  // Delete defs that were rematted everywhere.
1181  if (Skipped)
1182    deleteRematVictims();
1183
1184  // Get rid of unused values and set phi-kill flags.
1185  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1186    LiveInterval &LI = LIS.getInterval(*I);
1187    LI.RenumberValues();
1188  }
1189
1190  // Provide a reverse mapping from original indices to Edit ranges.
1191  if (LRMap) {
1192    LRMap->clear();
1193    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1194      LRMap->push_back(i);
1195  }
1196
1197  // Now check if any registers were separated into multiple components.
1198  ConnectedVNInfoEqClasses ConEQ(LIS);
1199  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1200    // Don't use iterators, they are invalidated by create() below.
1201    unsigned VReg = Edit->get(i);
1202    LiveInterval &LI = LIS.getInterval(VReg);
1203    SmallVector<LiveInterval*, 8> SplitLIs;
1204    LIS.splitSeparateComponents(LI, SplitLIs);
1205    unsigned Original = VRM.getOriginal(VReg);
1206    for (LiveInterval *SplitLI : SplitLIs)
1207      VRM.setIsSplitFromReg(SplitLI->reg, Original);
1208
1209    // The new intervals all map back to i.
1210    if (LRMap)
1211      LRMap->resize(Edit->size(), i);
1212  }
1213
1214  // Calculate spill weight and allocation hints for new intervals.
1215  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1216
1217  assert(!LRMap || LRMap->size() == Edit->size());
1218}
1219
1220
1221//===----------------------------------------------------------------------===//
1222//                            Single Block Splitting
1223//===----------------------------------------------------------------------===//
1224
1225bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1226                                           bool SingleInstrs) const {
1227  // Always split for multiple instructions.
1228  if (!BI.isOneInstr())
1229    return true;
1230  // Don't split for single instructions unless explicitly requested.
1231  if (!SingleInstrs)
1232    return false;
1233  // Splitting a live-through range always makes progress.
1234  if (BI.LiveIn && BI.LiveOut)
1235    return true;
1236  // No point in isolating a copy. It has no register class constraints.
1237  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1238    return false;
1239  // Finally, don't isolate an end point that was created by earlier splits.
1240  return isOriginalEndpoint(BI.FirstInstr);
1241}
1242
1243void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1244  openIntv();
1245  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1246  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1247    LastSplitPoint));
1248  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1249    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1250  } else {
1251      // The last use is after the last valid split point.
1252    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1253    useIntv(SegStart, SegStop);
1254    overlapIntv(SegStop, BI.LastInstr);
1255  }
1256}
1257
1258
1259//===----------------------------------------------------------------------===//
1260//                    Global Live Range Splitting Support
1261//===----------------------------------------------------------------------===//
1262
1263// These methods support a method of global live range splitting that uses a
1264// global algorithm to decide intervals for CFG edges. They will insert split
1265// points and color intervals in basic blocks while avoiding interference.
1266//
1267// Note that splitSingleBlock is also useful for blocks where both CFG edges
1268// are on the stack.
1269
1270void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1271                                        unsigned IntvIn, SlotIndex LeaveBefore,
1272                                        unsigned IntvOut, SlotIndex EnterAfter){
1273  SlotIndex Start, Stop;
1274  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1275
1276  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1277               << ") intf " << LeaveBefore << '-' << EnterAfter
1278               << ", live-through " << IntvIn << " -> " << IntvOut);
1279
1280  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1281
1282  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1283  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1284  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1285
1286  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1287
1288  if (!IntvOut) {
1289    DEBUG(dbgs() << ", spill on entry.\n");
1290    //
1291    //        <<<<<<<<<    Possible LeaveBefore interference.
1292    //    |-----------|    Live through.
1293    //    -____________    Spill on entry.
1294    //
1295    selectIntv(IntvIn);
1296    SlotIndex Idx = leaveIntvAtTop(*MBB);
1297    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1298    (void)Idx;
1299    return;
1300  }
1301
1302  if (!IntvIn) {
1303    DEBUG(dbgs() << ", reload on exit.\n");
1304    //
1305    //    >>>>>>>          Possible EnterAfter interference.
1306    //    |-----------|    Live through.
1307    //    ___________--    Reload on exit.
1308    //
1309    selectIntv(IntvOut);
1310    SlotIndex Idx = enterIntvAtEnd(*MBB);
1311    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1312    (void)Idx;
1313    return;
1314  }
1315
1316  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1317    DEBUG(dbgs() << ", straight through.\n");
1318    //
1319    //    |-----------|    Live through.
1320    //    -------------    Straight through, same intv, no interference.
1321    //
1322    selectIntv(IntvOut);
1323    useIntv(Start, Stop);
1324    return;
1325  }
1326
1327  // We cannot legally insert splits after LSP.
1328  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1329  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1330
1331  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1332                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1333    DEBUG(dbgs() << ", switch avoiding interference.\n");
1334    //
1335    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1336    //    |-----------|    Live through.
1337    //    ------=======    Switch intervals between interference.
1338    //
1339    selectIntv(IntvOut);
1340    SlotIndex Idx;
1341    if (LeaveBefore && LeaveBefore < LSP) {
1342      Idx = enterIntvBefore(LeaveBefore);
1343      useIntv(Idx, Stop);
1344    } else {
1345      Idx = enterIntvAtEnd(*MBB);
1346    }
1347    selectIntv(IntvIn);
1348    useIntv(Start, Idx);
1349    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1350    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1351    return;
1352  }
1353
1354  DEBUG(dbgs() << ", create local intv for interference.\n");
1355  //
1356  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1357  //    |-----------|    Live through.
1358  //    ==---------==    Switch intervals before/after interference.
1359  //
1360  assert(LeaveBefore <= EnterAfter && "Missed case");
1361
1362  selectIntv(IntvOut);
1363  SlotIndex Idx = enterIntvAfter(EnterAfter);
1364  useIntv(Idx, Stop);
1365  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1366
1367  selectIntv(IntvIn);
1368  Idx = leaveIntvBefore(LeaveBefore);
1369  useIntv(Start, Idx);
1370  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1371}
1372
1373
1374void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1375                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1376  SlotIndex Start, Stop;
1377  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1378
1379  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1380               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1381               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1382               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1383
1384  assert(IntvIn && "Must have register in");
1385  assert(BI.LiveIn && "Must be live-in");
1386  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1387
1388  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1389    DEBUG(dbgs() << " before interference.\n");
1390    //
1391    //               <<<    Interference after kill.
1392    //     |---o---x   |    Killed in block.
1393    //     =========        Use IntvIn everywhere.
1394    //
1395    selectIntv(IntvIn);
1396    useIntv(Start, BI.LastInstr);
1397    return;
1398  }
1399
1400  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1401
1402  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1403    //
1404    //               <<<    Possible interference after last use.
1405    //     |---o---o---|    Live-out on stack.
1406    //     =========____    Leave IntvIn after last use.
1407    //
1408    //                 <    Interference after last use.
1409    //     |---o---o--o|    Live-out on stack, late last use.
1410    //     ============     Copy to stack after LSP, overlap IntvIn.
1411    //            \_____    Stack interval is live-out.
1412    //
1413    if (BI.LastInstr < LSP) {
1414      DEBUG(dbgs() << ", spill after last use before interference.\n");
1415      selectIntv(IntvIn);
1416      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1417      useIntv(Start, Idx);
1418      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1419    } else {
1420      DEBUG(dbgs() << ", spill before last split point.\n");
1421      selectIntv(IntvIn);
1422      SlotIndex Idx = leaveIntvBefore(LSP);
1423      overlapIntv(Idx, BI.LastInstr);
1424      useIntv(Start, Idx);
1425      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1426    }
1427    return;
1428  }
1429
1430  // The interference is overlapping somewhere we wanted to use IntvIn. That
1431  // means we need to create a local interval that can be allocated a
1432  // different register.
1433  unsigned LocalIntv = openIntv();
1434  (void)LocalIntv;
1435  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1436
1437  if (!BI.LiveOut || BI.LastInstr < LSP) {
1438    //
1439    //           <<<<<<<    Interference overlapping uses.
1440    //     |---o---o---|    Live-out on stack.
1441    //     =====----____    Leave IntvIn before interference, then spill.
1442    //
1443    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1444    SlotIndex From = enterIntvBefore(LeaveBefore);
1445    useIntv(From, To);
1446    selectIntv(IntvIn);
1447    useIntv(Start, From);
1448    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1449    return;
1450  }
1451
1452  //           <<<<<<<    Interference overlapping uses.
1453  //     |---o---o--o|    Live-out on stack, late last use.
1454  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1455  //            \_____    Stack interval is live-out.
1456  //
1457  SlotIndex To = leaveIntvBefore(LSP);
1458  overlapIntv(To, BI.LastInstr);
1459  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1460  useIntv(From, To);
1461  selectIntv(IntvIn);
1462  useIntv(Start, From);
1463  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1464}
1465
1466void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1467                                   unsigned IntvOut, SlotIndex EnterAfter) {
1468  SlotIndex Start, Stop;
1469  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1470
1471  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1472               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1473               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1474               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1475
1476  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1477
1478  assert(IntvOut && "Must have register out");
1479  assert(BI.LiveOut && "Must be live-out");
1480  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1481
1482  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1483    DEBUG(dbgs() << " after interference.\n");
1484    //
1485    //    >>>>             Interference before def.
1486    //    |   o---o---|    Defined in block.
1487    //        =========    Use IntvOut everywhere.
1488    //
1489    selectIntv(IntvOut);
1490    useIntv(BI.FirstInstr, Stop);
1491    return;
1492  }
1493
1494  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1495    DEBUG(dbgs() << ", reload after interference.\n");
1496    //
1497    //    >>>>             Interference before def.
1498    //    |---o---o---|    Live-through, stack-in.
1499    //    ____=========    Enter IntvOut before first use.
1500    //
1501    selectIntv(IntvOut);
1502    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1503    useIntv(Idx, Stop);
1504    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1505    return;
1506  }
1507
1508  // The interference is overlapping somewhere we wanted to use IntvOut. That
1509  // means we need to create a local interval that can be allocated a
1510  // different register.
1511  DEBUG(dbgs() << ", interference overlaps uses.\n");
1512  //
1513  //    >>>>>>>          Interference overlapping uses.
1514  //    |---o---o---|    Live-through, stack-in.
1515  //    ____---======    Create local interval for interference range.
1516  //
1517  selectIntv(IntvOut);
1518  SlotIndex Idx = enterIntvAfter(EnterAfter);
1519  useIntv(Idx, Stop);
1520  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1521
1522  openIntv();
1523  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1524  useIntv(From, Idx);
1525}
1526