SplitKit.cpp revision 7cec179a647bff132d7af36d91df877056880c5e
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/CalcSpillWeights.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37STATISTIC(NumFinished, "Number of splits finished");
38STATISTIC(NumSimple,   "Number of splits that were simple");
39
40//===----------------------------------------------------------------------===//
41//                                 Split Analysis
42//===----------------------------------------------------------------------===//
43
44SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
45                             const LiveIntervals &lis,
46                             const MachineLoopInfo &mli)
47  : MF(vrm.getMachineFunction()),
48    VRM(vrm),
49    LIS(lis),
50    Loops(mli),
51    TII(*MF.getTarget().getInstrInfo()),
52    CurLI(0) {}
53
54void SplitAnalysis::clear() {
55  UseSlots.clear();
56  UsingInstrs.clear();
57  UsingBlocks.clear();
58  LiveBlocks.clear();
59  CurLI = 0;
60}
61
62bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
63  MachineBasicBlock *T, *F;
64  SmallVector<MachineOperand, 4> Cond;
65  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
66}
67
68/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
69void SplitAnalysis::analyzeUses() {
70  const MachineRegisterInfo &MRI = MF.getRegInfo();
71  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
72       E = MRI.reg_end(); I != E; ++I) {
73    MachineOperand &MO = I.getOperand();
74    if (MO.isUse() && MO.isUndef())
75      continue;
76    MachineInstr *MI = MO.getParent();
77    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
78      continue;
79    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
80    MachineBasicBlock *MBB = MI->getParent();
81    UsingBlocks[MBB]++;
82  }
83  array_pod_sort(UseSlots.begin(), UseSlots.end());
84
85  // Compute per-live block info.
86  if (!calcLiveBlockInfo()) {
87    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
88    // I am looking at you, SimpleRegisterCoalescing!
89    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
90    const_cast<LiveIntervals&>(LIS)
91      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
92    LiveBlocks.clear();
93    bool fixed = calcLiveBlockInfo();
94    (void)fixed;
95    assert(fixed && "Couldn't fix broken live interval");
96  }
97
98  DEBUG(dbgs() << "  counted "
99               << UsingInstrs.size() << " instrs, "
100               << UsingBlocks.size() << " blocks.\n");
101}
102
103/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
104/// where CurLI is live.
105bool SplitAnalysis::calcLiveBlockInfo() {
106  if (CurLI->empty())
107    return true;
108
109  LiveInterval::const_iterator LVI = CurLI->begin();
110  LiveInterval::const_iterator LVE = CurLI->end();
111
112  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
113  UseI = UseSlots.begin();
114  UseE = UseSlots.end();
115
116  // Loop over basic blocks where CurLI is live.
117  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
118  for (;;) {
119    BlockInfo BI;
120    BI.MBB = MFI;
121    tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
122
123    // The last split point is the latest possible insertion point that dominates
124    // all successor blocks. If interference reaches LastSplitPoint, it is not
125    // possible to insert a split or reload that makes CurLI live in the
126    // outgoing bundle.
127    MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
128    if (LSP == BI.MBB->end())
129      BI.LastSplitPoint = BI.Stop;
130    else
131      BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
132
133    // LVI is the first live segment overlapping MBB.
134    BI.LiveIn = LVI->start <= BI.Start;
135    if (!BI.LiveIn)
136      BI.Def = LVI->start;
137
138    // Find the first and last uses in the block.
139    BI.Uses = hasUses(MFI);
140    if (BI.Uses && UseI != UseE) {
141      BI.FirstUse = *UseI;
142      assert(BI.FirstUse >= BI.Start);
143      do ++UseI;
144      while (UseI != UseE && *UseI < BI.Stop);
145      BI.LastUse = UseI[-1];
146      assert(BI.LastUse < BI.Stop);
147    }
148
149    // Look for gaps in the live range.
150    bool hasGap = false;
151    BI.LiveOut = true;
152    while (LVI->end < BI.Stop) {
153      SlotIndex LastStop = LVI->end;
154      if (++LVI == LVE || LVI->start >= BI.Stop) {
155        BI.Kill = LastStop;
156        BI.LiveOut = false;
157        break;
158      }
159      if (LastStop < LVI->start) {
160        hasGap = true;
161        BI.Kill = LastStop;
162        BI.Def = LVI->start;
163      }
164    }
165
166    // Don't set LiveThrough when the block has a gap.
167    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
168    LiveBlocks.push_back(BI);
169
170    // FIXME: This should never happen. The live range stops or starts without a
171    // corresponding use. An earlier pass did something wrong.
172    if (!BI.LiveThrough && !BI.Uses)
173      return false;
174
175    // LVI is now at LVE or LVI->end >= Stop.
176    if (LVI == LVE)
177      break;
178
179    // Live segment ends exactly at Stop. Move to the next segment.
180    if (LVI->end == BI.Stop && ++LVI == LVE)
181      break;
182
183    // Pick the next basic block.
184    if (LVI->start < BI.Stop)
185      ++MFI;
186    else
187      MFI = LIS.getMBBFromIndex(LVI->start);
188  }
189  return true;
190}
191
192bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
193  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
194  const LiveInterval &Orig = LIS.getInterval(OrigReg);
195  assert(!Orig.empty() && "Splitting empty interval?");
196  LiveInterval::const_iterator I = Orig.find(Idx);
197
198  // Range containing Idx should begin at Idx.
199  if (I != Orig.end() && I->start <= Idx)
200    return I->start == Idx;
201
202  // Range does not contain Idx, previous must end at Idx.
203  return I != Orig.begin() && (--I)->end == Idx;
204}
205
206void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
207  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
208    unsigned count = UsingBlocks.lookup(*I);
209    OS << " BB#" << (*I)->getNumber();
210    if (count)
211      OS << '(' << count << ')';
212  }
213}
214
215void SplitAnalysis::analyze(const LiveInterval *li) {
216  clear();
217  CurLI = li;
218  analyzeUses();
219}
220
221
222//===----------------------------------------------------------------------===//
223//                               Split Editor
224//===----------------------------------------------------------------------===//
225
226/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
227SplitEditor::SplitEditor(SplitAnalysis &sa,
228                         LiveIntervals &lis,
229                         VirtRegMap &vrm,
230                         MachineDominatorTree &mdt)
231  : SA(sa), LIS(lis), VRM(vrm),
232    MRI(vrm.getMachineFunction().getRegInfo()),
233    MDT(mdt),
234    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
235    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
236    Edit(0),
237    OpenIdx(0),
238    RegAssign(Allocator)
239{}
240
241void SplitEditor::reset(LiveRangeEdit &lre) {
242  Edit = &lre;
243  OpenIdx = 0;
244  RegAssign.clear();
245  Values.clear();
246
247  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
248  LiveOutSeen.clear();
249
250  // We don't need an AliasAnalysis since we will only be performing
251  // cheap-as-a-copy remats anyway.
252  Edit->anyRematerializable(LIS, TII, 0);
253}
254
255void SplitEditor::dump() const {
256  if (RegAssign.empty()) {
257    dbgs() << " empty\n";
258    return;
259  }
260
261  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
262    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
263  dbgs() << '\n';
264}
265
266VNInfo *SplitEditor::defValue(unsigned RegIdx,
267                              const VNInfo *ParentVNI,
268                              SlotIndex Idx) {
269  assert(ParentVNI && "Mapping  NULL value");
270  assert(Idx.isValid() && "Invalid SlotIndex");
271  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
272  LiveInterval *LI = Edit->get(RegIdx);
273
274  // Create a new value.
275  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
276
277  // Use insert for lookup, so we can add missing values with a second lookup.
278  std::pair<ValueMap::iterator, bool> InsP =
279    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
280
281  // This was the first time (RegIdx, ParentVNI) was mapped.
282  // Keep it as a simple def without any liveness.
283  if (InsP.second)
284    return VNI;
285
286  // If the previous value was a simple mapping, add liveness for it now.
287  if (VNInfo *OldVNI = InsP.first->second) {
288    SlotIndex Def = OldVNI->def;
289    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
290    // No longer a simple mapping.
291    InsP.first->second = 0;
292  }
293
294  // This is a complex mapping, add liveness for VNI
295  SlotIndex Def = VNI->def;
296  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
297
298  return VNI;
299}
300
301void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
302  assert(ParentVNI && "Mapping  NULL value");
303  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
304
305  // ParentVNI was either unmapped or already complex mapped. Either way.
306  if (!VNI)
307    return;
308
309  // This was previously a single mapping. Make sure the old def is represented
310  // by a trivial live range.
311  SlotIndex Def = VNI->def;
312  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
313  VNI = 0;
314}
315
316// extendRange - Extend the live range to reach Idx.
317// Potentially create phi-def values.
318void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
319  assert(Idx.isValid() && "Invalid SlotIndex");
320  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
321  assert(IdxMBB && "No MBB at Idx");
322  LiveInterval *LI = Edit->get(RegIdx);
323
324  // Is there a def in the same MBB we can extend?
325  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
326    return;
327
328  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
329  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
330  // Perform a search for all predecessor blocks where we know the dominating
331  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
332
333  // Initialize the live-out cache the first time it is needed.
334  if (LiveOutSeen.empty()) {
335    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
336    LiveOutSeen.resize(N);
337    LiveOutCache.resize(N);
338  }
339
340  // Blocks where LI should be live-in.
341  SmallVector<MachineDomTreeNode*, 16> LiveIn;
342  LiveIn.push_back(MDT[IdxMBB]);
343
344  // Remember if we have seen more than one value.
345  bool UniqueVNI = true;
346  VNInfo *IdxVNI = 0;
347
348  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
349  for (unsigned i = 0; i != LiveIn.size(); ++i) {
350    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
351    assert(!MBB->pred_empty() && "Value live-in to entry block?");
352    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
353           PE = MBB->pred_end(); PI != PE; ++PI) {
354       MachineBasicBlock *Pred = *PI;
355       LiveOutPair &LOP = LiveOutCache[Pred];
356
357       // Is this a known live-out block?
358       if (LiveOutSeen.test(Pred->getNumber())) {
359         if (VNInfo *VNI = LOP.first) {
360           if (IdxVNI && IdxVNI != VNI)
361             UniqueVNI = false;
362           IdxVNI = VNI;
363         }
364         continue;
365       }
366
367       // First time. LOP is garbage and must be cleared below.
368       LiveOutSeen.set(Pred->getNumber());
369
370       // Does Pred provide a live-out value?
371       SlotIndex Start, Last;
372       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
373       Last = Last.getPrevSlot();
374       VNInfo *VNI = LI->extendInBlock(Start, Last);
375       LOP.first = VNI;
376       if (VNI) {
377         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
378         if (IdxVNI && IdxVNI != VNI)
379           UniqueVNI = false;
380         IdxVNI = VNI;
381         continue;
382       }
383       LOP.second = 0;
384
385       // No, we need a live-in value for Pred as well
386       if (Pred != IdxMBB)
387         LiveIn.push_back(MDT[Pred]);
388       else
389         UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help.
390    }
391  }
392
393  // We may need to add phi-def values to preserve the SSA form.
394  if (UniqueVNI) {
395    LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]);
396    // Update LiveOutCache, but skip IdxMBB at LiveIn[0].
397    for (unsigned i = 1, e = LiveIn.size(); i != e; ++i)
398      LiveOutCache[LiveIn[i]->getBlock()] = LOP;
399  } else
400    IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB);
401
402  // Since we went through the trouble of a full BFS visiting all reaching defs,
403  // the values in LiveIn are now accurate. No more phi-defs are needed
404  // for these blocks, so we can color the live ranges.
405  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
406    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
407    SlotIndex Start = LIS.getMBBStartIdx(MBB);
408    VNInfo *VNI = LiveOutCache[MBB].first;
409
410    // Anything in LiveIn other than IdxMBB is live-through.
411    // In IdxMBB, we should stop at Idx unless the same value is live-out.
412    if (MBB == IdxMBB && IdxVNI != VNI)
413      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
414    else
415      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
416  }
417}
418
419VNInfo *SplitEditor::updateSSA(unsigned RegIdx,
420                               SmallVectorImpl<MachineDomTreeNode*> &LiveIn,
421                               SlotIndex Idx,
422                               const MachineBasicBlock *IdxMBB) {
423  // This is essentially the same iterative algorithm that SSAUpdater uses,
424  // except we already have a dominator tree, so we don't have to recompute it.
425  LiveInterval *LI = Edit->get(RegIdx);
426  VNInfo *IdxVNI = 0;
427  unsigned Changes;
428  do {
429    Changes = 0;
430    // Propagate live-out values down the dominator tree, inserting phi-defs
431    // when necessary. Since LiveIn was created by a BFS, going backwards makes
432    // it more likely for us to visit immediate dominators before their
433    // children.
434    for (unsigned i = LiveIn.size(); i; --i) {
435      MachineDomTreeNode *Node = LiveIn[i-1];
436      MachineBasicBlock *MBB = Node->getBlock();
437      MachineDomTreeNode *IDom = Node->getIDom();
438      LiveOutPair IDomValue;
439
440      // We need a live-in value to a block with no immediate dominator?
441      // This is probably an unreachable block that has survived somehow.
442      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
443
444      // IDom dominates all of our predecessors, but it may not be the immediate
445      // dominator. Check if any of them have live-out values that are properly
446      // dominated by IDom. If so, we need a phi-def here.
447      if (!needPHI) {
448        IDomValue = LiveOutCache[IDom->getBlock()];
449        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
450               PE = MBB->pred_end(); PI != PE; ++PI) {
451          LiveOutPair Value = LiveOutCache[*PI];
452          if (!Value.first || Value.first == IDomValue.first)
453            continue;
454          // This predecessor is carrying something other than IDomValue.
455          // It could be because IDomValue hasn't propagated yet, or it could be
456          // because MBB is in the dominance frontier of that value.
457          if (MDT.dominates(IDom, Value.second)) {
458            needPHI = true;
459            break;
460          }
461        }
462      }
463
464      // Create a phi-def if required.
465      if (needPHI) {
466        ++Changes;
467        SlotIndex Start = LIS.getMBBStartIdx(MBB);
468        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
469        VNI->setIsPHIDef(true);
470        // We no longer need LI to be live-in.
471        LiveIn.erase(LiveIn.begin()+(i-1));
472        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
473        if (MBB == IdxMBB)
474          IdxVNI = VNI;
475        // Check if we need to update live-out info.
476        LiveOutPair &LOP = LiveOutCache[MBB];
477        if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) {
478          // We already have a live-out defined in MBB, so this must be IdxMBB.
479          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
480          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
481        } else {
482          // This phi-def is also live-out, so color the whole block.
483          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
484          LOP = LiveOutPair(VNI, Node);
485        }
486      } else if (IDomValue.first) {
487        // No phi-def here. Remember incoming value for IdxMBB.
488        if (MBB == IdxMBB) {
489          IdxVNI = IDomValue.first;
490          // IdxMBB need not be live-out.
491          if (!LiveOutSeen.test(MBB->getNumber()))
492            continue;
493        }
494        assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block");
495        // Propagate IDomValue if needed:
496        // MBB is live-out and doesn't define its own value.
497        LiveOutPair &LOP = LiveOutCache[MBB];
498        if (LOP.second != Node && LOP.first != IDomValue.first) {
499          ++Changes;
500          LOP = IDomValue;
501        }
502      }
503    }
504  } while (Changes);
505
506  assert(IdxVNI && "Didn't find value for Idx");
507  return IdxVNI;
508}
509
510VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
511                                   VNInfo *ParentVNI,
512                                   SlotIndex UseIdx,
513                                   MachineBasicBlock &MBB,
514                                   MachineBasicBlock::iterator I) {
515  MachineInstr *CopyMI = 0;
516  SlotIndex Def;
517  LiveInterval *LI = Edit->get(RegIdx);
518
519  // Attempt cheap-as-a-copy rematerialization.
520  LiveRangeEdit::Remat RM(ParentVNI);
521  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
522    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
523  } else {
524    // Can't remat, just insert a copy from parent.
525    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
526               .addReg(Edit->getReg());
527    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
528  }
529
530  // Define the value in Reg.
531  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
532  VNI->setCopy(CopyMI);
533  return VNI;
534}
535
536/// Create a new virtual register and live interval.
537void SplitEditor::openIntv() {
538  assert(!OpenIdx && "Previous LI not closed before openIntv");
539
540  // Create the complement as index 0.
541  if (Edit->empty())
542    Edit->create(LIS, VRM);
543
544  // Create the open interval.
545  OpenIdx = Edit->size();
546  Edit->create(LIS, VRM);
547}
548
549SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
550  assert(OpenIdx && "openIntv not called before enterIntvBefore");
551  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
552  Idx = Idx.getBaseIndex();
553  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
554  if (!ParentVNI) {
555    DEBUG(dbgs() << ": not live\n");
556    return Idx;
557  }
558  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
559  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
560  assert(MI && "enterIntvBefore called with invalid index");
561
562  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
563  return VNI->def;
564}
565
566SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
567  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
568  SlotIndex End = LIS.getMBBEndIdx(&MBB);
569  SlotIndex Last = End.getPrevSlot();
570  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
571  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
572  if (!ParentVNI) {
573    DEBUG(dbgs() << ": not live\n");
574    return End;
575  }
576  DEBUG(dbgs() << ": valno " << ParentVNI->id);
577  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
578                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
579  RegAssign.insert(VNI->def, End, OpenIdx);
580  DEBUG(dump());
581  return VNI->def;
582}
583
584/// useIntv - indicate that all instructions in MBB should use OpenLI.
585void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
586  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
587}
588
589void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
590  assert(OpenIdx && "openIntv not called before useIntv");
591  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
592  RegAssign.insert(Start, End, OpenIdx);
593  DEBUG(dump());
594}
595
596SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
597  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
598  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
599
600  // The interval must be live beyond the instruction at Idx.
601  Idx = Idx.getBoundaryIndex();
602  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
603  if (!ParentVNI) {
604    DEBUG(dbgs() << ": not live\n");
605    return Idx.getNextSlot();
606  }
607  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
608
609  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
610  assert(MI && "No instruction at index");
611  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
612                              llvm::next(MachineBasicBlock::iterator(MI)));
613  return VNI->def;
614}
615
616SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
617  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
618  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
619
620  // The interval must be live into the instruction at Idx.
621  Idx = Idx.getBoundaryIndex();
622  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
623  if (!ParentVNI) {
624    DEBUG(dbgs() << ": not live\n");
625    return Idx.getNextSlot();
626  }
627  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
628
629  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
630  assert(MI && "No instruction at index");
631  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
632  return VNI->def;
633}
634
635SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
636  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
637  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
638  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
639
640  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
641  if (!ParentVNI) {
642    DEBUG(dbgs() << ": not live\n");
643    return Start;
644  }
645
646  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
647                              MBB.SkipPHIsAndLabels(MBB.begin()));
648  RegAssign.insert(Start, VNI->def, OpenIdx);
649  DEBUG(dump());
650  return VNI->def;
651}
652
653void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
654  assert(OpenIdx && "openIntv not called before overlapIntv");
655  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
656  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
657         "Parent changes value in extended range");
658  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
659         "Range cannot span basic blocks");
660
661  // The complement interval will be extended as needed by extendRange().
662  markComplexMapped(0, ParentVNI);
663  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
664  RegAssign.insert(Start, End, OpenIdx);
665  DEBUG(dump());
666}
667
668/// closeIntv - Indicate that we are done editing the currently open
669/// LiveInterval, and ranges can be trimmed.
670void SplitEditor::closeIntv() {
671  assert(OpenIdx && "openIntv not called before closeIntv");
672  OpenIdx = 0;
673}
674
675/// transferSimpleValues - Transfer all simply defined values to the new live
676/// ranges.
677/// Values that were rematerialized or that have multiple defs are left alone.
678bool SplitEditor::transferSimpleValues() {
679  bool Skipped = false;
680  RegAssignMap::const_iterator AssignI = RegAssign.begin();
681  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
682         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
683    DEBUG(dbgs() << "  blit " << *ParentI << ':');
684    VNInfo *ParentVNI = ParentI->valno;
685    // RegAssign has holes where RegIdx 0 should be used.
686    SlotIndex Start = ParentI->start;
687    AssignI.advanceTo(Start);
688    do {
689      unsigned RegIdx;
690      SlotIndex End = ParentI->end;
691      if (!AssignI.valid()) {
692        RegIdx = 0;
693      } else if (AssignI.start() <= Start) {
694        RegIdx = AssignI.value();
695        if (AssignI.stop() < End) {
696          End = AssignI.stop();
697          ++AssignI;
698        }
699      } else {
700        RegIdx = 0;
701        End = std::min(End, AssignI.start());
702      }
703      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
704      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
705        DEBUG(dbgs() << ':' << VNI->id);
706        Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI));
707      } else
708        Skipped = true;
709      Start = End;
710    } while (Start != ParentI->end);
711    DEBUG(dbgs() << '\n');
712  }
713  return Skipped;
714}
715
716void SplitEditor::extendPHIKillRanges() {
717    // Extend live ranges to be live-out for successor PHI values.
718  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
719       E = Edit->getParent().vni_end(); I != E; ++I) {
720    const VNInfo *PHIVNI = *I;
721    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
722      continue;
723    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
724    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
725    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
726         PE = MBB->pred_end(); PI != PE; ++PI) {
727      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
728      // The predecessor may not have a live-out value. That is OK, like an
729      // undef PHI operand.
730      if (Edit->getParent().liveAt(End)) {
731        assert(RegAssign.lookup(End) == RegIdx &&
732               "Different register assignment in phi predecessor");
733        extendRange(RegIdx, End);
734      }
735    }
736  }
737}
738
739/// rewriteAssigned - Rewrite all uses of Edit->getReg().
740void SplitEditor::rewriteAssigned(bool ExtendRanges) {
741  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
742       RE = MRI.reg_end(); RI != RE;) {
743    MachineOperand &MO = RI.getOperand();
744    MachineInstr *MI = MO.getParent();
745    ++RI;
746    // LiveDebugVariables should have handled all DBG_VALUE instructions.
747    if (MI->isDebugValue()) {
748      DEBUG(dbgs() << "Zapping " << *MI);
749      MO.setReg(0);
750      continue;
751    }
752
753    // <undef> operands don't really read the register, so just assign them to
754    // the complement.
755    if (MO.isUse() && MO.isUndef()) {
756      MO.setReg(Edit->get(0)->reg);
757      continue;
758    }
759
760    SlotIndex Idx = LIS.getInstructionIndex(MI);
761    if (MO.isDef())
762      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
763
764    // Rewrite to the mapped register at Idx.
765    unsigned RegIdx = RegAssign.lookup(Idx);
766    MO.setReg(Edit->get(RegIdx)->reg);
767    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
768                 << Idx << ':' << RegIdx << '\t' << *MI);
769
770    // Extend liveness to Idx if the instruction reads reg.
771    if (!ExtendRanges)
772      continue;
773
774    // Skip instructions that don't read Reg.
775    if (MO.isDef()) {
776      if (!MO.getSubReg() && !MO.isEarlyClobber())
777        continue;
778      // We may wan't to extend a live range for a partial redef, or for a use
779      // tied to an early clobber.
780      Idx = Idx.getPrevSlot();
781      if (!Edit->getParent().liveAt(Idx))
782        continue;
783    } else
784      Idx = Idx.getUseIndex();
785
786    extendRange(RegIdx, Idx);
787  }
788}
789
790void SplitEditor::deleteRematVictims() {
791  SmallVector<MachineInstr*, 8> Dead;
792  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
793         E = Edit->getParent().vni_end(); I != E; ++I) {
794    const VNInfo *VNI = *I;
795    // Was VNI rematted anywhere?
796    if (VNI->isUnused() || VNI->isPHIDef() || !Edit->didRematerialize(VNI))
797      continue;
798    unsigned RegIdx = RegAssign.lookup(VNI->def);
799    LiveInterval *LI = Edit->get(RegIdx);
800    LiveInterval::const_iterator LII = LI->FindLiveRangeContaining(VNI->def);
801    assert(LII != LI->end() && "Missing live range for rematted def");
802
803    // Is this a dead def?
804    if (LII->end != VNI->def.getNextSlot())
805      continue;
806
807    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
808    assert(MI && "Missing instruction for dead def");
809    MI->addRegisterDead(LI->reg, &TRI);
810
811    if (!MI->allDefsAreDead())
812      continue;
813
814    DEBUG(dbgs() << "All defs dead: " << *MI);
815    Dead.push_back(MI);
816  }
817
818  if (Dead.empty())
819    return;
820
821  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
822}
823
824void SplitEditor::finish() {
825  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
826  ++NumFinished;
827
828  // At this point, the live intervals in Edit contain VNInfos corresponding to
829  // the inserted copies.
830
831  // Add the original defs from the parent interval.
832  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
833         E = Edit->getParent().vni_end(); I != E; ++I) {
834    const VNInfo *ParentVNI = *I;
835    if (ParentVNI->isUnused())
836      continue;
837    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
838    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
839    VNI->setIsPHIDef(ParentVNI->isPHIDef());
840    VNI->setCopy(ParentVNI->getCopy());
841
842    // Mark rematted values as complex everywhere to force liveness computation.
843    // The new live ranges may be truncated.
844    if (Edit->didRematerialize(ParentVNI))
845      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
846        markComplexMapped(i, ParentVNI);
847  }
848
849#ifndef NDEBUG
850  // Every new interval must have a def by now, otherwise the split is bogus.
851  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
852    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
853#endif
854
855  // Transfer the simply mapped values, check if any are complex.
856  bool Complex = transferSimpleValues();
857  if (Complex)
858    extendPHIKillRanges();
859  else
860    ++NumSimple;
861
862  // Rewrite virtual registers, possibly extending ranges.
863  rewriteAssigned(Complex);
864
865  // Delete defs that were rematted everywhere.
866  if (Complex)
867    deleteRematVictims();
868
869  // Get rid of unused values and set phi-kill flags.
870  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
871    (*I)->RenumberValues(LIS);
872
873  // Now check if any registers were separated into multiple components.
874  ConnectedVNInfoEqClasses ConEQ(LIS);
875  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
876    // Don't use iterators, they are invalidated by create() below.
877    LiveInterval *li = Edit->get(i);
878    unsigned NumComp = ConEQ.Classify(li);
879    if (NumComp <= 1)
880      continue;
881    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
882    SmallVector<LiveInterval*, 8> dups;
883    dups.push_back(li);
884    for (unsigned i = 1; i != NumComp; ++i)
885      dups.push_back(&Edit->create(LIS, VRM));
886    ConEQ.Distribute(&dups[0], MRI);
887  }
888
889  // Calculate spill weight and allocation hints for new intervals.
890  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
891  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
892    LiveInterval &li = **I;
893    vrai.CalculateRegClass(li.reg);
894    vrai.CalculateWeightAndHint(li);
895    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
896                 << ":" << li << '\n');
897  }
898}
899
900
901//===----------------------------------------------------------------------===//
902//                            Single Block Splitting
903//===----------------------------------------------------------------------===//
904
905/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
906/// may be an advantage to split CurLI for the duration of the block.
907bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
908  // If CurLI is local to one block, there is no point to splitting it.
909  if (LiveBlocks.size() <= 1)
910    return false;
911  // Add blocks with multiple uses.
912  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
913    const BlockInfo &BI = LiveBlocks[i];
914    if (!BI.Uses)
915      continue;
916    unsigned Instrs = UsingBlocks.lookup(BI.MBB);
917    if (Instrs <= 1)
918      continue;
919    if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
920      continue;
921    Blocks.insert(BI.MBB);
922  }
923  return !Blocks.empty();
924}
925
926/// splitSingleBlocks - Split CurLI into a separate live interval inside each
927/// basic block in Blocks.
928void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
929  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
930
931  for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
932    const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
933    if (!BI.Uses || !Blocks.count(BI.MBB))
934      continue;
935
936    openIntv();
937    SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
938    if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
939      useIntv(SegStart, leaveIntvAfter(BI.LastUse));
940    } else {
941      // The last use is after the last valid split point.
942      SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
943      useIntv(SegStart, SegStop);
944      overlapIntv(SegStop, BI.LastUse);
945    }
946    closeIntv();
947  }
948  finish();
949}
950