1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need DataLayout, and the pieces that do. This is to avoid
16// a dependence in IR on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GetElementPtrTypeIterator.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/IR/PatternMatch.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34using namespace llvm;
35using namespace llvm::PatternMatch;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// Convert the specified vector Constant node to the specified vector type.
42/// At this point, we know that the elements of the input vector constant are
43/// all simple integer or FP values.
44static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45
46  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49  // If this cast changes element count then we can't handle it here:
50  // doing so requires endianness information.  This should be handled by
51  // Analysis/ConstantFolding.cpp
52  unsigned NumElts = DstTy->getNumElements();
53  if (NumElts != CV->getType()->getVectorNumElements())
54    return nullptr;
55
56  Type *DstEltTy = DstTy->getElementType();
57
58  SmallVector<Constant*, 16> Result;
59  Type *Ty = IntegerType::get(CV->getContext(), 32);
60  for (unsigned i = 0; i != NumElts; ++i) {
61    Constant *C =
62      ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
63    C = ConstantExpr::getBitCast(C, DstEltTy);
64    Result.push_back(C);
65  }
66
67  return ConstantVector::get(Result);
68}
69
70/// This function determines which opcode to use to fold two constant cast
71/// expressions together. It uses CastInst::isEliminableCastPair to determine
72/// the opcode. Consequently its just a wrapper around that function.
73/// @brief Determine if it is valid to fold a cast of a cast
74static unsigned
75foldConstantCastPair(
76  unsigned opc,          ///< opcode of the second cast constant expression
77  ConstantExpr *Op,      ///< the first cast constant expression
78  Type *DstTy            ///< destination type of the first cast
79) {
80  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82  assert(CastInst::isCast(opc) && "Invalid cast opcode");
83
84  // The types and opcodes for the two Cast constant expressions
85  Type *SrcTy = Op->getOperand(0)->getType();
86  Type *MidTy = Op->getType();
87  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
88  Instruction::CastOps secondOp = Instruction::CastOps(opc);
89
90  // Assume that pointers are never more than 64 bits wide, and only use this
91  // for the middle type. Otherwise we could end up folding away illegal
92  // bitcasts between address spaces with different sizes.
93  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
94
95  // Let CastInst::isEliminableCastPair do the heavy lifting.
96  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
97                                        nullptr, FakeIntPtrTy, nullptr);
98}
99
100static Constant *FoldBitCast(Constant *V, Type *DestTy) {
101  Type *SrcTy = V->getType();
102  if (SrcTy == DestTy)
103    return V; // no-op cast
104
105  // Check to see if we are casting a pointer to an aggregate to a pointer to
106  // the first element.  If so, return the appropriate GEP instruction.
107  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
108    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
109      if (PTy->getAddressSpace() == DPTy->getAddressSpace()
110          && PTy->getElementType()->isSized()) {
111        SmallVector<Value*, 8> IdxList;
112        Value *Zero =
113          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
114        IdxList.push_back(Zero);
115        Type *ElTy = PTy->getElementType();
116        while (ElTy != DPTy->getElementType()) {
117          if (StructType *STy = dyn_cast<StructType>(ElTy)) {
118            if (STy->getNumElements() == 0) break;
119            ElTy = STy->getElementType(0);
120            IdxList.push_back(Zero);
121          } else if (SequentialType *STy =
122                     dyn_cast<SequentialType>(ElTy)) {
123            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
124            ElTy = STy->getElementType();
125            IdxList.push_back(Zero);
126          } else {
127            break;
128          }
129        }
130
131        if (ElTy == DPTy->getElementType())
132          // This GEP is inbounds because all indices are zero.
133          return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134                                                        V, IdxList);
135      }
136
137  // Handle casts from one vector constant to another.  We know that the src
138  // and dest type have the same size (otherwise its an illegal cast).
139  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142             "Not cast between same sized vectors!");
143      SrcTy = nullptr;
144      // First, check for null.  Undef is already handled.
145      if (isa<ConstantAggregateZero>(V))
146        return Constant::getNullValue(DestTy);
147
148      // Handle ConstantVector and ConstantAggregateVector.
149      return BitCastConstantVector(V, DestPTy);
150    }
151
152    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153    // This allows for other simplifications (although some of them
154    // can only be handled by Analysis/ConstantFolding.cpp).
155    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
157  }
158
159  // Finally, implement bitcast folding now.   The code below doesn't handle
160  // bitcast right.
161  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
162    return ConstantPointerNull::get(cast<PointerType>(DestTy));
163
164  // Handle integral constant input.
165  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166    if (DestTy->isIntegerTy())
167      // Integral -> Integral. This is a no-op because the bit widths must
168      // be the same. Consequently, we just fold to V.
169      return V;
170
171    // See note below regarding the PPC_FP128 restriction.
172    if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173      return ConstantFP::get(DestTy->getContext(),
174                             APFloat(DestTy->getFltSemantics(),
175                                     CI->getValue()));
176
177    // Otherwise, can't fold this (vector?)
178    return nullptr;
179  }
180
181  // Handle ConstantFP input: FP -> Integral.
182  if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183    // PPC_FP128 is really the sum of two consecutive doubles, where the first
184    // double is always stored first in memory, regardless of the target
185    // endianness. The memory layout of i128, however, depends on the target
186    // endianness, and so we can't fold this without target endianness
187    // information. This should instead be handled by
188    // Analysis/ConstantFolding.cpp
189    if (FP->getType()->isPPC_FP128Ty())
190      return nullptr;
191
192    // Make sure dest type is compatible with the folded integer constant.
193    if (!DestTy->isIntegerTy())
194      return nullptr;
195
196    return ConstantInt::get(FP->getContext(),
197                            FP->getValueAPF().bitcastToAPInt());
198  }
199
200  return nullptr;
201}
202
203
204/// V is an integer constant which only has a subset of its bytes used.
205/// The bytes used are indicated by ByteStart (which is the first byte used,
206/// counting from the least significant byte) and ByteSize, which is the number
207/// of bytes used.
208///
209/// This function analyzes the specified constant to see if the specified byte
210/// range can be returned as a simplified constant.  If so, the constant is
211/// returned, otherwise null is returned.
212static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213                                      unsigned ByteSize) {
214  assert(C->getType()->isIntegerTy() &&
215         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216         "Non-byte sized integer input");
217  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218  assert(ByteSize && "Must be accessing some piece");
219  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220  assert(ByteSize != CSize && "Should not extract everything");
221
222  // Constant Integers are simple.
223  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224    APInt V = CI->getValue();
225    if (ByteStart)
226      V = V.lshr(ByteStart*8);
227    V = V.trunc(ByteSize*8);
228    return ConstantInt::get(CI->getContext(), V);
229  }
230
231  // In the input is a constant expr, we might be able to recursively simplify.
232  // If not, we definitely can't do anything.
233  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234  if (!CE) return nullptr;
235
236  switch (CE->getOpcode()) {
237  default: return nullptr;
238  case Instruction::Or: {
239    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240    if (!RHS)
241      return nullptr;
242
243    // X | -1 -> -1.
244    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245      if (RHSC->isAllOnesValue())
246        return RHSC;
247
248    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249    if (!LHS)
250      return nullptr;
251    return ConstantExpr::getOr(LHS, RHS);
252  }
253  case Instruction::And: {
254    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255    if (!RHS)
256      return nullptr;
257
258    // X & 0 -> 0.
259    if (RHS->isNullValue())
260      return RHS;
261
262    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263    if (!LHS)
264      return nullptr;
265    return ConstantExpr::getAnd(LHS, RHS);
266  }
267  case Instruction::LShr: {
268    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269    if (!Amt)
270      return nullptr;
271    unsigned ShAmt = Amt->getZExtValue();
272    // Cannot analyze non-byte shifts.
273    if ((ShAmt & 7) != 0)
274      return nullptr;
275    ShAmt >>= 3;
276
277    // If the extract is known to be all zeros, return zero.
278    if (ByteStart >= CSize-ShAmt)
279      return Constant::getNullValue(IntegerType::get(CE->getContext(),
280                                                     ByteSize*8));
281    // If the extract is known to be fully in the input, extract it.
282    if (ByteStart+ByteSize+ShAmt <= CSize)
283      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
284
285    // TODO: Handle the 'partially zero' case.
286    return nullptr;
287  }
288
289  case Instruction::Shl: {
290    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
291    if (!Amt)
292      return nullptr;
293    unsigned ShAmt = Amt->getZExtValue();
294    // Cannot analyze non-byte shifts.
295    if ((ShAmt & 7) != 0)
296      return nullptr;
297    ShAmt >>= 3;
298
299    // If the extract is known to be all zeros, return zero.
300    if (ByteStart+ByteSize <= ShAmt)
301      return Constant::getNullValue(IntegerType::get(CE->getContext(),
302                                                     ByteSize*8));
303    // If the extract is known to be fully in the input, extract it.
304    if (ByteStart >= ShAmt)
305      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
306
307    // TODO: Handle the 'partially zero' case.
308    return nullptr;
309  }
310
311  case Instruction::ZExt: {
312    unsigned SrcBitSize =
313      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
314
315    // If extracting something that is completely zero, return 0.
316    if (ByteStart*8 >= SrcBitSize)
317      return Constant::getNullValue(IntegerType::get(CE->getContext(),
318                                                     ByteSize*8));
319
320    // If exactly extracting the input, return it.
321    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
322      return CE->getOperand(0);
323
324    // If extracting something completely in the input, if if the input is a
325    // multiple of 8 bits, recurse.
326    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
327      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
328
329    // Otherwise, if extracting a subset of the input, which is not multiple of
330    // 8 bits, do a shift and trunc to get the bits.
331    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
332      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
333      Constant *Res = CE->getOperand(0);
334      if (ByteStart)
335        Res = ConstantExpr::getLShr(Res,
336                                 ConstantInt::get(Res->getType(), ByteStart*8));
337      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
338                                                          ByteSize*8));
339    }
340
341    // TODO: Handle the 'partially zero' case.
342    return nullptr;
343  }
344  }
345}
346
347/// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
348/// factors factored out. If Folded is false, return null if no factoring was
349/// possible, to avoid endlessly bouncing an unfoldable expression back into the
350/// top-level folder.
351static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
352                                 bool Folded) {
353  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
354    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
355    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
356    return ConstantExpr::getNUWMul(E, N);
357  }
358
359  if (StructType *STy = dyn_cast<StructType>(Ty))
360    if (!STy->isPacked()) {
361      unsigned NumElems = STy->getNumElements();
362      // An empty struct has size zero.
363      if (NumElems == 0)
364        return ConstantExpr::getNullValue(DestTy);
365      // Check for a struct with all members having the same size.
366      Constant *MemberSize =
367        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
368      bool AllSame = true;
369      for (unsigned i = 1; i != NumElems; ++i)
370        if (MemberSize !=
371            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
372          AllSame = false;
373          break;
374        }
375      if (AllSame) {
376        Constant *N = ConstantInt::get(DestTy, NumElems);
377        return ConstantExpr::getNUWMul(MemberSize, N);
378      }
379    }
380
381  // Pointer size doesn't depend on the pointee type, so canonicalize them
382  // to an arbitrary pointee.
383  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
384    if (!PTy->getElementType()->isIntegerTy(1))
385      return
386        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
387                                         PTy->getAddressSpace()),
388                        DestTy, true);
389
390  // If there's no interesting folding happening, bail so that we don't create
391  // a constant that looks like it needs folding but really doesn't.
392  if (!Folded)
393    return nullptr;
394
395  // Base case: Get a regular sizeof expression.
396  Constant *C = ConstantExpr::getSizeOf(Ty);
397  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398                                                    DestTy, false),
399                            C, DestTy);
400  return C;
401}
402
403/// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
404/// factors factored out. If Folded is false, return null if no factoring was
405/// possible, to avoid endlessly bouncing an unfoldable expression back into the
406/// top-level folder.
407static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
408                                  bool Folded) {
409  // The alignment of an array is equal to the alignment of the
410  // array element. Note that this is not always true for vectors.
411  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
412    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
413    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
414                                                      DestTy,
415                                                      false),
416                              C, DestTy);
417    return C;
418  }
419
420  if (StructType *STy = dyn_cast<StructType>(Ty)) {
421    // Packed structs always have an alignment of 1.
422    if (STy->isPacked())
423      return ConstantInt::get(DestTy, 1);
424
425    // Otherwise, struct alignment is the maximum alignment of any member.
426    // Without target data, we can't compare much, but we can check to see
427    // if all the members have the same alignment.
428    unsigned NumElems = STy->getNumElements();
429    // An empty struct has minimal alignment.
430    if (NumElems == 0)
431      return ConstantInt::get(DestTy, 1);
432    // Check for a struct with all members having the same alignment.
433    Constant *MemberAlign =
434      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
435    bool AllSame = true;
436    for (unsigned i = 1; i != NumElems; ++i)
437      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
438        AllSame = false;
439        break;
440      }
441    if (AllSame)
442      return MemberAlign;
443  }
444
445  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446  // to an arbitrary pointee.
447  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
448    if (!PTy->getElementType()->isIntegerTy(1))
449      return
450        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
451                                                           1),
452                                          PTy->getAddressSpace()),
453                         DestTy, true);
454
455  // If there's no interesting folding happening, bail so that we don't create
456  // a constant that looks like it needs folding but really doesn't.
457  if (!Folded)
458    return nullptr;
459
460  // Base case: Get a regular alignof expression.
461  Constant *C = ConstantExpr::getAlignOf(Ty);
462  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
463                                                    DestTy, false),
464                            C, DestTy);
465  return C;
466}
467
468/// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469/// any known factors factored out. If Folded is false, return null if no
470/// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471/// back into the top-level folder.
472static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
473                                   Type *DestTy,
474                                   bool Folded) {
475  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
476    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
477                                                                DestTy, false),
478                                        FieldNo, DestTy);
479    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
480    return ConstantExpr::getNUWMul(E, N);
481  }
482
483  if (StructType *STy = dyn_cast<StructType>(Ty))
484    if (!STy->isPacked()) {
485      unsigned NumElems = STy->getNumElements();
486      // An empty struct has no members.
487      if (NumElems == 0)
488        return nullptr;
489      // Check for a struct with all members having the same size.
490      Constant *MemberSize =
491        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
492      bool AllSame = true;
493      for (unsigned i = 1; i != NumElems; ++i)
494        if (MemberSize !=
495            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
496          AllSame = false;
497          break;
498        }
499      if (AllSame) {
500        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
501                                                                    false,
502                                                                    DestTy,
503                                                                    false),
504                                            FieldNo, DestTy);
505        return ConstantExpr::getNUWMul(MemberSize, N);
506      }
507    }
508
509  // If there's no interesting folding happening, bail so that we don't create
510  // a constant that looks like it needs folding but really doesn't.
511  if (!Folded)
512    return nullptr;
513
514  // Base case: Get a regular offsetof expression.
515  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
516  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
517                                                    DestTy, false),
518                            C, DestTy);
519  return C;
520}
521
522Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
523                                            Type *DestTy) {
524  if (isa<UndefValue>(V)) {
525    // zext(undef) = 0, because the top bits will be zero.
526    // sext(undef) = 0, because the top bits will all be the same.
527    // [us]itofp(undef) = 0, because the result value is bounded.
528    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
529        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
530      return Constant::getNullValue(DestTy);
531    return UndefValue::get(DestTy);
532  }
533
534  if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
535      opc != Instruction::AddrSpaceCast)
536    return Constant::getNullValue(DestTy);
537
538  // If the cast operand is a constant expression, there's a few things we can
539  // do to try to simplify it.
540  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
541    if (CE->isCast()) {
542      // Try hard to fold cast of cast because they are often eliminable.
543      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
544        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
545    } else if (CE->getOpcode() == Instruction::GetElementPtr &&
546               // Do not fold addrspacecast (gep 0, .., 0). It might make the
547               // addrspacecast uncanonicalized.
548               opc != Instruction::AddrSpaceCast) {
549      // If all of the indexes in the GEP are null values, there is no pointer
550      // adjustment going on.  We might as well cast the source pointer.
551      bool isAllNull = true;
552      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
553        if (!CE->getOperand(i)->isNullValue()) {
554          isAllNull = false;
555          break;
556        }
557      if (isAllNull)
558        // This is casting one pointer type to another, always BitCast
559        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
560    }
561  }
562
563  // If the cast operand is a constant vector, perform the cast by
564  // operating on each element. In the cast of bitcasts, the element
565  // count may be mismatched; don't attempt to handle that here.
566  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
567      DestTy->isVectorTy() &&
568      DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
569    SmallVector<Constant*, 16> res;
570    VectorType *DestVecTy = cast<VectorType>(DestTy);
571    Type *DstEltTy = DestVecTy->getElementType();
572    Type *Ty = IntegerType::get(V->getContext(), 32);
573    for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
574      Constant *C =
575        ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
576      res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
577    }
578    return ConstantVector::get(res);
579  }
580
581  // We actually have to do a cast now. Perform the cast according to the
582  // opcode specified.
583  switch (opc) {
584  default:
585    llvm_unreachable("Failed to cast constant expression");
586  case Instruction::FPTrunc:
587  case Instruction::FPExt:
588    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
589      bool ignored;
590      APFloat Val = FPC->getValueAPF();
591      Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
592                  DestTy->isFloatTy() ? APFloat::IEEEsingle :
593                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
594                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
595                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
596                  DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
597                  APFloat::Bogus,
598                  APFloat::rmNearestTiesToEven, &ignored);
599      return ConstantFP::get(V->getContext(), Val);
600    }
601    return nullptr; // Can't fold.
602  case Instruction::FPToUI:
603  case Instruction::FPToSI:
604    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
605      const APFloat &V = FPC->getValueAPF();
606      bool ignored;
607      uint64_t x[2];
608      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
609      if (APFloat::opInvalidOp ==
610          V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
611                             APFloat::rmTowardZero, &ignored)) {
612        // Undefined behavior invoked - the destination type can't represent
613        // the input constant.
614        return UndefValue::get(DestTy);
615      }
616      APInt Val(DestBitWidth, x);
617      return ConstantInt::get(FPC->getContext(), Val);
618    }
619    return nullptr; // Can't fold.
620  case Instruction::IntToPtr:   //always treated as unsigned
621    if (V->isNullValue())       // Is it an integral null value?
622      return ConstantPointerNull::get(cast<PointerType>(DestTy));
623    return nullptr;                   // Other pointer types cannot be casted
624  case Instruction::PtrToInt:   // always treated as unsigned
625    // Is it a null pointer value?
626    if (V->isNullValue())
627      return ConstantInt::get(DestTy, 0);
628    // If this is a sizeof-like expression, pull out multiplications by
629    // known factors to expose them to subsequent folding. If it's an
630    // alignof-like expression, factor out known factors.
631    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
632      if (CE->getOpcode() == Instruction::GetElementPtr &&
633          CE->getOperand(0)->isNullValue()) {
634        GEPOperator *GEPO = cast<GEPOperator>(CE);
635        Type *Ty = GEPO->getSourceElementType();
636        if (CE->getNumOperands() == 2) {
637          // Handle a sizeof-like expression.
638          Constant *Idx = CE->getOperand(1);
639          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
640          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
641            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
642                                                                DestTy, false),
643                                        Idx, DestTy);
644            return ConstantExpr::getMul(C, Idx);
645          }
646        } else if (CE->getNumOperands() == 3 &&
647                   CE->getOperand(1)->isNullValue()) {
648          // Handle an alignof-like expression.
649          if (StructType *STy = dyn_cast<StructType>(Ty))
650            if (!STy->isPacked()) {
651              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
652              if (CI->isOne() &&
653                  STy->getNumElements() == 2 &&
654                  STy->getElementType(0)->isIntegerTy(1)) {
655                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
656              }
657            }
658          // Handle an offsetof-like expression.
659          if (Ty->isStructTy() || Ty->isArrayTy()) {
660            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
661                                                DestTy, false))
662              return C;
663          }
664        }
665      }
666    // Other pointer types cannot be casted
667    return nullptr;
668  case Instruction::UIToFP:
669  case Instruction::SIToFP:
670    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
671      const APInt &api = CI->getValue();
672      APFloat apf(DestTy->getFltSemantics(),
673                  APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
674      if (APFloat::opOverflow &
675          apf.convertFromAPInt(api, opc==Instruction::SIToFP,
676                              APFloat::rmNearestTiesToEven)) {
677        // Undefined behavior invoked - the destination type can't represent
678        // the input constant.
679        return UndefValue::get(DestTy);
680      }
681      return ConstantFP::get(V->getContext(), apf);
682    }
683    return nullptr;
684  case Instruction::ZExt:
685    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
686      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
687      return ConstantInt::get(V->getContext(),
688                              CI->getValue().zext(BitWidth));
689    }
690    return nullptr;
691  case Instruction::SExt:
692    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
693      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
694      return ConstantInt::get(V->getContext(),
695                              CI->getValue().sext(BitWidth));
696    }
697    return nullptr;
698  case Instruction::Trunc: {
699    if (V->getType()->isVectorTy())
700      return nullptr;
701
702    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
703    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
704      return ConstantInt::get(V->getContext(),
705                              CI->getValue().trunc(DestBitWidth));
706    }
707
708    // The input must be a constantexpr.  See if we can simplify this based on
709    // the bytes we are demanding.  Only do this if the source and dest are an
710    // even multiple of a byte.
711    if ((DestBitWidth & 7) == 0 &&
712        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
713      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
714        return Res;
715
716    return nullptr;
717  }
718  case Instruction::BitCast:
719    return FoldBitCast(V, DestTy);
720  case Instruction::AddrSpaceCast:
721    return nullptr;
722  }
723}
724
725Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
726                                              Constant *V1, Constant *V2) {
727  // Check for i1 and vector true/false conditions.
728  if (Cond->isNullValue()) return V2;
729  if (Cond->isAllOnesValue()) return V1;
730
731  // If the condition is a vector constant, fold the result elementwise.
732  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
733    SmallVector<Constant*, 16> Result;
734    Type *Ty = IntegerType::get(CondV->getContext(), 32);
735    for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
736      Constant *V;
737      Constant *V1Element = ConstantExpr::getExtractElement(V1,
738                                                    ConstantInt::get(Ty, i));
739      Constant *V2Element = ConstantExpr::getExtractElement(V2,
740                                                    ConstantInt::get(Ty, i));
741      Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
742      if (V1Element == V2Element) {
743        V = V1Element;
744      } else if (isa<UndefValue>(Cond)) {
745        V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
746      } else {
747        if (!isa<ConstantInt>(Cond)) break;
748        V = Cond->isNullValue() ? V2Element : V1Element;
749      }
750      Result.push_back(V);
751    }
752
753    // If we were able to build the vector, return it.
754    if (Result.size() == V1->getType()->getVectorNumElements())
755      return ConstantVector::get(Result);
756  }
757
758  if (isa<UndefValue>(Cond)) {
759    if (isa<UndefValue>(V1)) return V1;
760    return V2;
761  }
762  if (isa<UndefValue>(V1)) return V2;
763  if (isa<UndefValue>(V2)) return V1;
764  if (V1 == V2) return V1;
765
766  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
767    if (TrueVal->getOpcode() == Instruction::Select)
768      if (TrueVal->getOperand(0) == Cond)
769        return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
770  }
771  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
772    if (FalseVal->getOpcode() == Instruction::Select)
773      if (FalseVal->getOperand(0) == Cond)
774        return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
775  }
776
777  return nullptr;
778}
779
780Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
781                                                      Constant *Idx) {
782  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
783    return UndefValue::get(Val->getType()->getVectorElementType());
784  if (Val->isNullValue())  // ee(zero, x) -> zero
785    return Constant::getNullValue(Val->getType()->getVectorElementType());
786  // ee({w,x,y,z}, undef) -> undef
787  if (isa<UndefValue>(Idx))
788    return UndefValue::get(Val->getType()->getVectorElementType());
789
790  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
791    // ee({w,x,y,z}, wrong_value) -> undef
792    if (CIdx->uge(Val->getType()->getVectorNumElements()))
793      return UndefValue::get(Val->getType()->getVectorElementType());
794    return Val->getAggregateElement(CIdx->getZExtValue());
795  }
796  return nullptr;
797}
798
799Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
800                                                     Constant *Elt,
801                                                     Constant *Idx) {
802  if (isa<UndefValue>(Idx))
803    return UndefValue::get(Val->getType());
804
805  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
806  if (!CIdx) return nullptr;
807
808  unsigned NumElts = Val->getType()->getVectorNumElements();
809  if (CIdx->uge(NumElts))
810    return UndefValue::get(Val->getType());
811
812  SmallVector<Constant*, 16> Result;
813  Result.reserve(NumElts);
814  auto *Ty = Type::getInt32Ty(Val->getContext());
815  uint64_t IdxVal = CIdx->getZExtValue();
816  for (unsigned i = 0; i != NumElts; ++i) {
817    if (i == IdxVal) {
818      Result.push_back(Elt);
819      continue;
820    }
821
822    Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
823    Result.push_back(C);
824  }
825
826  return ConstantVector::get(Result);
827}
828
829Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
830                                                     Constant *V2,
831                                                     Constant *Mask) {
832  unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
833  Type *EltTy = V1->getType()->getVectorElementType();
834
835  // Undefined shuffle mask -> undefined value.
836  if (isa<UndefValue>(Mask))
837    return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
838
839  // Don't break the bitcode reader hack.
840  if (isa<ConstantExpr>(Mask)) return nullptr;
841
842  unsigned SrcNumElts = V1->getType()->getVectorNumElements();
843
844  // Loop over the shuffle mask, evaluating each element.
845  SmallVector<Constant*, 32> Result;
846  for (unsigned i = 0; i != MaskNumElts; ++i) {
847    int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
848    if (Elt == -1) {
849      Result.push_back(UndefValue::get(EltTy));
850      continue;
851    }
852    Constant *InElt;
853    if (unsigned(Elt) >= SrcNumElts*2)
854      InElt = UndefValue::get(EltTy);
855    else if (unsigned(Elt) >= SrcNumElts) {
856      Type *Ty = IntegerType::get(V2->getContext(), 32);
857      InElt =
858        ConstantExpr::getExtractElement(V2,
859                                        ConstantInt::get(Ty, Elt - SrcNumElts));
860    } else {
861      Type *Ty = IntegerType::get(V1->getContext(), 32);
862      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
863    }
864    Result.push_back(InElt);
865  }
866
867  return ConstantVector::get(Result);
868}
869
870Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
871                                                    ArrayRef<unsigned> Idxs) {
872  // Base case: no indices, so return the entire value.
873  if (Idxs.empty())
874    return Agg;
875
876  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
877    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
878
879  return nullptr;
880}
881
882Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
883                                                   Constant *Val,
884                                                   ArrayRef<unsigned> Idxs) {
885  // Base case: no indices, so replace the entire value.
886  if (Idxs.empty())
887    return Val;
888
889  unsigned NumElts;
890  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
891    NumElts = ST->getNumElements();
892  else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
893    NumElts = AT->getNumElements();
894  else
895    NumElts = Agg->getType()->getVectorNumElements();
896
897  SmallVector<Constant*, 32> Result;
898  for (unsigned i = 0; i != NumElts; ++i) {
899    Constant *C = Agg->getAggregateElement(i);
900    if (!C) return nullptr;
901
902    if (Idxs[0] == i)
903      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
904
905    Result.push_back(C);
906  }
907
908  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
909    return ConstantStruct::get(ST, Result);
910  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
911    return ConstantArray::get(AT, Result);
912  return ConstantVector::get(Result);
913}
914
915
916Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
917                                              Constant *C1, Constant *C2) {
918  assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
919
920  // Handle UndefValue up front.
921  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
922    switch (static_cast<Instruction::BinaryOps>(Opcode)) {
923    case Instruction::Xor:
924      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
925        // Handle undef ^ undef -> 0 special case. This is a common
926        // idiom (misuse).
927        return Constant::getNullValue(C1->getType());
928      // Fallthrough
929    case Instruction::Add:
930    case Instruction::Sub:
931      return UndefValue::get(C1->getType());
932    case Instruction::And:
933      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
934        return C1;
935      return Constant::getNullValue(C1->getType());   // undef & X -> 0
936    case Instruction::Mul: {
937      // undef * undef -> undef
938      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
939        return C1;
940      const APInt *CV;
941      // X * undef -> undef   if X is odd
942      if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
943        if ((*CV)[0])
944          return UndefValue::get(C1->getType());
945
946      // X * undef -> 0       otherwise
947      return Constant::getNullValue(C1->getType());
948    }
949    case Instruction::SDiv:
950    case Instruction::UDiv:
951      // X / undef -> undef
952      if (isa<UndefValue>(C2))
953        return C2;
954      // undef / 0 -> undef
955      // undef / 1 -> undef
956      if (match(C2, m_Zero()) || match(C2, m_One()))
957        return C1;
958      // undef / X -> 0       otherwise
959      return Constant::getNullValue(C1->getType());
960    case Instruction::URem:
961    case Instruction::SRem:
962      // X % undef -> undef
963      if (match(C2, m_Undef()))
964        return C2;
965      // undef % 0 -> undef
966      if (match(C2, m_Zero()))
967        return C1;
968      // undef % X -> 0       otherwise
969      return Constant::getNullValue(C1->getType());
970    case Instruction::Or:                          // X | undef -> -1
971      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
972        return C1;
973      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
974    case Instruction::LShr:
975      // X >>l undef -> undef
976      if (isa<UndefValue>(C2))
977        return C2;
978      // undef >>l 0 -> undef
979      if (match(C2, m_Zero()))
980        return C1;
981      // undef >>l X -> 0
982      return Constant::getNullValue(C1->getType());
983    case Instruction::AShr:
984      // X >>a undef -> undef
985      if (isa<UndefValue>(C2))
986        return C2;
987      // undef >>a 0 -> undef
988      if (match(C2, m_Zero()))
989        return C1;
990      // TODO: undef >>a X -> undef if the shift is exact
991      // undef >>a X -> 0
992      return Constant::getNullValue(C1->getType());
993    case Instruction::Shl:
994      // X << undef -> undef
995      if (isa<UndefValue>(C2))
996        return C2;
997      // undef << 0 -> undef
998      if (match(C2, m_Zero()))
999        return C1;
1000      // undef << X -> 0
1001      return Constant::getNullValue(C1->getType());
1002    case Instruction::FAdd:
1003    case Instruction::FSub:
1004    case Instruction::FMul:
1005    case Instruction::FDiv:
1006    case Instruction::FRem:
1007      // TODO: UNDEF handling for binary float instructions.
1008      return nullptr;
1009    case Instruction::BinaryOpsEnd:
1010      llvm_unreachable("Invalid BinaryOp");
1011    }
1012  }
1013
1014  // At this point neither constant should be an UndefValue.
1015  assert(!isa<UndefValue>(C1) && !isa<UndefValue>(C2) &&
1016         "Unexpected UndefValue");
1017
1018  // Handle simplifications when the RHS is a constant int.
1019  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1020    switch (Opcode) {
1021    case Instruction::Add:
1022      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1023      break;
1024    case Instruction::Sub:
1025      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1026      break;
1027    case Instruction::Mul:
1028      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1029      if (CI2->equalsInt(1))
1030        return C1;                                              // X * 1 == X
1031      break;
1032    case Instruction::UDiv:
1033    case Instruction::SDiv:
1034      if (CI2->equalsInt(1))
1035        return C1;                                            // X / 1 == X
1036      if (CI2->equalsInt(0))
1037        return UndefValue::get(CI2->getType());               // X / 0 == undef
1038      break;
1039    case Instruction::URem:
1040    case Instruction::SRem:
1041      if (CI2->equalsInt(1))
1042        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1043      if (CI2->equalsInt(0))
1044        return UndefValue::get(CI2->getType());               // X % 0 == undef
1045      break;
1046    case Instruction::And:
1047      if (CI2->isZero()) return C2;                           // X & 0 == 0
1048      if (CI2->isAllOnesValue())
1049        return C1;                                            // X & -1 == X
1050
1051      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1052        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1053        if (CE1->getOpcode() == Instruction::ZExt) {
1054          unsigned DstWidth = CI2->getType()->getBitWidth();
1055          unsigned SrcWidth =
1056            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1057          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1058          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1059            return C1;
1060        }
1061
1062        // If and'ing the address of a global with a constant, fold it.
1063        if (CE1->getOpcode() == Instruction::PtrToInt &&
1064            isa<GlobalValue>(CE1->getOperand(0))) {
1065          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1066
1067          // Functions are at least 4-byte aligned.
1068          unsigned GVAlign = GV->getAlignment();
1069          if (isa<Function>(GV))
1070            GVAlign = std::max(GVAlign, 4U);
1071
1072          if (GVAlign > 1) {
1073            unsigned DstWidth = CI2->getType()->getBitWidth();
1074            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1075            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1076
1077            // If checking bits we know are clear, return zero.
1078            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1079              return Constant::getNullValue(CI2->getType());
1080          }
1081        }
1082      }
1083      break;
1084    case Instruction::Or:
1085      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1086      if (CI2->isAllOnesValue())
1087        return C2;                         // X | -1 == -1
1088      break;
1089    case Instruction::Xor:
1090      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1091
1092      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1093        switch (CE1->getOpcode()) {
1094        default: break;
1095        case Instruction::ICmp:
1096        case Instruction::FCmp:
1097          // cmp pred ^ true -> cmp !pred
1098          assert(CI2->equalsInt(1));
1099          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1100          pred = CmpInst::getInversePredicate(pred);
1101          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1102                                          CE1->getOperand(1));
1103        }
1104      }
1105      break;
1106    case Instruction::AShr:
1107      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1108      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1109        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1110          return ConstantExpr::getLShr(C1, C2);
1111      break;
1112    }
1113  } else if (isa<ConstantInt>(C1)) {
1114    // If C1 is a ConstantInt and C2 is not, swap the operands.
1115    if (Instruction::isCommutative(Opcode))
1116      return ConstantExpr::get(Opcode, C2, C1);
1117  }
1118
1119  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1120    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1121      const APInt &C1V = CI1->getValue();
1122      const APInt &C2V = CI2->getValue();
1123      switch (Opcode) {
1124      default:
1125        break;
1126      case Instruction::Add:
1127        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1128      case Instruction::Sub:
1129        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1130      case Instruction::Mul:
1131        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1132      case Instruction::UDiv:
1133        assert(!CI2->isNullValue() && "Div by zero handled above");
1134        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1135      case Instruction::SDiv:
1136        assert(!CI2->isNullValue() && "Div by zero handled above");
1137        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1138          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1139        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1140      case Instruction::URem:
1141        assert(!CI2->isNullValue() && "Div by zero handled above");
1142        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1143      case Instruction::SRem:
1144        assert(!CI2->isNullValue() && "Div by zero handled above");
1145        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1146          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1147        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1148      case Instruction::And:
1149        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1150      case Instruction::Or:
1151        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1152      case Instruction::Xor:
1153        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1154      case Instruction::Shl:
1155        if (C2V.ult(C1V.getBitWidth()))
1156          return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1157        return UndefValue::get(C1->getType()); // too big shift is undef
1158      case Instruction::LShr:
1159        if (C2V.ult(C1V.getBitWidth()))
1160          return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1161        return UndefValue::get(C1->getType()); // too big shift is undef
1162      case Instruction::AShr:
1163        if (C2V.ult(C1V.getBitWidth()))
1164          return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1165        return UndefValue::get(C1->getType()); // too big shift is undef
1166      }
1167    }
1168
1169    switch (Opcode) {
1170    case Instruction::SDiv:
1171    case Instruction::UDiv:
1172    case Instruction::URem:
1173    case Instruction::SRem:
1174    case Instruction::LShr:
1175    case Instruction::AShr:
1176    case Instruction::Shl:
1177      if (CI1->equalsInt(0)) return C1;
1178      break;
1179    default:
1180      break;
1181    }
1182  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1183    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1184      const APFloat &C1V = CFP1->getValueAPF();
1185      const APFloat &C2V = CFP2->getValueAPF();
1186      APFloat C3V = C1V;  // copy for modification
1187      switch (Opcode) {
1188      default:
1189        break;
1190      case Instruction::FAdd:
1191        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1192        return ConstantFP::get(C1->getContext(), C3V);
1193      case Instruction::FSub:
1194        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1195        return ConstantFP::get(C1->getContext(), C3V);
1196      case Instruction::FMul:
1197        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1198        return ConstantFP::get(C1->getContext(), C3V);
1199      case Instruction::FDiv:
1200        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1201        return ConstantFP::get(C1->getContext(), C3V);
1202      case Instruction::FRem:
1203        (void)C3V.mod(C2V);
1204        return ConstantFP::get(C1->getContext(), C3V);
1205      }
1206    }
1207  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1208    // Perform elementwise folding.
1209    SmallVector<Constant*, 16> Result;
1210    Type *Ty = IntegerType::get(VTy->getContext(), 32);
1211    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1212      Constant *LHS =
1213        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1214      Constant *RHS =
1215        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1216
1217      Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1218    }
1219
1220    return ConstantVector::get(Result);
1221  }
1222
1223  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1224    // There are many possible foldings we could do here.  We should probably
1225    // at least fold add of a pointer with an integer into the appropriate
1226    // getelementptr.  This will improve alias analysis a bit.
1227
1228    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1229    // (a + (b + c)).
1230    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1231      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1232      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1233        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1234    }
1235  } else if (isa<ConstantExpr>(C2)) {
1236    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1237    // other way if possible.
1238    if (Instruction::isCommutative(Opcode))
1239      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1240  }
1241
1242  // i1 can be simplified in many cases.
1243  if (C1->getType()->isIntegerTy(1)) {
1244    switch (Opcode) {
1245    case Instruction::Add:
1246    case Instruction::Sub:
1247      return ConstantExpr::getXor(C1, C2);
1248    case Instruction::Mul:
1249      return ConstantExpr::getAnd(C1, C2);
1250    case Instruction::Shl:
1251    case Instruction::LShr:
1252    case Instruction::AShr:
1253      // We can assume that C2 == 0.  If it were one the result would be
1254      // undefined because the shift value is as large as the bitwidth.
1255      return C1;
1256    case Instruction::SDiv:
1257    case Instruction::UDiv:
1258      // We can assume that C2 == 1.  If it were zero the result would be
1259      // undefined through division by zero.
1260      return C1;
1261    case Instruction::URem:
1262    case Instruction::SRem:
1263      // We can assume that C2 == 1.  If it were zero the result would be
1264      // undefined through division by zero.
1265      return ConstantInt::getFalse(C1->getContext());
1266    default:
1267      break;
1268    }
1269  }
1270
1271  // We don't know how to fold this.
1272  return nullptr;
1273}
1274
1275/// This type is zero-sized if it's an array or structure of zero-sized types.
1276/// The only leaf zero-sized type is an empty structure.
1277static bool isMaybeZeroSizedType(Type *Ty) {
1278  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1279    if (STy->isOpaque()) return true;  // Can't say.
1280
1281    // If all of elements have zero size, this does too.
1282    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1283      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1284    return true;
1285
1286  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1287    return isMaybeZeroSizedType(ATy->getElementType());
1288  }
1289  return false;
1290}
1291
1292/// Compare the two constants as though they were getelementptr indices.
1293/// This allows coercion of the types to be the same thing.
1294///
1295/// If the two constants are the "same" (after coercion), return 0.  If the
1296/// first is less than the second, return -1, if the second is less than the
1297/// first, return 1.  If the constants are not integral, return -2.
1298///
1299static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1300  if (C1 == C2) return 0;
1301
1302  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1303  // anything with them.
1304  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1305    return -2; // don't know!
1306
1307  // We cannot compare the indices if they don't fit in an int64_t.
1308  if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1309      cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1310    return -2; // don't know!
1311
1312  // Ok, we have two differing integer indices.  Sign extend them to be the same
1313  // type.
1314  int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1315  int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1316
1317  if (C1Val == C2Val) return 0;  // They are equal
1318
1319  // If the type being indexed over is really just a zero sized type, there is
1320  // no pointer difference being made here.
1321  if (isMaybeZeroSizedType(ElTy))
1322    return -2; // dunno.
1323
1324  // If they are really different, now that they are the same type, then we
1325  // found a difference!
1326  if (C1Val < C2Val)
1327    return -1;
1328  else
1329    return 1;
1330}
1331
1332/// This function determines if there is anything we can decide about the two
1333/// constants provided. This doesn't need to handle simple things like
1334/// ConstantFP comparisons, but should instead handle ConstantExprs.
1335/// If we can determine that the two constants have a particular relation to
1336/// each other, we should return the corresponding FCmpInst predicate,
1337/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1338/// ConstantFoldCompareInstruction.
1339///
1340/// To simplify this code we canonicalize the relation so that the first
1341/// operand is always the most "complex" of the two.  We consider ConstantFP
1342/// to be the simplest, and ConstantExprs to be the most complex.
1343static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1344  assert(V1->getType() == V2->getType() &&
1345         "Cannot compare values of different types!");
1346
1347  // Handle degenerate case quickly
1348  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1349
1350  if (!isa<ConstantExpr>(V1)) {
1351    if (!isa<ConstantExpr>(V2)) {
1352      // Simple case, use the standard constant folder.
1353      ConstantInt *R = nullptr;
1354      R = dyn_cast<ConstantInt>(
1355                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1356      if (R && !R->isZero())
1357        return FCmpInst::FCMP_OEQ;
1358      R = dyn_cast<ConstantInt>(
1359                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1360      if (R && !R->isZero())
1361        return FCmpInst::FCMP_OLT;
1362      R = dyn_cast<ConstantInt>(
1363                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1364      if (R && !R->isZero())
1365        return FCmpInst::FCMP_OGT;
1366
1367      // Nothing more we can do
1368      return FCmpInst::BAD_FCMP_PREDICATE;
1369    }
1370
1371    // If the first operand is simple and second is ConstantExpr, swap operands.
1372    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1373    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1374      return FCmpInst::getSwappedPredicate(SwappedRelation);
1375  } else {
1376    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1377    // constantexpr or a simple constant.
1378    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1379    switch (CE1->getOpcode()) {
1380    case Instruction::FPTrunc:
1381    case Instruction::FPExt:
1382    case Instruction::UIToFP:
1383    case Instruction::SIToFP:
1384      // We might be able to do something with these but we don't right now.
1385      break;
1386    default:
1387      break;
1388    }
1389  }
1390  // There are MANY other foldings that we could perform here.  They will
1391  // probably be added on demand, as they seem needed.
1392  return FCmpInst::BAD_FCMP_PREDICATE;
1393}
1394
1395static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1396                                                      const GlobalValue *GV2) {
1397  auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1398    if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1399      return true;
1400    if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1401      Type *Ty = GVar->getValueType();
1402      // A global with opaque type might end up being zero sized.
1403      if (!Ty->isSized())
1404        return true;
1405      // A global with an empty type might lie at the address of any other
1406      // global.
1407      if (Ty->isEmptyTy())
1408        return true;
1409    }
1410    return false;
1411  };
1412  // Don't try to decide equality of aliases.
1413  if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1414    if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1415      return ICmpInst::ICMP_NE;
1416  return ICmpInst::BAD_ICMP_PREDICATE;
1417}
1418
1419/// This function determines if there is anything we can decide about the two
1420/// constants provided. This doesn't need to handle simple things like integer
1421/// comparisons, but should instead handle ConstantExprs and GlobalValues.
1422/// If we can determine that the two constants have a particular relation to
1423/// each other, we should return the corresponding ICmp predicate, otherwise
1424/// return ICmpInst::BAD_ICMP_PREDICATE.
1425///
1426/// To simplify this code we canonicalize the relation so that the first
1427/// operand is always the most "complex" of the two.  We consider simple
1428/// constants (like ConstantInt) to be the simplest, followed by
1429/// GlobalValues, followed by ConstantExpr's (the most complex).
1430///
1431static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1432                                                bool isSigned) {
1433  assert(V1->getType() == V2->getType() &&
1434         "Cannot compare different types of values!");
1435  if (V1 == V2) return ICmpInst::ICMP_EQ;
1436
1437  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1438      !isa<BlockAddress>(V1)) {
1439    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1440        !isa<BlockAddress>(V2)) {
1441      // We distilled this down to a simple case, use the standard constant
1442      // folder.
1443      ConstantInt *R = nullptr;
1444      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1445      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1446      if (R && !R->isZero())
1447        return pred;
1448      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1449      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1450      if (R && !R->isZero())
1451        return pred;
1452      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1453      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1454      if (R && !R->isZero())
1455        return pred;
1456
1457      // If we couldn't figure it out, bail.
1458      return ICmpInst::BAD_ICMP_PREDICATE;
1459    }
1460
1461    // If the first operand is simple, swap operands.
1462    ICmpInst::Predicate SwappedRelation =
1463      evaluateICmpRelation(V2, V1, isSigned);
1464    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1465      return ICmpInst::getSwappedPredicate(SwappedRelation);
1466
1467  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1468    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1469      ICmpInst::Predicate SwappedRelation =
1470        evaluateICmpRelation(V2, V1, isSigned);
1471      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1472        return ICmpInst::getSwappedPredicate(SwappedRelation);
1473      return ICmpInst::BAD_ICMP_PREDICATE;
1474    }
1475
1476    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1477    // constant (which, since the types must match, means that it's a
1478    // ConstantPointerNull).
1479    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1480      return areGlobalsPotentiallyEqual(GV, GV2);
1481    } else if (isa<BlockAddress>(V2)) {
1482      return ICmpInst::ICMP_NE; // Globals never equal labels.
1483    } else {
1484      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1485      // GlobalVals can never be null unless they have external weak linkage.
1486      // We don't try to evaluate aliases here.
1487      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1488        return ICmpInst::ICMP_NE;
1489    }
1490  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1491    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1492      ICmpInst::Predicate SwappedRelation =
1493        evaluateICmpRelation(V2, V1, isSigned);
1494      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1495        return ICmpInst::getSwappedPredicate(SwappedRelation);
1496      return ICmpInst::BAD_ICMP_PREDICATE;
1497    }
1498
1499    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1500    // constant (which, since the types must match, means that it is a
1501    // ConstantPointerNull).
1502    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1503      // Block address in another function can't equal this one, but block
1504      // addresses in the current function might be the same if blocks are
1505      // empty.
1506      if (BA2->getFunction() != BA->getFunction())
1507        return ICmpInst::ICMP_NE;
1508    } else {
1509      // Block addresses aren't null, don't equal the address of globals.
1510      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1511             "Canonicalization guarantee!");
1512      return ICmpInst::ICMP_NE;
1513    }
1514  } else {
1515    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1516    // constantexpr, a global, block address, or a simple constant.
1517    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1518    Constant *CE1Op0 = CE1->getOperand(0);
1519
1520    switch (CE1->getOpcode()) {
1521    case Instruction::Trunc:
1522    case Instruction::FPTrunc:
1523    case Instruction::FPExt:
1524    case Instruction::FPToUI:
1525    case Instruction::FPToSI:
1526      break; // We can't evaluate floating point casts or truncations.
1527
1528    case Instruction::UIToFP:
1529    case Instruction::SIToFP:
1530    case Instruction::BitCast:
1531    case Instruction::ZExt:
1532    case Instruction::SExt:
1533      // We can't evaluate floating point casts or truncations.
1534      if (CE1Op0->getType()->isFloatingPointTy())
1535        break;
1536
1537      // If the cast is not actually changing bits, and the second operand is a
1538      // null pointer, do the comparison with the pre-casted value.
1539      if (V2->isNullValue() &&
1540          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1541        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1542        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1543        return evaluateICmpRelation(CE1Op0,
1544                                    Constant::getNullValue(CE1Op0->getType()),
1545                                    isSigned);
1546      }
1547      break;
1548
1549    case Instruction::GetElementPtr: {
1550      GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1551      // Ok, since this is a getelementptr, we know that the constant has a
1552      // pointer type.  Check the various cases.
1553      if (isa<ConstantPointerNull>(V2)) {
1554        // If we are comparing a GEP to a null pointer, check to see if the base
1555        // of the GEP equals the null pointer.
1556        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1557          if (GV->hasExternalWeakLinkage())
1558            // Weak linkage GVals could be zero or not. We're comparing that
1559            // to null pointer so its greater-or-equal
1560            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1561          else
1562            // If its not weak linkage, the GVal must have a non-zero address
1563            // so the result is greater-than
1564            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1565        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1566          // If we are indexing from a null pointer, check to see if we have any
1567          // non-zero indices.
1568          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1569            if (!CE1->getOperand(i)->isNullValue())
1570              // Offsetting from null, must not be equal.
1571              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1572          // Only zero indexes from null, must still be zero.
1573          return ICmpInst::ICMP_EQ;
1574        }
1575        // Otherwise, we can't really say if the first operand is null or not.
1576      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1577        if (isa<ConstantPointerNull>(CE1Op0)) {
1578          if (GV2->hasExternalWeakLinkage())
1579            // Weak linkage GVals could be zero or not. We're comparing it to
1580            // a null pointer, so its less-or-equal
1581            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1582          else
1583            // If its not weak linkage, the GVal must have a non-zero address
1584            // so the result is less-than
1585            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1586        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1587          if (GV == GV2) {
1588            // If this is a getelementptr of the same global, then it must be
1589            // different.  Because the types must match, the getelementptr could
1590            // only have at most one index, and because we fold getelementptr's
1591            // with a single zero index, it must be nonzero.
1592            assert(CE1->getNumOperands() == 2 &&
1593                   !CE1->getOperand(1)->isNullValue() &&
1594                   "Surprising getelementptr!");
1595            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1596          } else {
1597            if (CE1GEP->hasAllZeroIndices())
1598              return areGlobalsPotentiallyEqual(GV, GV2);
1599            return ICmpInst::BAD_ICMP_PREDICATE;
1600          }
1601        }
1602      } else {
1603        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1604        Constant *CE2Op0 = CE2->getOperand(0);
1605
1606        // There are MANY other foldings that we could perform here.  They will
1607        // probably be added on demand, as they seem needed.
1608        switch (CE2->getOpcode()) {
1609        default: break;
1610        case Instruction::GetElementPtr:
1611          // By far the most common case to handle is when the base pointers are
1612          // obviously to the same global.
1613          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1614            // Don't know relative ordering, but check for inequality.
1615            if (CE1Op0 != CE2Op0) {
1616              GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1617              if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1618                return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1619                                                  cast<GlobalValue>(CE2Op0));
1620              return ICmpInst::BAD_ICMP_PREDICATE;
1621            }
1622            // Ok, we know that both getelementptr instructions are based on the
1623            // same global.  From this, we can precisely determine the relative
1624            // ordering of the resultant pointers.
1625            unsigned i = 1;
1626
1627            // The logic below assumes that the result of the comparison
1628            // can be determined by finding the first index that differs.
1629            // This doesn't work if there is over-indexing in any
1630            // subsequent indices, so check for that case first.
1631            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1632                !CE2->isGEPWithNoNotionalOverIndexing())
1633               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1634
1635            // Compare all of the operands the GEP's have in common.
1636            gep_type_iterator GTI = gep_type_begin(CE1);
1637            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1638                 ++i, ++GTI)
1639              switch (IdxCompare(CE1->getOperand(i),
1640                                 CE2->getOperand(i), GTI.getIndexedType())) {
1641              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1642              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1643              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1644              }
1645
1646            // Ok, we ran out of things they have in common.  If any leftovers
1647            // are non-zero then we have a difference, otherwise we are equal.
1648            for (; i < CE1->getNumOperands(); ++i)
1649              if (!CE1->getOperand(i)->isNullValue()) {
1650                if (isa<ConstantInt>(CE1->getOperand(i)))
1651                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1652                else
1653                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1654              }
1655
1656            for (; i < CE2->getNumOperands(); ++i)
1657              if (!CE2->getOperand(i)->isNullValue()) {
1658                if (isa<ConstantInt>(CE2->getOperand(i)))
1659                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1660                else
1661                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1662              }
1663            return ICmpInst::ICMP_EQ;
1664          }
1665        }
1666      }
1667    }
1668    default:
1669      break;
1670    }
1671  }
1672
1673  return ICmpInst::BAD_ICMP_PREDICATE;
1674}
1675
1676Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1677                                               Constant *C1, Constant *C2) {
1678  Type *ResultTy;
1679  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1680    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1681                               VT->getNumElements());
1682  else
1683    ResultTy = Type::getInt1Ty(C1->getContext());
1684
1685  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1686  if (pred == FCmpInst::FCMP_FALSE)
1687    return Constant::getNullValue(ResultTy);
1688
1689  if (pred == FCmpInst::FCMP_TRUE)
1690    return Constant::getAllOnesValue(ResultTy);
1691
1692  // Handle some degenerate cases first
1693  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1694    CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1695    bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1696    // For EQ and NE, we can always pick a value for the undef to make the
1697    // predicate pass or fail, so we can return undef.
1698    // Also, if both operands are undef, we can return undef for int comparison.
1699    if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1700      return UndefValue::get(ResultTy);
1701
1702    // Otherwise, for integer compare, pick the same value as the non-undef
1703    // operand, and fold it to true or false.
1704    if (isIntegerPredicate)
1705      return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1706
1707    // Choosing NaN for the undef will always make unordered comparison succeed
1708    // and ordered comparison fails.
1709    return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1710  }
1711
1712  // icmp eq/ne(null,GV) -> false/true
1713  if (C1->isNullValue()) {
1714    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1715      // Don't try to evaluate aliases.  External weak GV can be null.
1716      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1717        if (pred == ICmpInst::ICMP_EQ)
1718          return ConstantInt::getFalse(C1->getContext());
1719        else if (pred == ICmpInst::ICMP_NE)
1720          return ConstantInt::getTrue(C1->getContext());
1721      }
1722  // icmp eq/ne(GV,null) -> false/true
1723  } else if (C2->isNullValue()) {
1724    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1725      // Don't try to evaluate aliases.  External weak GV can be null.
1726      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1727        if (pred == ICmpInst::ICMP_EQ)
1728          return ConstantInt::getFalse(C1->getContext());
1729        else if (pred == ICmpInst::ICMP_NE)
1730          return ConstantInt::getTrue(C1->getContext());
1731      }
1732  }
1733
1734  // If the comparison is a comparison between two i1's, simplify it.
1735  if (C1->getType()->isIntegerTy(1)) {
1736    switch(pred) {
1737    case ICmpInst::ICMP_EQ:
1738      if (isa<ConstantInt>(C2))
1739        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1740      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1741    case ICmpInst::ICMP_NE:
1742      return ConstantExpr::getXor(C1, C2);
1743    default:
1744      break;
1745    }
1746  }
1747
1748  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1749    const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1750    const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1751    switch (pred) {
1752    default: llvm_unreachable("Invalid ICmp Predicate");
1753    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1754    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1755    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1756    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1757    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1758    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1759    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1760    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1761    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1762    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1763    }
1764  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1765    const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1766    const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1767    APFloat::cmpResult R = C1V.compare(C2V);
1768    switch (pred) {
1769    default: llvm_unreachable("Invalid FCmp Predicate");
1770    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1771    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1772    case FCmpInst::FCMP_UNO:
1773      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1774    case FCmpInst::FCMP_ORD:
1775      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1776    case FCmpInst::FCMP_UEQ:
1777      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1778                                        R==APFloat::cmpEqual);
1779    case FCmpInst::FCMP_OEQ:
1780      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1781    case FCmpInst::FCMP_UNE:
1782      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1783    case FCmpInst::FCMP_ONE:
1784      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1785                                        R==APFloat::cmpGreaterThan);
1786    case FCmpInst::FCMP_ULT:
1787      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1788                                        R==APFloat::cmpLessThan);
1789    case FCmpInst::FCMP_OLT:
1790      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1791    case FCmpInst::FCMP_UGT:
1792      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1793                                        R==APFloat::cmpGreaterThan);
1794    case FCmpInst::FCMP_OGT:
1795      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1796    case FCmpInst::FCMP_ULE:
1797      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1798    case FCmpInst::FCMP_OLE:
1799      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1800                                        R==APFloat::cmpEqual);
1801    case FCmpInst::FCMP_UGE:
1802      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1803    case FCmpInst::FCMP_OGE:
1804      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1805                                        R==APFloat::cmpEqual);
1806    }
1807  } else if (C1->getType()->isVectorTy()) {
1808    // If we can constant fold the comparison of each element, constant fold
1809    // the whole vector comparison.
1810    SmallVector<Constant*, 4> ResElts;
1811    Type *Ty = IntegerType::get(C1->getContext(), 32);
1812    // Compare the elements, producing an i1 result or constant expr.
1813    for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1814      Constant *C1E =
1815        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1816      Constant *C2E =
1817        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1818
1819      ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1820    }
1821
1822    return ConstantVector::get(ResElts);
1823  }
1824
1825  if (C1->getType()->isFloatingPointTy() &&
1826      // Only call evaluateFCmpRelation if we have a constant expr to avoid
1827      // infinite recursive loop
1828      (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1829    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1830    switch (evaluateFCmpRelation(C1, C2)) {
1831    default: llvm_unreachable("Unknown relation!");
1832    case FCmpInst::FCMP_UNO:
1833    case FCmpInst::FCMP_ORD:
1834    case FCmpInst::FCMP_UEQ:
1835    case FCmpInst::FCMP_UNE:
1836    case FCmpInst::FCMP_ULT:
1837    case FCmpInst::FCMP_UGT:
1838    case FCmpInst::FCMP_ULE:
1839    case FCmpInst::FCMP_UGE:
1840    case FCmpInst::FCMP_TRUE:
1841    case FCmpInst::FCMP_FALSE:
1842    case FCmpInst::BAD_FCMP_PREDICATE:
1843      break; // Couldn't determine anything about these constants.
1844    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1845      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1846                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1847                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1848      break;
1849    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1850      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1851                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1852                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1853      break;
1854    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1855      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1856                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1857                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1858      break;
1859    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1860      // We can only partially decide this relation.
1861      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1862        Result = 0;
1863      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1864        Result = 1;
1865      break;
1866    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1867      // We can only partially decide this relation.
1868      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1869        Result = 0;
1870      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1871        Result = 1;
1872      break;
1873    case FCmpInst::FCMP_ONE: // We know that C1 != C2
1874      // We can only partially decide this relation.
1875      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1876        Result = 0;
1877      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1878        Result = 1;
1879      break;
1880    }
1881
1882    // If we evaluated the result, return it now.
1883    if (Result != -1)
1884      return ConstantInt::get(ResultTy, Result);
1885
1886  } else {
1887    // Evaluate the relation between the two constants, per the predicate.
1888    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1889    switch (evaluateICmpRelation(C1, C2,
1890                                 CmpInst::isSigned((CmpInst::Predicate)pred))) {
1891    default: llvm_unreachable("Unknown relational!");
1892    case ICmpInst::BAD_ICMP_PREDICATE:
1893      break;  // Couldn't determine anything about these constants.
1894    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1895      // If we know the constants are equal, we can decide the result of this
1896      // computation precisely.
1897      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1898      break;
1899    case ICmpInst::ICMP_ULT:
1900      switch (pred) {
1901      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1902        Result = 1; break;
1903      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1904        Result = 0; break;
1905      }
1906      break;
1907    case ICmpInst::ICMP_SLT:
1908      switch (pred) {
1909      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1910        Result = 1; break;
1911      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1912        Result = 0; break;
1913      }
1914      break;
1915    case ICmpInst::ICMP_UGT:
1916      switch (pred) {
1917      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1918        Result = 1; break;
1919      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1920        Result = 0; break;
1921      }
1922      break;
1923    case ICmpInst::ICMP_SGT:
1924      switch (pred) {
1925      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1926        Result = 1; break;
1927      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1928        Result = 0; break;
1929      }
1930      break;
1931    case ICmpInst::ICMP_ULE:
1932      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1933      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1934      break;
1935    case ICmpInst::ICMP_SLE:
1936      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1937      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1938      break;
1939    case ICmpInst::ICMP_UGE:
1940      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1941      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1942      break;
1943    case ICmpInst::ICMP_SGE:
1944      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1945      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1946      break;
1947    case ICmpInst::ICMP_NE:
1948      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1949      if (pred == ICmpInst::ICMP_NE) Result = 1;
1950      break;
1951    }
1952
1953    // If we evaluated the result, return it now.
1954    if (Result != -1)
1955      return ConstantInt::get(ResultTy, Result);
1956
1957    // If the right hand side is a bitcast, try using its inverse to simplify
1958    // it by moving it to the left hand side.  We can't do this if it would turn
1959    // a vector compare into a scalar compare or visa versa.
1960    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1961      Constant *CE2Op0 = CE2->getOperand(0);
1962      if (CE2->getOpcode() == Instruction::BitCast &&
1963          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1964        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1965        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1966      }
1967    }
1968
1969    // If the left hand side is an extension, try eliminating it.
1970    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1971      if ((CE1->getOpcode() == Instruction::SExt &&
1972           ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
1973          (CE1->getOpcode() == Instruction::ZExt &&
1974           !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
1975        Constant *CE1Op0 = CE1->getOperand(0);
1976        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1977        if (CE1Inverse == CE1Op0) {
1978          // Check whether we can safely truncate the right hand side.
1979          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1980          if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1981                                    C2->getType()) == C2)
1982            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1983        }
1984      }
1985    }
1986
1987    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1988        (C1->isNullValue() && !C2->isNullValue())) {
1989      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1990      // other way if possible.
1991      // Also, if C1 is null and C2 isn't, flip them around.
1992      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1993      return ConstantExpr::getICmp(pred, C2, C1);
1994    }
1995  }
1996  return nullptr;
1997}
1998
1999/// Test whether the given sequence of *normalized* indices is "inbounds".
2000template<typename IndexTy>
2001static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2002  // No indices means nothing that could be out of bounds.
2003  if (Idxs.empty()) return true;
2004
2005  // If the first index is zero, it's in bounds.
2006  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2007
2008  // If the first index is one and all the rest are zero, it's in bounds,
2009  // by the one-past-the-end rule.
2010  if (!cast<ConstantInt>(Idxs[0])->isOne())
2011    return false;
2012  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2013    if (!cast<Constant>(Idxs[i])->isNullValue())
2014      return false;
2015  return true;
2016}
2017
2018/// Test whether a given ConstantInt is in-range for a SequentialType.
2019static bool isIndexInRangeOfSequentialType(SequentialType *STy,
2020                                           const ConstantInt *CI) {
2021  // And indices are valid when indexing along a pointer
2022  if (isa<PointerType>(STy))
2023    return true;
2024
2025  uint64_t NumElements = 0;
2026  // Determine the number of elements in our sequential type.
2027  if (auto *ATy = dyn_cast<ArrayType>(STy))
2028    NumElements = ATy->getNumElements();
2029  else if (auto *VTy = dyn_cast<VectorType>(STy))
2030    NumElements = VTy->getNumElements();
2031
2032  assert((isa<ArrayType>(STy) || NumElements > 0) &&
2033         "didn't expect non-array type to have zero elements!");
2034
2035  // We cannot bounds check the index if it doesn't fit in an int64_t.
2036  if (CI->getValue().getActiveBits() > 64)
2037    return false;
2038
2039  // A negative index or an index past the end of our sequential type is
2040  // considered out-of-range.
2041  int64_t IndexVal = CI->getSExtValue();
2042  if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2043    return false;
2044
2045  // Otherwise, it is in-range.
2046  return true;
2047}
2048
2049template<typename IndexTy>
2050static Constant *ConstantFoldGetElementPtrImpl(Type *PointeeTy, Constant *C,
2051                                               bool inBounds,
2052                                               ArrayRef<IndexTy> Idxs) {
2053  if (Idxs.empty()) return C;
2054  Constant *Idx0 = cast<Constant>(Idxs[0]);
2055  if ((Idxs.size() == 1 && Idx0->isNullValue()))
2056    return C;
2057
2058  if (isa<UndefValue>(C)) {
2059    PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2060    Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2061    assert(Ty && "Invalid indices for GEP!");
2062    Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2063    if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2064      GEPTy = VectorType::get(GEPTy, VT->getNumElements());
2065    return UndefValue::get(GEPTy);
2066  }
2067
2068  if (C->isNullValue()) {
2069    bool isNull = true;
2070    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2071      if (!cast<Constant>(Idxs[i])->isNullValue()) {
2072        isNull = false;
2073        break;
2074      }
2075    if (isNull) {
2076      PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2077      Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2078
2079      assert(Ty && "Invalid indices for GEP!");
2080      Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2081      if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2082        GEPTy = VectorType::get(GEPTy, VT->getNumElements());
2083      return Constant::getNullValue(GEPTy);
2084    }
2085  }
2086
2087  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2088    // Combine Indices - If the source pointer to this getelementptr instruction
2089    // is a getelementptr instruction, combine the indices of the two
2090    // getelementptr instructions into a single instruction.
2091    //
2092    if (CE->getOpcode() == Instruction::GetElementPtr) {
2093      Type *LastTy = nullptr;
2094      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2095           I != E; ++I)
2096        LastTy = *I;
2097
2098      // We cannot combine indices if doing so would take us outside of an
2099      // array or vector.  Doing otherwise could trick us if we evaluated such a
2100      // GEP as part of a load.
2101      //
2102      // e.g. Consider if the original GEP was:
2103      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2104      //                    i32 0, i32 0, i64 0)
2105      //
2106      // If we then tried to offset it by '8' to get to the third element,
2107      // an i8, we should *not* get:
2108      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2109      //                    i32 0, i32 0, i64 8)
2110      //
2111      // This GEP tries to index array element '8  which runs out-of-bounds.
2112      // Subsequent evaluation would get confused and produce erroneous results.
2113      //
2114      // The following prohibits such a GEP from being formed by checking to see
2115      // if the index is in-range with respect to an array or vector.
2116      bool PerformFold = false;
2117      if (Idx0->isNullValue())
2118        PerformFold = true;
2119      else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
2120        if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2121          PerformFold = isIndexInRangeOfSequentialType(STy, CI);
2122
2123      if (PerformFold) {
2124        SmallVector<Value*, 16> NewIndices;
2125        NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2126        NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2127
2128        // Add the last index of the source with the first index of the new GEP.
2129        // Make sure to handle the case when they are actually different types.
2130        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2131        // Otherwise it must be an array.
2132        if (!Idx0->isNullValue()) {
2133          Type *IdxTy = Combined->getType();
2134          if (IdxTy != Idx0->getType()) {
2135            unsigned CommonExtendedWidth =
2136                std::max(IdxTy->getIntegerBitWidth(),
2137                         Idx0->getType()->getIntegerBitWidth());
2138            CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2139
2140            Type *CommonTy =
2141                Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2142            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2143            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2144            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2145          } else {
2146            Combined =
2147              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2148          }
2149        }
2150
2151        NewIndices.push_back(Combined);
2152        NewIndices.append(Idxs.begin() + 1, Idxs.end());
2153        return ConstantExpr::getGetElementPtr(
2154            cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2155            NewIndices, inBounds && cast<GEPOperator>(CE)->isInBounds());
2156      }
2157    }
2158
2159    // Attempt to fold casts to the same type away.  For example, folding:
2160    //
2161    //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2162    //                       i64 0, i64 0)
2163    // into:
2164    //
2165    //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2166    //
2167    // Don't fold if the cast is changing address spaces.
2168    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2169      PointerType *SrcPtrTy =
2170        dyn_cast<PointerType>(CE->getOperand(0)->getType());
2171      PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2172      if (SrcPtrTy && DstPtrTy) {
2173        ArrayType *SrcArrayTy =
2174          dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2175        ArrayType *DstArrayTy =
2176          dyn_cast<ArrayType>(DstPtrTy->getElementType());
2177        if (SrcArrayTy && DstArrayTy
2178            && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2179            && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2180          return ConstantExpr::getGetElementPtr(
2181              SrcArrayTy, (Constant *)CE->getOperand(0), Idxs, inBounds);
2182      }
2183    }
2184  }
2185
2186  // Check to see if any array indices are not within the corresponding
2187  // notional array or vector bounds. If so, try to determine if they can be
2188  // factored out into preceding dimensions.
2189  SmallVector<Constant *, 8> NewIdxs;
2190  Type *Ty = PointeeTy;
2191  Type *Prev = C->getType();
2192  bool Unknown = !isa<ConstantInt>(Idxs[0]);
2193  for (unsigned i = 1, e = Idxs.size(); i != e;
2194       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2195    auto *CI = dyn_cast<ConstantInt>(Idxs[i]);
2196    if (!CI) {
2197      // We don't know if it's in range or not.
2198      Unknown = true;
2199      continue;
2200    }
2201    if (isa<StructType>(Ty)) {
2202      // The verify makes sure that GEPs into a struct are in range.
2203      continue;
2204    }
2205    auto *STy = cast<SequentialType>(Ty);
2206    if (isa<PointerType>(STy)) {
2207      // We don't know if it's in range or not.
2208      Unknown = true;
2209      continue;
2210    }
2211    if (isa<VectorType>(STy)) {
2212      // There can be awkward padding in after a non-power of two vector.
2213      Unknown = true;
2214      continue;
2215    }
2216    if (isIndexInRangeOfSequentialType(STy, CI))
2217      // It's in range, skip to the next index.
2218      continue;
2219    if (!isa<SequentialType>(Prev)) {
2220      // It's out of range, but the prior dimension is a struct
2221      // so we can't do anything about it.
2222      Unknown = true;
2223      continue;
2224    }
2225    if (CI->getSExtValue() < 0) {
2226      // It's out of range and negative, don't try to factor it.
2227      Unknown = true;
2228      continue;
2229    }
2230    // It's out of range, but we can factor it into the prior
2231    // dimension.
2232    NewIdxs.resize(Idxs.size());
2233    // Determine the number of elements in our sequential type.
2234    uint64_t NumElements = STy->getArrayNumElements();
2235
2236    ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
2237    NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2238
2239    Constant *PrevIdx = cast<Constant>(Idxs[i - 1]);
2240    Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2241
2242    unsigned CommonExtendedWidth =
2243        std::max(PrevIdx->getType()->getIntegerBitWidth(),
2244                 Div->getType()->getIntegerBitWidth());
2245    CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2246
2247    // Before adding, extend both operands to i64 to avoid
2248    // overflow trouble.
2249    if (!PrevIdx->getType()->isIntegerTy(CommonExtendedWidth))
2250      PrevIdx = ConstantExpr::getSExt(
2251          PrevIdx, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
2252    if (!Div->getType()->isIntegerTy(CommonExtendedWidth))
2253      Div = ConstantExpr::getSExt(
2254          Div, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
2255
2256    NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2257  }
2258
2259  // If we did any factoring, start over with the adjusted indices.
2260  if (!NewIdxs.empty()) {
2261    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2262      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2263    return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, inBounds);
2264  }
2265
2266  // If all indices are known integers and normalized, we can do a simple
2267  // check for the "inbounds" property.
2268  if (!Unknown && !inBounds)
2269    if (auto *GV = dyn_cast<GlobalVariable>(C))
2270      if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2271        return ConstantExpr::getInBoundsGetElementPtr(PointeeTy, C, Idxs);
2272
2273  return nullptr;
2274}
2275
2276Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
2277                                          bool inBounds,
2278                                          ArrayRef<Constant *> Idxs) {
2279  return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
2280}
2281
2282Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
2283                                          bool inBounds,
2284                                          ArrayRef<Value *> Idxs) {
2285  return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
2286}
2287