1//===-- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to GAS-format MIPS assembly language.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstPrinter/MipsInstPrinter.h"
16#include "MCTargetDesc/MipsBaseInfo.h"
17#include "MCTargetDesc/MipsMCNaCl.h"
18#include "Mips.h"
19#include "MipsAsmPrinter.h"
20#include "MipsInstrInfo.h"
21#include "MipsMCInstLower.h"
22#include "MipsTargetMachine.h"
23#include "MipsTargetStreamer.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineMemOperand.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/InlineAsm.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/Mangler.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCELFStreamer.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCInst.h"
42#include "llvm/MC/MCSection.h"
43#include "llvm/MC/MCSectionELF.h"
44#include "llvm/MC/MCSymbolELF.h"
45#include "llvm/Support/ELF.h"
46#include "llvm/Support/TargetRegistry.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetLoweringObjectFile.h"
49#include "llvm/Target/TargetOptions.h"
50#include <string>
51
52using namespace llvm;
53
54#define DEBUG_TYPE "mips-asm-printer"
55
56MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
57  return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
58}
59
60bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
61  Subtarget = &MF.getSubtarget<MipsSubtarget>();
62
63  // Initialize TargetLoweringObjectFile.
64  const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
65      .Initialize(OutContext, TM);
66
67  MipsFI = MF.getInfo<MipsFunctionInfo>();
68  if (Subtarget->inMips16Mode())
69    for (std::map<
70             const char *,
71             const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
72             it = MipsFI->StubsNeeded.begin();
73         it != MipsFI->StubsNeeded.end(); ++it) {
74      const char *Symbol = it->first;
75      const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
76      if (StubsNeeded.find(Symbol) == StubsNeeded.end())
77        StubsNeeded[Symbol] = Signature;
78    }
79  MCP = MF.getConstantPool();
80
81  // In NaCl, all indirect jump targets must be aligned to bundle size.
82  if (Subtarget->isTargetNaCl())
83    NaClAlignIndirectJumpTargets(MF);
84
85  AsmPrinter::runOnMachineFunction(MF);
86  return true;
87}
88
89bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
90  MCOp = MCInstLowering.LowerOperand(MO);
91  return MCOp.isValid();
92}
93
94#include "MipsGenMCPseudoLowering.inc"
95
96// Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
97// JALR, or JALR64 as appropriate for the target
98void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
99                                              const MachineInstr *MI) {
100  bool HasLinkReg = false;
101  MCInst TmpInst0;
102
103  if (Subtarget->hasMips64r6()) {
104    // MIPS64r6 should use (JALR64 ZERO_64, $rs)
105    TmpInst0.setOpcode(Mips::JALR64);
106    HasLinkReg = true;
107  } else if (Subtarget->hasMips32r6()) {
108    // MIPS32r6 should use (JALR ZERO, $rs)
109    TmpInst0.setOpcode(Mips::JALR);
110    HasLinkReg = true;
111  } else if (Subtarget->inMicroMipsMode())
112    // microMIPS should use (JR_MM $rs)
113    TmpInst0.setOpcode(Mips::JR_MM);
114  else {
115    // Everything else should use (JR $rs)
116    TmpInst0.setOpcode(Mips::JR);
117  }
118
119  MCOperand MCOp;
120
121  if (HasLinkReg) {
122    unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
123    TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
124  }
125
126  lowerOperand(MI->getOperand(0), MCOp);
127  TmpInst0.addOperand(MCOp);
128
129  EmitToStreamer(OutStreamer, TmpInst0);
130}
131
132void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
133  MipsTargetStreamer &TS = getTargetStreamer();
134  TS.forbidModuleDirective();
135
136  if (MI->isDebugValue()) {
137    SmallString<128> Str;
138    raw_svector_ostream OS(Str);
139
140    PrintDebugValueComment(MI, OS);
141    return;
142  }
143
144  // If we just ended a constant pool, mark it as such.
145  if (InConstantPool && MI->getOpcode() != Mips::CONSTPOOL_ENTRY) {
146    OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
147    InConstantPool = false;
148  }
149  if (MI->getOpcode() == Mips::CONSTPOOL_ENTRY) {
150    // CONSTPOOL_ENTRY - This instruction represents a floating
151    //constant pool in the function.  The first operand is the ID#
152    // for this instruction, the second is the index into the
153    // MachineConstantPool that this is, the third is the size in
154    // bytes of this constant pool entry.
155    // The required alignment is specified on the basic block holding this MI.
156    //
157    unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
158    unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
159
160    // If this is the first entry of the pool, mark it.
161    if (!InConstantPool) {
162      OutStreamer->EmitDataRegion(MCDR_DataRegion);
163      InConstantPool = true;
164    }
165
166    OutStreamer->EmitLabel(GetCPISymbol(LabelId));
167
168    const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
169    if (MCPE.isMachineConstantPoolEntry())
170      EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
171    else
172      EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
173    return;
174  }
175
176
177  MachineBasicBlock::const_instr_iterator I = MI->getIterator();
178  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
179
180  do {
181    // Do any auto-generated pseudo lowerings.
182    if (emitPseudoExpansionLowering(*OutStreamer, &*I))
183      continue;
184
185    if (I->getOpcode() == Mips::PseudoReturn ||
186        I->getOpcode() == Mips::PseudoReturn64 ||
187        I->getOpcode() == Mips::PseudoIndirectBranch ||
188        I->getOpcode() == Mips::PseudoIndirectBranch64) {
189      emitPseudoIndirectBranch(*OutStreamer, &*I);
190      continue;
191    }
192
193    // The inMips16Mode() test is not permanent.
194    // Some instructions are marked as pseudo right now which
195    // would make the test fail for the wrong reason but
196    // that will be fixed soon. We need this here because we are
197    // removing another test for this situation downstream in the
198    // callchain.
199    //
200    if (I->isPseudo() && !Subtarget->inMips16Mode()
201        && !isLongBranchPseudo(I->getOpcode()))
202      llvm_unreachable("Pseudo opcode found in EmitInstruction()");
203
204    MCInst TmpInst0;
205    MCInstLowering.Lower(&*I, TmpInst0);
206    EmitToStreamer(*OutStreamer, TmpInst0);
207  } while ((++I != E) && I->isInsideBundle()); // Delay slot check
208}
209
210//===----------------------------------------------------------------------===//
211//
212//  Mips Asm Directives
213//
214//  -- Frame directive "frame Stackpointer, Stacksize, RARegister"
215//  Describe the stack frame.
216//
217//  -- Mask directives "(f)mask  bitmask, offset"
218//  Tells the assembler which registers are saved and where.
219//  bitmask - contain a little endian bitset indicating which registers are
220//            saved on function prologue (e.g. with a 0x80000000 mask, the
221//            assembler knows the register 31 (RA) is saved at prologue.
222//  offset  - the position before stack pointer subtraction indicating where
223//            the first saved register on prologue is located. (e.g. with a
224//
225//  Consider the following function prologue:
226//
227//    .frame  $fp,48,$ra
228//    .mask   0xc0000000,-8
229//       addiu $sp, $sp, -48
230//       sw $ra, 40($sp)
231//       sw $fp, 36($sp)
232//
233//    With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
234//    30 (FP) are saved at prologue. As the save order on prologue is from
235//    left to right, RA is saved first. A -8 offset means that after the
236//    stack pointer subtration, the first register in the mask (RA) will be
237//    saved at address 48-8=40.
238//
239//===----------------------------------------------------------------------===//
240
241//===----------------------------------------------------------------------===//
242// Mask directives
243//===----------------------------------------------------------------------===//
244
245// Create a bitmask with all callee saved registers for CPU or Floating Point
246// registers. For CPU registers consider RA, GP and FP for saving if necessary.
247void MipsAsmPrinter::printSavedRegsBitmask() {
248  // CPU and FPU Saved Registers Bitmasks
249  unsigned CPUBitmask = 0, FPUBitmask = 0;
250  int CPUTopSavedRegOff, FPUTopSavedRegOff;
251
252  // Set the CPU and FPU Bitmasks
253  const MachineFrameInfo *MFI = MF->getFrameInfo();
254  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
255  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
256  // size of stack area to which FP callee-saved regs are saved.
257  unsigned CPURegSize = Mips::GPR32RegClass.getSize();
258  unsigned FGR32RegSize = Mips::FGR32RegClass.getSize();
259  unsigned AFGR64RegSize = Mips::AFGR64RegClass.getSize();
260  bool HasAFGR64Reg = false;
261  unsigned CSFPRegsSize = 0;
262
263  for (const auto &I : CSI) {
264    unsigned Reg = I.getReg();
265    unsigned RegNum = TRI->getEncodingValue(Reg);
266
267    // If it's a floating point register, set the FPU Bitmask.
268    // If it's a general purpose register, set the CPU Bitmask.
269    if (Mips::FGR32RegClass.contains(Reg)) {
270      FPUBitmask |= (1 << RegNum);
271      CSFPRegsSize += FGR32RegSize;
272    } else if (Mips::AFGR64RegClass.contains(Reg)) {
273      FPUBitmask |= (3 << RegNum);
274      CSFPRegsSize += AFGR64RegSize;
275      HasAFGR64Reg = true;
276    } else if (Mips::GPR32RegClass.contains(Reg))
277      CPUBitmask |= (1 << RegNum);
278  }
279
280  // FP Regs are saved right below where the virtual frame pointer points to.
281  FPUTopSavedRegOff = FPUBitmask ?
282    (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
283
284  // CPU Regs are saved below FP Regs.
285  CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
286
287  MipsTargetStreamer &TS = getTargetStreamer();
288  // Print CPUBitmask
289  TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
290
291  // Print FPUBitmask
292  TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
293}
294
295//===----------------------------------------------------------------------===//
296// Frame and Set directives
297//===----------------------------------------------------------------------===//
298
299/// Frame Directive
300void MipsAsmPrinter::emitFrameDirective() {
301  const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
302
303  unsigned stackReg  = RI.getFrameRegister(*MF);
304  unsigned returnReg = RI.getRARegister();
305  unsigned stackSize = MF->getFrameInfo()->getStackSize();
306
307  getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
308}
309
310/// Emit Set directives.
311const char *MipsAsmPrinter::getCurrentABIString() const {
312  switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
313  case MipsABIInfo::ABI::O32:  return "abi32";
314  case MipsABIInfo::ABI::N32:  return "abiN32";
315  case MipsABIInfo::ABI::N64:  return "abi64";
316  default: llvm_unreachable("Unknown Mips ABI");
317  }
318}
319
320void MipsAsmPrinter::EmitFunctionEntryLabel() {
321  MipsTargetStreamer &TS = getTargetStreamer();
322
323  // NaCl sandboxing requires that indirect call instructions are masked.
324  // This means that function entry points should be bundle-aligned.
325  if (Subtarget->isTargetNaCl())
326    EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
327
328  if (Subtarget->inMicroMipsMode()) {
329    TS.emitDirectiveSetMicroMips();
330    TS.setUsesMicroMips();
331  } else
332    TS.emitDirectiveSetNoMicroMips();
333
334  if (Subtarget->inMips16Mode())
335    TS.emitDirectiveSetMips16();
336  else
337    TS.emitDirectiveSetNoMips16();
338
339  TS.emitDirectiveEnt(*CurrentFnSym);
340  OutStreamer->EmitLabel(CurrentFnSym);
341}
342
343/// EmitFunctionBodyStart - Targets can override this to emit stuff before
344/// the first basic block in the function.
345void MipsAsmPrinter::EmitFunctionBodyStart() {
346  MipsTargetStreamer &TS = getTargetStreamer();
347
348  MCInstLowering.Initialize(&MF->getContext());
349
350  bool IsNakedFunction = MF->getFunction()->hasFnAttribute(Attribute::Naked);
351  if (!IsNakedFunction)
352    emitFrameDirective();
353
354  if (!IsNakedFunction)
355    printSavedRegsBitmask();
356
357  if (!Subtarget->inMips16Mode()) {
358    TS.emitDirectiveSetNoReorder();
359    TS.emitDirectiveSetNoMacro();
360    TS.emitDirectiveSetNoAt();
361  }
362}
363
364/// EmitFunctionBodyEnd - Targets can override this to emit stuff after
365/// the last basic block in the function.
366void MipsAsmPrinter::EmitFunctionBodyEnd() {
367  MipsTargetStreamer &TS = getTargetStreamer();
368
369  // There are instruction for this macros, but they must
370  // always be at the function end, and we can't emit and
371  // break with BB logic.
372  if (!Subtarget->inMips16Mode()) {
373    TS.emitDirectiveSetAt();
374    TS.emitDirectiveSetMacro();
375    TS.emitDirectiveSetReorder();
376  }
377  TS.emitDirectiveEnd(CurrentFnSym->getName());
378  // Make sure to terminate any constant pools that were at the end
379  // of the function.
380  if (!InConstantPool)
381    return;
382  InConstantPool = false;
383  OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
384}
385
386void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
387  MipsTargetStreamer &TS = getTargetStreamer();
388  if (MBB.size() == 0)
389    TS.emitDirectiveInsn();
390}
391
392/// isBlockOnlyReachableByFallthough - Return true if the basic block has
393/// exactly one predecessor and the control transfer mechanism between
394/// the predecessor and this block is a fall-through.
395bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
396                                                       MBB) const {
397  // The predecessor has to be immediately before this block.
398  const MachineBasicBlock *Pred = *MBB->pred_begin();
399
400  // If the predecessor is a switch statement, assume a jump table
401  // implementation, so it is not a fall through.
402  if (const BasicBlock *bb = Pred->getBasicBlock())
403    if (isa<SwitchInst>(bb->getTerminator()))
404      return false;
405
406  // If this is a landing pad, it isn't a fall through.  If it has no preds,
407  // then nothing falls through to it.
408  if (MBB->isEHPad() || MBB->pred_empty())
409    return false;
410
411  // If there isn't exactly one predecessor, it can't be a fall through.
412  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
413  ++PI2;
414
415  if (PI2 != MBB->pred_end())
416    return false;
417
418  // The predecessor has to be immediately before this block.
419  if (!Pred->isLayoutSuccessor(MBB))
420    return false;
421
422  // If the block is completely empty, then it definitely does fall through.
423  if (Pred->empty())
424    return true;
425
426  // Otherwise, check the last instruction.
427  // Check if the last terminator is an unconditional branch.
428  MachineBasicBlock::const_iterator I = Pred->end();
429  while (I != Pred->begin() && !(--I)->isTerminator()) ;
430
431  return !I->isBarrier();
432}
433
434// Print out an operand for an inline asm expression.
435bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
436                                     unsigned AsmVariant, const char *ExtraCode,
437                                     raw_ostream &O) {
438  // Does this asm operand have a single letter operand modifier?
439  if (ExtraCode && ExtraCode[0]) {
440    if (ExtraCode[1] != 0) return true; // Unknown modifier.
441
442    const MachineOperand &MO = MI->getOperand(OpNum);
443    switch (ExtraCode[0]) {
444    default:
445      // See if this is a generic print operand
446      return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
447    case 'X': // hex const int
448      if ((MO.getType()) != MachineOperand::MO_Immediate)
449        return true;
450      O << "0x" << Twine::utohexstr(MO.getImm());
451      return false;
452    case 'x': // hex const int (low 16 bits)
453      if ((MO.getType()) != MachineOperand::MO_Immediate)
454        return true;
455      O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
456      return false;
457    case 'd': // decimal const int
458      if ((MO.getType()) != MachineOperand::MO_Immediate)
459        return true;
460      O << MO.getImm();
461      return false;
462    case 'm': // decimal const int minus 1
463      if ((MO.getType()) != MachineOperand::MO_Immediate)
464        return true;
465      O << MO.getImm() - 1;
466      return false;
467    case 'z': {
468      // $0 if zero, regular printing otherwise
469      if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
470        O << "$0";
471        return false;
472      }
473      // If not, call printOperand as normal.
474      break;
475    }
476    case 'D': // Second part of a double word register operand
477    case 'L': // Low order register of a double word register operand
478    case 'M': // High order register of a double word register operand
479    {
480      if (OpNum == 0)
481        return true;
482      const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
483      if (!FlagsOP.isImm())
484        return true;
485      unsigned Flags = FlagsOP.getImm();
486      unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
487      // Number of registers represented by this operand. We are looking
488      // for 2 for 32 bit mode and 1 for 64 bit mode.
489      if (NumVals != 2) {
490        if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
491          unsigned Reg = MO.getReg();
492          O << '$' << MipsInstPrinter::getRegisterName(Reg);
493          return false;
494        }
495        return true;
496      }
497
498      unsigned RegOp = OpNum;
499      if (!Subtarget->isGP64bit()){
500        // Endianess reverses which register holds the high or low value
501        // between M and L.
502        switch(ExtraCode[0]) {
503        case 'M':
504          RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
505          break;
506        case 'L':
507          RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
508          break;
509        case 'D': // Always the second part
510          RegOp = OpNum + 1;
511        }
512        if (RegOp >= MI->getNumOperands())
513          return true;
514        const MachineOperand &MO = MI->getOperand(RegOp);
515        if (!MO.isReg())
516          return true;
517        unsigned Reg = MO.getReg();
518        O << '$' << MipsInstPrinter::getRegisterName(Reg);
519        return false;
520      }
521    }
522    case 'w':
523      // Print MSA registers for the 'f' constraint
524      // In LLVM, the 'w' modifier doesn't need to do anything.
525      // We can just call printOperand as normal.
526      break;
527    }
528  }
529
530  printOperand(MI, OpNum, O);
531  return false;
532}
533
534bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
535                                           unsigned OpNum, unsigned AsmVariant,
536                                           const char *ExtraCode,
537                                           raw_ostream &O) {
538  assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
539  const MachineOperand &BaseMO = MI->getOperand(OpNum);
540  const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
541  assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
542  assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
543  int Offset = OffsetMO.getImm();
544
545  // Currently we are expecting either no ExtraCode or 'D'
546  if (ExtraCode) {
547    if (ExtraCode[0] == 'D')
548      Offset += 4;
549    else
550      return true; // Unknown modifier.
551    // FIXME: M = high order bits
552    // FIXME: L = low order bits
553  }
554
555  O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) << ")";
556
557  return false;
558}
559
560void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
561                                  raw_ostream &O) {
562  const MachineOperand &MO = MI->getOperand(opNum);
563  bool closeP = false;
564
565  if (MO.getTargetFlags())
566    closeP = true;
567
568  switch(MO.getTargetFlags()) {
569  case MipsII::MO_GPREL:    O << "%gp_rel("; break;
570  case MipsII::MO_GOT_CALL: O << "%call16("; break;
571  case MipsII::MO_GOT:      O << "%got(";    break;
572  case MipsII::MO_ABS_HI:   O << "%hi(";     break;
573  case MipsII::MO_ABS_LO:   O << "%lo(";     break;
574  case MipsII::MO_TLSGD:    O << "%tlsgd(";  break;
575  case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
576  case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
577  case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
578  case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
579  case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
580  case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
581  case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
582  case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
583  }
584
585  switch (MO.getType()) {
586    case MachineOperand::MO_Register:
587      O << '$'
588        << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
589      break;
590
591    case MachineOperand::MO_Immediate:
592      O << MO.getImm();
593      break;
594
595    case MachineOperand::MO_MachineBasicBlock:
596      MO.getMBB()->getSymbol()->print(O, MAI);
597      return;
598
599    case MachineOperand::MO_GlobalAddress:
600      getSymbol(MO.getGlobal())->print(O, MAI);
601      break;
602
603    case MachineOperand::MO_BlockAddress: {
604      MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
605      O << BA->getName();
606      break;
607    }
608
609    case MachineOperand::MO_ConstantPoolIndex:
610      O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
611        << getFunctionNumber() << "_" << MO.getIndex();
612      if (MO.getOffset())
613        O << "+" << MO.getOffset();
614      break;
615
616    default:
617      llvm_unreachable("<unknown operand type>");
618  }
619
620  if (closeP) O << ")";
621}
622
623void MipsAsmPrinter::
624printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
625  // Load/Store memory operands -- imm($reg)
626  // If PIC target the target is loaded as the
627  // pattern lw $25,%call16($28)
628
629  // opNum can be invalid if instruction has reglist as operand.
630  // MemOperand is always last operand of instruction (base + offset).
631  switch (MI->getOpcode()) {
632  default:
633    break;
634  case Mips::SWM32_MM:
635  case Mips::LWM32_MM:
636    opNum = MI->getNumOperands() - 2;
637    break;
638  }
639
640  printOperand(MI, opNum+1, O);
641  O << "(";
642  printOperand(MI, opNum, O);
643  O << ")";
644}
645
646void MipsAsmPrinter::
647printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
648  // when using stack locations for not load/store instructions
649  // print the same way as all normal 3 operand instructions.
650  printOperand(MI, opNum, O);
651  O << ", ";
652  printOperand(MI, opNum+1, O);
653  return;
654}
655
656void MipsAsmPrinter::
657printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
658                const char *Modifier) {
659  const MachineOperand &MO = MI->getOperand(opNum);
660  O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
661}
662
663void MipsAsmPrinter::
664printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
665  for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
666    if (i != opNum) O << ", ";
667    printOperand(MI, i, O);
668  }
669}
670
671void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
672  MipsTargetStreamer &TS = getTargetStreamer();
673
674  // MipsTargetStreamer has an initialization order problem when emitting an
675  // object file directly (see MipsTargetELFStreamer for full details). Work
676  // around it by re-initializing the PIC state here.
677  TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
678
679  // Compute MIPS architecture attributes based on the default subtarget
680  // that we'd have constructed. Module level directives aren't LTO
681  // clean anyhow.
682  // FIXME: For ifunc related functions we could iterate over and look
683  // for a feature string that doesn't match the default one.
684  const Triple &TT = TM.getTargetTriple();
685  StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
686  StringRef FS = TM.getTargetFeatureString();
687  const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
688  const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM);
689
690  bool IsABICalls = STI.isABICalls();
691  const MipsABIInfo &ABI = MTM.getABI();
692  if (IsABICalls) {
693    TS.emitDirectiveAbiCalls();
694    // FIXME: This condition should be a lot more complicated that it is here.
695    //        Ideally it should test for properties of the ABI and not the ABI
696    //        itself.
697    //        For the moment, I'm only correcting enough to make MIPS-IV work.
698    if (!isPositionIndependent() && !ABI.IsN64())
699      TS.emitDirectiveOptionPic0();
700  }
701
702  // Tell the assembler which ABI we are using
703  std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
704  OutStreamer->SwitchSection(
705      OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
706
707  // NaN: At the moment we only support:
708  // 1. .nan legacy (default)
709  // 2. .nan 2008
710  STI.isNaN2008() ? TS.emitDirectiveNaN2008()
711                  : TS.emitDirectiveNaNLegacy();
712
713  // TODO: handle O64 ABI
714
715  TS.updateABIInfo(STI);
716
717  // We should always emit a '.module fp=...' but binutils 2.24 does not accept
718  // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
719  // -mfp64) and omit it otherwise.
720  if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit()))
721    TS.emitDirectiveModuleFP();
722
723  // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
724  // accept it. We therefore emit it when it contradicts the default or an
725  // option has changed the default (i.e. FPXX) and omit it otherwise.
726  if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
727    TS.emitDirectiveModuleOddSPReg();
728}
729
730void MipsAsmPrinter::emitInlineAsmStart() const {
731  MipsTargetStreamer &TS = getTargetStreamer();
732
733  // GCC's choice of assembler options for inline assembly code ('at', 'macro'
734  // and 'reorder') is different from LLVM's choice for generated code ('noat',
735  // 'nomacro' and 'noreorder').
736  // In order to maintain compatibility with inline assembly code which depends
737  // on GCC's assembler options being used, we have to switch to those options
738  // for the duration of the inline assembly block and then switch back.
739  TS.emitDirectiveSetPush();
740  TS.emitDirectiveSetAt();
741  TS.emitDirectiveSetMacro();
742  TS.emitDirectiveSetReorder();
743  OutStreamer->AddBlankLine();
744}
745
746void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
747                                      const MCSubtargetInfo *EndInfo) const {
748  OutStreamer->AddBlankLine();
749  getTargetStreamer().emitDirectiveSetPop();
750}
751
752void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
753  MCInst I;
754  I.setOpcode(Mips::JAL);
755  I.addOperand(
756      MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
757  OutStreamer->EmitInstruction(I, STI);
758}
759
760void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
761                                  unsigned Reg) {
762  MCInst I;
763  I.setOpcode(Opcode);
764  I.addOperand(MCOperand::createReg(Reg));
765  OutStreamer->EmitInstruction(I, STI);
766}
767
768void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
769                                     unsigned Opcode, unsigned Reg1,
770                                     unsigned Reg2) {
771  MCInst I;
772  //
773  // Because of the current td files for Mips32, the operands for MTC1
774  // appear backwards from their normal assembly order. It's not a trivial
775  // change to fix this in the td file so we adjust for it here.
776  //
777  if (Opcode == Mips::MTC1) {
778    unsigned Temp = Reg1;
779    Reg1 = Reg2;
780    Reg2 = Temp;
781  }
782  I.setOpcode(Opcode);
783  I.addOperand(MCOperand::createReg(Reg1));
784  I.addOperand(MCOperand::createReg(Reg2));
785  OutStreamer->EmitInstruction(I, STI);
786}
787
788void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
789                                        unsigned Opcode, unsigned Reg1,
790                                        unsigned Reg2, unsigned Reg3) {
791  MCInst I;
792  I.setOpcode(Opcode);
793  I.addOperand(MCOperand::createReg(Reg1));
794  I.addOperand(MCOperand::createReg(Reg2));
795  I.addOperand(MCOperand::createReg(Reg3));
796  OutStreamer->EmitInstruction(I, STI);
797}
798
799void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
800                                      unsigned MovOpc, unsigned Reg1,
801                                      unsigned Reg2, unsigned FPReg1,
802                                      unsigned FPReg2, bool LE) {
803  if (!LE) {
804    unsigned temp = Reg1;
805    Reg1 = Reg2;
806    Reg2 = temp;
807  }
808  EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
809  EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
810}
811
812void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
813                                         Mips16HardFloatInfo::FPParamVariant PV,
814                                         bool LE, bool ToFP) {
815  using namespace Mips16HardFloatInfo;
816  unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
817  switch (PV) {
818  case FSig:
819    EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
820    break;
821  case FFSig:
822    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
823    break;
824  case FDSig:
825    EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
826    EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
827    break;
828  case DSig:
829    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
830    break;
831  case DDSig:
832    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
833    EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
834    break;
835  case DFSig:
836    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
837    EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
838    break;
839  case NoSig:
840    return;
841  }
842}
843
844void MipsAsmPrinter::EmitSwapFPIntRetval(
845    const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
846    bool LE) {
847  using namespace Mips16HardFloatInfo;
848  unsigned MovOpc = Mips::MFC1;
849  switch (RV) {
850  case FRet:
851    EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
852    break;
853  case DRet:
854    EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
855    break;
856  case CFRet:
857    EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
858    break;
859  case CDRet:
860    EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
861    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
862    break;
863  case NoFPRet:
864    break;
865  }
866}
867
868void MipsAsmPrinter::EmitFPCallStub(
869    const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
870  MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
871  using namespace Mips16HardFloatInfo;
872  bool LE = getDataLayout().isLittleEndian();
873  // Construct a local MCSubtargetInfo here.
874  // This is because the MachineFunction won't exist (but have not yet been
875  // freed) and since we're at the global level we can use the default
876  // constructed subtarget.
877  std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
878      TM.getTargetTriple().str(), TM.getTargetCPU(),
879      TM.getTargetFeatureString()));
880
881  //
882  // .global xxxx
883  //
884  OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global);
885  const char *RetType;
886  //
887  // make the comment field identifying the return and parameter
888  // types of the floating point stub
889  // # Stub function to call rettype xxxx (params)
890  //
891  switch (Signature->RetSig) {
892  case FRet:
893    RetType = "float";
894    break;
895  case DRet:
896    RetType = "double";
897    break;
898  case CFRet:
899    RetType = "complex";
900    break;
901  case CDRet:
902    RetType = "double complex";
903    break;
904  case NoFPRet:
905    RetType = "";
906    break;
907  }
908  const char *Parms;
909  switch (Signature->ParamSig) {
910  case FSig:
911    Parms = "float";
912    break;
913  case FFSig:
914    Parms = "float, float";
915    break;
916  case FDSig:
917    Parms = "float, double";
918    break;
919  case DSig:
920    Parms = "double";
921    break;
922  case DDSig:
923    Parms = "double, double";
924    break;
925  case DFSig:
926    Parms = "double, float";
927    break;
928  case NoSig:
929    Parms = "";
930    break;
931  }
932  OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
933                          Twine(Symbol) + " (" + Twine(Parms) + ")");
934  //
935  // probably not necessary but we save and restore the current section state
936  //
937  OutStreamer->PushSection();
938  //
939  // .section mips16.call.fpxxxx,"ax",@progbits
940  //
941  MCSectionELF *M = OutContext.getELFSection(
942      ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
943      ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
944  OutStreamer->SwitchSection(M, nullptr);
945  //
946  // .align 2
947  //
948  OutStreamer->EmitValueToAlignment(4);
949  MipsTargetStreamer &TS = getTargetStreamer();
950  //
951  // .set nomips16
952  // .set nomicromips
953  //
954  TS.emitDirectiveSetNoMips16();
955  TS.emitDirectiveSetNoMicroMips();
956  //
957  // .ent __call_stub_fp_xxxx
958  // .type  __call_stub_fp_xxxx,@function
959  //  __call_stub_fp_xxxx:
960  //
961  std::string x = "__call_stub_fp_" + std::string(Symbol);
962  MCSymbolELF *Stub =
963      cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
964  TS.emitDirectiveEnt(*Stub);
965  MCSymbol *MType =
966      OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
967  OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
968  OutStreamer->EmitLabel(Stub);
969
970  // Only handle non-pic for now.
971  assert(!isPositionIndependent() &&
972         "should not be here if we are compiling pic");
973  TS.emitDirectiveSetReorder();
974  //
975  // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
976  // stubs without raw text but this current patch is for compiler generated
977  // functions and they all return some value.
978  // The calling sequence for non pic is different in that case and we need
979  // to implement %lo and %hi in order to handle the case of no return value
980  // See the corresponding method in Mips16HardFloat for details.
981  //
982  // mov the return address to S2.
983  // we have no stack space to store it and we are about to make another call.
984  // We need to make sure that the enclosing function knows to save S2
985  // This should have already been handled.
986  //
987  // Mov $18, $31
988
989  EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
990
991  EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
992
993  // Jal xxxx
994  //
995  EmitJal(*STI, MSymbol);
996
997  // fix return values
998  EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
999  //
1000  // do the return
1001  // if (Signature->RetSig == NoFPRet)
1002  //  llvm_unreachable("should not be any stubs here with no return value");
1003  // else
1004  EmitInstrReg(*STI, Mips::JR, Mips::S2);
1005
1006  MCSymbol *Tmp = OutContext.createTempSymbol();
1007  OutStreamer->EmitLabel(Tmp);
1008  const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1009  const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1010  const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1011  OutStreamer->emitELFSize(Stub, T_min_E);
1012  TS.emitDirectiveEnd(x);
1013  OutStreamer->PopSection();
1014}
1015
1016void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
1017  // Emit needed stubs
1018  //
1019  for (std::map<
1020           const char *,
1021           const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
1022           it = StubsNeeded.begin();
1023       it != StubsNeeded.end(); ++it) {
1024    const char *Symbol = it->first;
1025    const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1026    EmitFPCallStub(Symbol, Signature);
1027  }
1028  // return to the text section
1029  OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1030}
1031
1032void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1033                                           raw_ostream &OS) {
1034  // TODO: implement
1035}
1036
1037// Align all targets of indirect branches on bundle size.  Used only if target
1038// is NaCl.
1039void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1040  // Align all blocks that are jumped to through jump table.
1041  if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1042    const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1043    for (unsigned I = 0; I < JT.size(); ++I) {
1044      const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1045
1046      for (unsigned J = 0; J < MBBs.size(); ++J)
1047        MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1048    }
1049  }
1050
1051  // If basic block address is taken, block can be target of indirect branch.
1052  for (auto &MBB : MF) {
1053    if (MBB.hasAddressTaken())
1054      MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1055  }
1056}
1057
1058bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1059  return (Opcode == Mips::LONG_BRANCH_LUi
1060          || Opcode == Mips::LONG_BRANCH_ADDiu
1061          || Opcode == Mips::LONG_BRANCH_DADDiu);
1062}
1063
1064// Force static initialization.
1065extern "C" void LLVMInitializeMipsAsmPrinter() {
1066  RegisterAsmPrinter<MipsAsmPrinter> X(TheMipsTarget);
1067  RegisterAsmPrinter<MipsAsmPrinter> Y(TheMipselTarget);
1068  RegisterAsmPrinter<MipsAsmPrinter> A(TheMips64Target);
1069  RegisterAsmPrinter<MipsAsmPrinter> B(TheMips64elTarget);
1070}
1071