1//===- Inliner.cpp - Code common to all inliners --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the mechanics required to implement inlining without
11// missing any calls and updating the call graph.  The decisions of which calls
12// are profitable to inline are implemented elsewhere.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/AssumptionCache.h"
20#include "llvm/Analysis/BasicAliasAnalysis.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/Analysis/InlineCost.h"
23#include "llvm/Analysis/ProfileSummaryInfo.h"
24#include "llvm/Analysis/TargetLibraryInfo.h"
25#include "llvm/IR/CallSite.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DiagnosticInfo.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/Module.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Transforms/IPO/InlinerPass.h"
34#include "llvm/Transforms/Utils/Cloning.h"
35#include "llvm/Transforms/Utils/Local.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "inline"
39
40STATISTIC(NumInlined, "Number of functions inlined");
41STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
42STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
43STATISTIC(NumMergedAllocas, "Number of allocas merged together");
44
45// This weirdly named statistic tracks the number of times that, when attempting
46// to inline a function A into B, we analyze the callers of B in order to see
47// if those would be more profitable and blocked inline steps.
48STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
49
50Inliner::Inliner(char &ID) : CallGraphSCCPass(ID), InsertLifetime(true) {}
51
52Inliner::Inliner(char &ID, bool InsertLifetime)
53    : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
54
55/// For this class, we declare that we require and preserve the call graph.
56/// If the derived class implements this method, it should
57/// always explicitly call the implementation here.
58void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
59  AU.addRequired<AssumptionCacheTracker>();
60  AU.addRequired<ProfileSummaryInfoWrapperPass>();
61  AU.addRequired<TargetLibraryInfoWrapperPass>();
62  getAAResultsAnalysisUsage(AU);
63  CallGraphSCCPass::getAnalysisUsage(AU);
64}
65
66
67typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
68InlinedArrayAllocasTy;
69
70/// If it is possible to inline the specified call site,
71/// do so and update the CallGraph for this operation.
72///
73/// This function also does some basic book-keeping to update the IR.  The
74/// InlinedArrayAllocas map keeps track of any allocas that are already
75/// available from other functions inlined into the caller.  If we are able to
76/// inline this call site we attempt to reuse already available allocas or add
77/// any new allocas to the set if not possible.
78static bool InlineCallIfPossible(Pass &P, CallSite CS, InlineFunctionInfo &IFI,
79                                 InlinedArrayAllocasTy &InlinedArrayAllocas,
80                                 int InlineHistory, bool InsertLifetime) {
81  Function *Callee = CS.getCalledFunction();
82  Function *Caller = CS.getCaller();
83
84  // We need to manually construct BasicAA directly in order to disable
85  // its use of other function analyses.
86  BasicAAResult BAR(createLegacyPMBasicAAResult(P, *Callee));
87
88  // Construct our own AA results for this function. We do this manually to
89  // work around the limitations of the legacy pass manager.
90  AAResults AAR(createLegacyPMAAResults(P, *Callee, BAR));
91
92  // Try to inline the function.  Get the list of static allocas that were
93  // inlined.
94  if (!InlineFunction(CS, IFI, &AAR, InsertLifetime))
95    return false;
96
97  AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
98
99  // Look at all of the allocas that we inlined through this call site.  If we
100  // have already inlined other allocas through other calls into this function,
101  // then we know that they have disjoint lifetimes and that we can merge them.
102  //
103  // There are many heuristics possible for merging these allocas, and the
104  // different options have different tradeoffs.  One thing that we *really*
105  // don't want to hurt is SRoA: once inlining happens, often allocas are no
106  // longer address taken and so they can be promoted.
107  //
108  // Our "solution" for that is to only merge allocas whose outermost type is an
109  // array type.  These are usually not promoted because someone is using a
110  // variable index into them.  These are also often the most important ones to
111  // merge.
112  //
113  // A better solution would be to have real memory lifetime markers in the IR
114  // and not have the inliner do any merging of allocas at all.  This would
115  // allow the backend to do proper stack slot coloring of all allocas that
116  // *actually make it to the backend*, which is really what we want.
117  //
118  // Because we don't have this information, we do this simple and useful hack.
119  //
120  SmallPtrSet<AllocaInst*, 16> UsedAllocas;
121
122  // When processing our SCC, check to see if CS was inlined from some other
123  // call site.  For example, if we're processing "A" in this code:
124  //   A() { B() }
125  //   B() { x = alloca ... C() }
126  //   C() { y = alloca ... }
127  // Assume that C was not inlined into B initially, and so we're processing A
128  // and decide to inline B into A.  Doing this makes an alloca available for
129  // reuse and makes a callsite (C) available for inlining.  When we process
130  // the C call site we don't want to do any alloca merging between X and Y
131  // because their scopes are not disjoint.  We could make this smarter by
132  // keeping track of the inline history for each alloca in the
133  // InlinedArrayAllocas but this isn't likely to be a significant win.
134  if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
135    return true;
136
137  // Loop over all the allocas we have so far and see if they can be merged with
138  // a previously inlined alloca.  If not, remember that we had it.
139  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
140       AllocaNo != e; ++AllocaNo) {
141    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
142
143    // Don't bother trying to merge array allocations (they will usually be
144    // canonicalized to be an allocation *of* an array), or allocations whose
145    // type is not itself an array (because we're afraid of pessimizing SRoA).
146    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
147    if (!ATy || AI->isArrayAllocation())
148      continue;
149
150    // Get the list of all available allocas for this array type.
151    std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
152
153    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
154    // that we have to be careful not to reuse the same "available" alloca for
155    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
156    // set to keep track of which "available" allocas are being used by this
157    // function.  Also, AllocasForType can be empty of course!
158    bool MergedAwayAlloca = false;
159    for (AllocaInst *AvailableAlloca : AllocasForType) {
160
161      unsigned Align1 = AI->getAlignment(),
162               Align2 = AvailableAlloca->getAlignment();
163
164      // The available alloca has to be in the right function, not in some other
165      // function in this SCC.
166      if (AvailableAlloca->getParent() != AI->getParent())
167        continue;
168
169      // If the inlined function already uses this alloca then we can't reuse
170      // it.
171      if (!UsedAllocas.insert(AvailableAlloca).second)
172        continue;
173
174      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
175      // success!
176      DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
177                   << *AvailableAlloca << '\n');
178
179      // Move affected dbg.declare calls immediately after the new alloca to
180      // avoid the situation when a dbg.declare preceeds its alloca.
181      if (auto *L = LocalAsMetadata::getIfExists(AI))
182        if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
183          for (User *U : MDV->users())
184            if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
185              DDI->moveBefore(AvailableAlloca->getNextNode());
186
187      AI->replaceAllUsesWith(AvailableAlloca);
188
189      if (Align1 != Align2) {
190        if (!Align1 || !Align2) {
191          const DataLayout &DL = Caller->getParent()->getDataLayout();
192          unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
193
194          Align1 = Align1 ? Align1 : TypeAlign;
195          Align2 = Align2 ? Align2 : TypeAlign;
196        }
197
198        if (Align1 > Align2)
199          AvailableAlloca->setAlignment(AI->getAlignment());
200      }
201
202      AI->eraseFromParent();
203      MergedAwayAlloca = true;
204      ++NumMergedAllocas;
205      IFI.StaticAllocas[AllocaNo] = nullptr;
206      break;
207    }
208
209    // If we already nuked the alloca, we're done with it.
210    if (MergedAwayAlloca)
211      continue;
212
213    // If we were unable to merge away the alloca either because there are no
214    // allocas of the right type available or because we reused them all
215    // already, remember that this alloca came from an inlined function and mark
216    // it used so we don't reuse it for other allocas from this inline
217    // operation.
218    AllocasForType.push_back(AI);
219    UsedAllocas.insert(AI);
220  }
221
222  return true;
223}
224
225static void emitAnalysis(CallSite CS, const Twine &Msg) {
226  Function *Caller = CS.getCaller();
227  LLVMContext &Ctx = Caller->getContext();
228  DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
229  emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg);
230}
231
232bool Inliner::shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
233                               int &TotalSecondaryCost) {
234
235  // For now we only handle local or inline functions.
236  if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
237    return false;
238  // Try to detect the case where the current inlining candidate caller (call
239  // it B) is a static or linkonce-ODR function and is an inlining candidate
240  // elsewhere, and the current candidate callee (call it C) is large enough
241  // that inlining it into B would make B too big to inline later. In these
242  // circumstances it may be best not to inline C into B, but to inline B into
243  // its callers.
244  //
245  // This only applies to static and linkonce-ODR functions because those are
246  // expected to be available for inlining in the translation units where they
247  // are used. Thus we will always have the opportunity to make local inlining
248  // decisions. Importantly the linkonce-ODR linkage covers inline functions
249  // and templates in C++.
250  //
251  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
252  // the internal implementation of the inline cost metrics rather than
253  // treating them as truly abstract units etc.
254  TotalSecondaryCost = 0;
255  // The candidate cost to be imposed upon the current function.
256  int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
257  // This bool tracks what happens if we do NOT inline C into B.
258  bool callerWillBeRemoved = Caller->hasLocalLinkage();
259  // This bool tracks what happens if we DO inline C into B.
260  bool inliningPreventsSomeOuterInline = false;
261  for (User *U : Caller->users()) {
262    CallSite CS2(U);
263
264    // If this isn't a call to Caller (it could be some other sort
265    // of reference) skip it.  Such references will prevent the caller
266    // from being removed.
267    if (!CS2 || CS2.getCalledFunction() != Caller) {
268      callerWillBeRemoved = false;
269      continue;
270    }
271
272    InlineCost IC2 = getInlineCost(CS2);
273    ++NumCallerCallersAnalyzed;
274    if (!IC2) {
275      callerWillBeRemoved = false;
276      continue;
277    }
278    if (IC2.isAlways())
279      continue;
280
281    // See if inlining or original callsite would erase the cost delta of
282    // this callsite. We subtract off the penalty for the call instruction,
283    // which we would be deleting.
284    if (IC2.getCostDelta() <= CandidateCost) {
285      inliningPreventsSomeOuterInline = true;
286      TotalSecondaryCost += IC2.getCost();
287    }
288  }
289  // If all outer calls to Caller would get inlined, the cost for the last
290  // one is set very low by getInlineCost, in anticipation that Caller will
291  // be removed entirely.  We did not account for this above unless there
292  // is only one caller of Caller.
293  if (callerWillBeRemoved && !Caller->use_empty())
294    TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
295
296  if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
297    return true;
298
299  return false;
300}
301
302/// Return true if the inliner should attempt to inline at the given CallSite.
303bool Inliner::shouldInline(CallSite CS) {
304  InlineCost IC = getInlineCost(CS);
305
306  if (IC.isAlways()) {
307    DEBUG(dbgs() << "    Inlining: cost=always"
308          << ", Call: " << *CS.getInstruction() << "\n");
309    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
310                         " should always be inlined (cost=always)");
311    return true;
312  }
313
314  if (IC.isNever()) {
315    DEBUG(dbgs() << "    NOT Inlining: cost=never"
316          << ", Call: " << *CS.getInstruction() << "\n");
317    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
318                           " should never be inlined (cost=never)"));
319    return false;
320  }
321
322  Function *Caller = CS.getCaller();
323  if (!IC) {
324    DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
325          << ", thres=" << (IC.getCostDelta() + IC.getCost())
326          << ", Call: " << *CS.getInstruction() << "\n");
327    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
328                           " too costly to inline (cost=") +
329                         Twine(IC.getCost()) + ", threshold=" +
330                         Twine(IC.getCostDelta() + IC.getCost()) + ")");
331    return false;
332  }
333
334  int TotalSecondaryCost = 0;
335  if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost)) {
336    DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
337          << " Cost = " << IC.getCost()
338          << ", outer Cost = " << TotalSecondaryCost << '\n');
339    emitAnalysis(CS, Twine("Not inlining. Cost of inlining " +
340                           CS.getCalledFunction()->getName() +
341                           " increases the cost of inlining " +
342                           CS.getCaller()->getName() + " in other contexts"));
343    return false;
344  }
345
346  DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
347        << ", thres=" << (IC.getCostDelta() + IC.getCost())
348        << ", Call: " << *CS.getInstruction() << '\n');
349  emitAnalysis(
350      CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") +
351              CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) +
352              " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")");
353  return true;
354}
355
356/// Return true if the specified inline history ID
357/// indicates an inline history that includes the specified function.
358static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
359            const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
360  while (InlineHistoryID != -1) {
361    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
362           "Invalid inline history ID");
363    if (InlineHistory[InlineHistoryID].first == F)
364      return true;
365    InlineHistoryID = InlineHistory[InlineHistoryID].second;
366  }
367  return false;
368}
369
370bool Inliner::runOnSCC(CallGraphSCC &SCC) {
371  if (skipSCC(SCC))
372    return false;
373  return inlineCalls(SCC);
374}
375
376bool Inliner::inlineCalls(CallGraphSCC &SCC) {
377  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
378  ACT = &getAnalysis<AssumptionCacheTracker>();
379  PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(CG.getModule());
380  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
381
382  SmallPtrSet<Function*, 8> SCCFunctions;
383  DEBUG(dbgs() << "Inliner visiting SCC:");
384  for (CallGraphNode *Node : SCC) {
385    Function *F = Node->getFunction();
386    if (F) SCCFunctions.insert(F);
387    DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
388  }
389
390  // Scan through and identify all call sites ahead of time so that we only
391  // inline call sites in the original functions, not call sites that result
392  // from inlining other functions.
393  SmallVector<std::pair<CallSite, int>, 16> CallSites;
394
395  // When inlining a callee produces new call sites, we want to keep track of
396  // the fact that they were inlined from the callee.  This allows us to avoid
397  // infinite inlining in some obscure cases.  To represent this, we use an
398  // index into the InlineHistory vector.
399  SmallVector<std::pair<Function*, int>, 8> InlineHistory;
400
401  for (CallGraphNode *Node : SCC) {
402    Function *F = Node->getFunction();
403    if (!F) continue;
404
405    for (BasicBlock &BB : *F)
406      for (Instruction &I : BB) {
407        CallSite CS(cast<Value>(&I));
408        // If this isn't a call, or it is a call to an intrinsic, it can
409        // never be inlined.
410        if (!CS || isa<IntrinsicInst>(I))
411          continue;
412
413        // If this is a direct call to an external function, we can never inline
414        // it.  If it is an indirect call, inlining may resolve it to be a
415        // direct call, so we keep it.
416        if (Function *Callee = CS.getCalledFunction())
417          if (Callee->isDeclaration())
418            continue;
419
420        CallSites.push_back(std::make_pair(CS, -1));
421      }
422  }
423
424  DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
425
426  // If there are no calls in this function, exit early.
427  if (CallSites.empty())
428    return false;
429
430  // Now that we have all of the call sites, move the ones to functions in the
431  // current SCC to the end of the list.
432  unsigned FirstCallInSCC = CallSites.size();
433  for (unsigned i = 0; i < FirstCallInSCC; ++i)
434    if (Function *F = CallSites[i].first.getCalledFunction())
435      if (SCCFunctions.count(F))
436        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
437
438
439  InlinedArrayAllocasTy InlinedArrayAllocas;
440  InlineFunctionInfo InlineInfo(&CG, ACT);
441
442  // Now that we have all of the call sites, loop over them and inline them if
443  // it looks profitable to do so.
444  bool Changed = false;
445  bool LocalChange;
446  do {
447    LocalChange = false;
448    // Iterate over the outer loop because inlining functions can cause indirect
449    // calls to become direct calls.
450    // CallSites may be modified inside so ranged for loop can not be used.
451    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
452      CallSite CS = CallSites[CSi].first;
453
454      Function *Caller = CS.getCaller();
455      Function *Callee = CS.getCalledFunction();
456
457      // If this call site is dead and it is to a readonly function, we should
458      // just delete the call instead of trying to inline it, regardless of
459      // size.  This happens because IPSCCP propagates the result out of the
460      // call and then we're left with the dead call.
461      if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) {
462        DEBUG(dbgs() << "    -> Deleting dead call: "
463                     << *CS.getInstruction() << "\n");
464        // Update the call graph by deleting the edge from Callee to Caller.
465        CG[Caller]->removeCallEdgeFor(CS);
466        CS.getInstruction()->eraseFromParent();
467        ++NumCallsDeleted;
468      } else {
469        // We can only inline direct calls to non-declarations.
470        if (!Callee || Callee->isDeclaration()) continue;
471
472        // If this call site was obtained by inlining another function, verify
473        // that the include path for the function did not include the callee
474        // itself.  If so, we'd be recursively inlining the same function,
475        // which would provide the same callsites, which would cause us to
476        // infinitely inline.
477        int InlineHistoryID = CallSites[CSi].second;
478        if (InlineHistoryID != -1 &&
479            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
480          continue;
481
482        LLVMContext &CallerCtx = Caller->getContext();
483
484        // Get DebugLoc to report. CS will be invalid after Inliner.
485        DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
486
487        // If the policy determines that we should inline this function,
488        // try to do so.
489        if (!shouldInline(CS)) {
490          emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
491                                       Twine(Callee->getName() +
492                                             " will not be inlined into " +
493                                             Caller->getName()));
494          continue;
495        }
496
497        // Attempt to inline the function.
498        if (!InlineCallIfPossible(*this, CS, InlineInfo, InlinedArrayAllocas,
499                                  InlineHistoryID, InsertLifetime)) {
500          emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
501                                       Twine(Callee->getName() +
502                                             " will not be inlined into " +
503                                             Caller->getName()));
504          continue;
505        }
506        ++NumInlined;
507
508        // Report the inline decision.
509        emitOptimizationRemark(
510            CallerCtx, DEBUG_TYPE, *Caller, DLoc,
511            Twine(Callee->getName() + " inlined into " + Caller->getName()));
512
513        // If inlining this function gave us any new call sites, throw them
514        // onto our worklist to process.  They are useful inline candidates.
515        if (!InlineInfo.InlinedCalls.empty()) {
516          // Create a new inline history entry for this, so that we remember
517          // that these new callsites came about due to inlining Callee.
518          int NewHistoryID = InlineHistory.size();
519          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
520
521          for (Value *Ptr : InlineInfo.InlinedCalls)
522            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
523        }
524      }
525
526      // If we inlined or deleted the last possible call site to the function,
527      // delete the function body now.
528      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
529          // TODO: Can remove if in SCC now.
530          !SCCFunctions.count(Callee) &&
531
532          // The function may be apparently dead, but if there are indirect
533          // callgraph references to the node, we cannot delete it yet, this
534          // could invalidate the CGSCC iterator.
535          CG[Callee]->getNumReferences() == 0) {
536        DEBUG(dbgs() << "    -> Deleting dead function: "
537              << Callee->getName() << "\n");
538        CallGraphNode *CalleeNode = CG[Callee];
539
540        // Remove any call graph edges from the callee to its callees.
541        CalleeNode->removeAllCalledFunctions();
542
543        // Removing the node for callee from the call graph and delete it.
544        delete CG.removeFunctionFromModule(CalleeNode);
545        ++NumDeleted;
546      }
547
548      // Remove this call site from the list.  If possible, use
549      // swap/pop_back for efficiency, but do not use it if doing so would
550      // move a call site to a function in this SCC before the
551      // 'FirstCallInSCC' barrier.
552      if (SCC.isSingular()) {
553        CallSites[CSi] = CallSites.back();
554        CallSites.pop_back();
555      } else {
556        CallSites.erase(CallSites.begin()+CSi);
557      }
558      --CSi;
559
560      Changed = true;
561      LocalChange = true;
562    }
563  } while (LocalChange);
564
565  return Changed;
566}
567
568/// Remove now-dead linkonce functions at the end of
569/// processing to avoid breaking the SCC traversal.
570bool Inliner::doFinalization(CallGraph &CG) {
571  return removeDeadFunctions(CG);
572}
573
574/// Remove dead functions that are not included in DNR (Do Not Remove) list.
575bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
576  SmallVector<CallGraphNode*, 16> FunctionsToRemove;
577  SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats;
578  SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive;
579
580  auto RemoveCGN = [&](CallGraphNode *CGN) {
581    // Remove any call graph edges from the function to its callees.
582    CGN->removeAllCalledFunctions();
583
584    // Remove any edges from the external node to the function's call graph
585    // node.  These edges might have been made irrelegant due to
586    // optimization of the program.
587    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
588
589    // Removing the node for callee from the call graph and delete it.
590    FunctionsToRemove.push_back(CGN);
591  };
592
593  // Scan for all of the functions, looking for ones that should now be removed
594  // from the program.  Insert the dead ones in the FunctionsToRemove set.
595  for (const auto &I : CG) {
596    CallGraphNode *CGN = I.second.get();
597    Function *F = CGN->getFunction();
598    if (!F || F->isDeclaration())
599      continue;
600
601    // Handle the case when this function is called and we only want to care
602    // about always-inline functions. This is a bit of a hack to share code
603    // between here and the InlineAlways pass.
604    if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
605      continue;
606
607    // If the only remaining users of the function are dead constants, remove
608    // them.
609    F->removeDeadConstantUsers();
610
611    if (!F->isDefTriviallyDead())
612      continue;
613
614    // It is unsafe to drop a function with discardable linkage from a COMDAT
615    // without also dropping the other members of the COMDAT.
616    // The inliner doesn't visit non-function entities which are in COMDAT
617    // groups so it is unsafe to do so *unless* the linkage is local.
618    if (!F->hasLocalLinkage()) {
619      if (const Comdat *C = F->getComdat()) {
620        --ComdatEntriesAlive[C];
621        DeadFunctionsInComdats.push_back(CGN);
622        continue;
623      }
624    }
625
626    RemoveCGN(CGN);
627  }
628  if (!DeadFunctionsInComdats.empty()) {
629    // Count up all the entities in COMDAT groups
630    auto ComdatGroupReferenced = [&](const Comdat *C) {
631      auto I = ComdatEntriesAlive.find(C);
632      if (I != ComdatEntriesAlive.end())
633        ++(I->getSecond());
634    };
635    for (const Function &F : CG.getModule())
636      if (const Comdat *C = F.getComdat())
637        ComdatGroupReferenced(C);
638    for (const GlobalVariable &GV : CG.getModule().globals())
639      if (const Comdat *C = GV.getComdat())
640        ComdatGroupReferenced(C);
641    for (const GlobalAlias &GA : CG.getModule().aliases())
642      if (const Comdat *C = GA.getComdat())
643        ComdatGroupReferenced(C);
644    for (CallGraphNode *CGN : DeadFunctionsInComdats) {
645      Function *F = CGN->getFunction();
646      const Comdat *C = F->getComdat();
647      int NumAlive = ComdatEntriesAlive[C];
648      // We can remove functions in a COMDAT group if the entire group is dead.
649      assert(NumAlive >= 0);
650      if (NumAlive > 0)
651        continue;
652
653      RemoveCGN(CGN);
654    }
655  }
656
657  if (FunctionsToRemove.empty())
658    return false;
659
660  // Now that we know which functions to delete, do so.  We didn't want to do
661  // this inline, because that would invalidate our CallGraph::iterator
662  // objects. :(
663  //
664  // Note that it doesn't matter that we are iterating over a non-stable order
665  // here to do this, it doesn't matter which order the functions are deleted
666  // in.
667  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
668  FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
669                                      FunctionsToRemove.end()),
670                          FunctionsToRemove.end());
671  for (CallGraphNode *CGN : FunctionsToRemove) {
672    delete CG.removeFunctionFromModule(CGN);
673    ++NumDeleted;
674  }
675  return true;
676}
677