1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#include "llvm/Transforms/InstCombine/InstCombine.h"
37#include "InstCombineInternal.h"
38#include "llvm-c/Initialization.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/StringSwitch.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AssumptionCache.h"
44#include "llvm/Analysis/BasicAliasAnalysis.h"
45#include "llvm/Analysis/CFG.h"
46#include "llvm/Analysis/ConstantFolding.h"
47#include "llvm/Analysis/EHPersonalities.h"
48#include "llvm/Analysis/GlobalsModRef.h"
49#include "llvm/Analysis/InstructionSimplify.h"
50#include "llvm/Analysis/LoopInfo.h"
51#include "llvm/Analysis/MemoryBuiltins.h"
52#include "llvm/Analysis/TargetLibraryInfo.h"
53#include "llvm/Analysis/ValueTracking.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/DataLayout.h"
56#include "llvm/IR/Dominators.h"
57#include "llvm/IR/GetElementPtrTypeIterator.h"
58#include "llvm/IR/IntrinsicInst.h"
59#include "llvm/IR/PatternMatch.h"
60#include "llvm/IR/ValueHandle.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/Transforms/Scalar.h"
65#include "llvm/Transforms/Utils/Local.h"
66#include <algorithm>
67#include <climits>
68using namespace llvm;
69using namespace llvm::PatternMatch;
70
71#define DEBUG_TYPE "instcombine"
72
73STATISTIC(NumCombined , "Number of insts combined");
74STATISTIC(NumConstProp, "Number of constant folds");
75STATISTIC(NumDeadInst , "Number of dead inst eliminated");
76STATISTIC(NumSunkInst , "Number of instructions sunk");
77STATISTIC(NumExpand,    "Number of expansions");
78STATISTIC(NumFactor   , "Number of factorizations");
79STATISTIC(NumReassoc  , "Number of reassociations");
80
81static cl::opt<bool>
82EnableExpensiveCombines("expensive-combines",
83                        cl::desc("Enable expensive instruction combines"));
84
85Value *InstCombiner::EmitGEPOffset(User *GEP) {
86  return llvm::EmitGEPOffset(Builder, DL, GEP);
87}
88
89/// Return true if it is desirable to convert an integer computation from a
90/// given bit width to a new bit width.
91/// We don't want to convert from a legal to an illegal type for example or from
92/// a smaller to a larger illegal type.
93bool InstCombiner::ShouldChangeType(unsigned FromWidth,
94                                    unsigned ToWidth) const {
95  bool FromLegal = DL.isLegalInteger(FromWidth);
96  bool ToLegal = DL.isLegalInteger(ToWidth);
97
98  // If this is a legal integer from type, and the result would be an illegal
99  // type, don't do the transformation.
100  if (FromLegal && !ToLegal)
101    return false;
102
103  // Otherwise, if both are illegal, do not increase the size of the result. We
104  // do allow things like i160 -> i64, but not i64 -> i160.
105  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106    return false;
107
108  return true;
109}
110
111/// Return true if it is desirable to convert a computation from 'From' to 'To'.
112/// We don't want to convert from a legal to an illegal type for example or from
113/// a smaller to a larger illegal type.
114bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
115  assert(From->isIntegerTy() && To->isIntegerTy());
116
117  unsigned FromWidth = From->getPrimitiveSizeInBits();
118  unsigned ToWidth = To->getPrimitiveSizeInBits();
119  return ShouldChangeType(FromWidth, ToWidth);
120}
121
122// Return true, if No Signed Wrap should be maintained for I.
123// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
124// where both B and C should be ConstantInts, results in a constant that does
125// not overflow. This function only handles the Add and Sub opcodes. For
126// all other opcodes, the function conservatively returns false.
127static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
128  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
129  if (!OBO || !OBO->hasNoSignedWrap())
130    return false;
131
132  // We reason about Add and Sub Only.
133  Instruction::BinaryOps Opcode = I.getOpcode();
134  if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
135    return false;
136
137  const APInt *BVal, *CVal;
138  if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
139    return false;
140
141  bool Overflow = false;
142  if (Opcode == Instruction::Add)
143    BVal->sadd_ov(*CVal, Overflow);
144  else
145    BVal->ssub_ov(*CVal, Overflow);
146
147  return !Overflow;
148}
149
150/// Conservatively clears subclassOptionalData after a reassociation or
151/// commutation. We preserve fast-math flags when applicable as they can be
152/// preserved.
153static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
154  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
155  if (!FPMO) {
156    I.clearSubclassOptionalData();
157    return;
158  }
159
160  FastMathFlags FMF = I.getFastMathFlags();
161  I.clearSubclassOptionalData();
162  I.setFastMathFlags(FMF);
163}
164
165/// This performs a few simplifications for operators that are associative or
166/// commutative:
167///
168///  Commutative operators:
169///
170///  1. Order operands such that they are listed from right (least complex) to
171///     left (most complex).  This puts constants before unary operators before
172///     binary operators.
173///
174///  Associative operators:
175///
176///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
177///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
178///
179///  Associative and commutative operators:
180///
181///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
182///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
183///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
184///     if C1 and C2 are constants.
185bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
186  Instruction::BinaryOps Opcode = I.getOpcode();
187  bool Changed = false;
188
189  do {
190    // Order operands such that they are listed from right (least complex) to
191    // left (most complex).  This puts constants before unary operators before
192    // binary operators.
193    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
194        getComplexity(I.getOperand(1)))
195      Changed = !I.swapOperands();
196
197    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
198    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
199
200    if (I.isAssociative()) {
201      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
202      if (Op0 && Op0->getOpcode() == Opcode) {
203        Value *A = Op0->getOperand(0);
204        Value *B = Op0->getOperand(1);
205        Value *C = I.getOperand(1);
206
207        // Does "B op C" simplify?
208        if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
209          // It simplifies to V.  Form "A op V".
210          I.setOperand(0, A);
211          I.setOperand(1, V);
212          // Conservatively clear the optional flags, since they may not be
213          // preserved by the reassociation.
214          if (MaintainNoSignedWrap(I, B, C) &&
215              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
216            // Note: this is only valid because SimplifyBinOp doesn't look at
217            // the operands to Op0.
218            I.clearSubclassOptionalData();
219            I.setHasNoSignedWrap(true);
220          } else {
221            ClearSubclassDataAfterReassociation(I);
222          }
223
224          Changed = true;
225          ++NumReassoc;
226          continue;
227        }
228      }
229
230      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
231      if (Op1 && Op1->getOpcode() == Opcode) {
232        Value *A = I.getOperand(0);
233        Value *B = Op1->getOperand(0);
234        Value *C = Op1->getOperand(1);
235
236        // Does "A op B" simplify?
237        if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
238          // It simplifies to V.  Form "V op C".
239          I.setOperand(0, V);
240          I.setOperand(1, C);
241          // Conservatively clear the optional flags, since they may not be
242          // preserved by the reassociation.
243          ClearSubclassDataAfterReassociation(I);
244          Changed = true;
245          ++NumReassoc;
246          continue;
247        }
248      }
249    }
250
251    if (I.isAssociative() && I.isCommutative()) {
252      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
253      if (Op0 && Op0->getOpcode() == Opcode) {
254        Value *A = Op0->getOperand(0);
255        Value *B = Op0->getOperand(1);
256        Value *C = I.getOperand(1);
257
258        // Does "C op A" simplify?
259        if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
260          // It simplifies to V.  Form "V op B".
261          I.setOperand(0, V);
262          I.setOperand(1, B);
263          // Conservatively clear the optional flags, since they may not be
264          // preserved by the reassociation.
265          ClearSubclassDataAfterReassociation(I);
266          Changed = true;
267          ++NumReassoc;
268          continue;
269        }
270      }
271
272      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
273      if (Op1 && Op1->getOpcode() == Opcode) {
274        Value *A = I.getOperand(0);
275        Value *B = Op1->getOperand(0);
276        Value *C = Op1->getOperand(1);
277
278        // Does "C op A" simplify?
279        if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
280          // It simplifies to V.  Form "B op V".
281          I.setOperand(0, B);
282          I.setOperand(1, V);
283          // Conservatively clear the optional flags, since they may not be
284          // preserved by the reassociation.
285          ClearSubclassDataAfterReassociation(I);
286          Changed = true;
287          ++NumReassoc;
288          continue;
289        }
290      }
291
292      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
293      // if C1 and C2 are constants.
294      if (Op0 && Op1 &&
295          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
296          isa<Constant>(Op0->getOperand(1)) &&
297          isa<Constant>(Op1->getOperand(1)) &&
298          Op0->hasOneUse() && Op1->hasOneUse()) {
299        Value *A = Op0->getOperand(0);
300        Constant *C1 = cast<Constant>(Op0->getOperand(1));
301        Value *B = Op1->getOperand(0);
302        Constant *C2 = cast<Constant>(Op1->getOperand(1));
303
304        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
305        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
306        if (isa<FPMathOperator>(New)) {
307          FastMathFlags Flags = I.getFastMathFlags();
308          Flags &= Op0->getFastMathFlags();
309          Flags &= Op1->getFastMathFlags();
310          New->setFastMathFlags(Flags);
311        }
312        InsertNewInstWith(New, I);
313        New->takeName(Op1);
314        I.setOperand(0, New);
315        I.setOperand(1, Folded);
316        // Conservatively clear the optional flags, since they may not be
317        // preserved by the reassociation.
318        ClearSubclassDataAfterReassociation(I);
319
320        Changed = true;
321        continue;
322      }
323    }
324
325    // No further simplifications.
326    return Changed;
327  } while (1);
328}
329
330/// Return whether "X LOp (Y ROp Z)" is always equal to
331/// "(X LOp Y) ROp (X LOp Z)".
332static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
333                                     Instruction::BinaryOps ROp) {
334  switch (LOp) {
335  default:
336    return false;
337
338  case Instruction::And:
339    // And distributes over Or and Xor.
340    switch (ROp) {
341    default:
342      return false;
343    case Instruction::Or:
344    case Instruction::Xor:
345      return true;
346    }
347
348  case Instruction::Mul:
349    // Multiplication distributes over addition and subtraction.
350    switch (ROp) {
351    default:
352      return false;
353    case Instruction::Add:
354    case Instruction::Sub:
355      return true;
356    }
357
358  case Instruction::Or:
359    // Or distributes over And.
360    switch (ROp) {
361    default:
362      return false;
363    case Instruction::And:
364      return true;
365    }
366  }
367}
368
369/// Return whether "(X LOp Y) ROp Z" is always equal to
370/// "(X ROp Z) LOp (Y ROp Z)".
371static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
372                                     Instruction::BinaryOps ROp) {
373  if (Instruction::isCommutative(ROp))
374    return LeftDistributesOverRight(ROp, LOp);
375
376  switch (LOp) {
377  default:
378    return false;
379  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
380  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
381  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
382  case Instruction::And:
383  case Instruction::Or:
384  case Instruction::Xor:
385    switch (ROp) {
386    default:
387      return false;
388    case Instruction::Shl:
389    case Instruction::LShr:
390    case Instruction::AShr:
391      return true;
392    }
393  }
394  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
395  // but this requires knowing that the addition does not overflow and other
396  // such subtleties.
397  return false;
398}
399
400/// This function returns identity value for given opcode, which can be used to
401/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
402static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
403  if (isa<Constant>(V))
404    return nullptr;
405
406  if (OpCode == Instruction::Mul)
407    return ConstantInt::get(V->getType(), 1);
408
409  // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
410
411  return nullptr;
412}
413
414/// This function factors binary ops which can be combined using distributive
415/// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
416/// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
417/// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
418/// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
419/// RHS to 4.
420static Instruction::BinaryOps
421getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
422                          BinaryOperator *Op, Value *&LHS, Value *&RHS) {
423  if (!Op)
424    return Instruction::BinaryOpsEnd;
425
426  LHS = Op->getOperand(0);
427  RHS = Op->getOperand(1);
428
429  switch (TopLevelOpcode) {
430  default:
431    return Op->getOpcode();
432
433  case Instruction::Add:
434  case Instruction::Sub:
435    if (Op->getOpcode() == Instruction::Shl) {
436      if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
437        // The multiplier is really 1 << CST.
438        RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
439        return Instruction::Mul;
440      }
441    }
442    return Op->getOpcode();
443  }
444
445  // TODO: We can add other conversions e.g. shr => div etc.
446}
447
448/// This tries to simplify binary operations by factorizing out common terms
449/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
450static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
451                               const DataLayout &DL, BinaryOperator &I,
452                               Instruction::BinaryOps InnerOpcode, Value *A,
453                               Value *B, Value *C, Value *D) {
454
455  // If any of A, B, C, D are null, we can not factor I, return early.
456  // Checking A and C should be enough.
457  if (!A || !C || !B || !D)
458    return nullptr;
459
460  Value *V = nullptr;
461  Value *SimplifiedInst = nullptr;
462  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
463  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
464
465  // Does "X op' Y" always equal "Y op' X"?
466  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
467
468  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
469  if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
470    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
471    // commutative case, "(A op' B) op (C op' A)"?
472    if (A == C || (InnerCommutative && A == D)) {
473      if (A != C)
474        std::swap(C, D);
475      // Consider forming "A op' (B op D)".
476      // If "B op D" simplifies then it can be formed with no cost.
477      V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
478      // If "B op D" doesn't simplify then only go on if both of the existing
479      // operations "A op' B" and "C op' D" will be zapped as no longer used.
480      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
481        V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
482      if (V) {
483        SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
484      }
485    }
486
487  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
488  if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
489    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
490    // commutative case, "(A op' B) op (B op' D)"?
491    if (B == D || (InnerCommutative && B == C)) {
492      if (B != D)
493        std::swap(C, D);
494      // Consider forming "(A op C) op' B".
495      // If "A op C" simplifies then it can be formed with no cost.
496      V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
497
498      // If "A op C" doesn't simplify then only go on if both of the existing
499      // operations "A op' B" and "C op' D" will be zapped as no longer used.
500      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
501        V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
502      if (V) {
503        SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
504      }
505    }
506
507  if (SimplifiedInst) {
508    ++NumFactor;
509    SimplifiedInst->takeName(&I);
510
511    // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
512    // TODO: Check for NUW.
513    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
514      if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
515        bool HasNSW = false;
516        if (isa<OverflowingBinaryOperator>(&I))
517          HasNSW = I.hasNoSignedWrap();
518
519        if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
520          if (isa<OverflowingBinaryOperator>(Op0))
521            HasNSW &= Op0->hasNoSignedWrap();
522
523        if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
524          if (isa<OverflowingBinaryOperator>(Op1))
525            HasNSW &= Op1->hasNoSignedWrap();
526
527        // We can propagate 'nsw' if we know that
528        //  %Y = mul nsw i16 %X, C
529        //  %Z = add nsw i16 %Y, %X
530        // =>
531        //  %Z = mul nsw i16 %X, C+1
532        //
533        // iff C+1 isn't INT_MIN
534        const APInt *CInt;
535        if (TopLevelOpcode == Instruction::Add &&
536            InnerOpcode == Instruction::Mul)
537          if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
538            BO->setHasNoSignedWrap(HasNSW);
539      }
540    }
541  }
542  return SimplifiedInst;
543}
544
545/// This tries to simplify binary operations which some other binary operation
546/// distributes over either by factorizing out common terms
547/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
548/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
549/// Returns the simplified value, or null if it didn't simplify.
550Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
551  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
552  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
553  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
554
555  // Factorization.
556  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
557  auto TopLevelOpcode = I.getOpcode();
558  auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
559  auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
560
561  // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
562  // a common term.
563  if (LHSOpcode == RHSOpcode) {
564    if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
565      return V;
566  }
567
568  // The instruction has the form "(A op' B) op (C)".  Try to factorize common
569  // term.
570  if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
571                                  getIdentityValue(LHSOpcode, RHS)))
572    return V;
573
574  // The instruction has the form "(B) op (C op' D)".  Try to factorize common
575  // term.
576  if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
577                                  getIdentityValue(RHSOpcode, LHS), C, D))
578    return V;
579
580  // Expansion.
581  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
582    // The instruction has the form "(A op' B) op C".  See if expanding it out
583    // to "(A op C) op' (B op C)" results in simplifications.
584    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
585    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
586
587    // Do "A op C" and "B op C" both simplify?
588    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
589      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
590        // They do! Return "L op' R".
591        ++NumExpand;
592        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
593        if ((L == A && R == B) ||
594            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
595          return Op0;
596        // Otherwise return "L op' R" if it simplifies.
597        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
598          return V;
599        // Otherwise, create a new instruction.
600        C = Builder->CreateBinOp(InnerOpcode, L, R);
601        C->takeName(&I);
602        return C;
603      }
604  }
605
606  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
607    // The instruction has the form "A op (B op' C)".  See if expanding it out
608    // to "(A op B) op' (A op C)" results in simplifications.
609    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
610    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
611
612    // Do "A op B" and "A op C" both simplify?
613    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
614      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
615        // They do! Return "L op' R".
616        ++NumExpand;
617        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
618        if ((L == B && R == C) ||
619            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
620          return Op1;
621        // Otherwise return "L op' R" if it simplifies.
622        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
623          return V;
624        // Otherwise, create a new instruction.
625        A = Builder->CreateBinOp(InnerOpcode, L, R);
626        A->takeName(&I);
627        return A;
628      }
629  }
630
631  // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
632  // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
633  if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
634    if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
635      if (SI0->getCondition() == SI1->getCondition()) {
636        Value *SI = nullptr;
637        if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
638                                     SI1->getFalseValue(), DL, TLI, DT, AC))
639          SI = Builder->CreateSelect(SI0->getCondition(),
640                                     Builder->CreateBinOp(TopLevelOpcode,
641                                                          SI0->getTrueValue(),
642                                                          SI1->getTrueValue()),
643                                     V);
644        if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
645                                     SI1->getTrueValue(), DL, TLI, DT, AC))
646          SI = Builder->CreateSelect(
647              SI0->getCondition(), V,
648              Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
649                                   SI1->getFalseValue()));
650        if (SI) {
651          SI->takeName(&I);
652          return SI;
653        }
654      }
655    }
656  }
657
658  return nullptr;
659}
660
661/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
662/// constant zero (which is the 'negate' form).
663Value *InstCombiner::dyn_castNegVal(Value *V) const {
664  if (BinaryOperator::isNeg(V))
665    return BinaryOperator::getNegArgument(V);
666
667  // Constants can be considered to be negated values if they can be folded.
668  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
669    return ConstantExpr::getNeg(C);
670
671  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
672    if (C->getType()->getElementType()->isIntegerTy())
673      return ConstantExpr::getNeg(C);
674
675  return nullptr;
676}
677
678/// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
679/// a constant negative zero (which is the 'negate' form).
680Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
681  if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
682    return BinaryOperator::getFNegArgument(V);
683
684  // Constants can be considered to be negated values if they can be folded.
685  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
686    return ConstantExpr::getFNeg(C);
687
688  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
689    if (C->getType()->getElementType()->isFloatingPointTy())
690      return ConstantExpr::getFNeg(C);
691
692  return nullptr;
693}
694
695static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
696                                             InstCombiner *IC) {
697  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
698    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
699  }
700
701  // Figure out if the constant is the left or the right argument.
702  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
703  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
704
705  if (Constant *SOC = dyn_cast<Constant>(SO)) {
706    if (ConstIsRHS)
707      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
708    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
709  }
710
711  Value *Op0 = SO, *Op1 = ConstOperand;
712  if (!ConstIsRHS)
713    std::swap(Op0, Op1);
714
715  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
716    Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
717                                    SO->getName()+".op");
718    Instruction *FPInst = dyn_cast<Instruction>(RI);
719    if (FPInst && isa<FPMathOperator>(FPInst))
720      FPInst->copyFastMathFlags(BO);
721    return RI;
722  }
723  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
724    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
725                                   SO->getName()+".cmp");
726  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
727    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
728                                   SO->getName()+".cmp");
729  llvm_unreachable("Unknown binary instruction type!");
730}
731
732/// Given an instruction with a select as one operand and a constant as the
733/// other operand, try to fold the binary operator into the select arguments.
734/// This also works for Cast instructions, which obviously do not have a second
735/// operand.
736Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
737  // Don't modify shared select instructions
738  if (!SI->hasOneUse()) return nullptr;
739  Value *TV = SI->getOperand(1);
740  Value *FV = SI->getOperand(2);
741
742  if (isa<Constant>(TV) || isa<Constant>(FV)) {
743    // Bool selects with constant operands can be folded to logical ops.
744    if (SI->getType()->isIntegerTy(1)) return nullptr;
745
746    // If it's a bitcast involving vectors, make sure it has the same number of
747    // elements on both sides.
748    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
749      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
750      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
751
752      // Verify that either both or neither are vectors.
753      if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
754      // If vectors, verify that they have the same number of elements.
755      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
756        return nullptr;
757    }
758
759    // Test if a CmpInst instruction is used exclusively by a select as
760    // part of a minimum or maximum operation. If so, refrain from doing
761    // any other folding. This helps out other analyses which understand
762    // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
763    // and CodeGen. And in this case, at least one of the comparison
764    // operands has at least one user besides the compare (the select),
765    // which would often largely negate the benefit of folding anyway.
766    if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
767      if (CI->hasOneUse()) {
768        Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
769        if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
770            (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
771          return nullptr;
772      }
773    }
774
775    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
776    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
777
778    return SelectInst::Create(SI->getCondition(),
779                              SelectTrueVal, SelectFalseVal);
780  }
781  return nullptr;
782}
783
784/// Given a binary operator, cast instruction, or select which has a PHI node as
785/// operand #0, see if we can fold the instruction into the PHI (which is only
786/// possible if all operands to the PHI are constants).
787Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
788  PHINode *PN = cast<PHINode>(I.getOperand(0));
789  unsigned NumPHIValues = PN->getNumIncomingValues();
790  if (NumPHIValues == 0)
791    return nullptr;
792
793  // We normally only transform phis with a single use.  However, if a PHI has
794  // multiple uses and they are all the same operation, we can fold *all* of the
795  // uses into the PHI.
796  if (!PN->hasOneUse()) {
797    // Walk the use list for the instruction, comparing them to I.
798    for (User *U : PN->users()) {
799      Instruction *UI = cast<Instruction>(U);
800      if (UI != &I && !I.isIdenticalTo(UI))
801        return nullptr;
802    }
803    // Otherwise, we can replace *all* users with the new PHI we form.
804  }
805
806  // Check to see if all of the operands of the PHI are simple constants
807  // (constantint/constantfp/undef).  If there is one non-constant value,
808  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
809  // bail out.  We don't do arbitrary constant expressions here because moving
810  // their computation can be expensive without a cost model.
811  BasicBlock *NonConstBB = nullptr;
812  for (unsigned i = 0; i != NumPHIValues; ++i) {
813    Value *InVal = PN->getIncomingValue(i);
814    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
815      continue;
816
817    if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
818    if (NonConstBB) return nullptr;  // More than one non-const value.
819
820    NonConstBB = PN->getIncomingBlock(i);
821
822    // If the InVal is an invoke at the end of the pred block, then we can't
823    // insert a computation after it without breaking the edge.
824    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
825      if (II->getParent() == NonConstBB)
826        return nullptr;
827
828    // If the incoming non-constant value is in I's block, we will remove one
829    // instruction, but insert another equivalent one, leading to infinite
830    // instcombine.
831    if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
832      return nullptr;
833  }
834
835  // If there is exactly one non-constant value, we can insert a copy of the
836  // operation in that block.  However, if this is a critical edge, we would be
837  // inserting the computation on some other paths (e.g. inside a loop).  Only
838  // do this if the pred block is unconditionally branching into the phi block.
839  if (NonConstBB != nullptr) {
840    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
841    if (!BI || !BI->isUnconditional()) return nullptr;
842  }
843
844  // Okay, we can do the transformation: create the new PHI node.
845  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
846  InsertNewInstBefore(NewPN, *PN);
847  NewPN->takeName(PN);
848
849  // If we are going to have to insert a new computation, do so right before the
850  // predecessor's terminator.
851  if (NonConstBB)
852    Builder->SetInsertPoint(NonConstBB->getTerminator());
853
854  // Next, add all of the operands to the PHI.
855  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
856    // We only currently try to fold the condition of a select when it is a phi,
857    // not the true/false values.
858    Value *TrueV = SI->getTrueValue();
859    Value *FalseV = SI->getFalseValue();
860    BasicBlock *PhiTransBB = PN->getParent();
861    for (unsigned i = 0; i != NumPHIValues; ++i) {
862      BasicBlock *ThisBB = PN->getIncomingBlock(i);
863      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
864      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
865      Value *InV = nullptr;
866      // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
867      // even if currently isNullValue gives false.
868      Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
869      if (InC && !isa<ConstantExpr>(InC))
870        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
871      else
872        InV = Builder->CreateSelect(PN->getIncomingValue(i),
873                                    TrueVInPred, FalseVInPred, "phitmp");
874      NewPN->addIncoming(InV, ThisBB);
875    }
876  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
877    Constant *C = cast<Constant>(I.getOperand(1));
878    for (unsigned i = 0; i != NumPHIValues; ++i) {
879      Value *InV = nullptr;
880      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
881        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
882      else if (isa<ICmpInst>(CI))
883        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
884                                  C, "phitmp");
885      else
886        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
887                                  C, "phitmp");
888      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
889    }
890  } else if (I.getNumOperands() == 2) {
891    Constant *C = cast<Constant>(I.getOperand(1));
892    for (unsigned i = 0; i != NumPHIValues; ++i) {
893      Value *InV = nullptr;
894      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
895        InV = ConstantExpr::get(I.getOpcode(), InC, C);
896      else
897        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
898                                   PN->getIncomingValue(i), C, "phitmp");
899      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
900    }
901  } else {
902    CastInst *CI = cast<CastInst>(&I);
903    Type *RetTy = CI->getType();
904    for (unsigned i = 0; i != NumPHIValues; ++i) {
905      Value *InV;
906      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
907        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
908      else
909        InV = Builder->CreateCast(CI->getOpcode(),
910                                PN->getIncomingValue(i), I.getType(), "phitmp");
911      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
912    }
913  }
914
915  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
916    Instruction *User = cast<Instruction>(*UI++);
917    if (User == &I) continue;
918    replaceInstUsesWith(*User, NewPN);
919    eraseInstFromFunction(*User);
920  }
921  return replaceInstUsesWith(I, NewPN);
922}
923
924/// Given a pointer type and a constant offset, determine whether or not there
925/// is a sequence of GEP indices into the pointed type that will land us at the
926/// specified offset. If so, fill them into NewIndices and return the resultant
927/// element type, otherwise return null.
928Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
929                                        SmallVectorImpl<Value *> &NewIndices) {
930  Type *Ty = PtrTy->getElementType();
931  if (!Ty->isSized())
932    return nullptr;
933
934  // Start with the index over the outer type.  Note that the type size
935  // might be zero (even if the offset isn't zero) if the indexed type
936  // is something like [0 x {int, int}]
937  Type *IntPtrTy = DL.getIntPtrType(PtrTy);
938  int64_t FirstIdx = 0;
939  if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
940    FirstIdx = Offset/TySize;
941    Offset -= FirstIdx*TySize;
942
943    // Handle hosts where % returns negative instead of values [0..TySize).
944    if (Offset < 0) {
945      --FirstIdx;
946      Offset += TySize;
947      assert(Offset >= 0);
948    }
949    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
950  }
951
952  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
953
954  // Index into the types.  If we fail, set OrigBase to null.
955  while (Offset) {
956    // Indexing into tail padding between struct/array elements.
957    if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
958      return nullptr;
959
960    if (StructType *STy = dyn_cast<StructType>(Ty)) {
961      const StructLayout *SL = DL.getStructLayout(STy);
962      assert(Offset < (int64_t)SL->getSizeInBytes() &&
963             "Offset must stay within the indexed type");
964
965      unsigned Elt = SL->getElementContainingOffset(Offset);
966      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
967                                            Elt));
968
969      Offset -= SL->getElementOffset(Elt);
970      Ty = STy->getElementType(Elt);
971    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
972      uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
973      assert(EltSize && "Cannot index into a zero-sized array");
974      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
975      Offset %= EltSize;
976      Ty = AT->getElementType();
977    } else {
978      // Otherwise, we can't index into the middle of this atomic type, bail.
979      return nullptr;
980    }
981  }
982
983  return Ty;
984}
985
986static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
987  // If this GEP has only 0 indices, it is the same pointer as
988  // Src. If Src is not a trivial GEP too, don't combine
989  // the indices.
990  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
991      !Src.hasOneUse())
992    return false;
993  return true;
994}
995
996/// Return a value X such that Val = X * Scale, or null if none.
997/// If the multiplication is known not to overflow, then NoSignedWrap is set.
998Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
999  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1000  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1001         Scale.getBitWidth() && "Scale not compatible with value!");
1002
1003  // If Val is zero or Scale is one then Val = Val * Scale.
1004  if (match(Val, m_Zero()) || Scale == 1) {
1005    NoSignedWrap = true;
1006    return Val;
1007  }
1008
1009  // If Scale is zero then it does not divide Val.
1010  if (Scale.isMinValue())
1011    return nullptr;
1012
1013  // Look through chains of multiplications, searching for a constant that is
1014  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1015  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1016  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1017  // down from Val:
1018  //
1019  //     Val = M1 * X          ||   Analysis starts here and works down
1020  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1021  //      M2 =  Z * 4          \/   than one use
1022  //
1023  // Then to modify a term at the bottom:
1024  //
1025  //     Val = M1 * X
1026  //      M1 =  Z * Y          ||   Replaced M2 with Z
1027  //
1028  // Then to work back up correcting nsw flags.
1029
1030  // Op - the term we are currently analyzing.  Starts at Val then drills down.
1031  // Replaced with its descaled value before exiting from the drill down loop.
1032  Value *Op = Val;
1033
1034  // Parent - initially null, but after drilling down notes where Op came from.
1035  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1036  // 0'th operand of Val.
1037  std::pair<Instruction*, unsigned> Parent;
1038
1039  // Set if the transform requires a descaling at deeper levels that doesn't
1040  // overflow.
1041  bool RequireNoSignedWrap = false;
1042
1043  // Log base 2 of the scale. Negative if not a power of 2.
1044  int32_t logScale = Scale.exactLogBase2();
1045
1046  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1047
1048    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1049      // If Op is a constant divisible by Scale then descale to the quotient.
1050      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1051      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1052      if (!Remainder.isMinValue())
1053        // Not divisible by Scale.
1054        return nullptr;
1055      // Replace with the quotient in the parent.
1056      Op = ConstantInt::get(CI->getType(), Quotient);
1057      NoSignedWrap = true;
1058      break;
1059    }
1060
1061    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1062
1063      if (BO->getOpcode() == Instruction::Mul) {
1064        // Multiplication.
1065        NoSignedWrap = BO->hasNoSignedWrap();
1066        if (RequireNoSignedWrap && !NoSignedWrap)
1067          return nullptr;
1068
1069        // There are three cases for multiplication: multiplication by exactly
1070        // the scale, multiplication by a constant different to the scale, and
1071        // multiplication by something else.
1072        Value *LHS = BO->getOperand(0);
1073        Value *RHS = BO->getOperand(1);
1074
1075        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1076          // Multiplication by a constant.
1077          if (CI->getValue() == Scale) {
1078            // Multiplication by exactly the scale, replace the multiplication
1079            // by its left-hand side in the parent.
1080            Op = LHS;
1081            break;
1082          }
1083
1084          // Otherwise drill down into the constant.
1085          if (!Op->hasOneUse())
1086            return nullptr;
1087
1088          Parent = std::make_pair(BO, 1);
1089          continue;
1090        }
1091
1092        // Multiplication by something else. Drill down into the left-hand side
1093        // since that's where the reassociate pass puts the good stuff.
1094        if (!Op->hasOneUse())
1095          return nullptr;
1096
1097        Parent = std::make_pair(BO, 0);
1098        continue;
1099      }
1100
1101      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1102          isa<ConstantInt>(BO->getOperand(1))) {
1103        // Multiplication by a power of 2.
1104        NoSignedWrap = BO->hasNoSignedWrap();
1105        if (RequireNoSignedWrap && !NoSignedWrap)
1106          return nullptr;
1107
1108        Value *LHS = BO->getOperand(0);
1109        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1110          getLimitedValue(Scale.getBitWidth());
1111        // Op = LHS << Amt.
1112
1113        if (Amt == logScale) {
1114          // Multiplication by exactly the scale, replace the multiplication
1115          // by its left-hand side in the parent.
1116          Op = LHS;
1117          break;
1118        }
1119        if (Amt < logScale || !Op->hasOneUse())
1120          return nullptr;
1121
1122        // Multiplication by more than the scale.  Reduce the multiplying amount
1123        // by the scale in the parent.
1124        Parent = std::make_pair(BO, 1);
1125        Op = ConstantInt::get(BO->getType(), Amt - logScale);
1126        break;
1127      }
1128    }
1129
1130    if (!Op->hasOneUse())
1131      return nullptr;
1132
1133    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1134      if (Cast->getOpcode() == Instruction::SExt) {
1135        // Op is sign-extended from a smaller type, descale in the smaller type.
1136        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1137        APInt SmallScale = Scale.trunc(SmallSize);
1138        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1139        // descale Op as (sext Y) * Scale.  In order to have
1140        //   sext (Y * SmallScale) = (sext Y) * Scale
1141        // some conditions need to hold however: SmallScale must sign-extend to
1142        // Scale and the multiplication Y * SmallScale should not overflow.
1143        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1144          // SmallScale does not sign-extend to Scale.
1145          return nullptr;
1146        assert(SmallScale.exactLogBase2() == logScale);
1147        // Require that Y * SmallScale must not overflow.
1148        RequireNoSignedWrap = true;
1149
1150        // Drill down through the cast.
1151        Parent = std::make_pair(Cast, 0);
1152        Scale = SmallScale;
1153        continue;
1154      }
1155
1156      if (Cast->getOpcode() == Instruction::Trunc) {
1157        // Op is truncated from a larger type, descale in the larger type.
1158        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1159        //   trunc (Y * sext Scale) = (trunc Y) * Scale
1160        // always holds.  However (trunc Y) * Scale may overflow even if
1161        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1162        // from this point up in the expression (see later).
1163        if (RequireNoSignedWrap)
1164          return nullptr;
1165
1166        // Drill down through the cast.
1167        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1168        Parent = std::make_pair(Cast, 0);
1169        Scale = Scale.sext(LargeSize);
1170        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1171          logScale = -1;
1172        assert(Scale.exactLogBase2() == logScale);
1173        continue;
1174      }
1175    }
1176
1177    // Unsupported expression, bail out.
1178    return nullptr;
1179  }
1180
1181  // If Op is zero then Val = Op * Scale.
1182  if (match(Op, m_Zero())) {
1183    NoSignedWrap = true;
1184    return Op;
1185  }
1186
1187  // We know that we can successfully descale, so from here on we can safely
1188  // modify the IR.  Op holds the descaled version of the deepest term in the
1189  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1190  // not to overflow.
1191
1192  if (!Parent.first)
1193    // The expression only had one term.
1194    return Op;
1195
1196  // Rewrite the parent using the descaled version of its operand.
1197  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1198  assert(Op != Parent.first->getOperand(Parent.second) &&
1199         "Descaling was a no-op?");
1200  Parent.first->setOperand(Parent.second, Op);
1201  Worklist.Add(Parent.first);
1202
1203  // Now work back up the expression correcting nsw flags.  The logic is based
1204  // on the following observation: if X * Y is known not to overflow as a signed
1205  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1206  // then X * Z will not overflow as a signed multiplication either.  As we work
1207  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1208  // current level has strictly smaller absolute value than the original.
1209  Instruction *Ancestor = Parent.first;
1210  do {
1211    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1212      // If the multiplication wasn't nsw then we can't say anything about the
1213      // value of the descaled multiplication, and we have to clear nsw flags
1214      // from this point on up.
1215      bool OpNoSignedWrap = BO->hasNoSignedWrap();
1216      NoSignedWrap &= OpNoSignedWrap;
1217      if (NoSignedWrap != OpNoSignedWrap) {
1218        BO->setHasNoSignedWrap(NoSignedWrap);
1219        Worklist.Add(Ancestor);
1220      }
1221    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1222      // The fact that the descaled input to the trunc has smaller absolute
1223      // value than the original input doesn't tell us anything useful about
1224      // the absolute values of the truncations.
1225      NoSignedWrap = false;
1226    }
1227    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1228           "Failed to keep proper track of nsw flags while drilling down?");
1229
1230    if (Ancestor == Val)
1231      // Got to the top, all done!
1232      return Val;
1233
1234    // Move up one level in the expression.
1235    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1236    Ancestor = Ancestor->user_back();
1237  } while (1);
1238}
1239
1240/// \brief Creates node of binary operation with the same attributes as the
1241/// specified one but with other operands.
1242static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1243                                 InstCombiner::BuilderTy *B) {
1244  Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1245  // If LHS and RHS are constant, BO won't be a binary operator.
1246  if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
1247    NewBO->copyIRFlags(&Inst);
1248  return BO;
1249}
1250
1251/// \brief Makes transformation of binary operation specific for vector types.
1252/// \param Inst Binary operator to transform.
1253/// \return Pointer to node that must replace the original binary operator, or
1254///         null pointer if no transformation was made.
1255Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1256  if (!Inst.getType()->isVectorTy()) return nullptr;
1257
1258  // It may not be safe to reorder shuffles and things like div, urem, etc.
1259  // because we may trap when executing those ops on unknown vector elements.
1260  // See PR20059.
1261  if (!isSafeToSpeculativelyExecute(&Inst))
1262    return nullptr;
1263
1264  unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1265  Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1266  assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1267  assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1268
1269  // If both arguments of binary operation are shuffles, which use the same
1270  // mask and shuffle within a single vector, it is worthwhile to move the
1271  // shuffle after binary operation:
1272  //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1273  if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1274    ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1275    ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1276    if (isa<UndefValue>(LShuf->getOperand(1)) &&
1277        isa<UndefValue>(RShuf->getOperand(1)) &&
1278        LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1279        LShuf->getMask() == RShuf->getMask()) {
1280      Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1281          RShuf->getOperand(0), Builder);
1282      return Builder->CreateShuffleVector(NewBO,
1283          UndefValue::get(NewBO->getType()), LShuf->getMask());
1284    }
1285  }
1286
1287  // If one argument is a shuffle within one vector, the other is a constant,
1288  // try moving the shuffle after the binary operation.
1289  ShuffleVectorInst *Shuffle = nullptr;
1290  Constant *C1 = nullptr;
1291  if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1292  if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1293  if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1294  if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1295  if (Shuffle && C1 &&
1296      (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1297      isa<UndefValue>(Shuffle->getOperand(1)) &&
1298      Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1299    SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1300    // Find constant C2 that has property:
1301    //   shuffle(C2, ShMask) = C1
1302    // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1303    // reorder is not possible.
1304    SmallVector<Constant*, 16> C2M(VWidth,
1305                               UndefValue::get(C1->getType()->getScalarType()));
1306    bool MayChange = true;
1307    for (unsigned I = 0; I < VWidth; ++I) {
1308      if (ShMask[I] >= 0) {
1309        assert(ShMask[I] < (int)VWidth);
1310        if (!isa<UndefValue>(C2M[ShMask[I]])) {
1311          MayChange = false;
1312          break;
1313        }
1314        C2M[ShMask[I]] = C1->getAggregateElement(I);
1315      }
1316    }
1317    if (MayChange) {
1318      Constant *C2 = ConstantVector::get(C2M);
1319      Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
1320      Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
1321      Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1322      return Builder->CreateShuffleVector(NewBO,
1323          UndefValue::get(Inst.getType()), Shuffle->getMask());
1324    }
1325  }
1326
1327  return nullptr;
1328}
1329
1330Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1331  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1332
1333  if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, TLI, DT, AC))
1334    return replaceInstUsesWith(GEP, V);
1335
1336  Value *PtrOp = GEP.getOperand(0);
1337
1338  // Eliminate unneeded casts for indices, and replace indices which displace
1339  // by multiples of a zero size type with zero.
1340  bool MadeChange = false;
1341  Type *IntPtrTy =
1342    DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
1343
1344  gep_type_iterator GTI = gep_type_begin(GEP);
1345  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1346       ++I, ++GTI) {
1347    // Skip indices into struct types.
1348    if (isa<StructType>(*GTI))
1349      continue;
1350
1351    // Index type should have the same width as IntPtr
1352    Type *IndexTy = (*I)->getType();
1353    Type *NewIndexType = IndexTy->isVectorTy() ?
1354      VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
1355
1356    // If the element type has zero size then any index over it is equivalent
1357    // to an index of zero, so replace it with zero if it is not zero already.
1358    Type *EltTy = GTI.getIndexedType();
1359    if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1360      if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1361        *I = Constant::getNullValue(NewIndexType);
1362        MadeChange = true;
1363      }
1364
1365    if (IndexTy != NewIndexType) {
1366      // If we are using a wider index than needed for this platform, shrink
1367      // it to what we need.  If narrower, sign-extend it to what we need.
1368      // This explicit cast can make subsequent optimizations more obvious.
1369      *I = Builder->CreateIntCast(*I, NewIndexType, true);
1370      MadeChange = true;
1371    }
1372  }
1373  if (MadeChange)
1374    return &GEP;
1375
1376  // Check to see if the inputs to the PHI node are getelementptr instructions.
1377  if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1378    GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1379    if (!Op1)
1380      return nullptr;
1381
1382    // Don't fold a GEP into itself through a PHI node. This can only happen
1383    // through the back-edge of a loop. Folding a GEP into itself means that
1384    // the value of the previous iteration needs to be stored in the meantime,
1385    // thus requiring an additional register variable to be live, but not
1386    // actually achieving anything (the GEP still needs to be executed once per
1387    // loop iteration).
1388    if (Op1 == &GEP)
1389      return nullptr;
1390
1391    int DI = -1;
1392
1393    for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1394      GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1395      if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1396        return nullptr;
1397
1398      // As for Op1 above, don't try to fold a GEP into itself.
1399      if (Op2 == &GEP)
1400        return nullptr;
1401
1402      // Keep track of the type as we walk the GEP.
1403      Type *CurTy = nullptr;
1404
1405      for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1406        if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1407          return nullptr;
1408
1409        if (Op1->getOperand(J) != Op2->getOperand(J)) {
1410          if (DI == -1) {
1411            // We have not seen any differences yet in the GEPs feeding the
1412            // PHI yet, so we record this one if it is allowed to be a
1413            // variable.
1414
1415            // The first two arguments can vary for any GEP, the rest have to be
1416            // static for struct slots
1417            if (J > 1 && CurTy->isStructTy())
1418              return nullptr;
1419
1420            DI = J;
1421          } else {
1422            // The GEP is different by more than one input. While this could be
1423            // extended to support GEPs that vary by more than one variable it
1424            // doesn't make sense since it greatly increases the complexity and
1425            // would result in an R+R+R addressing mode which no backend
1426            // directly supports and would need to be broken into several
1427            // simpler instructions anyway.
1428            return nullptr;
1429          }
1430        }
1431
1432        // Sink down a layer of the type for the next iteration.
1433        if (J > 0) {
1434          if (J == 1) {
1435            CurTy = Op1->getSourceElementType();
1436          } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1437            CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1438          } else {
1439            CurTy = nullptr;
1440          }
1441        }
1442      }
1443    }
1444
1445    // If not all GEPs are identical we'll have to create a new PHI node.
1446    // Check that the old PHI node has only one use so that it will get
1447    // removed.
1448    if (DI != -1 && !PN->hasOneUse())
1449      return nullptr;
1450
1451    GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1452    if (DI == -1) {
1453      // All the GEPs feeding the PHI are identical. Clone one down into our
1454      // BB so that it can be merged with the current GEP.
1455      GEP.getParent()->getInstList().insert(
1456          GEP.getParent()->getFirstInsertionPt(), NewGEP);
1457    } else {
1458      // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1459      // into the current block so it can be merged, and create a new PHI to
1460      // set that index.
1461      PHINode *NewPN;
1462      {
1463        IRBuilderBase::InsertPointGuard Guard(*Builder);
1464        Builder->SetInsertPoint(PN);
1465        NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1466                                   PN->getNumOperands());
1467      }
1468
1469      for (auto &I : PN->operands())
1470        NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1471                           PN->getIncomingBlock(I));
1472
1473      NewGEP->setOperand(DI, NewPN);
1474      GEP.getParent()->getInstList().insert(
1475          GEP.getParent()->getFirstInsertionPt(), NewGEP);
1476      NewGEP->setOperand(DI, NewPN);
1477    }
1478
1479    GEP.setOperand(0, NewGEP);
1480    PtrOp = NewGEP;
1481  }
1482
1483  // Combine Indices - If the source pointer to this getelementptr instruction
1484  // is a getelementptr instruction, combine the indices of the two
1485  // getelementptr instructions into a single instruction.
1486  //
1487  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1488    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1489      return nullptr;
1490
1491    // Note that if our source is a gep chain itself then we wait for that
1492    // chain to be resolved before we perform this transformation.  This
1493    // avoids us creating a TON of code in some cases.
1494    if (GEPOperator *SrcGEP =
1495          dyn_cast<GEPOperator>(Src->getOperand(0)))
1496      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1497        return nullptr;   // Wait until our source is folded to completion.
1498
1499    SmallVector<Value*, 8> Indices;
1500
1501    // Find out whether the last index in the source GEP is a sequential idx.
1502    bool EndsWithSequential = false;
1503    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1504         I != E; ++I)
1505      EndsWithSequential = !(*I)->isStructTy();
1506
1507    // Can we combine the two pointer arithmetics offsets?
1508    if (EndsWithSequential) {
1509      // Replace: gep (gep %P, long B), long A, ...
1510      // With:    T = long A+B; gep %P, T, ...
1511      //
1512      Value *Sum;
1513      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1514      Value *GO1 = GEP.getOperand(1);
1515      if (SO1 == Constant::getNullValue(SO1->getType())) {
1516        Sum = GO1;
1517      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1518        Sum = SO1;
1519      } else {
1520        // If they aren't the same type, then the input hasn't been processed
1521        // by the loop above yet (which canonicalizes sequential index types to
1522        // intptr_t).  Just avoid transforming this until the input has been
1523        // normalized.
1524        if (SO1->getType() != GO1->getType())
1525          return nullptr;
1526        // Only do the combine when GO1 and SO1 are both constants. Only in
1527        // this case, we are sure the cost after the merge is never more than
1528        // that before the merge.
1529        if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
1530          return nullptr;
1531        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1532      }
1533
1534      // Update the GEP in place if possible.
1535      if (Src->getNumOperands() == 2) {
1536        GEP.setOperand(0, Src->getOperand(0));
1537        GEP.setOperand(1, Sum);
1538        return &GEP;
1539      }
1540      Indices.append(Src->op_begin()+1, Src->op_end()-1);
1541      Indices.push_back(Sum);
1542      Indices.append(GEP.op_begin()+2, GEP.op_end());
1543    } else if (isa<Constant>(*GEP.idx_begin()) &&
1544               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1545               Src->getNumOperands() != 1) {
1546      // Otherwise we can do the fold if the first index of the GEP is a zero
1547      Indices.append(Src->op_begin()+1, Src->op_end());
1548      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1549    }
1550
1551    if (!Indices.empty())
1552      return GEP.isInBounds() && Src->isInBounds()
1553                 ? GetElementPtrInst::CreateInBounds(
1554                       Src->getSourceElementType(), Src->getOperand(0), Indices,
1555                       GEP.getName())
1556                 : GetElementPtrInst::Create(Src->getSourceElementType(),
1557                                             Src->getOperand(0), Indices,
1558                                             GEP.getName());
1559  }
1560
1561  if (GEP.getNumIndices() == 1) {
1562    unsigned AS = GEP.getPointerAddressSpace();
1563    if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1564        DL.getPointerSizeInBits(AS)) {
1565      Type *Ty = GEP.getSourceElementType();
1566      uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
1567
1568      bool Matched = false;
1569      uint64_t C;
1570      Value *V = nullptr;
1571      if (TyAllocSize == 1) {
1572        V = GEP.getOperand(1);
1573        Matched = true;
1574      } else if (match(GEP.getOperand(1),
1575                       m_AShr(m_Value(V), m_ConstantInt(C)))) {
1576        if (TyAllocSize == 1ULL << C)
1577          Matched = true;
1578      } else if (match(GEP.getOperand(1),
1579                       m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1580        if (TyAllocSize == C)
1581          Matched = true;
1582      }
1583
1584      if (Matched) {
1585        // Canonicalize (gep i8* X, -(ptrtoint Y))
1586        // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1587        // The GEP pattern is emitted by the SCEV expander for certain kinds of
1588        // pointer arithmetic.
1589        if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1590          Operator *Index = cast<Operator>(V);
1591          Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1592          Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1593          return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1594        }
1595        // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1596        // to (bitcast Y)
1597        Value *Y;
1598        if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1599                           m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1600          return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1601                                                               GEP.getType());
1602        }
1603      }
1604    }
1605  }
1606
1607  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1608  Value *StrippedPtr = PtrOp->stripPointerCasts();
1609  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1610
1611  // We do not handle pointer-vector geps here.
1612  if (!StrippedPtrTy)
1613    return nullptr;
1614
1615  if (StrippedPtr != PtrOp) {
1616    bool HasZeroPointerIndex = false;
1617    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1618      HasZeroPointerIndex = C->isZero();
1619
1620    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1621    // into     : GEP [10 x i8]* X, i32 0, ...
1622    //
1623    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1624    //           into     : GEP i8* X, ...
1625    //
1626    // This occurs when the program declares an array extern like "int X[];"
1627    if (HasZeroPointerIndex) {
1628      if (ArrayType *CATy =
1629          dyn_cast<ArrayType>(GEP.getSourceElementType())) {
1630        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1631        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1632          // -> GEP i8* X, ...
1633          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1634          GetElementPtrInst *Res = GetElementPtrInst::Create(
1635              StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1636          Res->setIsInBounds(GEP.isInBounds());
1637          if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1638            return Res;
1639          // Insert Res, and create an addrspacecast.
1640          // e.g.,
1641          // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1642          // ->
1643          // %0 = GEP i8 addrspace(1)* X, ...
1644          // addrspacecast i8 addrspace(1)* %0 to i8*
1645          return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1646        }
1647
1648        if (ArrayType *XATy =
1649              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1650          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1651          if (CATy->getElementType() == XATy->getElementType()) {
1652            // -> GEP [10 x i8]* X, i32 0, ...
1653            // At this point, we know that the cast source type is a pointer
1654            // to an array of the same type as the destination pointer
1655            // array.  Because the array type is never stepped over (there
1656            // is a leading zero) we can fold the cast into this GEP.
1657            if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1658              GEP.setOperand(0, StrippedPtr);
1659              GEP.setSourceElementType(XATy);
1660              return &GEP;
1661            }
1662            // Cannot replace the base pointer directly because StrippedPtr's
1663            // address space is different. Instead, create a new GEP followed by
1664            // an addrspacecast.
1665            // e.g.,
1666            // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1667            //   i32 0, ...
1668            // ->
1669            // %0 = GEP [10 x i8] addrspace(1)* X, ...
1670            // addrspacecast i8 addrspace(1)* %0 to i8*
1671            SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1672            Value *NewGEP = GEP.isInBounds()
1673                                ? Builder->CreateInBoundsGEP(
1674                                      nullptr, StrippedPtr, Idx, GEP.getName())
1675                                : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
1676                                                     GEP.getName());
1677            return new AddrSpaceCastInst(NewGEP, GEP.getType());
1678          }
1679        }
1680      }
1681    } else if (GEP.getNumOperands() == 2) {
1682      // Transform things like:
1683      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1684      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1685      Type *SrcElTy = StrippedPtrTy->getElementType();
1686      Type *ResElTy = GEP.getSourceElementType();
1687      if (SrcElTy->isArrayTy() &&
1688          DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1689              DL.getTypeAllocSize(ResElTy)) {
1690        Type *IdxType = DL.getIntPtrType(GEP.getType());
1691        Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1692        Value *NewGEP =
1693            GEP.isInBounds()
1694                ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1695                                             GEP.getName())
1696                : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1697
1698        // V and GEP are both pointer types --> BitCast
1699        return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1700                                                             GEP.getType());
1701      }
1702
1703      // Transform things like:
1704      // %V = mul i64 %N, 4
1705      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1706      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1707      if (ResElTy->isSized() && SrcElTy->isSized()) {
1708        // Check that changing the type amounts to dividing the index by a scale
1709        // factor.
1710        uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1711        uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
1712        if (ResSize && SrcSize % ResSize == 0) {
1713          Value *Idx = GEP.getOperand(1);
1714          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1715          uint64_t Scale = SrcSize / ResSize;
1716
1717          // Earlier transforms ensure that the index has type IntPtrType, which
1718          // considerably simplifies the logic by eliminating implicit casts.
1719          assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1720                 "Index not cast to pointer width?");
1721
1722          bool NSW;
1723          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1724            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1725            // If the multiplication NewIdx * Scale may overflow then the new
1726            // GEP may not be "inbounds".
1727            Value *NewGEP =
1728                GEP.isInBounds() && NSW
1729                    ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1730                                                 GEP.getName())
1731                    : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
1732                                         GEP.getName());
1733
1734            // The NewGEP must be pointer typed, so must the old one -> BitCast
1735            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1736                                                                 GEP.getType());
1737          }
1738        }
1739      }
1740
1741      // Similarly, transform things like:
1742      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1743      //   (where tmp = 8*tmp2) into:
1744      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1745      if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
1746        // Check that changing to the array element type amounts to dividing the
1747        // index by a scale factor.
1748        uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1749        uint64_t ArrayEltSize =
1750            DL.getTypeAllocSize(SrcElTy->getArrayElementType());
1751        if (ResSize && ArrayEltSize % ResSize == 0) {
1752          Value *Idx = GEP.getOperand(1);
1753          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1754          uint64_t Scale = ArrayEltSize / ResSize;
1755
1756          // Earlier transforms ensure that the index has type IntPtrType, which
1757          // considerably simplifies the logic by eliminating implicit casts.
1758          assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1759                 "Index not cast to pointer width?");
1760
1761          bool NSW;
1762          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1763            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1764            // If the multiplication NewIdx * Scale may overflow then the new
1765            // GEP may not be "inbounds".
1766            Value *Off[2] = {
1767                Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1768                NewIdx};
1769
1770            Value *NewGEP = GEP.isInBounds() && NSW
1771                                ? Builder->CreateInBoundsGEP(
1772                                      SrcElTy, StrippedPtr, Off, GEP.getName())
1773                                : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
1774                                                     GEP.getName());
1775            // The NewGEP must be pointer typed, so must the old one -> BitCast
1776            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1777                                                                 GEP.getType());
1778          }
1779        }
1780      }
1781    }
1782  }
1783
1784  // addrspacecast between types is canonicalized as a bitcast, then an
1785  // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1786  // through the addrspacecast.
1787  if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1788    //   X = bitcast A addrspace(1)* to B addrspace(1)*
1789    //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1790    //   Z = gep Y, <...constant indices...>
1791    // Into an addrspacecasted GEP of the struct.
1792    if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1793      PtrOp = BC;
1794  }
1795
1796  /// See if we can simplify:
1797  ///   X = bitcast A* to B*
1798  ///   Y = gep X, <...constant indices...>
1799  /// into a gep of the original struct.  This is important for SROA and alias
1800  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1801  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1802    Value *Operand = BCI->getOperand(0);
1803    PointerType *OpType = cast<PointerType>(Operand->getType());
1804    unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
1805    APInt Offset(OffsetBits, 0);
1806    if (!isa<BitCastInst>(Operand) &&
1807        GEP.accumulateConstantOffset(DL, Offset)) {
1808
1809      // If this GEP instruction doesn't move the pointer, just replace the GEP
1810      // with a bitcast of the real input to the dest type.
1811      if (!Offset) {
1812        // If the bitcast is of an allocation, and the allocation will be
1813        // converted to match the type of the cast, don't touch this.
1814        if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1815          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1816          if (Instruction *I = visitBitCast(*BCI)) {
1817            if (I != BCI) {
1818              I->takeName(BCI);
1819              BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
1820              replaceInstUsesWith(*BCI, I);
1821            }
1822            return &GEP;
1823          }
1824        }
1825
1826        if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1827          return new AddrSpaceCastInst(Operand, GEP.getType());
1828        return new BitCastInst(Operand, GEP.getType());
1829      }
1830
1831      // Otherwise, if the offset is non-zero, we need to find out if there is a
1832      // field at Offset in 'A's type.  If so, we can pull the cast through the
1833      // GEP.
1834      SmallVector<Value*, 8> NewIndices;
1835      if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1836        Value *NGEP =
1837            GEP.isInBounds()
1838                ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
1839                : Builder->CreateGEP(nullptr, Operand, NewIndices);
1840
1841        if (NGEP->getType() == GEP.getType())
1842          return replaceInstUsesWith(GEP, NGEP);
1843        NGEP->takeName(&GEP);
1844
1845        if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1846          return new AddrSpaceCastInst(NGEP, GEP.getType());
1847        return new BitCastInst(NGEP, GEP.getType());
1848      }
1849    }
1850  }
1851
1852  return nullptr;
1853}
1854
1855static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
1856                                         Instruction *AI) {
1857  if (isa<ConstantPointerNull>(V))
1858    return true;
1859  if (auto *LI = dyn_cast<LoadInst>(V))
1860    return isa<GlobalVariable>(LI->getPointerOperand());
1861  // Two distinct allocations will never be equal.
1862  // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
1863  // through bitcasts of V can cause
1864  // the result statement below to be true, even when AI and V (ex:
1865  // i8* ->i32* ->i8* of AI) are the same allocations.
1866  return isAllocLikeFn(V, TLI) && V != AI;
1867}
1868
1869static bool
1870isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1871                     const TargetLibraryInfo *TLI) {
1872  SmallVector<Instruction*, 4> Worklist;
1873  Worklist.push_back(AI);
1874
1875  do {
1876    Instruction *PI = Worklist.pop_back_val();
1877    for (User *U : PI->users()) {
1878      Instruction *I = cast<Instruction>(U);
1879      switch (I->getOpcode()) {
1880      default:
1881        // Give up the moment we see something we can't handle.
1882        return false;
1883
1884      case Instruction::BitCast:
1885      case Instruction::GetElementPtr:
1886        Users.emplace_back(I);
1887        Worklist.push_back(I);
1888        continue;
1889
1890      case Instruction::ICmp: {
1891        ICmpInst *ICI = cast<ICmpInst>(I);
1892        // We can fold eq/ne comparisons with null to false/true, respectively.
1893        // We also fold comparisons in some conditions provided the alloc has
1894        // not escaped (see isNeverEqualToUnescapedAlloc).
1895        if (!ICI->isEquality())
1896          return false;
1897        unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
1898        if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
1899          return false;
1900        Users.emplace_back(I);
1901        continue;
1902      }
1903
1904      case Instruction::Call:
1905        // Ignore no-op and store intrinsics.
1906        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1907          switch (II->getIntrinsicID()) {
1908          default:
1909            return false;
1910
1911          case Intrinsic::memmove:
1912          case Intrinsic::memcpy:
1913          case Intrinsic::memset: {
1914            MemIntrinsic *MI = cast<MemIntrinsic>(II);
1915            if (MI->isVolatile() || MI->getRawDest() != PI)
1916              return false;
1917          }
1918          // fall through
1919          case Intrinsic::dbg_declare:
1920          case Intrinsic::dbg_value:
1921          case Intrinsic::invariant_start:
1922          case Intrinsic::invariant_end:
1923          case Intrinsic::lifetime_start:
1924          case Intrinsic::lifetime_end:
1925          case Intrinsic::objectsize:
1926            Users.emplace_back(I);
1927            continue;
1928          }
1929        }
1930
1931        if (isFreeCall(I, TLI)) {
1932          Users.emplace_back(I);
1933          continue;
1934        }
1935        return false;
1936
1937      case Instruction::Store: {
1938        StoreInst *SI = cast<StoreInst>(I);
1939        if (SI->isVolatile() || SI->getPointerOperand() != PI)
1940          return false;
1941        Users.emplace_back(I);
1942        continue;
1943      }
1944      }
1945      llvm_unreachable("missing a return?");
1946    }
1947  } while (!Worklist.empty());
1948  return true;
1949}
1950
1951Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1952  // If we have a malloc call which is only used in any amount of comparisons
1953  // to null and free calls, delete the calls and replace the comparisons with
1954  // true or false as appropriate.
1955  SmallVector<WeakVH, 64> Users;
1956  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1957    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1958      // Lowering all @llvm.objectsize calls first because they may
1959      // use a bitcast/GEP of the alloca we are removing.
1960      if (!Users[i])
1961       continue;
1962
1963      Instruction *I = cast<Instruction>(&*Users[i]);
1964
1965      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1966        if (II->getIntrinsicID() == Intrinsic::objectsize) {
1967          uint64_t Size;
1968          if (!getObjectSize(II->getArgOperand(0), Size, DL, TLI)) {
1969            ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1970            Size = CI->isZero() ? -1ULL : 0;
1971          }
1972          replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size));
1973          eraseInstFromFunction(*I);
1974          Users[i] = nullptr; // Skip examining in the next loop.
1975        }
1976      }
1977    }
1978    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1979      if (!Users[i])
1980        continue;
1981
1982      Instruction *I = cast<Instruction>(&*Users[i]);
1983
1984      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1985        replaceInstUsesWith(*C,
1986                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1987                                             C->isFalseWhenEqual()));
1988      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1989        replaceInstUsesWith(*I, UndefValue::get(I->getType()));
1990      }
1991      eraseInstFromFunction(*I);
1992    }
1993
1994    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1995      // Replace invoke with a NOP intrinsic to maintain the original CFG
1996      Module *M = II->getModule();
1997      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1998      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1999                         None, "", II->getParent());
2000    }
2001    return eraseInstFromFunction(MI);
2002  }
2003  return nullptr;
2004}
2005
2006/// \brief Move the call to free before a NULL test.
2007///
2008/// Check if this free is accessed after its argument has been test
2009/// against NULL (property 0).
2010/// If yes, it is legal to move this call in its predecessor block.
2011///
2012/// The move is performed only if the block containing the call to free
2013/// will be removed, i.e.:
2014/// 1. it has only one predecessor P, and P has two successors
2015/// 2. it contains the call and an unconditional branch
2016/// 3. its successor is the same as its predecessor's successor
2017///
2018/// The profitability is out-of concern here and this function should
2019/// be called only if the caller knows this transformation would be
2020/// profitable (e.g., for code size).
2021static Instruction *
2022tryToMoveFreeBeforeNullTest(CallInst &FI) {
2023  Value *Op = FI.getArgOperand(0);
2024  BasicBlock *FreeInstrBB = FI.getParent();
2025  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2026
2027  // Validate part of constraint #1: Only one predecessor
2028  // FIXME: We can extend the number of predecessor, but in that case, we
2029  //        would duplicate the call to free in each predecessor and it may
2030  //        not be profitable even for code size.
2031  if (!PredBB)
2032    return nullptr;
2033
2034  // Validate constraint #2: Does this block contains only the call to
2035  //                         free and an unconditional branch?
2036  // FIXME: We could check if we can speculate everything in the
2037  //        predecessor block
2038  if (FreeInstrBB->size() != 2)
2039    return nullptr;
2040  BasicBlock *SuccBB;
2041  if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
2042    return nullptr;
2043
2044  // Validate the rest of constraint #1 by matching on the pred branch.
2045  TerminatorInst *TI = PredBB->getTerminator();
2046  BasicBlock *TrueBB, *FalseBB;
2047  ICmpInst::Predicate Pred;
2048  if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
2049    return nullptr;
2050  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2051    return nullptr;
2052
2053  // Validate constraint #3: Ensure the null case just falls through.
2054  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2055    return nullptr;
2056  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2057         "Broken CFG: missing edge from predecessor to successor");
2058
2059  FI.moveBefore(TI);
2060  return &FI;
2061}
2062
2063
2064Instruction *InstCombiner::visitFree(CallInst &FI) {
2065  Value *Op = FI.getArgOperand(0);
2066
2067  // free undef -> unreachable.
2068  if (isa<UndefValue>(Op)) {
2069    // Insert a new store to null because we cannot modify the CFG here.
2070    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
2071                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2072    return eraseInstFromFunction(FI);
2073  }
2074
2075  // If we have 'free null' delete the instruction.  This can happen in stl code
2076  // when lots of inlining happens.
2077  if (isa<ConstantPointerNull>(Op))
2078    return eraseInstFromFunction(FI);
2079
2080  // If we optimize for code size, try to move the call to free before the null
2081  // test so that simplify cfg can remove the empty block and dead code
2082  // elimination the branch. I.e., helps to turn something like:
2083  // if (foo) free(foo);
2084  // into
2085  // free(foo);
2086  if (MinimizeSize)
2087    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2088      return I;
2089
2090  return nullptr;
2091}
2092
2093Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2094  if (RI.getNumOperands() == 0) // ret void
2095    return nullptr;
2096
2097  Value *ResultOp = RI.getOperand(0);
2098  Type *VTy = ResultOp->getType();
2099  if (!VTy->isIntegerTy())
2100    return nullptr;
2101
2102  // There might be assume intrinsics dominating this return that completely
2103  // determine the value. If so, constant fold it.
2104  unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2105  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2106  computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2107  if ((KnownZero|KnownOne).isAllOnesValue())
2108    RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2109
2110  return nullptr;
2111}
2112
2113Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2114  // Change br (not X), label True, label False to: br X, label False, True
2115  Value *X = nullptr;
2116  BasicBlock *TrueDest;
2117  BasicBlock *FalseDest;
2118  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2119      !isa<Constant>(X)) {
2120    // Swap Destinations and condition...
2121    BI.setCondition(X);
2122    BI.swapSuccessors();
2123    return &BI;
2124  }
2125
2126  // If the condition is irrelevant, remove the use so that other
2127  // transforms on the condition become more effective.
2128  if (BI.isConditional() &&
2129      BI.getSuccessor(0) == BI.getSuccessor(1) &&
2130      !isa<UndefValue>(BI.getCondition())) {
2131    BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2132    return &BI;
2133  }
2134
2135  // Canonicalize fcmp_one -> fcmp_oeq
2136  FCmpInst::Predicate FPred; Value *Y;
2137  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2138                             TrueDest, FalseDest)) &&
2139      BI.getCondition()->hasOneUse())
2140    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2141        FPred == FCmpInst::FCMP_OGE) {
2142      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2143      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2144
2145      // Swap Destinations and condition.
2146      BI.swapSuccessors();
2147      Worklist.Add(Cond);
2148      return &BI;
2149    }
2150
2151  // Canonicalize icmp_ne -> icmp_eq
2152  ICmpInst::Predicate IPred;
2153  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2154                      TrueDest, FalseDest)) &&
2155      BI.getCondition()->hasOneUse())
2156    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
2157        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2158        IPred == ICmpInst::ICMP_SGE) {
2159      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2160      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2161      // Swap Destinations and condition.
2162      BI.swapSuccessors();
2163      Worklist.Add(Cond);
2164      return &BI;
2165    }
2166
2167  return nullptr;
2168}
2169
2170Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2171  Value *Cond = SI.getCondition();
2172  unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2173  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2174  computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
2175  unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2176  unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2177
2178  // Compute the number of leading bits we can ignore.
2179  // TODO: A better way to determine this would use ComputeNumSignBits().
2180  for (auto &C : SI.cases()) {
2181    LeadingKnownZeros = std::min(
2182        LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2183    LeadingKnownOnes = std::min(
2184        LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2185  }
2186
2187  unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2188
2189  // Shrink the condition operand if the new type is smaller than the old type.
2190  // This may produce a non-standard type for the switch, but that's ok because
2191  // the backend should extend back to a legal type for the target.
2192  bool TruncCond = false;
2193  if (NewWidth > 0 && NewWidth < BitWidth) {
2194    TruncCond = true;
2195    IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2196    Builder->SetInsertPoint(&SI);
2197    Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
2198    SI.setCondition(NewCond);
2199
2200    for (auto &C : SI.cases())
2201      static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2202          SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2203  }
2204
2205  ConstantInt *AddRHS = nullptr;
2206  if (match(Cond, m_Add(m_Value(), m_ConstantInt(AddRHS)))) {
2207    Instruction *I = cast<Instruction>(Cond);
2208    // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2209    for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e;
2210         ++i) {
2211      ConstantInt *CaseVal = i.getCaseValue();
2212      Constant *LHS = CaseVal;
2213      if (TruncCond) {
2214        LHS = LeadingKnownZeros
2215                  ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2216                  : ConstantExpr::getSExt(CaseVal, Cond->getType());
2217      }
2218      Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
2219      assert(isa<ConstantInt>(NewCaseVal) &&
2220             "Result of expression should be constant");
2221      i.setValue(cast<ConstantInt>(NewCaseVal));
2222    }
2223    SI.setCondition(I->getOperand(0));
2224    Worklist.Add(I);
2225    return &SI;
2226  }
2227
2228  return TruncCond ? &SI : nullptr;
2229}
2230
2231Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2232  Value *Agg = EV.getAggregateOperand();
2233
2234  if (!EV.hasIndices())
2235    return replaceInstUsesWith(EV, Agg);
2236
2237  if (Value *V =
2238          SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC))
2239    return replaceInstUsesWith(EV, V);
2240
2241  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2242    // We're extracting from an insertvalue instruction, compare the indices
2243    const unsigned *exti, *exte, *insi, *inse;
2244    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2245         exte = EV.idx_end(), inse = IV->idx_end();
2246         exti != exte && insi != inse;
2247         ++exti, ++insi) {
2248      if (*insi != *exti)
2249        // The insert and extract both reference distinctly different elements.
2250        // This means the extract is not influenced by the insert, and we can
2251        // replace the aggregate operand of the extract with the aggregate
2252        // operand of the insert. i.e., replace
2253        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2254        // %E = extractvalue { i32, { i32 } } %I, 0
2255        // with
2256        // %E = extractvalue { i32, { i32 } } %A, 0
2257        return ExtractValueInst::Create(IV->getAggregateOperand(),
2258                                        EV.getIndices());
2259    }
2260    if (exti == exte && insi == inse)
2261      // Both iterators are at the end: Index lists are identical. Replace
2262      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2263      // %C = extractvalue { i32, { i32 } } %B, 1, 0
2264      // with "i32 42"
2265      return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2266    if (exti == exte) {
2267      // The extract list is a prefix of the insert list. i.e. replace
2268      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2269      // %E = extractvalue { i32, { i32 } } %I, 1
2270      // with
2271      // %X = extractvalue { i32, { i32 } } %A, 1
2272      // %E = insertvalue { i32 } %X, i32 42, 0
2273      // by switching the order of the insert and extract (though the
2274      // insertvalue should be left in, since it may have other uses).
2275      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2276                                                 EV.getIndices());
2277      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2278                                     makeArrayRef(insi, inse));
2279    }
2280    if (insi == inse)
2281      // The insert list is a prefix of the extract list
2282      // We can simply remove the common indices from the extract and make it
2283      // operate on the inserted value instead of the insertvalue result.
2284      // i.e., replace
2285      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2286      // %E = extractvalue { i32, { i32 } } %I, 1, 0
2287      // with
2288      // %E extractvalue { i32 } { i32 42 }, 0
2289      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2290                                      makeArrayRef(exti, exte));
2291  }
2292  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2293    // We're extracting from an intrinsic, see if we're the only user, which
2294    // allows us to simplify multiple result intrinsics to simpler things that
2295    // just get one value.
2296    if (II->hasOneUse()) {
2297      // Check if we're grabbing the overflow bit or the result of a 'with
2298      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
2299      // and replace it with a traditional binary instruction.
2300      switch (II->getIntrinsicID()) {
2301      case Intrinsic::uadd_with_overflow:
2302      case Intrinsic::sadd_with_overflow:
2303        if (*EV.idx_begin() == 0) {  // Normal result.
2304          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2305          replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2306          eraseInstFromFunction(*II);
2307          return BinaryOperator::CreateAdd(LHS, RHS);
2308        }
2309
2310        // If the normal result of the add is dead, and the RHS is a constant,
2311        // we can transform this into a range comparison.
2312        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2313        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2314          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2315            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2316                                ConstantExpr::getNot(CI));
2317        break;
2318      case Intrinsic::usub_with_overflow:
2319      case Intrinsic::ssub_with_overflow:
2320        if (*EV.idx_begin() == 0) {  // Normal result.
2321          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2322          replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2323          eraseInstFromFunction(*II);
2324          return BinaryOperator::CreateSub(LHS, RHS);
2325        }
2326        break;
2327      case Intrinsic::umul_with_overflow:
2328      case Intrinsic::smul_with_overflow:
2329        if (*EV.idx_begin() == 0) {  // Normal result.
2330          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2331          replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2332          eraseInstFromFunction(*II);
2333          return BinaryOperator::CreateMul(LHS, RHS);
2334        }
2335        break;
2336      default:
2337        break;
2338      }
2339    }
2340  }
2341  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2342    // If the (non-volatile) load only has one use, we can rewrite this to a
2343    // load from a GEP. This reduces the size of the load. If a load is used
2344    // only by extractvalue instructions then this either must have been
2345    // optimized before, or it is a struct with padding, in which case we
2346    // don't want to do the transformation as it loses padding knowledge.
2347    if (L->isSimple() && L->hasOneUse()) {
2348      // extractvalue has integer indices, getelementptr has Value*s. Convert.
2349      SmallVector<Value*, 4> Indices;
2350      // Prefix an i32 0 since we need the first element.
2351      Indices.push_back(Builder->getInt32(0));
2352      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2353            I != E; ++I)
2354        Indices.push_back(Builder->getInt32(*I));
2355
2356      // We need to insert these at the location of the old load, not at that of
2357      // the extractvalue.
2358      Builder->SetInsertPoint(L);
2359      Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
2360                                              L->getPointerOperand(), Indices);
2361      // Returning the load directly will cause the main loop to insert it in
2362      // the wrong spot, so use replaceInstUsesWith().
2363      return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2364    }
2365  // We could simplify extracts from other values. Note that nested extracts may
2366  // already be simplified implicitly by the above: extract (extract (insert) )
2367  // will be translated into extract ( insert ( extract ) ) first and then just
2368  // the value inserted, if appropriate. Similarly for extracts from single-use
2369  // loads: extract (extract (load)) will be translated to extract (load (gep))
2370  // and if again single-use then via load (gep (gep)) to load (gep).
2371  // However, double extracts from e.g. function arguments or return values
2372  // aren't handled yet.
2373  return nullptr;
2374}
2375
2376/// Return 'true' if the given typeinfo will match anything.
2377static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2378  switch (Personality) {
2379  case EHPersonality::GNU_C:
2380  case EHPersonality::GNU_C_SjLj:
2381  case EHPersonality::Rust:
2382    // The GCC C EH and Rust personality only exists to support cleanups, so
2383    // it's not clear what the semantics of catch clauses are.
2384    return false;
2385  case EHPersonality::Unknown:
2386    return false;
2387  case EHPersonality::GNU_Ada:
2388    // While __gnat_all_others_value will match any Ada exception, it doesn't
2389    // match foreign exceptions (or didn't, before gcc-4.7).
2390    return false;
2391  case EHPersonality::GNU_CXX:
2392  case EHPersonality::GNU_CXX_SjLj:
2393  case EHPersonality::GNU_ObjC:
2394  case EHPersonality::MSVC_X86SEH:
2395  case EHPersonality::MSVC_Win64SEH:
2396  case EHPersonality::MSVC_CXX:
2397  case EHPersonality::CoreCLR:
2398    return TypeInfo->isNullValue();
2399  }
2400  llvm_unreachable("invalid enum");
2401}
2402
2403static bool shorter_filter(const Value *LHS, const Value *RHS) {
2404  return
2405    cast<ArrayType>(LHS->getType())->getNumElements()
2406  <
2407    cast<ArrayType>(RHS->getType())->getNumElements();
2408}
2409
2410Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2411  // The logic here should be correct for any real-world personality function.
2412  // However if that turns out not to be true, the offending logic can always
2413  // be conditioned on the personality function, like the catch-all logic is.
2414  EHPersonality Personality =
2415      classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2416
2417  // Simplify the list of clauses, eg by removing repeated catch clauses
2418  // (these are often created by inlining).
2419  bool MakeNewInstruction = false; // If true, recreate using the following:
2420  SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2421  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2422
2423  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2424  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2425    bool isLastClause = i + 1 == e;
2426    if (LI.isCatch(i)) {
2427      // A catch clause.
2428      Constant *CatchClause = LI.getClause(i);
2429      Constant *TypeInfo = CatchClause->stripPointerCasts();
2430
2431      // If we already saw this clause, there is no point in having a second
2432      // copy of it.
2433      if (AlreadyCaught.insert(TypeInfo).second) {
2434        // This catch clause was not already seen.
2435        NewClauses.push_back(CatchClause);
2436      } else {
2437        // Repeated catch clause - drop the redundant copy.
2438        MakeNewInstruction = true;
2439      }
2440
2441      // If this is a catch-all then there is no point in keeping any following
2442      // clauses or marking the landingpad as having a cleanup.
2443      if (isCatchAll(Personality, TypeInfo)) {
2444        if (!isLastClause)
2445          MakeNewInstruction = true;
2446        CleanupFlag = false;
2447        break;
2448      }
2449    } else {
2450      // A filter clause.  If any of the filter elements were already caught
2451      // then they can be dropped from the filter.  It is tempting to try to
2452      // exploit the filter further by saying that any typeinfo that does not
2453      // occur in the filter can't be caught later (and thus can be dropped).
2454      // However this would be wrong, since typeinfos can match without being
2455      // equal (for example if one represents a C++ class, and the other some
2456      // class derived from it).
2457      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2458      Constant *FilterClause = LI.getClause(i);
2459      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2460      unsigned NumTypeInfos = FilterType->getNumElements();
2461
2462      // An empty filter catches everything, so there is no point in keeping any
2463      // following clauses or marking the landingpad as having a cleanup.  By
2464      // dealing with this case here the following code is made a bit simpler.
2465      if (!NumTypeInfos) {
2466        NewClauses.push_back(FilterClause);
2467        if (!isLastClause)
2468          MakeNewInstruction = true;
2469        CleanupFlag = false;
2470        break;
2471      }
2472
2473      bool MakeNewFilter = false; // If true, make a new filter.
2474      SmallVector<Constant *, 16> NewFilterElts; // New elements.
2475      if (isa<ConstantAggregateZero>(FilterClause)) {
2476        // Not an empty filter - it contains at least one null typeinfo.
2477        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2478        Constant *TypeInfo =
2479          Constant::getNullValue(FilterType->getElementType());
2480        // If this typeinfo is a catch-all then the filter can never match.
2481        if (isCatchAll(Personality, TypeInfo)) {
2482          // Throw the filter away.
2483          MakeNewInstruction = true;
2484          continue;
2485        }
2486
2487        // There is no point in having multiple copies of this typeinfo, so
2488        // discard all but the first copy if there is more than one.
2489        NewFilterElts.push_back(TypeInfo);
2490        if (NumTypeInfos > 1)
2491          MakeNewFilter = true;
2492      } else {
2493        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2494        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2495        NewFilterElts.reserve(NumTypeInfos);
2496
2497        // Remove any filter elements that were already caught or that already
2498        // occurred in the filter.  While there, see if any of the elements are
2499        // catch-alls.  If so, the filter can be discarded.
2500        bool SawCatchAll = false;
2501        for (unsigned j = 0; j != NumTypeInfos; ++j) {
2502          Constant *Elt = Filter->getOperand(j);
2503          Constant *TypeInfo = Elt->stripPointerCasts();
2504          if (isCatchAll(Personality, TypeInfo)) {
2505            // This element is a catch-all.  Bail out, noting this fact.
2506            SawCatchAll = true;
2507            break;
2508          }
2509
2510          // Even if we've seen a type in a catch clause, we don't want to
2511          // remove it from the filter.  An unexpected type handler may be
2512          // set up for a call site which throws an exception of the same
2513          // type caught.  In order for the exception thrown by the unexpected
2514          // handler to propogate correctly, the filter must be correctly
2515          // described for the call site.
2516          //
2517          // Example:
2518          //
2519          // void unexpected() { throw 1;}
2520          // void foo() throw (int) {
2521          //   std::set_unexpected(unexpected);
2522          //   try {
2523          //     throw 2.0;
2524          //   } catch (int i) {}
2525          // }
2526
2527          // There is no point in having multiple copies of the same typeinfo in
2528          // a filter, so only add it if we didn't already.
2529          if (SeenInFilter.insert(TypeInfo).second)
2530            NewFilterElts.push_back(cast<Constant>(Elt));
2531        }
2532        // A filter containing a catch-all cannot match anything by definition.
2533        if (SawCatchAll) {
2534          // Throw the filter away.
2535          MakeNewInstruction = true;
2536          continue;
2537        }
2538
2539        // If we dropped something from the filter, make a new one.
2540        if (NewFilterElts.size() < NumTypeInfos)
2541          MakeNewFilter = true;
2542      }
2543      if (MakeNewFilter) {
2544        FilterType = ArrayType::get(FilterType->getElementType(),
2545                                    NewFilterElts.size());
2546        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2547        MakeNewInstruction = true;
2548      }
2549
2550      NewClauses.push_back(FilterClause);
2551
2552      // If the new filter is empty then it will catch everything so there is
2553      // no point in keeping any following clauses or marking the landingpad
2554      // as having a cleanup.  The case of the original filter being empty was
2555      // already handled above.
2556      if (MakeNewFilter && !NewFilterElts.size()) {
2557        assert(MakeNewInstruction && "New filter but not a new instruction!");
2558        CleanupFlag = false;
2559        break;
2560      }
2561    }
2562  }
2563
2564  // If several filters occur in a row then reorder them so that the shortest
2565  // filters come first (those with the smallest number of elements).  This is
2566  // advantageous because shorter filters are more likely to match, speeding up
2567  // unwinding, but mostly because it increases the effectiveness of the other
2568  // filter optimizations below.
2569  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2570    unsigned j;
2571    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2572    for (j = i; j != e; ++j)
2573      if (!isa<ArrayType>(NewClauses[j]->getType()))
2574        break;
2575
2576    // Check whether the filters are already sorted by length.  We need to know
2577    // if sorting them is actually going to do anything so that we only make a
2578    // new landingpad instruction if it does.
2579    for (unsigned k = i; k + 1 < j; ++k)
2580      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2581        // Not sorted, so sort the filters now.  Doing an unstable sort would be
2582        // correct too but reordering filters pointlessly might confuse users.
2583        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2584                         shorter_filter);
2585        MakeNewInstruction = true;
2586        break;
2587      }
2588
2589    // Look for the next batch of filters.
2590    i = j + 1;
2591  }
2592
2593  // If typeinfos matched if and only if equal, then the elements of a filter L
2594  // that occurs later than a filter F could be replaced by the intersection of
2595  // the elements of F and L.  In reality two typeinfos can match without being
2596  // equal (for example if one represents a C++ class, and the other some class
2597  // derived from it) so it would be wrong to perform this transform in general.
2598  // However the transform is correct and useful if F is a subset of L.  In that
2599  // case L can be replaced by F, and thus removed altogether since repeating a
2600  // filter is pointless.  So here we look at all pairs of filters F and L where
2601  // L follows F in the list of clauses, and remove L if every element of F is
2602  // an element of L.  This can occur when inlining C++ functions with exception
2603  // specifications.
2604  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2605    // Examine each filter in turn.
2606    Value *Filter = NewClauses[i];
2607    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2608    if (!FTy)
2609      // Not a filter - skip it.
2610      continue;
2611    unsigned FElts = FTy->getNumElements();
2612    // Examine each filter following this one.  Doing this backwards means that
2613    // we don't have to worry about filters disappearing under us when removed.
2614    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2615      Value *LFilter = NewClauses[j];
2616      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2617      if (!LTy)
2618        // Not a filter - skip it.
2619        continue;
2620      // If Filter is a subset of LFilter, i.e. every element of Filter is also
2621      // an element of LFilter, then discard LFilter.
2622      SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2623      // If Filter is empty then it is a subset of LFilter.
2624      if (!FElts) {
2625        // Discard LFilter.
2626        NewClauses.erase(J);
2627        MakeNewInstruction = true;
2628        // Move on to the next filter.
2629        continue;
2630      }
2631      unsigned LElts = LTy->getNumElements();
2632      // If Filter is longer than LFilter then it cannot be a subset of it.
2633      if (FElts > LElts)
2634        // Move on to the next filter.
2635        continue;
2636      // At this point we know that LFilter has at least one element.
2637      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2638        // Filter is a subset of LFilter iff Filter contains only zeros (as we
2639        // already know that Filter is not longer than LFilter).
2640        if (isa<ConstantAggregateZero>(Filter)) {
2641          assert(FElts <= LElts && "Should have handled this case earlier!");
2642          // Discard LFilter.
2643          NewClauses.erase(J);
2644          MakeNewInstruction = true;
2645        }
2646        // Move on to the next filter.
2647        continue;
2648      }
2649      ConstantArray *LArray = cast<ConstantArray>(LFilter);
2650      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2651        // Since Filter is non-empty and contains only zeros, it is a subset of
2652        // LFilter iff LFilter contains a zero.
2653        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2654        for (unsigned l = 0; l != LElts; ++l)
2655          if (LArray->getOperand(l)->isNullValue()) {
2656            // LFilter contains a zero - discard it.
2657            NewClauses.erase(J);
2658            MakeNewInstruction = true;
2659            break;
2660          }
2661        // Move on to the next filter.
2662        continue;
2663      }
2664      // At this point we know that both filters are ConstantArrays.  Loop over
2665      // operands to see whether every element of Filter is also an element of
2666      // LFilter.  Since filters tend to be short this is probably faster than
2667      // using a method that scales nicely.
2668      ConstantArray *FArray = cast<ConstantArray>(Filter);
2669      bool AllFound = true;
2670      for (unsigned f = 0; f != FElts; ++f) {
2671        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2672        AllFound = false;
2673        for (unsigned l = 0; l != LElts; ++l) {
2674          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2675          if (LTypeInfo == FTypeInfo) {
2676            AllFound = true;
2677            break;
2678          }
2679        }
2680        if (!AllFound)
2681          break;
2682      }
2683      if (AllFound) {
2684        // Discard LFilter.
2685        NewClauses.erase(J);
2686        MakeNewInstruction = true;
2687      }
2688      // Move on to the next filter.
2689    }
2690  }
2691
2692  // If we changed any of the clauses, replace the old landingpad instruction
2693  // with a new one.
2694  if (MakeNewInstruction) {
2695    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2696                                                 NewClauses.size());
2697    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2698      NLI->addClause(NewClauses[i]);
2699    // A landing pad with no clauses must have the cleanup flag set.  It is
2700    // theoretically possible, though highly unlikely, that we eliminated all
2701    // clauses.  If so, force the cleanup flag to true.
2702    if (NewClauses.empty())
2703      CleanupFlag = true;
2704    NLI->setCleanup(CleanupFlag);
2705    return NLI;
2706  }
2707
2708  // Even if none of the clauses changed, we may nonetheless have understood
2709  // that the cleanup flag is pointless.  Clear it if so.
2710  if (LI.isCleanup() != CleanupFlag) {
2711    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2712    LI.setCleanup(CleanupFlag);
2713    return &LI;
2714  }
2715
2716  return nullptr;
2717}
2718
2719/// Try to move the specified instruction from its current block into the
2720/// beginning of DestBlock, which can only happen if it's safe to move the
2721/// instruction past all of the instructions between it and the end of its
2722/// block.
2723static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2724  assert(I->hasOneUse() && "Invariants didn't hold!");
2725
2726  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2727  if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
2728      isa<TerminatorInst>(I))
2729    return false;
2730
2731  // Do not sink alloca instructions out of the entry block.
2732  if (isa<AllocaInst>(I) && I->getParent() ==
2733        &DestBlock->getParent()->getEntryBlock())
2734    return false;
2735
2736  // Do not sink into catchswitch blocks.
2737  if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
2738    return false;
2739
2740  // Do not sink convergent call instructions.
2741  if (auto *CI = dyn_cast<CallInst>(I)) {
2742    if (CI->isConvergent())
2743      return false;
2744  }
2745  // We can only sink load instructions if there is nothing between the load and
2746  // the end of block that could change the value.
2747  if (I->mayReadFromMemory()) {
2748    for (BasicBlock::iterator Scan = I->getIterator(),
2749                              E = I->getParent()->end();
2750         Scan != E; ++Scan)
2751      if (Scan->mayWriteToMemory())
2752        return false;
2753  }
2754
2755  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2756  I->moveBefore(&*InsertPos);
2757  ++NumSunkInst;
2758  return true;
2759}
2760
2761bool InstCombiner::run() {
2762  while (!Worklist.isEmpty()) {
2763    Instruction *I = Worklist.RemoveOne();
2764    if (I == nullptr) continue;  // skip null values.
2765
2766    // Check to see if we can DCE the instruction.
2767    if (isInstructionTriviallyDead(I, TLI)) {
2768      DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2769      eraseInstFromFunction(*I);
2770      ++NumDeadInst;
2771      MadeIRChange = true;
2772      continue;
2773    }
2774
2775    // Instruction isn't dead, see if we can constant propagate it.
2776    if (!I->use_empty() &&
2777        (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
2778      if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2779        DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2780
2781        // Add operands to the worklist.
2782        replaceInstUsesWith(*I, C);
2783        ++NumConstProp;
2784        eraseInstFromFunction(*I);
2785        MadeIRChange = true;
2786        continue;
2787      }
2788    }
2789
2790    // In general, it is possible for computeKnownBits to determine all bits in
2791    // a value even when the operands are not all constants.
2792    if (ExpensiveCombines && !I->use_empty() && I->getType()->isIntegerTy()) {
2793      unsigned BitWidth = I->getType()->getScalarSizeInBits();
2794      APInt KnownZero(BitWidth, 0);
2795      APInt KnownOne(BitWidth, 0);
2796      computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
2797      if ((KnownZero | KnownOne).isAllOnesValue()) {
2798        Constant *C = ConstantInt::get(I->getContext(), KnownOne);
2799        DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
2800                        " from: " << *I << '\n');
2801
2802        // Add operands to the worklist.
2803        replaceInstUsesWith(*I, C);
2804        ++NumConstProp;
2805        eraseInstFromFunction(*I);
2806        MadeIRChange = true;
2807        continue;
2808      }
2809    }
2810
2811    // See if we can trivially sink this instruction to a successor basic block.
2812    if (I->hasOneUse()) {
2813      BasicBlock *BB = I->getParent();
2814      Instruction *UserInst = cast<Instruction>(*I->user_begin());
2815      BasicBlock *UserParent;
2816
2817      // Get the block the use occurs in.
2818      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2819        UserParent = PN->getIncomingBlock(*I->use_begin());
2820      else
2821        UserParent = UserInst->getParent();
2822
2823      if (UserParent != BB) {
2824        bool UserIsSuccessor = false;
2825        // See if the user is one of our successors.
2826        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2827          if (*SI == UserParent) {
2828            UserIsSuccessor = true;
2829            break;
2830          }
2831
2832        // If the user is one of our immediate successors, and if that successor
2833        // only has us as a predecessors (we'd have to split the critical edge
2834        // otherwise), we can keep going.
2835        if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
2836          // Okay, the CFG is simple enough, try to sink this instruction.
2837          if (TryToSinkInstruction(I, UserParent)) {
2838            DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
2839            MadeIRChange = true;
2840            // We'll add uses of the sunk instruction below, but since sinking
2841            // can expose opportunities for it's *operands* add them to the
2842            // worklist
2843            for (Use &U : I->operands())
2844              if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2845                Worklist.Add(OpI);
2846          }
2847        }
2848      }
2849    }
2850
2851    // Now that we have an instruction, try combining it to simplify it.
2852    Builder->SetInsertPoint(I);
2853    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2854
2855#ifndef NDEBUG
2856    std::string OrigI;
2857#endif
2858    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2859    DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2860
2861    if (Instruction *Result = visit(*I)) {
2862      ++NumCombined;
2863      // Should we replace the old instruction with a new one?
2864      if (Result != I) {
2865        DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2866                     << "    New = " << *Result << '\n');
2867
2868        if (I->getDebugLoc())
2869          Result->setDebugLoc(I->getDebugLoc());
2870        // Everything uses the new instruction now.
2871        I->replaceAllUsesWith(Result);
2872
2873        // Move the name to the new instruction first.
2874        Result->takeName(I);
2875
2876        // Push the new instruction and any users onto the worklist.
2877        Worklist.Add(Result);
2878        Worklist.AddUsersToWorkList(*Result);
2879
2880        // Insert the new instruction into the basic block...
2881        BasicBlock *InstParent = I->getParent();
2882        BasicBlock::iterator InsertPos = I->getIterator();
2883
2884        // If we replace a PHI with something that isn't a PHI, fix up the
2885        // insertion point.
2886        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2887          InsertPos = InstParent->getFirstInsertionPt();
2888
2889        InstParent->getInstList().insert(InsertPos, Result);
2890
2891        eraseInstFromFunction(*I);
2892      } else {
2893#ifndef NDEBUG
2894        DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2895                     << "    New = " << *I << '\n');
2896#endif
2897
2898        // If the instruction was modified, it's possible that it is now dead.
2899        // if so, remove it.
2900        if (isInstructionTriviallyDead(I, TLI)) {
2901          eraseInstFromFunction(*I);
2902        } else {
2903          Worklist.Add(I);
2904          Worklist.AddUsersToWorkList(*I);
2905        }
2906      }
2907      MadeIRChange = true;
2908    }
2909  }
2910
2911  Worklist.Zap();
2912  return MadeIRChange;
2913}
2914
2915/// Walk the function in depth-first order, adding all reachable code to the
2916/// worklist.
2917///
2918/// This has a couple of tricks to make the code faster and more powerful.  In
2919/// particular, we constant fold and DCE instructions as we go, to avoid adding
2920/// them to the worklist (this significantly speeds up instcombine on code where
2921/// many instructions are dead or constant).  Additionally, if we find a branch
2922/// whose condition is a known constant, we only visit the reachable successors.
2923///
2924static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2925                                       SmallPtrSetImpl<BasicBlock *> &Visited,
2926                                       InstCombineWorklist &ICWorklist,
2927                                       const TargetLibraryInfo *TLI) {
2928  bool MadeIRChange = false;
2929  SmallVector<BasicBlock*, 256> Worklist;
2930  Worklist.push_back(BB);
2931
2932  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2933  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2934
2935  do {
2936    BB = Worklist.pop_back_val();
2937
2938    // We have now visited this block!  If we've already been here, ignore it.
2939    if (!Visited.insert(BB).second)
2940      continue;
2941
2942    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2943      Instruction *Inst = &*BBI++;
2944
2945      // DCE instruction if trivially dead.
2946      if (isInstructionTriviallyDead(Inst, TLI)) {
2947        ++NumDeadInst;
2948        DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2949        Inst->eraseFromParent();
2950        continue;
2951      }
2952
2953      // ConstantProp instruction if trivially constant.
2954      if (!Inst->use_empty() &&
2955          (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
2956        if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2957          DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2958                       << *Inst << '\n');
2959          Inst->replaceAllUsesWith(C);
2960          ++NumConstProp;
2961          Inst->eraseFromParent();
2962          continue;
2963        }
2964
2965      // See if we can constant fold its operands.
2966      for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
2967           ++i) {
2968        ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2969        if (CE == nullptr)
2970          continue;
2971
2972        Constant *&FoldRes = FoldedConstants[CE];
2973        if (!FoldRes)
2974          FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2975        if (!FoldRes)
2976          FoldRes = CE;
2977
2978        if (FoldRes != CE) {
2979          *i = FoldRes;
2980          MadeIRChange = true;
2981        }
2982      }
2983
2984      InstrsForInstCombineWorklist.push_back(Inst);
2985    }
2986
2987    // Recursively visit successors.  If this is a branch or switch on a
2988    // constant, only visit the reachable successor.
2989    TerminatorInst *TI = BB->getTerminator();
2990    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2991      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2992        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2993        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2994        Worklist.push_back(ReachableBB);
2995        continue;
2996      }
2997    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2998      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2999        // See if this is an explicit destination.
3000        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3001             i != e; ++i)
3002          if (i.getCaseValue() == Cond) {
3003            BasicBlock *ReachableBB = i.getCaseSuccessor();
3004            Worklist.push_back(ReachableBB);
3005            continue;
3006          }
3007
3008        // Otherwise it is the default destination.
3009        Worklist.push_back(SI->getDefaultDest());
3010        continue;
3011      }
3012    }
3013
3014    for (BasicBlock *SuccBB : TI->successors())
3015      Worklist.push_back(SuccBB);
3016  } while (!Worklist.empty());
3017
3018  // Once we've found all of the instructions to add to instcombine's worklist,
3019  // add them in reverse order.  This way instcombine will visit from the top
3020  // of the function down.  This jives well with the way that it adds all uses
3021  // of instructions to the worklist after doing a transformation, thus avoiding
3022  // some N^2 behavior in pathological cases.
3023  ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3024
3025  return MadeIRChange;
3026}
3027
3028/// \brief Populate the IC worklist from a function, and prune any dead basic
3029/// blocks discovered in the process.
3030///
3031/// This also does basic constant propagation and other forward fixing to make
3032/// the combiner itself run much faster.
3033static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3034                                          TargetLibraryInfo *TLI,
3035                                          InstCombineWorklist &ICWorklist) {
3036  bool MadeIRChange = false;
3037
3038  // Do a depth-first traversal of the function, populate the worklist with
3039  // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3040  // track of which blocks we visit.
3041  SmallPtrSet<BasicBlock *, 32> Visited;
3042  MadeIRChange |=
3043      AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3044
3045  // Do a quick scan over the function.  If we find any blocks that are
3046  // unreachable, remove any instructions inside of them.  This prevents
3047  // the instcombine code from having to deal with some bad special cases.
3048  for (BasicBlock &BB : F) {
3049    if (Visited.count(&BB))
3050      continue;
3051
3052    unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3053    MadeIRChange |= NumDeadInstInBB > 0;
3054    NumDeadInst += NumDeadInstInBB;
3055  }
3056
3057  return MadeIRChange;
3058}
3059
3060static bool
3061combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
3062                                AliasAnalysis *AA, AssumptionCache &AC,
3063                                TargetLibraryInfo &TLI, DominatorTree &DT,
3064                                bool ExpensiveCombines = true,
3065                                LoopInfo *LI = nullptr) {
3066  auto &DL = F.getParent()->getDataLayout();
3067  ExpensiveCombines |= EnableExpensiveCombines;
3068
3069  /// Builder - This is an IRBuilder that automatically inserts new
3070  /// instructions into the worklist when they are created.
3071  IRBuilder<TargetFolder, InstCombineIRInserter> Builder(
3072      F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
3073
3074  // Lower dbg.declare intrinsics otherwise their value may be clobbered
3075  // by instcombiner.
3076  bool DbgDeclaresChanged = LowerDbgDeclare(F);
3077
3078  // Iterate while there is work to do.
3079  int Iteration = 0;
3080  for (;;) {
3081    ++Iteration;
3082    DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3083                 << F.getName() << "\n");
3084
3085    bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3086
3087    InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
3088                    AA, &AC, &TLI, &DT, DL, LI);
3089    Changed |= IC.run();
3090
3091    if (!Changed)
3092      break;
3093  }
3094
3095  return DbgDeclaresChanged || Iteration > 1;
3096}
3097
3098PreservedAnalyses InstCombinePass::run(Function &F,
3099                                       AnalysisManager<Function> &AM) {
3100  auto &AC = AM.getResult<AssumptionAnalysis>(F);
3101  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3102  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3103
3104  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3105
3106  // FIXME: The AliasAnalysis is not yet supported in the new pass manager
3107  if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
3108                                       ExpensiveCombines, LI))
3109    // No changes, all analyses are preserved.
3110    return PreservedAnalyses::all();
3111
3112  // Mark all the analyses that instcombine updates as preserved.
3113  // FIXME: This should also 'preserve the CFG'.
3114  PreservedAnalyses PA;
3115  PA.preserve<DominatorTreeAnalysis>();
3116  return PA;
3117}
3118
3119void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3120  AU.setPreservesCFG();
3121  AU.addRequired<AAResultsWrapperPass>();
3122  AU.addRequired<AssumptionCacheTracker>();
3123  AU.addRequired<TargetLibraryInfoWrapperPass>();
3124  AU.addRequired<DominatorTreeWrapperPass>();
3125  AU.addPreserved<DominatorTreeWrapperPass>();
3126  AU.addPreserved<AAResultsWrapperPass>();
3127  AU.addPreserved<BasicAAWrapperPass>();
3128  AU.addPreserved<GlobalsAAWrapperPass>();
3129}
3130
3131bool InstructionCombiningPass::runOnFunction(Function &F) {
3132  if (skipFunction(F))
3133    return false;
3134
3135  // Required analyses.
3136  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3137  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3138  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3139  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3140
3141  // Optional analyses.
3142  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3143  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3144
3145  return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
3146                                         ExpensiveCombines, LI);
3147}
3148
3149char InstructionCombiningPass::ID = 0;
3150INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3151                      "Combine redundant instructions", false, false)
3152INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3153INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3154INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3155INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3156INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3157INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3158                    "Combine redundant instructions", false, false)
3159
3160// Initialization Routines
3161void llvm::initializeInstCombine(PassRegistry &Registry) {
3162  initializeInstructionCombiningPassPass(Registry);
3163}
3164
3165void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3166  initializeInstructionCombiningPassPass(*unwrap(R));
3167}
3168
3169FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3170  return new InstructionCombiningPass(ExpensiveCombines);
3171}
3172