1//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass implements a simple loop reroller. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Transforms/Scalar.h" 15#include "llvm/ADT/MapVector.h" 16#include "llvm/ADT/STLExtras.h" 17#include "llvm/ADT/BitVector.h" 18#include "llvm/ADT/SmallSet.h" 19#include "llvm/ADT/Statistic.h" 20#include "llvm/Analysis/AliasAnalysis.h" 21#include "llvm/Analysis/AliasSetTracker.h" 22#include "llvm/Analysis/LoopPass.h" 23#include "llvm/Analysis/ScalarEvolution.h" 24#include "llvm/Analysis/ScalarEvolutionExpander.h" 25#include "llvm/Analysis/ScalarEvolutionExpressions.h" 26#include "llvm/Analysis/TargetLibraryInfo.h" 27#include "llvm/Analysis/ValueTracking.h" 28#include "llvm/IR/DataLayout.h" 29#include "llvm/IR/Dominators.h" 30#include "llvm/IR/IntrinsicInst.h" 31#include "llvm/Support/CommandLine.h" 32#include "llvm/Support/Debug.h" 33#include "llvm/Support/raw_ostream.h" 34#include "llvm/Transforms/Utils/BasicBlockUtils.h" 35#include "llvm/Transforms/Utils/Local.h" 36#include "llvm/Transforms/Utils/LoopUtils.h" 37 38using namespace llvm; 39 40#define DEBUG_TYPE "loop-reroll" 41 42STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 43 44static cl::opt<unsigned> 45MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, 46 cl::desc("The maximum increment for loop rerolling")); 47 48static cl::opt<unsigned> 49NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 50 cl::Hidden, 51 cl::desc("The maximum number of failures to tolerate" 52 " during fuzzy matching. (default: 400)")); 53 54// This loop re-rolling transformation aims to transform loops like this: 55// 56// int foo(int a); 57// void bar(int *x) { 58// for (int i = 0; i < 500; i += 3) { 59// foo(i); 60// foo(i+1); 61// foo(i+2); 62// } 63// } 64// 65// into a loop like this: 66// 67// void bar(int *x) { 68// for (int i = 0; i < 500; ++i) 69// foo(i); 70// } 71// 72// It does this by looking for loops that, besides the latch code, are composed 73// of isomorphic DAGs of instructions, with each DAG rooted at some increment 74// to the induction variable, and where each DAG is isomorphic to the DAG 75// rooted at the induction variable (excepting the sub-DAGs which root the 76// other induction-variable increments). In other words, we're looking for loop 77// bodies of the form: 78// 79// %iv = phi [ (preheader, ...), (body, %iv.next) ] 80// f(%iv) 81// %iv.1 = add %iv, 1 <-- a root increment 82// f(%iv.1) 83// %iv.2 = add %iv, 2 <-- a root increment 84// f(%iv.2) 85// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 86// f(%iv.scale_m_1) 87// ... 88// %iv.next = add %iv, scale 89// %cmp = icmp(%iv, ...) 90// br %cmp, header, exit 91// 92// where each f(i) is a set of instructions that, collectively, are a function 93// only of i (and other loop-invariant values). 94// 95// As a special case, we can also reroll loops like this: 96// 97// int foo(int); 98// void bar(int *x) { 99// for (int i = 0; i < 500; ++i) { 100// x[3*i] = foo(0); 101// x[3*i+1] = foo(0); 102// x[3*i+2] = foo(0); 103// } 104// } 105// 106// into this: 107// 108// void bar(int *x) { 109// for (int i = 0; i < 1500; ++i) 110// x[i] = foo(0); 111// } 112// 113// in which case, we're looking for inputs like this: 114// 115// %iv = phi [ (preheader, ...), (body, %iv.next) ] 116// %scaled.iv = mul %iv, scale 117// f(%scaled.iv) 118// %scaled.iv.1 = add %scaled.iv, 1 119// f(%scaled.iv.1) 120// %scaled.iv.2 = add %scaled.iv, 2 121// f(%scaled.iv.2) 122// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 123// f(%scaled.iv.scale_m_1) 124// ... 125// %iv.next = add %iv, 1 126// %cmp = icmp(%iv, ...) 127// br %cmp, header, exit 128 129namespace { 130 enum IterationLimits { 131 /// The maximum number of iterations that we'll try and reroll. 132 IL_MaxRerollIterations = 32, 133 /// The bitvector index used by loop induction variables and other 134 /// instructions that belong to all iterations. 135 IL_All, 136 IL_End 137 }; 138 139 class LoopReroll : public LoopPass { 140 public: 141 static char ID; // Pass ID, replacement for typeid 142 LoopReroll() : LoopPass(ID) { 143 initializeLoopRerollPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 getLoopAnalysisUsage(AU); 151 } 152 153 protected: 154 AliasAnalysis *AA; 155 LoopInfo *LI; 156 ScalarEvolution *SE; 157 TargetLibraryInfo *TLI; 158 DominatorTree *DT; 159 bool PreserveLCSSA; 160 161 typedef SmallVector<Instruction *, 16> SmallInstructionVector; 162 typedef SmallSet<Instruction *, 16> SmallInstructionSet; 163 164 // Map between induction variable and its increment 165 DenseMap<Instruction *, int64_t> IVToIncMap; 166 // For loop with multiple induction variable, remember the one used only to 167 // control the loop. 168 Instruction *LoopControlIV; 169 170 // A chain of isomorphic instructions, identified by a single-use PHI 171 // representing a reduction. Only the last value may be used outside the 172 // loop. 173 struct SimpleLoopReduction { 174 SimpleLoopReduction(Instruction *P, Loop *L) 175 : Valid(false), Instructions(1, P) { 176 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 177 add(L); 178 } 179 180 bool valid() const { 181 return Valid; 182 } 183 184 Instruction *getPHI() const { 185 assert(Valid && "Using invalid reduction"); 186 return Instructions.front(); 187 } 188 189 Instruction *getReducedValue() const { 190 assert(Valid && "Using invalid reduction"); 191 return Instructions.back(); 192 } 193 194 Instruction *get(size_t i) const { 195 assert(Valid && "Using invalid reduction"); 196 return Instructions[i+1]; 197 } 198 199 Instruction *operator [] (size_t i) const { return get(i); } 200 201 // The size, ignoring the initial PHI. 202 size_t size() const { 203 assert(Valid && "Using invalid reduction"); 204 return Instructions.size()-1; 205 } 206 207 typedef SmallInstructionVector::iterator iterator; 208 typedef SmallInstructionVector::const_iterator const_iterator; 209 210 iterator begin() { 211 assert(Valid && "Using invalid reduction"); 212 return std::next(Instructions.begin()); 213 } 214 215 const_iterator begin() const { 216 assert(Valid && "Using invalid reduction"); 217 return std::next(Instructions.begin()); 218 } 219 220 iterator end() { return Instructions.end(); } 221 const_iterator end() const { return Instructions.end(); } 222 223 protected: 224 bool Valid; 225 SmallInstructionVector Instructions; 226 227 void add(Loop *L); 228 }; 229 230 // The set of all reductions, and state tracking of possible reductions 231 // during loop instruction processing. 232 struct ReductionTracker { 233 typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector; 234 235 // Add a new possible reduction. 236 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 237 238 // Setup to track possible reductions corresponding to the provided 239 // rerolling scale. Only reductions with a number of non-PHI instructions 240 // that is divisible by the scale are considered. Three instructions sets 241 // are filled in: 242 // - A set of all possible instructions in eligible reductions. 243 // - A set of all PHIs in eligible reductions 244 // - A set of all reduced values (last instructions) in eligible 245 // reductions. 246 void restrictToScale(uint64_t Scale, 247 SmallInstructionSet &PossibleRedSet, 248 SmallInstructionSet &PossibleRedPHISet, 249 SmallInstructionSet &PossibleRedLastSet) { 250 PossibleRedIdx.clear(); 251 PossibleRedIter.clear(); 252 Reds.clear(); 253 254 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 255 if (PossibleReds[i].size() % Scale == 0) { 256 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 257 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 258 259 PossibleRedSet.insert(PossibleReds[i].getPHI()); 260 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 261 for (Instruction *J : PossibleReds[i]) { 262 PossibleRedSet.insert(J); 263 PossibleRedIdx[J] = i; 264 } 265 } 266 } 267 268 // The functions below are used while processing the loop instructions. 269 270 // Are the two instructions both from reductions, and furthermore, from 271 // the same reduction? 272 bool isPairInSame(Instruction *J1, Instruction *J2) { 273 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 274 if (J1I != PossibleRedIdx.end()) { 275 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 276 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 277 return true; 278 } 279 280 return false; 281 } 282 283 // The two provided instructions, the first from the base iteration, and 284 // the second from iteration i, form a matched pair. If these are part of 285 // a reduction, record that fact. 286 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 287 if (PossibleRedIdx.count(J1)) { 288 assert(PossibleRedIdx.count(J2) && 289 "Recording reduction vs. non-reduction instruction?"); 290 291 PossibleRedIter[J1] = 0; 292 PossibleRedIter[J2] = i; 293 294 int Idx = PossibleRedIdx[J1]; 295 assert(Idx == PossibleRedIdx[J2] && 296 "Recording pair from different reductions?"); 297 Reds.insert(Idx); 298 } 299 } 300 301 // The functions below can be called after we've finished processing all 302 // instructions in the loop, and we know which reductions were selected. 303 304 bool validateSelected(); 305 void replaceSelected(); 306 307 protected: 308 // The vector of all possible reductions (for any scale). 309 SmallReductionVector PossibleReds; 310 311 DenseMap<Instruction *, int> PossibleRedIdx; 312 DenseMap<Instruction *, int> PossibleRedIter; 313 DenseSet<int> Reds; 314 }; 315 316 // A DAGRootSet models an induction variable being used in a rerollable 317 // loop. For example, 318 // 319 // x[i*3+0] = y1 320 // x[i*3+1] = y2 321 // x[i*3+2] = y3 322 // 323 // Base instruction -> i*3 324 // +---+----+ 325 // / | \ 326 // ST[y1] +1 +2 <-- Roots 327 // | | 328 // ST[y2] ST[y3] 329 // 330 // There may be multiple DAGRoots, for example: 331 // 332 // x[i*2+0] = ... (1) 333 // x[i*2+1] = ... (1) 334 // x[i*2+4] = ... (2) 335 // x[i*2+5] = ... (2) 336 // x[(i+1234)*2+5678] = ... (3) 337 // x[(i+1234)*2+5679] = ... (3) 338 // 339 // The loop will be rerolled by adding a new loop induction variable, 340 // one for the Base instruction in each DAGRootSet. 341 // 342 struct DAGRootSet { 343 Instruction *BaseInst; 344 SmallInstructionVector Roots; 345 // The instructions between IV and BaseInst (but not including BaseInst). 346 SmallInstructionSet SubsumedInsts; 347 }; 348 349 // The set of all DAG roots, and state tracking of all roots 350 // for a particular induction variable. 351 struct DAGRootTracker { 352 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 353 ScalarEvolution *SE, AliasAnalysis *AA, 354 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 355 bool PreserveLCSSA, 356 DenseMap<Instruction *, int64_t> &IncrMap, 357 Instruction *LoopCtrlIV) 358 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 359 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), 360 LoopControlIV(LoopCtrlIV) {} 361 362 /// Stage 1: Find all the DAG roots for the induction variable. 363 bool findRoots(); 364 /// Stage 2: Validate if the found roots are valid. 365 bool validate(ReductionTracker &Reductions); 366 /// Stage 3: Assuming validate() returned true, perform the 367 /// replacement. 368 /// @param IterCount The maximum iteration count of L. 369 void replace(const SCEV *IterCount); 370 371 protected: 372 typedef MapVector<Instruction*, BitVector> UsesTy; 373 374 bool findRootsRecursive(Instruction *IVU, 375 SmallInstructionSet SubsumedInsts); 376 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 377 bool collectPossibleRoots(Instruction *Base, 378 std::map<int64_t,Instruction*> &Roots); 379 380 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 381 void collectInLoopUserSet(const SmallInstructionVector &Roots, 382 const SmallInstructionSet &Exclude, 383 const SmallInstructionSet &Final, 384 DenseSet<Instruction *> &Users); 385 void collectInLoopUserSet(Instruction *Root, 386 const SmallInstructionSet &Exclude, 387 const SmallInstructionSet &Final, 388 DenseSet<Instruction *> &Users); 389 390 UsesTy::iterator nextInstr(int Val, UsesTy &In, 391 const SmallInstructionSet &Exclude, 392 UsesTy::iterator *StartI=nullptr); 393 bool isBaseInst(Instruction *I); 394 bool isRootInst(Instruction *I); 395 bool instrDependsOn(Instruction *I, 396 UsesTy::iterator Start, 397 UsesTy::iterator End); 398 void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount); 399 void updateNonLoopCtrlIncr(); 400 401 LoopReroll *Parent; 402 403 // Members of Parent, replicated here for brevity. 404 Loop *L; 405 ScalarEvolution *SE; 406 AliasAnalysis *AA; 407 TargetLibraryInfo *TLI; 408 DominatorTree *DT; 409 LoopInfo *LI; 410 bool PreserveLCSSA; 411 412 // The loop induction variable. 413 Instruction *IV; 414 // Loop step amount. 415 int64_t Inc; 416 // Loop reroll count; if Inc == 1, this records the scaling applied 417 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 418 // If Inc is not 1, Scale = Inc. 419 uint64_t Scale; 420 // The roots themselves. 421 SmallVector<DAGRootSet,16> RootSets; 422 // All increment instructions for IV. 423 SmallInstructionVector LoopIncs; 424 // Map of all instructions in the loop (in order) to the iterations 425 // they are used in (or specially, IL_All for instructions 426 // used in the loop increment mechanism). 427 UsesTy Uses; 428 // Map between induction variable and its increment 429 DenseMap<Instruction *, int64_t> &IVToIncMap; 430 Instruction *LoopControlIV; 431 }; 432 433 // Check if it is a compare-like instruction whose user is a branch 434 bool isCompareUsedByBranch(Instruction *I) { 435 auto *TI = I->getParent()->getTerminator(); 436 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) 437 return false; 438 return I->hasOneUse() && TI->getOperand(0) == I; 439 }; 440 441 bool isLoopControlIV(Loop *L, Instruction *IV); 442 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 443 void collectPossibleReductions(Loop *L, 444 ReductionTracker &Reductions); 445 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, 446 ReductionTracker &Reductions); 447 }; 448} 449 450char LoopReroll::ID = 0; 451INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) 452INITIALIZE_PASS_DEPENDENCY(LoopPass) 453INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 454INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) 455 456Pass *llvm::createLoopRerollPass() { 457 return new LoopReroll; 458} 459 460// Returns true if the provided instruction is used outside the given loop. 461// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 462// non-loop blocks to be outside the loop. 463static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 464 for (User *U : I->users()) { 465 if (!L->contains(cast<Instruction>(U))) 466 return true; 467 } 468 return false; 469} 470 471static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE, 472 const SCEV *SCEVExpr, 473 Instruction &IV) { 474 const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr); 475 476 // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)), 477 // Return c1. 478 if (!MulSCEV && IV.getType()->isPointerTy()) 479 if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) { 480 const PointerType *PTy = cast<PointerType>(IV.getType()); 481 Type *ElTy = PTy->getElementType(); 482 const SCEV *SizeOfExpr = 483 SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy); 484 if (IncSCEV->getValue()->getValue().isNegative()) { 485 const SCEV *NewSCEV = 486 SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr); 487 return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV)); 488 } else { 489 return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr)); 490 } 491 } 492 493 if (!MulSCEV) 494 return nullptr; 495 496 // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant, 497 // Return c. 498 const SCEVConstant *CIncSCEV = nullptr; 499 for (const SCEV *Operand : MulSCEV->operands()) { 500 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) { 501 CIncSCEV = Constant; 502 } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) { 503 Type *AllocTy; 504 if (!Unknown->isSizeOf(AllocTy)) 505 break; 506 } else { 507 return nullptr; 508 } 509 } 510 return CIncSCEV; 511} 512 513// Check if an IV is only used to control the loop. There are two cases: 514// 1. It only has one use which is loop increment, and the increment is only 515// used by comparison and the PHI (could has sext with nsw in between), and the 516// comparison is only used by branch. 517// 2. It is used by loop increment and the comparison, the loop increment is 518// only used by the PHI, and the comparison is used only by the branch. 519bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { 520 unsigned IVUses = IV->getNumUses(); 521 if (IVUses != 2 && IVUses != 1) 522 return false; 523 524 for (auto *User : IV->users()) { 525 int32_t IncOrCmpUses = User->getNumUses(); 526 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); 527 528 // User can only have one or two uses. 529 if (IncOrCmpUses != 2 && IncOrCmpUses != 1) 530 return false; 531 532 // Case 1 533 if (IVUses == 1) { 534 // The only user must be the loop increment. 535 // The loop increment must have two uses. 536 if (IsCompInst || IncOrCmpUses != 2) 537 return false; 538 } 539 540 // Case 2 541 if (IVUses == 2 && IncOrCmpUses != 1) 542 return false; 543 544 // The users of the IV must be a binary operation or a comparison 545 if (auto *BO = dyn_cast<BinaryOperator>(User)) { 546 if (BO->getOpcode() == Instruction::Add) { 547 // Loop Increment 548 // User of Loop Increment should be either PHI or CMP 549 for (auto *UU : User->users()) { 550 if (PHINode *PN = dyn_cast<PHINode>(UU)) { 551 if (PN != IV) 552 return false; 553 } 554 // Must be a CMP or an ext (of a value with nsw) then CMP 555 else { 556 Instruction *UUser = dyn_cast<Instruction>(UU); 557 // Skip SExt if we are extending an nsw value 558 // TODO: Allow ZExt too 559 if (BO->hasNoSignedWrap() && UUser && UUser->getNumUses() == 1 && 560 isa<SExtInst>(UUser)) 561 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 562 if (!isCompareUsedByBranch(UUser)) 563 return false; 564 } 565 } 566 } else 567 return false; 568 // Compare : can only have one use, and must be branch 569 } else if (!IsCompInst) 570 return false; 571 } 572 return true; 573} 574 575// Collect the list of loop induction variables with respect to which it might 576// be possible to reroll the loop. 577void LoopReroll::collectPossibleIVs(Loop *L, 578 SmallInstructionVector &PossibleIVs) { 579 BasicBlock *Header = L->getHeader(); 580 for (BasicBlock::iterator I = Header->begin(), 581 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 582 if (!isa<PHINode>(I)) 583 continue; 584 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 585 continue; 586 587 if (const SCEVAddRecExpr *PHISCEV = 588 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 589 if (PHISCEV->getLoop() != L) 590 continue; 591 if (!PHISCEV->isAffine()) 592 continue; 593 const SCEVConstant *IncSCEV = nullptr; 594 if (I->getType()->isPointerTy()) 595 IncSCEV = 596 getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I); 597 else 598 IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 599 if (IncSCEV) { 600 const APInt &AInt = IncSCEV->getValue()->getValue().abs(); 601 if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc)) 602 continue; 603 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 604 DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 605 << "\n"); 606 607 if (isLoopControlIV(L, &*I)) { 608 assert(!LoopControlIV && "Found two loop control only IV"); 609 LoopControlIV = &(*I); 610 DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I << " = " 611 << *PHISCEV << "\n"); 612 } else 613 PossibleIVs.push_back(&*I); 614 } 615 } 616 } 617} 618 619// Add the remainder of the reduction-variable chain to the instruction vector 620// (the initial PHINode has already been added). If successful, the object is 621// marked as valid. 622void LoopReroll::SimpleLoopReduction::add(Loop *L) { 623 assert(!Valid && "Cannot add to an already-valid chain"); 624 625 // The reduction variable must be a chain of single-use instructions 626 // (including the PHI), except for the last value (which is used by the PHI 627 // and also outside the loop). 628 Instruction *C = Instructions.front(); 629 if (C->user_empty()) 630 return; 631 632 do { 633 C = cast<Instruction>(*C->user_begin()); 634 if (C->hasOneUse()) { 635 if (!C->isBinaryOp()) 636 return; 637 638 if (!(isa<PHINode>(Instructions.back()) || 639 C->isSameOperationAs(Instructions.back()))) 640 return; 641 642 Instructions.push_back(C); 643 } 644 } while (C->hasOneUse()); 645 646 if (Instructions.size() < 2 || 647 !C->isSameOperationAs(Instructions.back()) || 648 C->use_empty()) 649 return; 650 651 // C is now the (potential) last instruction in the reduction chain. 652 for (User *U : C->users()) { 653 // The only in-loop user can be the initial PHI. 654 if (L->contains(cast<Instruction>(U))) 655 if (cast<Instruction>(U) != Instructions.front()) 656 return; 657 } 658 659 Instructions.push_back(C); 660 Valid = true; 661} 662 663// Collect the vector of possible reduction variables. 664void LoopReroll::collectPossibleReductions(Loop *L, 665 ReductionTracker &Reductions) { 666 BasicBlock *Header = L->getHeader(); 667 for (BasicBlock::iterator I = Header->begin(), 668 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 669 if (!isa<PHINode>(I)) 670 continue; 671 if (!I->getType()->isSingleValueType()) 672 continue; 673 674 SimpleLoopReduction SLR(&*I, L); 675 if (!SLR.valid()) 676 continue; 677 678 DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " << 679 SLR.size() << " chained instructions)\n"); 680 Reductions.addSLR(SLR); 681 } 682} 683 684// Collect the set of all users of the provided root instruction. This set of 685// users contains not only the direct users of the root instruction, but also 686// all users of those users, and so on. There are two exceptions: 687// 688// 1. Instructions in the set of excluded instructions are never added to the 689// use set (even if they are users). This is used, for example, to exclude 690// including root increments in the use set of the primary IV. 691// 692// 2. Instructions in the set of final instructions are added to the use set 693// if they are users, but their users are not added. This is used, for 694// example, to prevent a reduction update from forcing all later reduction 695// updates into the use set. 696void LoopReroll::DAGRootTracker::collectInLoopUserSet( 697 Instruction *Root, const SmallInstructionSet &Exclude, 698 const SmallInstructionSet &Final, 699 DenseSet<Instruction *> &Users) { 700 SmallInstructionVector Queue(1, Root); 701 while (!Queue.empty()) { 702 Instruction *I = Queue.pop_back_val(); 703 if (!Users.insert(I).second) 704 continue; 705 706 if (!Final.count(I)) 707 for (Use &U : I->uses()) { 708 Instruction *User = cast<Instruction>(U.getUser()); 709 if (PHINode *PN = dyn_cast<PHINode>(User)) { 710 // Ignore "wrap-around" uses to PHIs of this loop's header. 711 if (PN->getIncomingBlock(U) == L->getHeader()) 712 continue; 713 } 714 715 if (L->contains(User) && !Exclude.count(User)) { 716 Queue.push_back(User); 717 } 718 } 719 720 // We also want to collect single-user "feeder" values. 721 for (User::op_iterator OI = I->op_begin(), 722 OIE = I->op_end(); OI != OIE; ++OI) { 723 if (Instruction *Op = dyn_cast<Instruction>(*OI)) 724 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 725 !Final.count(Op)) 726 Queue.push_back(Op); 727 } 728 } 729} 730 731// Collect all of the users of all of the provided root instructions (combined 732// into a single set). 733void LoopReroll::DAGRootTracker::collectInLoopUserSet( 734 const SmallInstructionVector &Roots, 735 const SmallInstructionSet &Exclude, 736 const SmallInstructionSet &Final, 737 DenseSet<Instruction *> &Users) { 738 for (Instruction *Root : Roots) 739 collectInLoopUserSet(Root, Exclude, Final, Users); 740} 741 742static bool isSimpleLoadStore(Instruction *I) { 743 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 744 return LI->isSimple(); 745 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 746 return SI->isSimple(); 747 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 748 return !MI->isVolatile(); 749 return false; 750} 751 752/// Return true if IVU is a "simple" arithmetic operation. 753/// This is used for narrowing the search space for DAGRoots; only arithmetic 754/// and GEPs can be part of a DAGRoot. 755static bool isSimpleArithmeticOp(User *IVU) { 756 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 757 switch (I->getOpcode()) { 758 default: return false; 759 case Instruction::Add: 760 case Instruction::Sub: 761 case Instruction::Mul: 762 case Instruction::Shl: 763 case Instruction::AShr: 764 case Instruction::LShr: 765 case Instruction::GetElementPtr: 766 case Instruction::Trunc: 767 case Instruction::ZExt: 768 case Instruction::SExt: 769 return true; 770 } 771 } 772 return false; 773} 774 775static bool isLoopIncrement(User *U, Instruction *IV) { 776 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 777 778 if ((BO && BO->getOpcode() != Instruction::Add) || 779 (!BO && !isa<GetElementPtrInst>(U))) 780 return false; 781 782 for (auto *UU : U->users()) { 783 PHINode *PN = dyn_cast<PHINode>(UU); 784 if (PN && PN == IV) 785 return true; 786 } 787 return false; 788} 789 790bool LoopReroll::DAGRootTracker:: 791collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 792 SmallInstructionVector BaseUsers; 793 794 for (auto *I : Base->users()) { 795 ConstantInt *CI = nullptr; 796 797 if (isLoopIncrement(I, IV)) { 798 LoopIncs.push_back(cast<Instruction>(I)); 799 continue; 800 } 801 802 // The root nodes must be either GEPs, ORs or ADDs. 803 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 804 if (BO->getOpcode() == Instruction::Add || 805 BO->getOpcode() == Instruction::Or) 806 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 807 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 808 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 809 CI = dyn_cast<ConstantInt>(LastOperand); 810 } 811 812 if (!CI) { 813 if (Instruction *II = dyn_cast<Instruction>(I)) { 814 BaseUsers.push_back(II); 815 continue; 816 } else { 817 DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n"); 818 return false; 819 } 820 } 821 822 int64_t V = std::abs(CI->getValue().getSExtValue()); 823 if (Roots.find(V) != Roots.end()) 824 // No duplicates, please. 825 return false; 826 827 Roots[V] = cast<Instruction>(I); 828 } 829 830 if (Roots.empty()) 831 return false; 832 833 // If we found non-loop-inc, non-root users of Base, assume they are 834 // for the zeroth root index. This is because "add %a, 0" gets optimized 835 // away. 836 if (BaseUsers.size()) { 837 if (Roots.find(0) != Roots.end()) { 838 DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 839 return false; 840 } 841 Roots[0] = Base; 842 } 843 844 // Calculate the number of users of the base, or lowest indexed, iteration. 845 unsigned NumBaseUses = BaseUsers.size(); 846 if (NumBaseUses == 0) 847 NumBaseUses = Roots.begin()->second->getNumUses(); 848 849 // Check that every node has the same number of users. 850 for (auto &KV : Roots) { 851 if (KV.first == 0) 852 continue; 853 if (KV.second->getNumUses() != NumBaseUses) { 854 DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 855 << "#Base=" << NumBaseUses << ", #Root=" << 856 KV.second->getNumUses() << "\n"); 857 return false; 858 } 859 } 860 861 return true; 862} 863 864bool LoopReroll::DAGRootTracker:: 865findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 866 // Does the user look like it could be part of a root set? 867 // All its users must be simple arithmetic ops. 868 if (I->getNumUses() > IL_MaxRerollIterations) 869 return false; 870 871 if ((I->getOpcode() == Instruction::Mul || 872 I->getOpcode() == Instruction::PHI) && 873 I != IV && 874 findRootsBase(I, SubsumedInsts)) 875 return true; 876 877 SubsumedInsts.insert(I); 878 879 for (User *V : I->users()) { 880 Instruction *I = dyn_cast<Instruction>(V); 881 if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end()) 882 continue; 883 884 if (!I || !isSimpleArithmeticOp(I) || 885 !findRootsRecursive(I, SubsumedInsts)) 886 return false; 887 } 888 return true; 889} 890 891bool LoopReroll::DAGRootTracker:: 892findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 893 894 // The base instruction needs to be a multiply so 895 // that we can erase it. 896 if (IVU->getOpcode() != Instruction::Mul && 897 IVU->getOpcode() != Instruction::PHI) 898 return false; 899 900 std::map<int64_t, Instruction*> V; 901 if (!collectPossibleRoots(IVU, V)) 902 return false; 903 904 // If we didn't get a root for index zero, then IVU must be 905 // subsumed. 906 if (V.find(0) == V.end()) 907 SubsumedInsts.insert(IVU); 908 909 // Partition the vector into monotonically increasing indexes. 910 DAGRootSet DRS; 911 DRS.BaseInst = nullptr; 912 913 for (auto &KV : V) { 914 if (!DRS.BaseInst) { 915 DRS.BaseInst = KV.second; 916 DRS.SubsumedInsts = SubsumedInsts; 917 } else if (DRS.Roots.empty()) { 918 DRS.Roots.push_back(KV.second); 919 } else if (V.find(KV.first - 1) != V.end()) { 920 DRS.Roots.push_back(KV.second); 921 } else { 922 // Linear sequence terminated. 923 RootSets.push_back(DRS); 924 DRS.BaseInst = KV.second; 925 DRS.SubsumedInsts = SubsumedInsts; 926 DRS.Roots.clear(); 927 } 928 } 929 RootSets.push_back(DRS); 930 931 return true; 932} 933 934bool LoopReroll::DAGRootTracker::findRoots() { 935 Inc = IVToIncMap[IV]; 936 937 assert(RootSets.empty() && "Unclean state!"); 938 if (std::abs(Inc) == 1) { 939 for (auto *IVU : IV->users()) { 940 if (isLoopIncrement(IVU, IV)) 941 LoopIncs.push_back(cast<Instruction>(IVU)); 942 } 943 if (!findRootsRecursive(IV, SmallInstructionSet())) 944 return false; 945 LoopIncs.push_back(IV); 946 } else { 947 if (!findRootsBase(IV, SmallInstructionSet())) 948 return false; 949 } 950 951 // Ensure all sets have the same size. 952 if (RootSets.empty()) { 953 DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 954 return false; 955 } 956 for (auto &V : RootSets) { 957 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 958 DEBUG(dbgs() 959 << "LRR: Aborting because not all root sets have the same size\n"); 960 return false; 961 } 962 } 963 964 // And ensure all loop iterations are consecutive. We rely on std::map 965 // providing ordered traversal. 966 for (auto &V : RootSets) { 967 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst)); 968 if (!ADR) 969 return false; 970 971 // Consider a DAGRootSet with N-1 roots (so N different values including 972 // BaseInst). 973 // Define d = Roots[0] - BaseInst, which should be the same as 974 // Roots[I] - Roots[I-1] for all I in [1..N). 975 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 976 // loop iteration J. 977 // 978 // Now, For the loop iterations to be consecutive: 979 // D = d * N 980 981 unsigned N = V.Roots.size() + 1; 982 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR); 983 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 984 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) { 985 DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n"); 986 return false; 987 } 988 } 989 Scale = RootSets[0].Roots.size() + 1; 990 991 if (Scale > IL_MaxRerollIterations) { 992 DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 993 << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations 994 << "\n"); 995 return false; 996 } 997 998 DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n"); 999 1000 return true; 1001} 1002 1003bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 1004 // Populate the MapVector with all instructions in the block, in order first, 1005 // so we can iterate over the contents later in perfect order. 1006 for (auto &I : *L->getHeader()) { 1007 Uses[&I].resize(IL_End); 1008 } 1009 1010 SmallInstructionSet Exclude; 1011 for (auto &DRS : RootSets) { 1012 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1013 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1014 Exclude.insert(DRS.BaseInst); 1015 } 1016 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 1017 1018 for (auto &DRS : RootSets) { 1019 DenseSet<Instruction*> VBase; 1020 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 1021 for (auto *I : VBase) { 1022 Uses[I].set(0); 1023 } 1024 1025 unsigned Idx = 1; 1026 for (auto *Root : DRS.Roots) { 1027 DenseSet<Instruction*> V; 1028 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 1029 1030 // While we're here, check the use sets are the same size. 1031 if (V.size() != VBase.size()) { 1032 DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 1033 return false; 1034 } 1035 1036 for (auto *I : V) { 1037 Uses[I].set(Idx); 1038 } 1039 ++Idx; 1040 } 1041 1042 // Make sure our subsumed instructions are remembered too. 1043 for (auto *I : DRS.SubsumedInsts) { 1044 Uses[I].set(IL_All); 1045 } 1046 } 1047 1048 // Make sure the loop increments are also accounted for. 1049 1050 Exclude.clear(); 1051 for (auto &DRS : RootSets) { 1052 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1053 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1054 Exclude.insert(DRS.BaseInst); 1055 } 1056 1057 DenseSet<Instruction*> V; 1058 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 1059 for (auto *I : V) { 1060 Uses[I].set(IL_All); 1061 } 1062 1063 return true; 1064 1065} 1066 1067/// Get the next instruction in "In" that is a member of set Val. 1068/// Start searching from StartI, and do not return anything in Exclude. 1069/// If StartI is not given, start from In.begin(). 1070LoopReroll::DAGRootTracker::UsesTy::iterator 1071LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 1072 const SmallInstructionSet &Exclude, 1073 UsesTy::iterator *StartI) { 1074 UsesTy::iterator I = StartI ? *StartI : In.begin(); 1075 while (I != In.end() && (I->second.test(Val) == 0 || 1076 Exclude.count(I->first) != 0)) 1077 ++I; 1078 return I; 1079} 1080 1081bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 1082 for (auto &DRS : RootSets) { 1083 if (DRS.BaseInst == I) 1084 return true; 1085 } 1086 return false; 1087} 1088 1089bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1090 for (auto &DRS : RootSets) { 1091 if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end()) 1092 return true; 1093 } 1094 return false; 1095} 1096 1097/// Return true if instruction I depends on any instruction between 1098/// Start and End. 1099bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1100 UsesTy::iterator Start, 1101 UsesTy::iterator End) { 1102 for (auto *U : I->users()) { 1103 for (auto It = Start; It != End; ++It) 1104 if (U == It->first) 1105 return true; 1106 } 1107 return false; 1108} 1109 1110static bool isIgnorableInst(const Instruction *I) { 1111 if (isa<DbgInfoIntrinsic>(I)) 1112 return true; 1113 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1114 if (!II) 1115 return false; 1116 switch (II->getIntrinsicID()) { 1117 default: 1118 return false; 1119 case llvm::Intrinsic::annotation: 1120 case Intrinsic::ptr_annotation: 1121 case Intrinsic::var_annotation: 1122 // TODO: the following intrinsics may also be whitelisted: 1123 // lifetime_start, lifetime_end, invariant_start, invariant_end 1124 return true; 1125 } 1126 return false; 1127} 1128 1129bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1130 // We now need to check for equivalence of the use graph of each root with 1131 // that of the primary induction variable (excluding the roots). Our goal 1132 // here is not to solve the full graph isomorphism problem, but rather to 1133 // catch common cases without a lot of work. As a result, we will assume 1134 // that the relative order of the instructions in each unrolled iteration 1135 // is the same (although we will not make an assumption about how the 1136 // different iterations are intermixed). Note that while the order must be 1137 // the same, the instructions may not be in the same basic block. 1138 1139 // An array of just the possible reductions for this scale factor. When we 1140 // collect the set of all users of some root instructions, these reduction 1141 // instructions are treated as 'final' (their uses are not considered). 1142 // This is important because we don't want the root use set to search down 1143 // the reduction chain. 1144 SmallInstructionSet PossibleRedSet; 1145 SmallInstructionSet PossibleRedLastSet; 1146 SmallInstructionSet PossibleRedPHISet; 1147 Reductions.restrictToScale(Scale, PossibleRedSet, 1148 PossibleRedPHISet, PossibleRedLastSet); 1149 1150 // Populate "Uses" with where each instruction is used. 1151 if (!collectUsedInstructions(PossibleRedSet)) 1152 return false; 1153 1154 // Make sure we mark the reduction PHIs as used in all iterations. 1155 for (auto *I : PossibleRedPHISet) { 1156 Uses[I].set(IL_All); 1157 } 1158 1159 // Make sure we mark loop-control-only PHIs as used in all iterations. See 1160 // comment above LoopReroll::isLoopControlIV for more information. 1161 BasicBlock *Header = L->getHeader(); 1162 if (LoopControlIV && LoopControlIV != IV) { 1163 for (auto *U : LoopControlIV->users()) { 1164 Instruction *IVUser = dyn_cast<Instruction>(U); 1165 // IVUser could be loop increment or compare 1166 Uses[IVUser].set(IL_All); 1167 for (auto *UU : IVUser->users()) { 1168 Instruction *UUser = dyn_cast<Instruction>(UU); 1169 // UUser could be compare, PHI or branch 1170 Uses[UUser].set(IL_All); 1171 // Skip SExt 1172 if (isa<SExtInst>(UUser)) { 1173 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 1174 Uses[UUser].set(IL_All); 1175 } 1176 // Is UUser a compare instruction? 1177 if (UU->hasOneUse()) { 1178 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); 1179 if (BI == cast<BranchInst>(Header->getTerminator())) 1180 Uses[BI].set(IL_All); 1181 } 1182 } 1183 } 1184 } 1185 1186 // Make sure all instructions in the loop are in one and only one 1187 // set. 1188 for (auto &KV : Uses) { 1189 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1190 DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1191 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1192 return false; 1193 } 1194 } 1195 1196 DEBUG( 1197 for (auto &KV : Uses) { 1198 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1199 } 1200 ); 1201 1202 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1203 // In addition to regular aliasing information, we need to look for 1204 // instructions from later (future) iterations that have side effects 1205 // preventing us from reordering them past other instructions with side 1206 // effects. 1207 bool FutureSideEffects = false; 1208 AliasSetTracker AST(*AA); 1209 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1210 DenseMap<Value *, Value *> BaseMap; 1211 1212 // Compare iteration Iter to the base. 1213 SmallInstructionSet Visited; 1214 auto BaseIt = nextInstr(0, Uses, Visited); 1215 auto RootIt = nextInstr(Iter, Uses, Visited); 1216 auto LastRootIt = Uses.begin(); 1217 1218 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1219 Instruction *BaseInst = BaseIt->first; 1220 Instruction *RootInst = RootIt->first; 1221 1222 // Skip over the IV or root instructions; only match their users. 1223 bool Continue = false; 1224 if (isBaseInst(BaseInst)) { 1225 Visited.insert(BaseInst); 1226 BaseIt = nextInstr(0, Uses, Visited); 1227 Continue = true; 1228 } 1229 if (isRootInst(RootInst)) { 1230 LastRootIt = RootIt; 1231 Visited.insert(RootInst); 1232 RootIt = nextInstr(Iter, Uses, Visited); 1233 Continue = true; 1234 } 1235 if (Continue) continue; 1236 1237 if (!BaseInst->isSameOperationAs(RootInst)) { 1238 // Last chance saloon. We don't try and solve the full isomorphism 1239 // problem, but try and at least catch the case where two instructions 1240 // *of different types* are round the wrong way. We won't be able to 1241 // efficiently tell, given two ADD instructions, which way around we 1242 // should match them, but given an ADD and a SUB, we can at least infer 1243 // which one is which. 1244 // 1245 // This should allow us to deal with a greater subset of the isomorphism 1246 // problem. It does however change a linear algorithm into a quadratic 1247 // one, so limit the number of probes we do. 1248 auto TryIt = RootIt; 1249 unsigned N = NumToleratedFailedMatches; 1250 while (TryIt != Uses.end() && 1251 !BaseInst->isSameOperationAs(TryIt->first) && 1252 N--) { 1253 ++TryIt; 1254 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1255 } 1256 1257 if (TryIt == Uses.end() || TryIt == RootIt || 1258 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1259 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1260 " vs. " << *RootInst << "\n"); 1261 return false; 1262 } 1263 1264 RootIt = TryIt; 1265 RootInst = TryIt->first; 1266 } 1267 1268 // All instructions between the last root and this root 1269 // may belong to some other iteration. If they belong to a 1270 // future iteration, then they're dangerous to alias with. 1271 // 1272 // Note that because we allow a limited amount of flexibility in the order 1273 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1274 // case we've already checked this set of instructions so we shouldn't 1275 // do anything. 1276 for (; LastRootIt < RootIt; ++LastRootIt) { 1277 Instruction *I = LastRootIt->first; 1278 if (LastRootIt->second.find_first() < (int)Iter) 1279 continue; 1280 if (I->mayWriteToMemory()) 1281 AST.add(I); 1282 // Note: This is specifically guarded by a check on isa<PHINode>, 1283 // which while a valid (somewhat arbitrary) micro-optimization, is 1284 // needed because otherwise isSafeToSpeculativelyExecute returns 1285 // false on PHI nodes. 1286 if (!isa<PHINode>(I) && !isSimpleLoadStore(I) && 1287 !isSafeToSpeculativelyExecute(I)) 1288 // Intervening instructions cause side effects. 1289 FutureSideEffects = true; 1290 } 1291 1292 // Make sure that this instruction, which is in the use set of this 1293 // root instruction, does not also belong to the base set or the set of 1294 // some other root instruction. 1295 if (RootIt->second.count() > 1) { 1296 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1297 " vs. " << *RootInst << " (prev. case overlap)\n"); 1298 return false; 1299 } 1300 1301 // Make sure that we don't alias with any instruction in the alias set 1302 // tracker. If we do, then we depend on a future iteration, and we 1303 // can't reroll. 1304 if (RootInst->mayReadFromMemory()) 1305 for (auto &K : AST) { 1306 if (K.aliasesUnknownInst(RootInst, *AA)) { 1307 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1308 " vs. " << *RootInst << " (depends on future store)\n"); 1309 return false; 1310 } 1311 } 1312 1313 // If we've past an instruction from a future iteration that may have 1314 // side effects, and this instruction might also, then we can't reorder 1315 // them, and this matching fails. As an exception, we allow the alias 1316 // set tracker to handle regular (simple) load/store dependencies. 1317 if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) && 1318 !isSafeToSpeculativelyExecute(BaseInst)) || 1319 (!isSimpleLoadStore(RootInst) && 1320 !isSafeToSpeculativelyExecute(RootInst)))) { 1321 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1322 " vs. " << *RootInst << 1323 " (side effects prevent reordering)\n"); 1324 return false; 1325 } 1326 1327 // For instructions that are part of a reduction, if the operation is 1328 // associative, then don't bother matching the operands (because we 1329 // already know that the instructions are isomorphic, and the order 1330 // within the iteration does not matter). For non-associative reductions, 1331 // we do need to match the operands, because we need to reject 1332 // out-of-order instructions within an iteration! 1333 // For example (assume floating-point addition), we need to reject this: 1334 // x += a[i]; x += b[i]; 1335 // x += a[i+1]; x += b[i+1]; 1336 // x += b[i+2]; x += a[i+2]; 1337 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1338 1339 if (!(InReduction && BaseInst->isAssociative())) { 1340 bool Swapped = false, SomeOpMatched = false; 1341 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1342 Value *Op2 = RootInst->getOperand(j); 1343 1344 // If this is part of a reduction (and the operation is not 1345 // associatve), then we match all operands, but not those that are 1346 // part of the reduction. 1347 if (InReduction) 1348 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1349 if (Reductions.isPairInSame(RootInst, Op2I)) 1350 continue; 1351 1352 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1353 if (BMI != BaseMap.end()) { 1354 Op2 = BMI->second; 1355 } else { 1356 for (auto &DRS : RootSets) { 1357 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1358 Op2 = DRS.BaseInst; 1359 break; 1360 } 1361 } 1362 } 1363 1364 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1365 // If we've not already decided to swap the matched operands, and 1366 // we've not already matched our first operand (note that we could 1367 // have skipped matching the first operand because it is part of a 1368 // reduction above), and the instruction is commutative, then try 1369 // the swapped match. 1370 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1371 BaseInst->getOperand(!j) == Op2) { 1372 Swapped = true; 1373 } else { 1374 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1375 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1376 return false; 1377 } 1378 } 1379 1380 SomeOpMatched = true; 1381 } 1382 } 1383 1384 if ((!PossibleRedLastSet.count(BaseInst) && 1385 hasUsesOutsideLoop(BaseInst, L)) || 1386 (!PossibleRedLastSet.count(RootInst) && 1387 hasUsesOutsideLoop(RootInst, L))) { 1388 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1389 " vs. " << *RootInst << " (uses outside loop)\n"); 1390 return false; 1391 } 1392 1393 Reductions.recordPair(BaseInst, RootInst, Iter); 1394 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1395 1396 LastRootIt = RootIt; 1397 Visited.insert(BaseInst); 1398 Visited.insert(RootInst); 1399 BaseIt = nextInstr(0, Uses, Visited); 1400 RootIt = nextInstr(Iter, Uses, Visited); 1401 } 1402 assert (BaseIt == Uses.end() && RootIt == Uses.end() && 1403 "Mismatched set sizes!"); 1404 } 1405 1406 DEBUG(dbgs() << "LRR: Matched all iteration increments for " << 1407 *IV << "\n"); 1408 1409 return true; 1410} 1411 1412void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) { 1413 BasicBlock *Header = L->getHeader(); 1414 // Remove instructions associated with non-base iterations. 1415 for (BasicBlock::reverse_iterator J = Header->rbegin(); 1416 J != Header->rend();) { 1417 unsigned I = Uses[&*J].find_first(); 1418 if (I > 0 && I < IL_All) { 1419 Instruction *D = &*J; 1420 DEBUG(dbgs() << "LRR: removing: " << *D << "\n"); 1421 D->eraseFromParent(); 1422 continue; 1423 } 1424 1425 ++J; 1426 } 1427 1428 bool HasTwoIVs = LoopControlIV && LoopControlIV != IV; 1429 1430 if (HasTwoIVs) { 1431 updateNonLoopCtrlIncr(); 1432 replaceIV(LoopControlIV, LoopControlIV, IterCount); 1433 } else 1434 // We need to create a new induction variable for each different BaseInst. 1435 for (auto &DRS : RootSets) 1436 // Insert the new induction variable. 1437 replaceIV(DRS.BaseInst, IV, IterCount); 1438 1439 SimplifyInstructionsInBlock(Header, TLI); 1440 DeleteDeadPHIs(Header, TLI); 1441} 1442 1443// For non-loop-control IVs, we only need to update the last increment 1444// with right amount, then we are done. 1445void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() { 1446 const SCEV *NewInc = nullptr; 1447 for (auto *LoopInc : LoopIncs) { 1448 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc); 1449 const SCEVConstant *COp = nullptr; 1450 if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) { 1451 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1452 } else { 1453 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0))); 1454 if (!COp) 1455 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1456 } 1457 1458 assert(COp && "Didn't find constant operand of LoopInc!\n"); 1459 1460 const APInt &AInt = COp->getValue()->getValue(); 1461 const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale); 1462 if (AInt.isNegative()) { 1463 NewInc = SE->getNegativeSCEV(COp); 1464 NewInc = SE->getUDivExpr(NewInc, ScaleSCEV); 1465 NewInc = SE->getNegativeSCEV(NewInc); 1466 } else 1467 NewInc = SE->getUDivExpr(COp, ScaleSCEV); 1468 1469 LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue()); 1470 } 1471} 1472 1473void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst, 1474 Instruction *InstIV, 1475 const SCEV *IterCount) { 1476 BasicBlock *Header = L->getHeader(); 1477 int64_t Inc = IVToIncMap[InstIV]; 1478 bool NeedNewIV = InstIV == LoopControlIV; 1479 bool Negative = !NeedNewIV && Inc < 0; 1480 1481 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst)); 1482 const SCEV *Start = RealIVSCEV->getStart(); 1483 1484 if (NeedNewIV) 1485 Start = SE->getConstant(Start->getType(), 0); 1486 1487 const SCEV *SizeOfExpr = nullptr; 1488 const SCEV *IncrExpr = 1489 SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1); 1490 if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) { 1491 Type *ElTy = PTy->getElementType(); 1492 SizeOfExpr = 1493 SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy); 1494 IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr); 1495 } 1496 const SCEV *NewIVSCEV = 1497 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1498 1499 { // Limit the lifetime of SCEVExpander. 1500 const DataLayout &DL = Header->getModule()->getDataLayout(); 1501 SCEVExpander Expander(*SE, DL, "reroll"); 1502 Value *NewIV = 1503 Expander.expandCodeFor(NewIVSCEV, InstIV->getType(), &Header->front()); 1504 1505 for (auto &KV : Uses) 1506 if (KV.second.find_first() == 0) 1507 KV.first->replaceUsesOfWith(Inst, NewIV); 1508 1509 if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) { 1510 // FIXME: Why do we need this check? 1511 if (Uses[BI].find_first() == IL_All) { 1512 const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE); 1513 1514 if (NeedNewIV) 1515 ICSCEV = SE->getMulExpr(IterCount, 1516 SE->getConstant(IterCount->getType(), Scale)); 1517 1518 // Iteration count SCEV minus or plus 1 1519 const SCEV *MinusPlus1SCEV = 1520 SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1); 1521 if (Inst->getType()->isPointerTy()) { 1522 assert(SizeOfExpr && "SizeOfExpr is not initialized"); 1523 MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr); 1524 } 1525 1526 const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV); 1527 // Iteration count minus 1 1528 Instruction *InsertPtr = nullptr; 1529 if (isa<SCEVConstant>(ICMinusPlus1SCEV)) { 1530 InsertPtr = BI; 1531 } else { 1532 BasicBlock *Preheader = L->getLoopPreheader(); 1533 if (!Preheader) 1534 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 1535 InsertPtr = Preheader->getTerminator(); 1536 } 1537 1538 if (!isa<PointerType>(NewIV->getType()) && NeedNewIV && 1539 (SE->getTypeSizeInBits(NewIV->getType()) < 1540 SE->getTypeSizeInBits(ICMinusPlus1SCEV->getType()))) { 1541 IRBuilder<> Builder(BI); 1542 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 1543 NewIV = Builder.CreateSExt(NewIV, ICMinusPlus1SCEV->getType()); 1544 } 1545 Value *ICMinusPlus1 = Expander.expandCodeFor( 1546 ICMinusPlus1SCEV, NewIV->getType(), InsertPtr); 1547 1548 Value *Cond = 1549 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond"); 1550 BI->setCondition(Cond); 1551 1552 if (BI->getSuccessor(1) != Header) 1553 BI->swapSuccessors(); 1554 } 1555 } 1556 } 1557} 1558 1559// Validate the selected reductions. All iterations must have an isomorphic 1560// part of the reduction chain and, for non-associative reductions, the chain 1561// entries must appear in order. 1562bool LoopReroll::ReductionTracker::validateSelected() { 1563 // For a non-associative reduction, the chain entries must appear in order. 1564 for (int i : Reds) { 1565 int PrevIter = 0, BaseCount = 0, Count = 0; 1566 for (Instruction *J : PossibleReds[i]) { 1567 // Note that all instructions in the chain must have been found because 1568 // all instructions in the function must have been assigned to some 1569 // iteration. 1570 int Iter = PossibleRedIter[J]; 1571 if (Iter != PrevIter && Iter != PrevIter + 1 && 1572 !PossibleReds[i].getReducedValue()->isAssociative()) { 1573 DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " << 1574 J << "\n"); 1575 return false; 1576 } 1577 1578 if (Iter != PrevIter) { 1579 if (Count != BaseCount) { 1580 DEBUG(dbgs() << "LRR: Iteration " << PrevIter << 1581 " reduction use count " << Count << 1582 " is not equal to the base use count " << 1583 BaseCount << "\n"); 1584 return false; 1585 } 1586 1587 Count = 0; 1588 } 1589 1590 ++Count; 1591 if (Iter == 0) 1592 ++BaseCount; 1593 1594 PrevIter = Iter; 1595 } 1596 } 1597 1598 return true; 1599} 1600 1601// For all selected reductions, remove all parts except those in the first 1602// iteration (and the PHI). Replace outside uses of the reduced value with uses 1603// of the first-iteration reduced value (in other words, reroll the selected 1604// reductions). 1605void LoopReroll::ReductionTracker::replaceSelected() { 1606 // Fixup reductions to refer to the last instruction associated with the 1607 // first iteration (not the last). 1608 for (int i : Reds) { 1609 int j = 0; 1610 for (int e = PossibleReds[i].size(); j != e; ++j) 1611 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1612 --j; 1613 break; 1614 } 1615 1616 // Replace users with the new end-of-chain value. 1617 SmallInstructionVector Users; 1618 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1619 Users.push_back(cast<Instruction>(U)); 1620 } 1621 1622 for (Instruction *User : Users) 1623 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1624 PossibleReds[i][j]); 1625 } 1626} 1627 1628// Reroll the provided loop with respect to the provided induction variable. 1629// Generally, we're looking for a loop like this: 1630// 1631// %iv = phi [ (preheader, ...), (body, %iv.next) ] 1632// f(%iv) 1633// %iv.1 = add %iv, 1 <-- a root increment 1634// f(%iv.1) 1635// %iv.2 = add %iv, 2 <-- a root increment 1636// f(%iv.2) 1637// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1638// f(%iv.scale_m_1) 1639// ... 1640// %iv.next = add %iv, scale 1641// %cmp = icmp(%iv, ...) 1642// br %cmp, header, exit 1643// 1644// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1645// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1646// be intermixed with eachother. The restriction imposed by this algorithm is 1647// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1648// etc. be the same. 1649// 1650// First, we collect the use set of %iv, excluding the other increment roots. 1651// This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1652// times, having collected the use set of f(%iv.(i+1)), during which we: 1653// - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1654// the next unmatched instruction in f(%iv.(i+1)). 1655// - Ensure that both matched instructions don't have any external users 1656// (with the exception of last-in-chain reduction instructions). 1657// - Track the (aliasing) write set, and other side effects, of all 1658// instructions that belong to future iterations that come before the matched 1659// instructions. If the matched instructions read from that write set, then 1660// f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1661// f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1662// if any of these future instructions had side effects (could not be 1663// speculatively executed), and so do the matched instructions, when we 1664// cannot reorder those side-effect-producing instructions, and rerolling 1665// fails. 1666// 1667// Finally, we make sure that all loop instructions are either loop increment 1668// roots, belong to simple latch code, parts of validated reductions, part of 1669// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1670// have been validated), then we reroll the loop. 1671bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1672 const SCEV *IterCount, 1673 ReductionTracker &Reductions) { 1674 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1675 IVToIncMap, LoopControlIV); 1676 1677 if (!DAGRoots.findRoots()) 1678 return false; 1679 DEBUG(dbgs() << "LRR: Found all root induction increments for: " << 1680 *IV << "\n"); 1681 1682 if (!DAGRoots.validate(Reductions)) 1683 return false; 1684 if (!Reductions.validateSelected()) 1685 return false; 1686 // At this point, we've validated the rerolling, and we're committed to 1687 // making changes! 1688 1689 Reductions.replaceSelected(); 1690 DAGRoots.replace(IterCount); 1691 1692 ++NumRerolledLoops; 1693 return true; 1694} 1695 1696bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { 1697 if (skipLoop(L)) 1698 return false; 1699 1700 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1701 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1702 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1703 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1704 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1705 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1706 1707 BasicBlock *Header = L->getHeader(); 1708 DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << 1709 "] Loop %" << Header->getName() << " (" << 1710 L->getNumBlocks() << " block(s))\n"); 1711 1712 // For now, we'll handle only single BB loops. 1713 if (L->getNumBlocks() > 1) 1714 return false; 1715 1716 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1717 return false; 1718 1719 const SCEV *LIBETC = SE->getBackedgeTakenCount(L); 1720 const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType())); 1721 DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); 1722 DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n"); 1723 1724 // First, we need to find the induction variable with respect to which we can 1725 // reroll (there may be several possible options). 1726 SmallInstructionVector PossibleIVs; 1727 IVToIncMap.clear(); 1728 LoopControlIV = nullptr; 1729 collectPossibleIVs(L, PossibleIVs); 1730 1731 if (PossibleIVs.empty()) { 1732 DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1733 return false; 1734 } 1735 1736 ReductionTracker Reductions; 1737 collectPossibleReductions(L, Reductions); 1738 bool Changed = false; 1739 1740 // For each possible IV, collect the associated possible set of 'root' nodes 1741 // (i+1, i+2, etc.). 1742 for (Instruction *PossibleIV : PossibleIVs) 1743 if (reroll(PossibleIV, L, Header, IterCount, Reductions)) { 1744 Changed = true; 1745 break; 1746 } 1747 DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); 1748 1749 // Trip count of L has changed so SE must be re-evaluated. 1750 if (Changed) 1751 SE->forgetLoop(L); 1752 1753 return Changed; 1754} 1755