1//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a simple loop reroller.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar.h"
15#include "llvm/ADT/MapVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AliasSetTracker.h"
22#include "llvm/Analysis/LoopPass.h"
23#include "llvm/Analysis/ScalarEvolution.h"
24#include "llvm/Analysis/ScalarEvolutionExpander.h"
25#include "llvm/Analysis/ScalarEvolutionExpressions.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Transforms/Utils/LoopUtils.h"
37
38using namespace llvm;
39
40#define DEBUG_TYPE "loop-reroll"
41
42STATISTIC(NumRerolledLoops, "Number of rerolled loops");
43
44static cl::opt<unsigned>
45MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
46  cl::desc("The maximum increment for loop rerolling"));
47
48static cl::opt<unsigned>
49NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
50                          cl::Hidden,
51                          cl::desc("The maximum number of failures to tolerate"
52                                   " during fuzzy matching. (default: 400)"));
53
54// This loop re-rolling transformation aims to transform loops like this:
55//
56// int foo(int a);
57// void bar(int *x) {
58//   for (int i = 0; i < 500; i += 3) {
59//     foo(i);
60//     foo(i+1);
61//     foo(i+2);
62//   }
63// }
64//
65// into a loop like this:
66//
67// void bar(int *x) {
68//   for (int i = 0; i < 500; ++i)
69//     foo(i);
70// }
71//
72// It does this by looking for loops that, besides the latch code, are composed
73// of isomorphic DAGs of instructions, with each DAG rooted at some increment
74// to the induction variable, and where each DAG is isomorphic to the DAG
75// rooted at the induction variable (excepting the sub-DAGs which root the
76// other induction-variable increments). In other words, we're looking for loop
77// bodies of the form:
78//
79// %iv = phi [ (preheader, ...), (body, %iv.next) ]
80// f(%iv)
81// %iv.1 = add %iv, 1                <-- a root increment
82// f(%iv.1)
83// %iv.2 = add %iv, 2                <-- a root increment
84// f(%iv.2)
85// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
86// f(%iv.scale_m_1)
87// ...
88// %iv.next = add %iv, scale
89// %cmp = icmp(%iv, ...)
90// br %cmp, header, exit
91//
92// where each f(i) is a set of instructions that, collectively, are a function
93// only of i (and other loop-invariant values).
94//
95// As a special case, we can also reroll loops like this:
96//
97// int foo(int);
98// void bar(int *x) {
99//   for (int i = 0; i < 500; ++i) {
100//     x[3*i] = foo(0);
101//     x[3*i+1] = foo(0);
102//     x[3*i+2] = foo(0);
103//   }
104// }
105//
106// into this:
107//
108// void bar(int *x) {
109//   for (int i = 0; i < 1500; ++i)
110//     x[i] = foo(0);
111// }
112//
113// in which case, we're looking for inputs like this:
114//
115// %iv = phi [ (preheader, ...), (body, %iv.next) ]
116// %scaled.iv = mul %iv, scale
117// f(%scaled.iv)
118// %scaled.iv.1 = add %scaled.iv, 1
119// f(%scaled.iv.1)
120// %scaled.iv.2 = add %scaled.iv, 2
121// f(%scaled.iv.2)
122// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
123// f(%scaled.iv.scale_m_1)
124// ...
125// %iv.next = add %iv, 1
126// %cmp = icmp(%iv, ...)
127// br %cmp, header, exit
128
129namespace {
130  enum IterationLimits {
131    /// The maximum number of iterations that we'll try and reroll.
132    IL_MaxRerollIterations = 32,
133    /// The bitvector index used by loop induction variables and other
134    /// instructions that belong to all iterations.
135    IL_All,
136    IL_End
137  };
138
139  class LoopReroll : public LoopPass {
140  public:
141    static char ID; // Pass ID, replacement for typeid
142    LoopReroll() : LoopPass(ID) {
143      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
144    }
145
146    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
147
148    void getAnalysisUsage(AnalysisUsage &AU) const override {
149      AU.addRequired<TargetLibraryInfoWrapperPass>();
150      getLoopAnalysisUsage(AU);
151    }
152
153  protected:
154    AliasAnalysis *AA;
155    LoopInfo *LI;
156    ScalarEvolution *SE;
157    TargetLibraryInfo *TLI;
158    DominatorTree *DT;
159    bool PreserveLCSSA;
160
161    typedef SmallVector<Instruction *, 16> SmallInstructionVector;
162    typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
163
164    // Map between induction variable and its increment
165    DenseMap<Instruction *, int64_t> IVToIncMap;
166    // For loop with multiple induction variable, remember the one used only to
167    // control the loop.
168    Instruction *LoopControlIV;
169
170    // A chain of isomorphic instructions, identified by a single-use PHI
171    // representing a reduction. Only the last value may be used outside the
172    // loop.
173    struct SimpleLoopReduction {
174      SimpleLoopReduction(Instruction *P, Loop *L)
175        : Valid(false), Instructions(1, P) {
176        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
177        add(L);
178      }
179
180      bool valid() const {
181        return Valid;
182      }
183
184      Instruction *getPHI() const {
185        assert(Valid && "Using invalid reduction");
186        return Instructions.front();
187      }
188
189      Instruction *getReducedValue() const {
190        assert(Valid && "Using invalid reduction");
191        return Instructions.back();
192      }
193
194      Instruction *get(size_t i) const {
195        assert(Valid && "Using invalid reduction");
196        return Instructions[i+1];
197      }
198
199      Instruction *operator [] (size_t i) const { return get(i); }
200
201      // The size, ignoring the initial PHI.
202      size_t size() const {
203        assert(Valid && "Using invalid reduction");
204        return Instructions.size()-1;
205      }
206
207      typedef SmallInstructionVector::iterator iterator;
208      typedef SmallInstructionVector::const_iterator const_iterator;
209
210      iterator begin() {
211        assert(Valid && "Using invalid reduction");
212        return std::next(Instructions.begin());
213      }
214
215      const_iterator begin() const {
216        assert(Valid && "Using invalid reduction");
217        return std::next(Instructions.begin());
218      }
219
220      iterator end() { return Instructions.end(); }
221      const_iterator end() const { return Instructions.end(); }
222
223    protected:
224      bool Valid;
225      SmallInstructionVector Instructions;
226
227      void add(Loop *L);
228    };
229
230    // The set of all reductions, and state tracking of possible reductions
231    // during loop instruction processing.
232    struct ReductionTracker {
233      typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
234
235      // Add a new possible reduction.
236      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
237
238      // Setup to track possible reductions corresponding to the provided
239      // rerolling scale. Only reductions with a number of non-PHI instructions
240      // that is divisible by the scale are considered. Three instructions sets
241      // are filled in:
242      //   - A set of all possible instructions in eligible reductions.
243      //   - A set of all PHIs in eligible reductions
244      //   - A set of all reduced values (last instructions) in eligible
245      //     reductions.
246      void restrictToScale(uint64_t Scale,
247                           SmallInstructionSet &PossibleRedSet,
248                           SmallInstructionSet &PossibleRedPHISet,
249                           SmallInstructionSet &PossibleRedLastSet) {
250        PossibleRedIdx.clear();
251        PossibleRedIter.clear();
252        Reds.clear();
253
254        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
255          if (PossibleReds[i].size() % Scale == 0) {
256            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
257            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
258
259            PossibleRedSet.insert(PossibleReds[i].getPHI());
260            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
261            for (Instruction *J : PossibleReds[i]) {
262              PossibleRedSet.insert(J);
263              PossibleRedIdx[J] = i;
264            }
265          }
266      }
267
268      // The functions below are used while processing the loop instructions.
269
270      // Are the two instructions both from reductions, and furthermore, from
271      // the same reduction?
272      bool isPairInSame(Instruction *J1, Instruction *J2) {
273        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
274        if (J1I != PossibleRedIdx.end()) {
275          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
276          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
277            return true;
278        }
279
280        return false;
281      }
282
283      // The two provided instructions, the first from the base iteration, and
284      // the second from iteration i, form a matched pair. If these are part of
285      // a reduction, record that fact.
286      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
287        if (PossibleRedIdx.count(J1)) {
288          assert(PossibleRedIdx.count(J2) &&
289                 "Recording reduction vs. non-reduction instruction?");
290
291          PossibleRedIter[J1] = 0;
292          PossibleRedIter[J2] = i;
293
294          int Idx = PossibleRedIdx[J1];
295          assert(Idx == PossibleRedIdx[J2] &&
296                 "Recording pair from different reductions?");
297          Reds.insert(Idx);
298        }
299      }
300
301      // The functions below can be called after we've finished processing all
302      // instructions in the loop, and we know which reductions were selected.
303
304      bool validateSelected();
305      void replaceSelected();
306
307    protected:
308      // The vector of all possible reductions (for any scale).
309      SmallReductionVector PossibleReds;
310
311      DenseMap<Instruction *, int> PossibleRedIdx;
312      DenseMap<Instruction *, int> PossibleRedIter;
313      DenseSet<int> Reds;
314    };
315
316    // A DAGRootSet models an induction variable being used in a rerollable
317    // loop. For example,
318    //
319    //   x[i*3+0] = y1
320    //   x[i*3+1] = y2
321    //   x[i*3+2] = y3
322    //
323    //   Base instruction -> i*3
324    //                    +---+----+
325    //                   /    |     \
326    //               ST[y1]  +1     +2  <-- Roots
327    //                        |      |
328    //                      ST[y2] ST[y3]
329    //
330    // There may be multiple DAGRoots, for example:
331    //
332    //   x[i*2+0] = ...   (1)
333    //   x[i*2+1] = ...   (1)
334    //   x[i*2+4] = ...   (2)
335    //   x[i*2+5] = ...   (2)
336    //   x[(i+1234)*2+5678] = ... (3)
337    //   x[(i+1234)*2+5679] = ... (3)
338    //
339    // The loop will be rerolled by adding a new loop induction variable,
340    // one for the Base instruction in each DAGRootSet.
341    //
342    struct DAGRootSet {
343      Instruction *BaseInst;
344      SmallInstructionVector Roots;
345      // The instructions between IV and BaseInst (but not including BaseInst).
346      SmallInstructionSet SubsumedInsts;
347    };
348
349    // The set of all DAG roots, and state tracking of all roots
350    // for a particular induction variable.
351    struct DAGRootTracker {
352      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
353                     ScalarEvolution *SE, AliasAnalysis *AA,
354                     TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
355                     bool PreserveLCSSA,
356                     DenseMap<Instruction *, int64_t> &IncrMap,
357                     Instruction *LoopCtrlIV)
358          : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
359            PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
360            LoopControlIV(LoopCtrlIV) {}
361
362      /// Stage 1: Find all the DAG roots for the induction variable.
363      bool findRoots();
364      /// Stage 2: Validate if the found roots are valid.
365      bool validate(ReductionTracker &Reductions);
366      /// Stage 3: Assuming validate() returned true, perform the
367      /// replacement.
368      /// @param IterCount The maximum iteration count of L.
369      void replace(const SCEV *IterCount);
370
371    protected:
372      typedef MapVector<Instruction*, BitVector> UsesTy;
373
374      bool findRootsRecursive(Instruction *IVU,
375                              SmallInstructionSet SubsumedInsts);
376      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
377      bool collectPossibleRoots(Instruction *Base,
378                                std::map<int64_t,Instruction*> &Roots);
379
380      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
381      void collectInLoopUserSet(const SmallInstructionVector &Roots,
382                                const SmallInstructionSet &Exclude,
383                                const SmallInstructionSet &Final,
384                                DenseSet<Instruction *> &Users);
385      void collectInLoopUserSet(Instruction *Root,
386                                const SmallInstructionSet &Exclude,
387                                const SmallInstructionSet &Final,
388                                DenseSet<Instruction *> &Users);
389
390      UsesTy::iterator nextInstr(int Val, UsesTy &In,
391                                 const SmallInstructionSet &Exclude,
392                                 UsesTy::iterator *StartI=nullptr);
393      bool isBaseInst(Instruction *I);
394      bool isRootInst(Instruction *I);
395      bool instrDependsOn(Instruction *I,
396                          UsesTy::iterator Start,
397                          UsesTy::iterator End);
398      void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount);
399      void updateNonLoopCtrlIncr();
400
401      LoopReroll *Parent;
402
403      // Members of Parent, replicated here for brevity.
404      Loop *L;
405      ScalarEvolution *SE;
406      AliasAnalysis *AA;
407      TargetLibraryInfo *TLI;
408      DominatorTree *DT;
409      LoopInfo *LI;
410      bool PreserveLCSSA;
411
412      // The loop induction variable.
413      Instruction *IV;
414      // Loop step amount.
415      int64_t Inc;
416      // Loop reroll count; if Inc == 1, this records the scaling applied
417      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
418      // If Inc is not 1, Scale = Inc.
419      uint64_t Scale;
420      // The roots themselves.
421      SmallVector<DAGRootSet,16> RootSets;
422      // All increment instructions for IV.
423      SmallInstructionVector LoopIncs;
424      // Map of all instructions in the loop (in order) to the iterations
425      // they are used in (or specially, IL_All for instructions
426      // used in the loop increment mechanism).
427      UsesTy Uses;
428      // Map between induction variable and its increment
429      DenseMap<Instruction *, int64_t> &IVToIncMap;
430      Instruction *LoopControlIV;
431    };
432
433    // Check if it is a compare-like instruction whose user is a branch
434    bool isCompareUsedByBranch(Instruction *I) {
435      auto *TI = I->getParent()->getTerminator();
436      if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
437        return false;
438      return I->hasOneUse() && TI->getOperand(0) == I;
439    };
440
441    bool isLoopControlIV(Loop *L, Instruction *IV);
442    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
443    void collectPossibleReductions(Loop *L,
444           ReductionTracker &Reductions);
445    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
446                ReductionTracker &Reductions);
447  };
448}
449
450char LoopReroll::ID = 0;
451INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
452INITIALIZE_PASS_DEPENDENCY(LoopPass)
453INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
454INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
455
456Pass *llvm::createLoopRerollPass() {
457  return new LoopReroll;
458}
459
460// Returns true if the provided instruction is used outside the given loop.
461// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
462// non-loop blocks to be outside the loop.
463static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
464  for (User *U : I->users()) {
465    if (!L->contains(cast<Instruction>(U)))
466      return true;
467  }
468  return false;
469}
470
471static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE,
472                                                 const SCEV *SCEVExpr,
473                                                 Instruction &IV) {
474  const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr);
475
476  // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)),
477  // Return c1.
478  if (!MulSCEV && IV.getType()->isPointerTy())
479    if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) {
480      const PointerType *PTy = cast<PointerType>(IV.getType());
481      Type *ElTy = PTy->getElementType();
482      const SCEV *SizeOfExpr =
483          SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy);
484      if (IncSCEV->getValue()->getValue().isNegative()) {
485        const SCEV *NewSCEV =
486            SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr);
487        return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV));
488      } else {
489        return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr));
490      }
491    }
492
493  if (!MulSCEV)
494    return nullptr;
495
496  // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant,
497  // Return c.
498  const SCEVConstant *CIncSCEV = nullptr;
499  for (const SCEV *Operand : MulSCEV->operands()) {
500    if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) {
501      CIncSCEV = Constant;
502    } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) {
503      Type *AllocTy;
504      if (!Unknown->isSizeOf(AllocTy))
505        break;
506    } else {
507      return nullptr;
508    }
509  }
510  return CIncSCEV;
511}
512
513// Check if an IV is only used to control the loop. There are two cases:
514// 1. It only has one use which is loop increment, and the increment is only
515// used by comparison and the PHI (could has sext with nsw in between), and the
516// comparison is only used by branch.
517// 2. It is used by loop increment and the comparison, the loop increment is
518// only used by the PHI, and the comparison is used only by the branch.
519bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
520  unsigned IVUses = IV->getNumUses();
521  if (IVUses != 2 && IVUses != 1)
522    return false;
523
524  for (auto *User : IV->users()) {
525    int32_t IncOrCmpUses = User->getNumUses();
526    bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
527
528    // User can only have one or two uses.
529    if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
530      return false;
531
532    // Case 1
533    if (IVUses == 1) {
534      // The only user must be the loop increment.
535      // The loop increment must have two uses.
536      if (IsCompInst || IncOrCmpUses != 2)
537        return false;
538    }
539
540    // Case 2
541    if (IVUses == 2 && IncOrCmpUses != 1)
542      return false;
543
544    // The users of the IV must be a binary operation or a comparison
545    if (auto *BO = dyn_cast<BinaryOperator>(User)) {
546      if (BO->getOpcode() == Instruction::Add) {
547        // Loop Increment
548        // User of Loop Increment should be either PHI or CMP
549        for (auto *UU : User->users()) {
550          if (PHINode *PN = dyn_cast<PHINode>(UU)) {
551            if (PN != IV)
552              return false;
553          }
554          // Must be a CMP or an ext (of a value with nsw) then CMP
555          else {
556            Instruction *UUser = dyn_cast<Instruction>(UU);
557            // Skip SExt if we are extending an nsw value
558            // TODO: Allow ZExt too
559            if (BO->hasNoSignedWrap() && UUser && UUser->getNumUses() == 1 &&
560                isa<SExtInst>(UUser))
561              UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
562            if (!isCompareUsedByBranch(UUser))
563              return false;
564          }
565        }
566      } else
567        return false;
568      // Compare : can only have one use, and must be branch
569    } else if (!IsCompInst)
570      return false;
571  }
572  return true;
573}
574
575// Collect the list of loop induction variables with respect to which it might
576// be possible to reroll the loop.
577void LoopReroll::collectPossibleIVs(Loop *L,
578                                    SmallInstructionVector &PossibleIVs) {
579  BasicBlock *Header = L->getHeader();
580  for (BasicBlock::iterator I = Header->begin(),
581       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
582    if (!isa<PHINode>(I))
583      continue;
584    if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
585      continue;
586
587    if (const SCEVAddRecExpr *PHISCEV =
588            dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
589      if (PHISCEV->getLoop() != L)
590        continue;
591      if (!PHISCEV->isAffine())
592        continue;
593      const SCEVConstant *IncSCEV = nullptr;
594      if (I->getType()->isPointerTy())
595        IncSCEV =
596            getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I);
597      else
598        IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
599      if (IncSCEV) {
600        const APInt &AInt = IncSCEV->getValue()->getValue().abs();
601        if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc))
602          continue;
603        IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
604        DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
605                     << "\n");
606
607        if (isLoopControlIV(L, &*I)) {
608          assert(!LoopControlIV && "Found two loop control only IV");
609          LoopControlIV = &(*I);
610          DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I << " = "
611                       << *PHISCEV << "\n");
612        } else
613          PossibleIVs.push_back(&*I);
614      }
615    }
616  }
617}
618
619// Add the remainder of the reduction-variable chain to the instruction vector
620// (the initial PHINode has already been added). If successful, the object is
621// marked as valid.
622void LoopReroll::SimpleLoopReduction::add(Loop *L) {
623  assert(!Valid && "Cannot add to an already-valid chain");
624
625  // The reduction variable must be a chain of single-use instructions
626  // (including the PHI), except for the last value (which is used by the PHI
627  // and also outside the loop).
628  Instruction *C = Instructions.front();
629  if (C->user_empty())
630    return;
631
632  do {
633    C = cast<Instruction>(*C->user_begin());
634    if (C->hasOneUse()) {
635      if (!C->isBinaryOp())
636        return;
637
638      if (!(isa<PHINode>(Instructions.back()) ||
639            C->isSameOperationAs(Instructions.back())))
640        return;
641
642      Instructions.push_back(C);
643    }
644  } while (C->hasOneUse());
645
646  if (Instructions.size() < 2 ||
647      !C->isSameOperationAs(Instructions.back()) ||
648      C->use_empty())
649    return;
650
651  // C is now the (potential) last instruction in the reduction chain.
652  for (User *U : C->users()) {
653    // The only in-loop user can be the initial PHI.
654    if (L->contains(cast<Instruction>(U)))
655      if (cast<Instruction>(U) != Instructions.front())
656        return;
657  }
658
659  Instructions.push_back(C);
660  Valid = true;
661}
662
663// Collect the vector of possible reduction variables.
664void LoopReroll::collectPossibleReductions(Loop *L,
665  ReductionTracker &Reductions) {
666  BasicBlock *Header = L->getHeader();
667  for (BasicBlock::iterator I = Header->begin(),
668       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
669    if (!isa<PHINode>(I))
670      continue;
671    if (!I->getType()->isSingleValueType())
672      continue;
673
674    SimpleLoopReduction SLR(&*I, L);
675    if (!SLR.valid())
676      continue;
677
678    DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
679          SLR.size() << " chained instructions)\n");
680    Reductions.addSLR(SLR);
681  }
682}
683
684// Collect the set of all users of the provided root instruction. This set of
685// users contains not only the direct users of the root instruction, but also
686// all users of those users, and so on. There are two exceptions:
687//
688//   1. Instructions in the set of excluded instructions are never added to the
689//   use set (even if they are users). This is used, for example, to exclude
690//   including root increments in the use set of the primary IV.
691//
692//   2. Instructions in the set of final instructions are added to the use set
693//   if they are users, but their users are not added. This is used, for
694//   example, to prevent a reduction update from forcing all later reduction
695//   updates into the use set.
696void LoopReroll::DAGRootTracker::collectInLoopUserSet(
697  Instruction *Root, const SmallInstructionSet &Exclude,
698  const SmallInstructionSet &Final,
699  DenseSet<Instruction *> &Users) {
700  SmallInstructionVector Queue(1, Root);
701  while (!Queue.empty()) {
702    Instruction *I = Queue.pop_back_val();
703    if (!Users.insert(I).second)
704      continue;
705
706    if (!Final.count(I))
707      for (Use &U : I->uses()) {
708        Instruction *User = cast<Instruction>(U.getUser());
709        if (PHINode *PN = dyn_cast<PHINode>(User)) {
710          // Ignore "wrap-around" uses to PHIs of this loop's header.
711          if (PN->getIncomingBlock(U) == L->getHeader())
712            continue;
713        }
714
715        if (L->contains(User) && !Exclude.count(User)) {
716          Queue.push_back(User);
717        }
718      }
719
720    // We also want to collect single-user "feeder" values.
721    for (User::op_iterator OI = I->op_begin(),
722         OIE = I->op_end(); OI != OIE; ++OI) {
723      if (Instruction *Op = dyn_cast<Instruction>(*OI))
724        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
725            !Final.count(Op))
726          Queue.push_back(Op);
727    }
728  }
729}
730
731// Collect all of the users of all of the provided root instructions (combined
732// into a single set).
733void LoopReroll::DAGRootTracker::collectInLoopUserSet(
734  const SmallInstructionVector &Roots,
735  const SmallInstructionSet &Exclude,
736  const SmallInstructionSet &Final,
737  DenseSet<Instruction *> &Users) {
738  for (Instruction *Root : Roots)
739    collectInLoopUserSet(Root, Exclude, Final, Users);
740}
741
742static bool isSimpleLoadStore(Instruction *I) {
743  if (LoadInst *LI = dyn_cast<LoadInst>(I))
744    return LI->isSimple();
745  if (StoreInst *SI = dyn_cast<StoreInst>(I))
746    return SI->isSimple();
747  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
748    return !MI->isVolatile();
749  return false;
750}
751
752/// Return true if IVU is a "simple" arithmetic operation.
753/// This is used for narrowing the search space for DAGRoots; only arithmetic
754/// and GEPs can be part of a DAGRoot.
755static bool isSimpleArithmeticOp(User *IVU) {
756  if (Instruction *I = dyn_cast<Instruction>(IVU)) {
757    switch (I->getOpcode()) {
758    default: return false;
759    case Instruction::Add:
760    case Instruction::Sub:
761    case Instruction::Mul:
762    case Instruction::Shl:
763    case Instruction::AShr:
764    case Instruction::LShr:
765    case Instruction::GetElementPtr:
766    case Instruction::Trunc:
767    case Instruction::ZExt:
768    case Instruction::SExt:
769      return true;
770    }
771  }
772  return false;
773}
774
775static bool isLoopIncrement(User *U, Instruction *IV) {
776  BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
777
778  if ((BO && BO->getOpcode() != Instruction::Add) ||
779      (!BO && !isa<GetElementPtrInst>(U)))
780    return false;
781
782  for (auto *UU : U->users()) {
783    PHINode *PN = dyn_cast<PHINode>(UU);
784    if (PN && PN == IV)
785      return true;
786  }
787  return false;
788}
789
790bool LoopReroll::DAGRootTracker::
791collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
792  SmallInstructionVector BaseUsers;
793
794  for (auto *I : Base->users()) {
795    ConstantInt *CI = nullptr;
796
797    if (isLoopIncrement(I, IV)) {
798      LoopIncs.push_back(cast<Instruction>(I));
799      continue;
800    }
801
802    // The root nodes must be either GEPs, ORs or ADDs.
803    if (auto *BO = dyn_cast<BinaryOperator>(I)) {
804      if (BO->getOpcode() == Instruction::Add ||
805          BO->getOpcode() == Instruction::Or)
806        CI = dyn_cast<ConstantInt>(BO->getOperand(1));
807    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
808      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
809      CI = dyn_cast<ConstantInt>(LastOperand);
810    }
811
812    if (!CI) {
813      if (Instruction *II = dyn_cast<Instruction>(I)) {
814        BaseUsers.push_back(II);
815        continue;
816      } else {
817        DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
818        return false;
819      }
820    }
821
822    int64_t V = std::abs(CI->getValue().getSExtValue());
823    if (Roots.find(V) != Roots.end())
824      // No duplicates, please.
825      return false;
826
827    Roots[V] = cast<Instruction>(I);
828  }
829
830  if (Roots.empty())
831    return false;
832
833  // If we found non-loop-inc, non-root users of Base, assume they are
834  // for the zeroth root index. This is because "add %a, 0" gets optimized
835  // away.
836  if (BaseUsers.size()) {
837    if (Roots.find(0) != Roots.end()) {
838      DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
839      return false;
840    }
841    Roots[0] = Base;
842  }
843
844  // Calculate the number of users of the base, or lowest indexed, iteration.
845  unsigned NumBaseUses = BaseUsers.size();
846  if (NumBaseUses == 0)
847    NumBaseUses = Roots.begin()->second->getNumUses();
848
849  // Check that every node has the same number of users.
850  for (auto &KV : Roots) {
851    if (KV.first == 0)
852      continue;
853    if (KV.second->getNumUses() != NumBaseUses) {
854      DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
855            << "#Base=" << NumBaseUses << ", #Root=" <<
856            KV.second->getNumUses() << "\n");
857      return false;
858    }
859  }
860
861  return true;
862}
863
864bool LoopReroll::DAGRootTracker::
865findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
866  // Does the user look like it could be part of a root set?
867  // All its users must be simple arithmetic ops.
868  if (I->getNumUses() > IL_MaxRerollIterations)
869    return false;
870
871  if ((I->getOpcode() == Instruction::Mul ||
872       I->getOpcode() == Instruction::PHI) &&
873      I != IV &&
874      findRootsBase(I, SubsumedInsts))
875    return true;
876
877  SubsumedInsts.insert(I);
878
879  for (User *V : I->users()) {
880    Instruction *I = dyn_cast<Instruction>(V);
881    if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
882      continue;
883
884    if (!I || !isSimpleArithmeticOp(I) ||
885        !findRootsRecursive(I, SubsumedInsts))
886      return false;
887  }
888  return true;
889}
890
891bool LoopReroll::DAGRootTracker::
892findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
893
894  // The base instruction needs to be a multiply so
895  // that we can erase it.
896  if (IVU->getOpcode() != Instruction::Mul &&
897      IVU->getOpcode() != Instruction::PHI)
898    return false;
899
900  std::map<int64_t, Instruction*> V;
901  if (!collectPossibleRoots(IVU, V))
902    return false;
903
904  // If we didn't get a root for index zero, then IVU must be
905  // subsumed.
906  if (V.find(0) == V.end())
907    SubsumedInsts.insert(IVU);
908
909  // Partition the vector into monotonically increasing indexes.
910  DAGRootSet DRS;
911  DRS.BaseInst = nullptr;
912
913  for (auto &KV : V) {
914    if (!DRS.BaseInst) {
915      DRS.BaseInst = KV.second;
916      DRS.SubsumedInsts = SubsumedInsts;
917    } else if (DRS.Roots.empty()) {
918      DRS.Roots.push_back(KV.second);
919    } else if (V.find(KV.first - 1) != V.end()) {
920      DRS.Roots.push_back(KV.second);
921    } else {
922      // Linear sequence terminated.
923      RootSets.push_back(DRS);
924      DRS.BaseInst = KV.second;
925      DRS.SubsumedInsts = SubsumedInsts;
926      DRS.Roots.clear();
927    }
928  }
929  RootSets.push_back(DRS);
930
931  return true;
932}
933
934bool LoopReroll::DAGRootTracker::findRoots() {
935  Inc = IVToIncMap[IV];
936
937  assert(RootSets.empty() && "Unclean state!");
938  if (std::abs(Inc) == 1) {
939    for (auto *IVU : IV->users()) {
940      if (isLoopIncrement(IVU, IV))
941        LoopIncs.push_back(cast<Instruction>(IVU));
942    }
943    if (!findRootsRecursive(IV, SmallInstructionSet()))
944      return false;
945    LoopIncs.push_back(IV);
946  } else {
947    if (!findRootsBase(IV, SmallInstructionSet()))
948      return false;
949  }
950
951  // Ensure all sets have the same size.
952  if (RootSets.empty()) {
953    DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
954    return false;
955  }
956  for (auto &V : RootSets) {
957    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
958      DEBUG(dbgs()
959            << "LRR: Aborting because not all root sets have the same size\n");
960      return false;
961    }
962  }
963
964  // And ensure all loop iterations are consecutive. We rely on std::map
965  // providing ordered traversal.
966  for (auto &V : RootSets) {
967    const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
968    if (!ADR)
969      return false;
970
971    // Consider a DAGRootSet with N-1 roots (so N different values including
972    //   BaseInst).
973    // Define d = Roots[0] - BaseInst, which should be the same as
974    //   Roots[I] - Roots[I-1] for all I in [1..N).
975    // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
976    //   loop iteration J.
977    //
978    // Now, For the loop iterations to be consecutive:
979    //   D = d * N
980
981    unsigned N = V.Roots.size() + 1;
982    const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
983    const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
984    if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
985      DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
986      return false;
987    }
988  }
989  Scale = RootSets[0].Roots.size() + 1;
990
991  if (Scale > IL_MaxRerollIterations) {
992    DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
993          << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
994          << "\n");
995    return false;
996  }
997
998  DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
999
1000  return true;
1001}
1002
1003bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1004  // Populate the MapVector with all instructions in the block, in order first,
1005  // so we can iterate over the contents later in perfect order.
1006  for (auto &I : *L->getHeader()) {
1007    Uses[&I].resize(IL_End);
1008  }
1009
1010  SmallInstructionSet Exclude;
1011  for (auto &DRS : RootSets) {
1012    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1013    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1014    Exclude.insert(DRS.BaseInst);
1015  }
1016  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1017
1018  for (auto &DRS : RootSets) {
1019    DenseSet<Instruction*> VBase;
1020    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1021    for (auto *I : VBase) {
1022      Uses[I].set(0);
1023    }
1024
1025    unsigned Idx = 1;
1026    for (auto *Root : DRS.Roots) {
1027      DenseSet<Instruction*> V;
1028      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1029
1030      // While we're here, check the use sets are the same size.
1031      if (V.size() != VBase.size()) {
1032        DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1033        return false;
1034      }
1035
1036      for (auto *I : V) {
1037        Uses[I].set(Idx);
1038      }
1039      ++Idx;
1040    }
1041
1042    // Make sure our subsumed instructions are remembered too.
1043    for (auto *I : DRS.SubsumedInsts) {
1044      Uses[I].set(IL_All);
1045    }
1046  }
1047
1048  // Make sure the loop increments are also accounted for.
1049
1050  Exclude.clear();
1051  for (auto &DRS : RootSets) {
1052    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1053    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1054    Exclude.insert(DRS.BaseInst);
1055  }
1056
1057  DenseSet<Instruction*> V;
1058  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1059  for (auto *I : V) {
1060    Uses[I].set(IL_All);
1061  }
1062
1063  return true;
1064
1065}
1066
1067/// Get the next instruction in "In" that is a member of set Val.
1068/// Start searching from StartI, and do not return anything in Exclude.
1069/// If StartI is not given, start from In.begin().
1070LoopReroll::DAGRootTracker::UsesTy::iterator
1071LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1072                                      const SmallInstructionSet &Exclude,
1073                                      UsesTy::iterator *StartI) {
1074  UsesTy::iterator I = StartI ? *StartI : In.begin();
1075  while (I != In.end() && (I->second.test(Val) == 0 ||
1076                           Exclude.count(I->first) != 0))
1077    ++I;
1078  return I;
1079}
1080
1081bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1082  for (auto &DRS : RootSets) {
1083    if (DRS.BaseInst == I)
1084      return true;
1085  }
1086  return false;
1087}
1088
1089bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1090  for (auto &DRS : RootSets) {
1091    if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
1092      return true;
1093  }
1094  return false;
1095}
1096
1097/// Return true if instruction I depends on any instruction between
1098/// Start and End.
1099bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1100                                                UsesTy::iterator Start,
1101                                                UsesTy::iterator End) {
1102  for (auto *U : I->users()) {
1103    for (auto It = Start; It != End; ++It)
1104      if (U == It->first)
1105        return true;
1106  }
1107  return false;
1108}
1109
1110static bool isIgnorableInst(const Instruction *I) {
1111  if (isa<DbgInfoIntrinsic>(I))
1112    return true;
1113  const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1114  if (!II)
1115    return false;
1116  switch (II->getIntrinsicID()) {
1117    default:
1118      return false;
1119    case llvm::Intrinsic::annotation:
1120    case Intrinsic::ptr_annotation:
1121    case Intrinsic::var_annotation:
1122    // TODO: the following intrinsics may also be whitelisted:
1123    //   lifetime_start, lifetime_end, invariant_start, invariant_end
1124      return true;
1125  }
1126  return false;
1127}
1128
1129bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1130  // We now need to check for equivalence of the use graph of each root with
1131  // that of the primary induction variable (excluding the roots). Our goal
1132  // here is not to solve the full graph isomorphism problem, but rather to
1133  // catch common cases without a lot of work. As a result, we will assume
1134  // that the relative order of the instructions in each unrolled iteration
1135  // is the same (although we will not make an assumption about how the
1136  // different iterations are intermixed). Note that while the order must be
1137  // the same, the instructions may not be in the same basic block.
1138
1139  // An array of just the possible reductions for this scale factor. When we
1140  // collect the set of all users of some root instructions, these reduction
1141  // instructions are treated as 'final' (their uses are not considered).
1142  // This is important because we don't want the root use set to search down
1143  // the reduction chain.
1144  SmallInstructionSet PossibleRedSet;
1145  SmallInstructionSet PossibleRedLastSet;
1146  SmallInstructionSet PossibleRedPHISet;
1147  Reductions.restrictToScale(Scale, PossibleRedSet,
1148                             PossibleRedPHISet, PossibleRedLastSet);
1149
1150  // Populate "Uses" with where each instruction is used.
1151  if (!collectUsedInstructions(PossibleRedSet))
1152    return false;
1153
1154  // Make sure we mark the reduction PHIs as used in all iterations.
1155  for (auto *I : PossibleRedPHISet) {
1156    Uses[I].set(IL_All);
1157  }
1158
1159  // Make sure we mark loop-control-only PHIs as used in all iterations. See
1160  // comment above LoopReroll::isLoopControlIV for more information.
1161  BasicBlock *Header = L->getHeader();
1162  if (LoopControlIV && LoopControlIV != IV) {
1163    for (auto *U : LoopControlIV->users()) {
1164      Instruction *IVUser = dyn_cast<Instruction>(U);
1165      // IVUser could be loop increment or compare
1166      Uses[IVUser].set(IL_All);
1167      for (auto *UU : IVUser->users()) {
1168        Instruction *UUser = dyn_cast<Instruction>(UU);
1169        // UUser could be compare, PHI or branch
1170        Uses[UUser].set(IL_All);
1171        // Skip SExt
1172        if (isa<SExtInst>(UUser)) {
1173          UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1174          Uses[UUser].set(IL_All);
1175        }
1176        // Is UUser a compare instruction?
1177        if (UU->hasOneUse()) {
1178          Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1179          if (BI == cast<BranchInst>(Header->getTerminator()))
1180            Uses[BI].set(IL_All);
1181        }
1182      }
1183    }
1184  }
1185
1186  // Make sure all instructions in the loop are in one and only one
1187  // set.
1188  for (auto &KV : Uses) {
1189    if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1190      DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1191            << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1192      return false;
1193    }
1194  }
1195
1196  DEBUG(
1197    for (auto &KV : Uses) {
1198      dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1199    }
1200    );
1201
1202  for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1203    // In addition to regular aliasing information, we need to look for
1204    // instructions from later (future) iterations that have side effects
1205    // preventing us from reordering them past other instructions with side
1206    // effects.
1207    bool FutureSideEffects = false;
1208    AliasSetTracker AST(*AA);
1209    // The map between instructions in f(%iv.(i+1)) and f(%iv).
1210    DenseMap<Value *, Value *> BaseMap;
1211
1212    // Compare iteration Iter to the base.
1213    SmallInstructionSet Visited;
1214    auto BaseIt = nextInstr(0, Uses, Visited);
1215    auto RootIt = nextInstr(Iter, Uses, Visited);
1216    auto LastRootIt = Uses.begin();
1217
1218    while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1219      Instruction *BaseInst = BaseIt->first;
1220      Instruction *RootInst = RootIt->first;
1221
1222      // Skip over the IV or root instructions; only match their users.
1223      bool Continue = false;
1224      if (isBaseInst(BaseInst)) {
1225        Visited.insert(BaseInst);
1226        BaseIt = nextInstr(0, Uses, Visited);
1227        Continue = true;
1228      }
1229      if (isRootInst(RootInst)) {
1230        LastRootIt = RootIt;
1231        Visited.insert(RootInst);
1232        RootIt = nextInstr(Iter, Uses, Visited);
1233        Continue = true;
1234      }
1235      if (Continue) continue;
1236
1237      if (!BaseInst->isSameOperationAs(RootInst)) {
1238        // Last chance saloon. We don't try and solve the full isomorphism
1239        // problem, but try and at least catch the case where two instructions
1240        // *of different types* are round the wrong way. We won't be able to
1241        // efficiently tell, given two ADD instructions, which way around we
1242        // should match them, but given an ADD and a SUB, we can at least infer
1243        // which one is which.
1244        //
1245        // This should allow us to deal with a greater subset of the isomorphism
1246        // problem. It does however change a linear algorithm into a quadratic
1247        // one, so limit the number of probes we do.
1248        auto TryIt = RootIt;
1249        unsigned N = NumToleratedFailedMatches;
1250        while (TryIt != Uses.end() &&
1251               !BaseInst->isSameOperationAs(TryIt->first) &&
1252               N--) {
1253          ++TryIt;
1254          TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1255        }
1256
1257        if (TryIt == Uses.end() || TryIt == RootIt ||
1258            instrDependsOn(TryIt->first, RootIt, TryIt)) {
1259          DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1260                " vs. " << *RootInst << "\n");
1261          return false;
1262        }
1263
1264        RootIt = TryIt;
1265        RootInst = TryIt->first;
1266      }
1267
1268      // All instructions between the last root and this root
1269      // may belong to some other iteration. If they belong to a
1270      // future iteration, then they're dangerous to alias with.
1271      //
1272      // Note that because we allow a limited amount of flexibility in the order
1273      // that we visit nodes, LastRootIt might be *before* RootIt, in which
1274      // case we've already checked this set of instructions so we shouldn't
1275      // do anything.
1276      for (; LastRootIt < RootIt; ++LastRootIt) {
1277        Instruction *I = LastRootIt->first;
1278        if (LastRootIt->second.find_first() < (int)Iter)
1279          continue;
1280        if (I->mayWriteToMemory())
1281          AST.add(I);
1282        // Note: This is specifically guarded by a check on isa<PHINode>,
1283        // which while a valid (somewhat arbitrary) micro-optimization, is
1284        // needed because otherwise isSafeToSpeculativelyExecute returns
1285        // false on PHI nodes.
1286        if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
1287            !isSafeToSpeculativelyExecute(I))
1288          // Intervening instructions cause side effects.
1289          FutureSideEffects = true;
1290      }
1291
1292      // Make sure that this instruction, which is in the use set of this
1293      // root instruction, does not also belong to the base set or the set of
1294      // some other root instruction.
1295      if (RootIt->second.count() > 1) {
1296        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1297                        " vs. " << *RootInst << " (prev. case overlap)\n");
1298        return false;
1299      }
1300
1301      // Make sure that we don't alias with any instruction in the alias set
1302      // tracker. If we do, then we depend on a future iteration, and we
1303      // can't reroll.
1304      if (RootInst->mayReadFromMemory())
1305        for (auto &K : AST) {
1306          if (K.aliasesUnknownInst(RootInst, *AA)) {
1307            DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1308                            " vs. " << *RootInst << " (depends on future store)\n");
1309            return false;
1310          }
1311        }
1312
1313      // If we've past an instruction from a future iteration that may have
1314      // side effects, and this instruction might also, then we can't reorder
1315      // them, and this matching fails. As an exception, we allow the alias
1316      // set tracker to handle regular (simple) load/store dependencies.
1317      if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
1318                                 !isSafeToSpeculativelyExecute(BaseInst)) ||
1319                                (!isSimpleLoadStore(RootInst) &&
1320                                 !isSafeToSpeculativelyExecute(RootInst)))) {
1321        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1322                        " vs. " << *RootInst <<
1323                        " (side effects prevent reordering)\n");
1324        return false;
1325      }
1326
1327      // For instructions that are part of a reduction, if the operation is
1328      // associative, then don't bother matching the operands (because we
1329      // already know that the instructions are isomorphic, and the order
1330      // within the iteration does not matter). For non-associative reductions,
1331      // we do need to match the operands, because we need to reject
1332      // out-of-order instructions within an iteration!
1333      // For example (assume floating-point addition), we need to reject this:
1334      //   x += a[i]; x += b[i];
1335      //   x += a[i+1]; x += b[i+1];
1336      //   x += b[i+2]; x += a[i+2];
1337      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1338
1339      if (!(InReduction && BaseInst->isAssociative())) {
1340        bool Swapped = false, SomeOpMatched = false;
1341        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1342          Value *Op2 = RootInst->getOperand(j);
1343
1344          // If this is part of a reduction (and the operation is not
1345          // associatve), then we match all operands, but not those that are
1346          // part of the reduction.
1347          if (InReduction)
1348            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1349              if (Reductions.isPairInSame(RootInst, Op2I))
1350                continue;
1351
1352          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1353          if (BMI != BaseMap.end()) {
1354            Op2 = BMI->second;
1355          } else {
1356            for (auto &DRS : RootSets) {
1357              if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1358                Op2 = DRS.BaseInst;
1359                break;
1360              }
1361            }
1362          }
1363
1364          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1365            // If we've not already decided to swap the matched operands, and
1366            // we've not already matched our first operand (note that we could
1367            // have skipped matching the first operand because it is part of a
1368            // reduction above), and the instruction is commutative, then try
1369            // the swapped match.
1370            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1371                BaseInst->getOperand(!j) == Op2) {
1372              Swapped = true;
1373            } else {
1374              DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1375                    << " vs. " << *RootInst << " (operand " << j << ")\n");
1376              return false;
1377            }
1378          }
1379
1380          SomeOpMatched = true;
1381        }
1382      }
1383
1384      if ((!PossibleRedLastSet.count(BaseInst) &&
1385           hasUsesOutsideLoop(BaseInst, L)) ||
1386          (!PossibleRedLastSet.count(RootInst) &&
1387           hasUsesOutsideLoop(RootInst, L))) {
1388        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1389                        " vs. " << *RootInst << " (uses outside loop)\n");
1390        return false;
1391      }
1392
1393      Reductions.recordPair(BaseInst, RootInst, Iter);
1394      BaseMap.insert(std::make_pair(RootInst, BaseInst));
1395
1396      LastRootIt = RootIt;
1397      Visited.insert(BaseInst);
1398      Visited.insert(RootInst);
1399      BaseIt = nextInstr(0, Uses, Visited);
1400      RootIt = nextInstr(Iter, Uses, Visited);
1401    }
1402    assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
1403            "Mismatched set sizes!");
1404  }
1405
1406  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
1407                  *IV << "\n");
1408
1409  return true;
1410}
1411
1412void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
1413  BasicBlock *Header = L->getHeader();
1414  // Remove instructions associated with non-base iterations.
1415  for (BasicBlock::reverse_iterator J = Header->rbegin();
1416       J != Header->rend();) {
1417    unsigned I = Uses[&*J].find_first();
1418    if (I > 0 && I < IL_All) {
1419      Instruction *D = &*J;
1420      DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
1421      D->eraseFromParent();
1422      continue;
1423    }
1424
1425    ++J;
1426  }
1427
1428  bool HasTwoIVs = LoopControlIV && LoopControlIV != IV;
1429
1430  if (HasTwoIVs) {
1431    updateNonLoopCtrlIncr();
1432    replaceIV(LoopControlIV, LoopControlIV, IterCount);
1433  } else
1434    // We need to create a new induction variable for each different BaseInst.
1435    for (auto &DRS : RootSets)
1436      // Insert the new induction variable.
1437      replaceIV(DRS.BaseInst, IV, IterCount);
1438
1439  SimplifyInstructionsInBlock(Header, TLI);
1440  DeleteDeadPHIs(Header, TLI);
1441}
1442
1443// For non-loop-control IVs, we only need to update the last increment
1444// with right amount, then we are done.
1445void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() {
1446  const SCEV *NewInc = nullptr;
1447  for (auto *LoopInc : LoopIncs) {
1448    GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc);
1449    const SCEVConstant *COp = nullptr;
1450    if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) {
1451      COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
1452    } else {
1453      COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0)));
1454      if (!COp)
1455        COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
1456    }
1457
1458    assert(COp && "Didn't find constant operand of LoopInc!\n");
1459
1460    const APInt &AInt = COp->getValue()->getValue();
1461    const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale);
1462    if (AInt.isNegative()) {
1463      NewInc = SE->getNegativeSCEV(COp);
1464      NewInc = SE->getUDivExpr(NewInc, ScaleSCEV);
1465      NewInc = SE->getNegativeSCEV(NewInc);
1466    } else
1467      NewInc = SE->getUDivExpr(COp, ScaleSCEV);
1468
1469    LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue());
1470  }
1471}
1472
1473void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst,
1474                                           Instruction *InstIV,
1475                                           const SCEV *IterCount) {
1476  BasicBlock *Header = L->getHeader();
1477  int64_t Inc = IVToIncMap[InstIV];
1478  bool NeedNewIV = InstIV == LoopControlIV;
1479  bool Negative = !NeedNewIV && Inc < 0;
1480
1481  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst));
1482  const SCEV *Start = RealIVSCEV->getStart();
1483
1484  if (NeedNewIV)
1485    Start = SE->getConstant(Start->getType(), 0);
1486
1487  const SCEV *SizeOfExpr = nullptr;
1488  const SCEV *IncrExpr =
1489      SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1);
1490  if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) {
1491    Type *ElTy = PTy->getElementType();
1492    SizeOfExpr =
1493        SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy);
1494    IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr);
1495  }
1496  const SCEV *NewIVSCEV =
1497      SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1498
1499  { // Limit the lifetime of SCEVExpander.
1500    const DataLayout &DL = Header->getModule()->getDataLayout();
1501    SCEVExpander Expander(*SE, DL, "reroll");
1502    Value *NewIV =
1503        Expander.expandCodeFor(NewIVSCEV, InstIV->getType(), &Header->front());
1504
1505    for (auto &KV : Uses)
1506      if (KV.second.find_first() == 0)
1507        KV.first->replaceUsesOfWith(Inst, NewIV);
1508
1509    if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
1510      // FIXME: Why do we need this check?
1511      if (Uses[BI].find_first() == IL_All) {
1512        const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1513
1514        if (NeedNewIV)
1515          ICSCEV = SE->getMulExpr(IterCount,
1516                                  SE->getConstant(IterCount->getType(), Scale));
1517
1518        // Iteration count SCEV minus or plus 1
1519        const SCEV *MinusPlus1SCEV =
1520            SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1);
1521        if (Inst->getType()->isPointerTy()) {
1522          assert(SizeOfExpr && "SizeOfExpr is not initialized");
1523          MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr);
1524        }
1525
1526        const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV);
1527        // Iteration count minus 1
1528        Instruction *InsertPtr = nullptr;
1529        if (isa<SCEVConstant>(ICMinusPlus1SCEV)) {
1530          InsertPtr = BI;
1531        } else {
1532          BasicBlock *Preheader = L->getLoopPreheader();
1533          if (!Preheader)
1534            Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
1535          InsertPtr = Preheader->getTerminator();
1536        }
1537
1538        if (!isa<PointerType>(NewIV->getType()) && NeedNewIV &&
1539            (SE->getTypeSizeInBits(NewIV->getType()) <
1540             SE->getTypeSizeInBits(ICMinusPlus1SCEV->getType()))) {
1541          IRBuilder<> Builder(BI);
1542          Builder.SetCurrentDebugLocation(BI->getDebugLoc());
1543          NewIV = Builder.CreateSExt(NewIV, ICMinusPlus1SCEV->getType());
1544        }
1545        Value *ICMinusPlus1 = Expander.expandCodeFor(
1546            ICMinusPlus1SCEV, NewIV->getType(), InsertPtr);
1547
1548        Value *Cond =
1549            new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond");
1550        BI->setCondition(Cond);
1551
1552        if (BI->getSuccessor(1) != Header)
1553          BI->swapSuccessors();
1554      }
1555    }
1556  }
1557}
1558
1559// Validate the selected reductions. All iterations must have an isomorphic
1560// part of the reduction chain and, for non-associative reductions, the chain
1561// entries must appear in order.
1562bool LoopReroll::ReductionTracker::validateSelected() {
1563  // For a non-associative reduction, the chain entries must appear in order.
1564  for (int i : Reds) {
1565    int PrevIter = 0, BaseCount = 0, Count = 0;
1566    for (Instruction *J : PossibleReds[i]) {
1567      // Note that all instructions in the chain must have been found because
1568      // all instructions in the function must have been assigned to some
1569      // iteration.
1570      int Iter = PossibleRedIter[J];
1571      if (Iter != PrevIter && Iter != PrevIter + 1 &&
1572          !PossibleReds[i].getReducedValue()->isAssociative()) {
1573        DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
1574                        J << "\n");
1575        return false;
1576      }
1577
1578      if (Iter != PrevIter) {
1579        if (Count != BaseCount) {
1580          DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
1581                " reduction use count " << Count <<
1582                " is not equal to the base use count " <<
1583                BaseCount << "\n");
1584          return false;
1585        }
1586
1587        Count = 0;
1588      }
1589
1590      ++Count;
1591      if (Iter == 0)
1592        ++BaseCount;
1593
1594      PrevIter = Iter;
1595    }
1596  }
1597
1598  return true;
1599}
1600
1601// For all selected reductions, remove all parts except those in the first
1602// iteration (and the PHI). Replace outside uses of the reduced value with uses
1603// of the first-iteration reduced value (in other words, reroll the selected
1604// reductions).
1605void LoopReroll::ReductionTracker::replaceSelected() {
1606  // Fixup reductions to refer to the last instruction associated with the
1607  // first iteration (not the last).
1608  for (int i : Reds) {
1609    int j = 0;
1610    for (int e = PossibleReds[i].size(); j != e; ++j)
1611      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1612        --j;
1613        break;
1614      }
1615
1616    // Replace users with the new end-of-chain value.
1617    SmallInstructionVector Users;
1618    for (User *U : PossibleReds[i].getReducedValue()->users()) {
1619      Users.push_back(cast<Instruction>(U));
1620    }
1621
1622    for (Instruction *User : Users)
1623      User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1624                              PossibleReds[i][j]);
1625  }
1626}
1627
1628// Reroll the provided loop with respect to the provided induction variable.
1629// Generally, we're looking for a loop like this:
1630//
1631// %iv = phi [ (preheader, ...), (body, %iv.next) ]
1632// f(%iv)
1633// %iv.1 = add %iv, 1                <-- a root increment
1634// f(%iv.1)
1635// %iv.2 = add %iv, 2                <-- a root increment
1636// f(%iv.2)
1637// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1638// f(%iv.scale_m_1)
1639// ...
1640// %iv.next = add %iv, scale
1641// %cmp = icmp(%iv, ...)
1642// br %cmp, header, exit
1643//
1644// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1645// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1646// be intermixed with eachother. The restriction imposed by this algorithm is
1647// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1648// etc. be the same.
1649//
1650// First, we collect the use set of %iv, excluding the other increment roots.
1651// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1652// times, having collected the use set of f(%iv.(i+1)), during which we:
1653//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1654//     the next unmatched instruction in f(%iv.(i+1)).
1655//   - Ensure that both matched instructions don't have any external users
1656//     (with the exception of last-in-chain reduction instructions).
1657//   - Track the (aliasing) write set, and other side effects, of all
1658//     instructions that belong to future iterations that come before the matched
1659//     instructions. If the matched instructions read from that write set, then
1660//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1661//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1662//     if any of these future instructions had side effects (could not be
1663//     speculatively executed), and so do the matched instructions, when we
1664//     cannot reorder those side-effect-producing instructions, and rerolling
1665//     fails.
1666//
1667// Finally, we make sure that all loop instructions are either loop increment
1668// roots, belong to simple latch code, parts of validated reductions, part of
1669// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1670// have been validated), then we reroll the loop.
1671bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1672                        const SCEV *IterCount,
1673                        ReductionTracker &Reductions) {
1674  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1675                          IVToIncMap, LoopControlIV);
1676
1677  if (!DAGRoots.findRoots())
1678    return false;
1679  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
1680                  *IV << "\n");
1681
1682  if (!DAGRoots.validate(Reductions))
1683    return false;
1684  if (!Reductions.validateSelected())
1685    return false;
1686  // At this point, we've validated the rerolling, and we're committed to
1687  // making changes!
1688
1689  Reductions.replaceSelected();
1690  DAGRoots.replace(IterCount);
1691
1692  ++NumRerolledLoops;
1693  return true;
1694}
1695
1696bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1697  if (skipLoop(L))
1698    return false;
1699
1700  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1701  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1702  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1703  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1704  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1705  PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1706
1707  BasicBlock *Header = L->getHeader();
1708  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
1709        "] Loop %" << Header->getName() << " (" <<
1710        L->getNumBlocks() << " block(s))\n");
1711
1712  // For now, we'll handle only single BB loops.
1713  if (L->getNumBlocks() > 1)
1714    return false;
1715
1716  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1717    return false;
1718
1719  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
1720  const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType()));
1721  DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1722  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
1723
1724  // First, we need to find the induction variable with respect to which we can
1725  // reroll (there may be several possible options).
1726  SmallInstructionVector PossibleIVs;
1727  IVToIncMap.clear();
1728  LoopControlIV = nullptr;
1729  collectPossibleIVs(L, PossibleIVs);
1730
1731  if (PossibleIVs.empty()) {
1732    DEBUG(dbgs() << "LRR: No possible IVs found\n");
1733    return false;
1734  }
1735
1736  ReductionTracker Reductions;
1737  collectPossibleReductions(L, Reductions);
1738  bool Changed = false;
1739
1740  // For each possible IV, collect the associated possible set of 'root' nodes
1741  // (i+1, i+2, etc.).
1742  for (Instruction *PossibleIV : PossibleIVs)
1743    if (reroll(PossibleIV, L, Header, IterCount, Reductions)) {
1744      Changed = true;
1745      break;
1746    }
1747  DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1748
1749  // Trip count of L has changed so SE must be re-evaluated.
1750  if (Changed)
1751    SE->forgetLoop(L);
1752
1753  return Changed;
1754}
1755