1//===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements the ELF-specific dumper for llvm-readobj.
12///
13//===----------------------------------------------------------------------===//
14
15#include "ARMAttributeParser.h"
16#include "ARMEHABIPrinter.h"
17#include "Error.h"
18#include "ObjDumper.h"
19#include "StackMapPrinter.h"
20#include "llvm-readobj.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Object/ELFObjectFile.h"
25#include "llvm/Support/ARMBuildAttributes.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/FormattedStream.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/MipsABIFlags.h"
31#include "llvm/Support/ScopedPrinter.h"
32#include "llvm/Support/raw_ostream.h"
33
34using namespace llvm;
35using namespace llvm::object;
36using namespace ELF;
37
38#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
39  case ns::enum: return #enum;
40
41#define ENUM_ENT(enum, altName) \
42  { #enum, altName, ELF::enum }
43
44#define ENUM_ENT_1(enum) \
45  { #enum, #enum, ELF::enum }
46
47#define LLVM_READOBJ_PHDR_ENUM(ns, enum)                                       \
48  case ns::enum:                                                               \
49    return std::string(#enum).substr(3);
50
51#define TYPEDEF_ELF_TYPES(ELFT)                                                \
52  typedef ELFFile<ELFT> ELFO;                                                  \
53  typedef typename ELFO::Elf_Shdr Elf_Shdr;                                    \
54  typedef typename ELFO::Elf_Sym Elf_Sym;                                      \
55  typedef typename ELFO::Elf_Dyn Elf_Dyn;                                      \
56  typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;                          \
57  typedef typename ELFO::Elf_Rel Elf_Rel;                                      \
58  typedef typename ELFO::Elf_Rela Elf_Rela;                                    \
59  typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;                        \
60  typedef typename ELFO::Elf_Phdr Elf_Phdr;                                    \
61  typedef typename ELFO::Elf_Half Elf_Half;                                    \
62  typedef typename ELFO::Elf_Ehdr Elf_Ehdr;                                    \
63  typedef typename ELFO::Elf_Word Elf_Word;                                    \
64  typedef typename ELFO::Elf_Hash Elf_Hash;                                    \
65  typedef typename ELFO::Elf_GnuHash Elf_GnuHash;                              \
66  typedef typename ELFO::uintX_t uintX_t;
67
68namespace {
69
70template <class ELFT> class DumpStyle;
71
72/// Represents a contiguous uniform range in the file. We cannot just create a
73/// range directly because when creating one of these from the .dynamic table
74/// the size, entity size and virtual address are different entries in arbitrary
75/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
76struct DynRegionInfo {
77  DynRegionInfo() : Addr(nullptr), Size(0), EntSize(0) {}
78  DynRegionInfo(const void *A, uint64_t S, uint64_t ES)
79      : Addr(A), Size(S), EntSize(ES) {}
80  /// \brief Address in current address space.
81  const void *Addr;
82  /// \brief Size in bytes of the region.
83  uint64_t Size;
84  /// \brief Size of each entity in the region.
85  uint64_t EntSize;
86
87  template <typename Type> ArrayRef<Type> getAsArrayRef() const {
88    const Type *Start = reinterpret_cast<const Type *>(Addr);
89    if (!Start)
90      return {Start, Start};
91    if (EntSize != sizeof(Type) || Size % EntSize)
92      reportError("Invalid entity size");
93    return {Start, Start + (Size / EntSize)};
94  }
95};
96
97template<typename ELFT>
98class ELFDumper : public ObjDumper {
99public:
100  ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer);
101
102  void printFileHeaders() override;
103  void printSections() override;
104  void printRelocations() override;
105  void printDynamicRelocations() override;
106  void printSymbols() override;
107  void printDynamicSymbols() override;
108  void printUnwindInfo() override;
109
110  void printDynamicTable() override;
111  void printNeededLibraries() override;
112  void printProgramHeaders() override;
113  void printHashTable() override;
114  void printGnuHashTable() override;
115  void printLoadName() override;
116  void printVersionInfo() override;
117  void printGroupSections() override;
118
119  void printAttributes() override;
120  void printMipsPLTGOT() override;
121  void printMipsABIFlags() override;
122  void printMipsReginfo() override;
123  void printMipsOptions() override;
124
125  void printStackMap() const override;
126
127  void printHashHistogram() override;
128
129private:
130  std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
131  typedef ELFFile<ELFT> ELFO;
132  typedef typename ELFO::Elf_Shdr Elf_Shdr;
133  typedef typename ELFO::Elf_Sym Elf_Sym;
134  typedef typename ELFO::Elf_Sym_Range Elf_Sym_Range;
135  typedef typename ELFO::Elf_Dyn Elf_Dyn;
136  typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
137  typedef typename ELFO::Elf_Rel Elf_Rel;
138  typedef typename ELFO::Elf_Rela Elf_Rela;
139  typedef typename ELFO::Elf_Rel_Range Elf_Rel_Range;
140  typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;
141  typedef typename ELFO::Elf_Phdr Elf_Phdr;
142  typedef typename ELFO::Elf_Half Elf_Half;
143  typedef typename ELFO::Elf_Hash Elf_Hash;
144  typedef typename ELFO::Elf_GnuHash Elf_GnuHash;
145  typedef typename ELFO::Elf_Ehdr Elf_Ehdr;
146  typedef typename ELFO::Elf_Word Elf_Word;
147  typedef typename ELFO::uintX_t uintX_t;
148  typedef typename ELFO::Elf_Versym Elf_Versym;
149  typedef typename ELFO::Elf_Verneed Elf_Verneed;
150  typedef typename ELFO::Elf_Vernaux Elf_Vernaux;
151  typedef typename ELFO::Elf_Verdef Elf_Verdef;
152  typedef typename ELFO::Elf_Verdaux Elf_Verdaux;
153
154  DynRegionInfo checkDRI(DynRegionInfo DRI) {
155    if (DRI.Addr < Obj->base() ||
156        (const uint8_t *)DRI.Addr + DRI.Size > Obj->base() + Obj->getBufSize())
157      error(llvm::object::object_error::parse_failed);
158    return DRI;
159  }
160
161  DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
162    return checkDRI({Obj->base() + P->p_offset, P->p_filesz, EntSize});
163  }
164
165  DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
166    return checkDRI({Obj->base() + S->sh_offset, S->sh_size, S->sh_entsize});
167  }
168
169  void parseDynamicTable(ArrayRef<const Elf_Phdr *> LoadSegments);
170
171  void printValue(uint64_t Type, uint64_t Value);
172
173  StringRef getDynamicString(uint64_t Offset) const;
174  StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
175                             bool &IsDefault) const;
176  void LoadVersionMap() const;
177  void LoadVersionNeeds(const Elf_Shdr *ec) const;
178  void LoadVersionDefs(const Elf_Shdr *sec) const;
179
180  const ELFO *Obj;
181  DynRegionInfo DynRelRegion;
182  DynRegionInfo DynRelaRegion;
183  DynRegionInfo DynPLTRelRegion;
184  DynRegionInfo DynSymRegion;
185  DynRegionInfo DynamicTable;
186  StringRef DynamicStringTable;
187  StringRef SOName;
188  const Elf_Hash *HashTable = nullptr;
189  const Elf_GnuHash *GnuHashTable = nullptr;
190  const Elf_Shdr *DotSymtabSec = nullptr;
191  StringRef DynSymtabName;
192  ArrayRef<Elf_Word> ShndxTable;
193
194  const Elf_Shdr *dot_gnu_version_sec = nullptr;   // .gnu.version
195  const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
196  const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
197
198  // Records for each version index the corresponding Verdef or Vernaux entry.
199  // This is filled the first time LoadVersionMap() is called.
200  class VersionMapEntry : public PointerIntPair<const void *, 1> {
201  public:
202    // If the integer is 0, this is an Elf_Verdef*.
203    // If the integer is 1, this is an Elf_Vernaux*.
204    VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
205    VersionMapEntry(const Elf_Verdef *verdef)
206        : PointerIntPair<const void *, 1>(verdef, 0) {}
207    VersionMapEntry(const Elf_Vernaux *vernaux)
208        : PointerIntPair<const void *, 1>(vernaux, 1) {}
209    bool isNull() const { return getPointer() == nullptr; }
210    bool isVerdef() const { return !isNull() && getInt() == 0; }
211    bool isVernaux() const { return !isNull() && getInt() == 1; }
212    const Elf_Verdef *getVerdef() const {
213      return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
214    }
215    const Elf_Vernaux *getVernaux() const {
216      return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
217    }
218  };
219  mutable SmallVector<VersionMapEntry, 16> VersionMap;
220
221public:
222  Elf_Dyn_Range dynamic_table() const {
223    return DynamicTable.getAsArrayRef<Elf_Dyn>();
224  }
225
226  Elf_Sym_Range dynamic_symbols() const {
227    return DynSymRegion.getAsArrayRef<Elf_Sym>();
228  }
229
230  Elf_Rel_Range dyn_rels() const;
231  Elf_Rela_Range dyn_relas() const;
232  std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
233                                bool IsDynamic) const;
234
235  void printSymbolsHelper(bool IsDynamic) const;
236  const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
237  ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
238  StringRef getDynamicStringTable() const { return DynamicStringTable; }
239  const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
240  const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
241  const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
242  const Elf_Hash *getHashTable() const { return HashTable; }
243  const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
244};
245
246template <class ELFT>
247void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
248  StringRef StrTable, SymtabName;
249  size_t Entries = 0;
250  Elf_Sym_Range Syms(nullptr, nullptr);
251  if (IsDynamic) {
252    StrTable = DynamicStringTable;
253    Syms = dynamic_symbols();
254    SymtabName = DynSymtabName;
255    if (DynSymRegion.Addr)
256      Entries = DynSymRegion.Size / DynSymRegion.EntSize;
257  } else {
258    if (!DotSymtabSec)
259      return;
260    StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
261    Syms = Obj->symbols(DotSymtabSec);
262    SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec));
263    Entries = DotSymtabSec->getEntityCount();
264  }
265  if (Syms.begin() == Syms.end())
266    return;
267  ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries);
268  for (const auto &Sym : Syms)
269    ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic);
270}
271
272template <typename ELFT> class DumpStyle {
273public:
274  using Elf_Shdr = typename ELFFile<ELFT>::Elf_Shdr;
275  using Elf_Sym =  typename ELFFile<ELFT>::Elf_Sym;
276
277  DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {}
278  virtual ~DumpStyle() {}
279  virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
280  virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
281  virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
282  virtual void printSections(const ELFFile<ELFT> *Obj) = 0;
283  virtual void printSymbols(const ELFFile<ELFT> *Obj) = 0;
284  virtual void printDynamicSymbols(const ELFFile<ELFT> *Obj) = 0;
285  virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
286  virtual void printSymtabMessage(const ELFFile<ELFT> *obj, StringRef Name,
287                                  size_t Offset) {
288    return;
289  }
290  virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
291                           const Elf_Sym *FirstSym, StringRef StrTable,
292                           bool IsDynamic) = 0;
293  virtual void printProgramHeaders(const ELFFile<ELFT> *Obj) = 0;
294  virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
295  const ELFDumper<ELFT> *dumper() const { return Dumper; }
296private:
297  const ELFDumper<ELFT> *Dumper;
298};
299
300template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
301  formatted_raw_ostream OS;
302public:
303  TYPEDEF_ELF_TYPES(ELFT)
304  GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
305      : DumpStyle<ELFT>(Dumper), OS(W.getOStream()) {}
306  void printFileHeaders(const ELFO *Obj) override;
307  void printGroupSections(const ELFFile<ELFT> *Obj) override;
308  void printRelocations(const ELFO *Obj) override;
309  void printSections(const ELFO *Obj) override;
310  void printSymbols(const ELFO *Obj) override;
311  void printDynamicSymbols(const ELFO *Obj) override;
312  void printDynamicRelocations(const ELFO *Obj) override;
313  virtual void printSymtabMessage(const ELFO *Obj, StringRef Name,
314                                  size_t Offset) override;
315  void printProgramHeaders(const ELFO *Obj) override;
316  void printHashHistogram(const ELFFile<ELFT> *Obj) override;
317
318private:
319  struct Field {
320    StringRef Str;
321    unsigned Column;
322    Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
323    Field(unsigned Col) : Str(""), Column(Col) {}
324  };
325
326  template <typename T, typename TEnum>
327  std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
328    for (const auto &EnumItem : EnumValues)
329      if (EnumItem.Value == Value)
330        return EnumItem.AltName;
331    return to_hexString(Value, false);
332  }
333
334  formatted_raw_ostream &printField(struct Field F) {
335    if (F.Column != 0)
336      OS.PadToColumn(F.Column);
337    OS << F.Str;
338    OS.flush();
339    return OS;
340  }
341  void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
342                       const Elf_Rela &R, bool IsRela);
343  void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
344                   StringRef StrTable, bool IsDynamic) override;
345  std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
346                                  const Elf_Sym *FirstSym);
347  void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
348  bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
349  bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
350  bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
351  bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
352};
353
354template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
355public:
356  TYPEDEF_ELF_TYPES(ELFT)
357  LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
358      : DumpStyle<ELFT>(Dumper), W(W) {}
359
360  void printFileHeaders(const ELFO *Obj) override;
361  void printGroupSections(const ELFFile<ELFT> *Obj) override;
362  void printRelocations(const ELFO *Obj) override;
363  void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
364  void printSections(const ELFO *Obj) override;
365  void printSymbols(const ELFO *Obj) override;
366  void printDynamicSymbols(const ELFO *Obj) override;
367  void printDynamicRelocations(const ELFO *Obj) override;
368  void printProgramHeaders(const ELFO *Obj) override;
369  void printHashHistogram(const ELFFile<ELFT> *Obj) override;
370
371private:
372  void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
373  void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
374  void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
375                   StringRef StrTable, bool IsDynamic) override;
376  ScopedPrinter &W;
377};
378
379} // namespace
380
381namespace llvm {
382
383template <class ELFT>
384static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
385                                       ScopedPrinter &Writer,
386                                       std::unique_ptr<ObjDumper> &Result) {
387  Result.reset(new ELFDumper<ELFT>(Obj, Writer));
388  return readobj_error::success;
389}
390
391std::error_code createELFDumper(const object::ObjectFile *Obj,
392                                ScopedPrinter &Writer,
393                                std::unique_ptr<ObjDumper> &Result) {
394  // Little-endian 32-bit
395  if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
396    return createELFDumper(ELFObj->getELFFile(), Writer, Result);
397
398  // Big-endian 32-bit
399  if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
400    return createELFDumper(ELFObj->getELFFile(), Writer, Result);
401
402  // Little-endian 64-bit
403  if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
404    return createELFDumper(ELFObj->getELFFile(), Writer, Result);
405
406  // Big-endian 64-bit
407  if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
408    return createELFDumper(ELFObj->getELFFile(), Writer, Result);
409
410  return readobj_error::unsupported_obj_file_format;
411}
412
413} // namespace llvm
414
415// Iterate through the versions needed section, and place each Elf_Vernaux
416// in the VersionMap according to its index.
417template <class ELFT>
418void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
419  unsigned vn_size = sec->sh_size;  // Size of section in bytes
420  unsigned vn_count = sec->sh_info; // Number of Verneed entries
421  const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
422  const char *sec_end = sec_start + vn_size;
423  // The first Verneed entry is at the start of the section.
424  const char *p = sec_start;
425  for (unsigned i = 0; i < vn_count; i++) {
426    if (p + sizeof(Elf_Verneed) > sec_end)
427      report_fatal_error("Section ended unexpectedly while scanning "
428                         "version needed records.");
429    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
430    if (vn->vn_version != ELF::VER_NEED_CURRENT)
431      report_fatal_error("Unexpected verneed version");
432    // Iterate through the Vernaux entries
433    const char *paux = p + vn->vn_aux;
434    for (unsigned j = 0; j < vn->vn_cnt; j++) {
435      if (paux + sizeof(Elf_Vernaux) > sec_end)
436        report_fatal_error("Section ended unexpected while scanning auxiliary "
437                           "version needed records.");
438      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
439      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
440      if (index >= VersionMap.size())
441        VersionMap.resize(index + 1);
442      VersionMap[index] = VersionMapEntry(vna);
443      paux += vna->vna_next;
444    }
445    p += vn->vn_next;
446  }
447}
448
449// Iterate through the version definitions, and place each Elf_Verdef
450// in the VersionMap according to its index.
451template <class ELFT>
452void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
453  unsigned vd_size = sec->sh_size;  // Size of section in bytes
454  unsigned vd_count = sec->sh_info; // Number of Verdef entries
455  const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
456  const char *sec_end = sec_start + vd_size;
457  // The first Verdef entry is at the start of the section.
458  const char *p = sec_start;
459  for (unsigned i = 0; i < vd_count; i++) {
460    if (p + sizeof(Elf_Verdef) > sec_end)
461      report_fatal_error("Section ended unexpectedly while scanning "
462                         "version definitions.");
463    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
464    if (vd->vd_version != ELF::VER_DEF_CURRENT)
465      report_fatal_error("Unexpected verdef version");
466    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
467    if (index >= VersionMap.size())
468      VersionMap.resize(index + 1);
469    VersionMap[index] = VersionMapEntry(vd);
470    p += vd->vd_next;
471  }
472}
473
474template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
475  // If there is no dynamic symtab or version table, there is nothing to do.
476  if (!DynSymRegion.Addr || !dot_gnu_version_sec)
477    return;
478
479  // Has the VersionMap already been loaded?
480  if (VersionMap.size() > 0)
481    return;
482
483  // The first two version indexes are reserved.
484  // Index 0 is LOCAL, index 1 is GLOBAL.
485  VersionMap.push_back(VersionMapEntry());
486  VersionMap.push_back(VersionMapEntry());
487
488  if (dot_gnu_version_d_sec)
489    LoadVersionDefs(dot_gnu_version_d_sec);
490
491  if (dot_gnu_version_r_sec)
492    LoadVersionNeeds(dot_gnu_version_r_sec);
493}
494
495template <typename ELFO, class ELFT>
496static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
497                                      const typename ELFO::Elf_Shdr *Sec,
498                                      ScopedPrinter &W) {
499  DictScope SS(W, "Version symbols");
500  if (!Sec)
501    return;
502  StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
503  W.printNumber("Section Name", Name, Sec->sh_name);
504  W.printHex("Address", Sec->sh_addr);
505  W.printHex("Offset", Sec->sh_offset);
506  W.printNumber("Link", Sec->sh_link);
507
508  const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
509  StringRef StrTable = Dumper->getDynamicStringTable();
510
511  // Same number of entries in the dynamic symbol table (DT_SYMTAB).
512  ListScope Syms(W, "Symbols");
513  for (const typename ELFO::Elf_Sym &Sym : Dumper->dynamic_symbols()) {
514    DictScope S(W, "Symbol");
515    std::string FullSymbolName =
516        Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
517    W.printNumber("Version", *P);
518    W.printString("Name", FullSymbolName);
519    P += sizeof(typename ELFO::Elf_Half);
520  }
521}
522
523static const EnumEntry<unsigned> SymVersionFlags[] = {
524    {"Base", "BASE", VER_FLG_BASE},
525    {"Weak", "WEAK", VER_FLG_WEAK},
526    {"Info", "INFO", VER_FLG_INFO}};
527
528template <typename ELFO, class ELFT>
529static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
530                                          const ELFO *Obj,
531                                          const typename ELFO::Elf_Shdr *Sec,
532                                          ScopedPrinter &W) {
533  typedef typename ELFO::Elf_Verdef VerDef;
534  typedef typename ELFO::Elf_Verdaux VerdAux;
535
536  DictScope SD(W, "SHT_GNU_verdef");
537  if (!Sec)
538    return;
539
540  // The number of entries in the section SHT_GNU_verdef
541  // is determined by DT_VERDEFNUM tag.
542  unsigned VerDefsNum = 0;
543  for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
544    if (Dyn.d_tag == DT_VERDEFNUM)
545      VerDefsNum = Dyn.d_un.d_val;
546  }
547  const uint8_t *SecStartAddress =
548      (const uint8_t *)Obj->base() + Sec->sh_offset;
549  const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
550  const uint8_t *P = SecStartAddress;
551  const typename ELFO::Elf_Shdr *StrTab =
552      unwrapOrError(Obj->getSection(Sec->sh_link));
553
554  while (VerDefsNum--) {
555    if (P + sizeof(VerDef) > SecEndAddress)
556      report_fatal_error("invalid offset in the section");
557
558    auto *VD = reinterpret_cast<const VerDef *>(P);
559    DictScope Def(W, "Definition");
560    W.printNumber("Version", VD->vd_version);
561    W.printEnum("Flags", VD->vd_flags, makeArrayRef(SymVersionFlags));
562    W.printNumber("Index", VD->vd_ndx);
563    W.printNumber("Hash", VD->vd_hash);
564    W.printString("Name",
565                  StringRef((const char *)(Obj->base() + StrTab->sh_offset +
566                                           VD->getAux()->vda_name)));
567    if (!VD->vd_cnt)
568      report_fatal_error("at least one definition string must exist");
569    if (VD->vd_cnt > 2)
570      report_fatal_error("more than one predecessor is not expected");
571
572    if (VD->vd_cnt == 2) {
573      const uint8_t *PAux = P + VD->vd_aux + VD->getAux()->vda_next;
574      const VerdAux *Aux = reinterpret_cast<const VerdAux *>(PAux);
575      W.printString("Predecessor",
576                    StringRef((const char *)(Obj->base() + StrTab->sh_offset +
577                                             Aux->vda_name)));
578    }
579
580    P += VD->vd_next;
581  }
582}
583
584template <typename ELFO, class ELFT>
585static void printVersionDependencySection(ELFDumper<ELFT> *Dumper,
586                                          const ELFO *Obj,
587                                          const typename ELFO::Elf_Shdr *Sec,
588                                          ScopedPrinter &W) {
589  typedef typename ELFO::Elf_Verneed VerNeed;
590  typedef typename ELFO::Elf_Vernaux VernAux;
591
592  DictScope SD(W, "SHT_GNU_verneed");
593  if (!Sec)
594    return;
595
596  unsigned VerNeedNum = 0;
597  for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table())
598    if (Dyn.d_tag == DT_VERNEEDNUM)
599      VerNeedNum = Dyn.d_un.d_val;
600
601  const uint8_t *SecData = (const uint8_t *)Obj->base() + Sec->sh_offset;
602  const typename ELFO::Elf_Shdr *StrTab =
603      unwrapOrError(Obj->getSection(Sec->sh_link));
604
605  const uint8_t *P = SecData;
606  for (unsigned I = 0; I < VerNeedNum; ++I) {
607    const VerNeed *Need = reinterpret_cast<const VerNeed *>(P);
608    DictScope Entry(W, "Dependency");
609    W.printNumber("Version", Need->vn_version);
610    W.printNumber("Count", Need->vn_cnt);
611    W.printString("FileName",
612                  StringRef((const char *)(Obj->base() + StrTab->sh_offset +
613                                           Need->vn_file)));
614
615    const uint8_t *PAux = P + Need->vn_aux;
616    for (unsigned J = 0; J < Need->vn_cnt; ++J) {
617      const VernAux *Aux = reinterpret_cast<const VernAux *>(PAux);
618      DictScope Entry(W, "Entry");
619      W.printNumber("Hash", Aux->vna_hash);
620      W.printEnum("Flags", Aux->vna_flags, makeArrayRef(SymVersionFlags));
621      W.printNumber("Index", Aux->vna_other);
622      W.printString("Name",
623                    StringRef((const char *)(Obj->base() + StrTab->sh_offset +
624                                             Aux->vna_name)));
625      PAux += Aux->vna_next;
626    }
627    P += Need->vn_next;
628  }
629}
630
631template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
632  // Dump version symbol section.
633  printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);
634
635  // Dump version definition section.
636  printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
637
638  // Dump version dependency section.
639  printVersionDependencySection(this, Obj, dot_gnu_version_r_sec, W);
640}
641
642template <typename ELFT>
643StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
644                                            const Elf_Sym *symb,
645                                            bool &IsDefault) const {
646  // This is a dynamic symbol. Look in the GNU symbol version table.
647  if (!dot_gnu_version_sec) {
648    // No version table.
649    IsDefault = false;
650    return StringRef("");
651  }
652
653  // Determine the position in the symbol table of this entry.
654  size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
655                        reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
656                       sizeof(Elf_Sym);
657
658  // Get the corresponding version index entry
659  const Elf_Versym *vs =
660      Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
661  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
662
663  // Special markers for unversioned symbols.
664  if (version_index == ELF::VER_NDX_LOCAL ||
665      version_index == ELF::VER_NDX_GLOBAL) {
666    IsDefault = false;
667    return StringRef("");
668  }
669
670  // Lookup this symbol in the version table
671  LoadVersionMap();
672  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
673    reportError("Invalid version entry");
674  const VersionMapEntry &entry = VersionMap[version_index];
675
676  // Get the version name string
677  size_t name_offset;
678  if (entry.isVerdef()) {
679    // The first Verdaux entry holds the name.
680    name_offset = entry.getVerdef()->getAux()->vda_name;
681    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
682  } else {
683    name_offset = entry.getVernaux()->vna_name;
684    IsDefault = false;
685  }
686  if (name_offset >= StrTab.size())
687    reportError("Invalid string offset");
688  return StringRef(StrTab.data() + name_offset);
689}
690
691template <typename ELFT>
692std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
693                                               StringRef StrTable,
694                                               bool IsDynamic) const {
695  StringRef SymbolName = unwrapOrError(Symbol->getName(StrTable));
696  if (!IsDynamic)
697    return SymbolName;
698
699  std::string FullSymbolName(SymbolName);
700
701  bool IsDefault;
702  StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
703  FullSymbolName += (IsDefault ? "@@" : "@");
704  FullSymbolName += Version;
705  return FullSymbolName;
706}
707
708template <typename ELFO>
709static void
710getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol,
711                    const typename ELFO::Elf_Sym *FirstSym,
712                    ArrayRef<typename ELFO::Elf_Word> ShndxTable,
713                    StringRef &SectionName, unsigned &SectionIndex) {
714  SectionIndex = Symbol->st_shndx;
715  if (Symbol->isUndefined())
716    SectionName = "Undefined";
717  else if (Symbol->isProcessorSpecific())
718    SectionName = "Processor Specific";
719  else if (Symbol->isOSSpecific())
720    SectionName = "Operating System Specific";
721  else if (Symbol->isAbsolute())
722    SectionName = "Absolute";
723  else if (Symbol->isCommon())
724    SectionName = "Common";
725  else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
726    SectionName = "Reserved";
727  else {
728    if (SectionIndex == SHN_XINDEX)
729      SectionIndex =
730          Obj.getExtendedSymbolTableIndex(Symbol, FirstSym, ShndxTable);
731    const typename ELFO::Elf_Shdr *Sec =
732        unwrapOrError(Obj.getSection(SectionIndex));
733    SectionName = unwrapOrError(Obj.getSectionName(Sec));
734  }
735}
736
737template <class ELFO>
738static const typename ELFO::Elf_Shdr *
739findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) {
740  for (const auto &Shdr : Obj->sections())
741    if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
742      return &Shdr;
743  return nullptr;
744}
745
746template <class ELFO>
747static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
748                                                        StringRef Name) {
749  for (const auto &Shdr : Obj.sections()) {
750    if (Name == unwrapOrError(Obj.getSectionName(&Shdr)))
751      return &Shdr;
752  }
753  return nullptr;
754}
755
756static const EnumEntry<unsigned> ElfClass[] = {
757  {"None",   "none",   ELF::ELFCLASSNONE},
758  {"32-bit", "ELF32",  ELF::ELFCLASS32},
759  {"64-bit", "ELF64",  ELF::ELFCLASS64},
760};
761
762static const EnumEntry<unsigned> ElfDataEncoding[] = {
763  {"None",         "none",                          ELF::ELFDATANONE},
764  {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
765  {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
766};
767
768static const EnumEntry<unsigned> ElfObjectFileType[] = {
769  {"None",         "NONE (none)",              ELF::ET_NONE},
770  {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
771  {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
772  {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
773  {"Core",         "CORE (Core file)",         ELF::ET_CORE},
774};
775
776static const EnumEntry<unsigned> ElfOSABI[] = {
777  {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
778  {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
779  {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
780  {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
781  {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
782  {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
783  {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
784  {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
785  {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
786  {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
787  {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
788  {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
789  {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
790  {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
791  {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
792  {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
793  {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
794  {"C6000_ELFABI", "Bare-metal C6000",     ELF::ELFOSABI_C6000_ELFABI},
795  {"C6000_LINUX",  "Linux C6000",          ELF::ELFOSABI_C6000_LINUX},
796  {"ARM",          "ARM",                  ELF::ELFOSABI_ARM},
797  {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
798};
799
800static const EnumEntry<unsigned> ElfMachineType[] = {
801  ENUM_ENT(EM_NONE,          "None"),
802  ENUM_ENT(EM_M32,           "WE32100"),
803  ENUM_ENT(EM_SPARC,         "Sparc"),
804  ENUM_ENT(EM_386,           "Intel 80386"),
805  ENUM_ENT(EM_68K,           "MC68000"),
806  ENUM_ENT(EM_88K,           "MC88000"),
807  ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
808  ENUM_ENT(EM_860,           "Intel 80860"),
809  ENUM_ENT(EM_MIPS,          "MIPS R3000"),
810  ENUM_ENT(EM_S370,          "IBM System/370"),
811  ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
812  ENUM_ENT(EM_PARISC,        "HPPA"),
813  ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
814  ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
815  ENUM_ENT(EM_960,           "Intel 80960"),
816  ENUM_ENT(EM_PPC,           "PowerPC"),
817  ENUM_ENT(EM_PPC64,         "PowerPC64"),
818  ENUM_ENT(EM_S390,          "IBM S/390"),
819  ENUM_ENT(EM_SPU,           "SPU"),
820  ENUM_ENT(EM_V800,          "NEC V800 series"),
821  ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
822  ENUM_ENT(EM_RH32,          "TRW RH-32"),
823  ENUM_ENT(EM_RCE,           "Motorola RCE"),
824  ENUM_ENT(EM_ARM,           "ARM"),
825  ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
826  ENUM_ENT(EM_SH,            "Hitachi SH"),
827  ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
828  ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
829  ENUM_ENT(EM_ARC,           "ARC"),
830  ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
831  ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
832  ENUM_ENT(EM_H8S,           "Hitachi H8S"),
833  ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
834  ENUM_ENT(EM_IA_64,         "Intel IA-64"),
835  ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
836  ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
837  ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
838  ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
839  ENUM_ENT(EM_PCP,           "Siemens PCP"),
840  ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
841  ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
842  ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
843  ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
844  ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
845  ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
846  ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
847  ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
848  ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
849  ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
850  ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
851  ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
852  ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
853  ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
854  ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
855  ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
856  ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
857  ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
858  ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
859  ENUM_ENT(EM_VAX,           "Digital VAX"),
860  ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
861  ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
862  ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
863  ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
864  ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
865  ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
866  ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
867  ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
868  ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
869  ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
870  ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
871  ENUM_ENT(EM_V850,          "NEC v850"),
872  ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
873  ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
874  ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
875  ENUM_ENT(EM_PJ,            "picoJava"),
876  ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
877  ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
878  ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
879  ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
880  ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
881  ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
882  ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
883  ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
884  ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
885  ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
886  ENUM_ENT(EM_MAX,           "MAX Processor"),
887  ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
888  ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
889  ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
890  ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
891  ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
892  ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
893  ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
894  ENUM_ENT(EM_UNICORE,       "Unicore"),
895  ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
896  ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
897  ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
898  ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
899  ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
900  ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
901  ENUM_ENT(EM_M16C,          "Renesas M16C"),
902  ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
903  ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
904  ENUM_ENT(EM_M32C,          "Renesas M32C"),
905  ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
906  ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
907  ENUM_ENT(EM_SHARC,         "EM_SHARC"),
908  ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
909  ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
910  ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
911  ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
912  ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
913  ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
914  ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
915  ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
916  ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
917  ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
918  ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
919  ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
920  ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
921  ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
922  ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
923  ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
924  ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
925  ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
926  ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
927  ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
928  ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
929  ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
930  ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
931  ENUM_ENT(EM_RX,            "Renesas RX"),
932  ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
933  ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
934  ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
935  ENUM_ENT(EM_CR16,          "Xilinx MicroBlaze"),
936  ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
937  ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
938  ENUM_ENT(EM_L10M,          "EM_L10M"),
939  ENUM_ENT(EM_K10M,          "EM_K10M"),
940  ENUM_ENT(EM_AARCH64,       "AArch64"),
941  ENUM_ENT(EM_AVR32,         "Atmel AVR 8-bit microcontroller"),
942  ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
943  ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
944  ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
945  ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
946  ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
947  ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
948  ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
949  ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
950  ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
951  ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
952  ENUM_ENT(EM_RL78,          "Renesas RL78"),
953  ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
954  ENUM_ENT(EM_78KOR,         "EM_78KOR"),
955  ENUM_ENT(EM_56800EX,       "EM_56800EX"),
956  ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
957  ENUM_ENT(EM_WEBASSEMBLY,   "EM_WEBASSEMBLY"),
958  ENUM_ENT(EM_LANAI,         "EM_LANAI"),
959};
960
961static const EnumEntry<unsigned> ElfSymbolBindings[] = {
962    {"Local",  "LOCAL",  ELF::STB_LOCAL},
963    {"Global", "GLOBAL", ELF::STB_GLOBAL},
964    {"Weak",   "WEAK",   ELF::STB_WEAK},
965    {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
966
967static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
968    {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
969    {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
970    {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
971    {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
972
973static const EnumEntry<unsigned> ElfSymbolTypes[] = {
974    {"None",      "NOTYPE",  ELF::STT_NOTYPE},
975    {"Object",    "OBJECT",  ELF::STT_OBJECT},
976    {"Function",  "FUNC",    ELF::STT_FUNC},
977    {"Section",   "SECTION", ELF::STT_SECTION},
978    {"File",      "FILE",    ELF::STT_FILE},
979    {"Common",    "COMMON",  ELF::STT_COMMON},
980    {"TLS",       "TLS",     ELF::STT_TLS},
981    {"GNU_IFunc", "IFUNC",   ELF::STT_GNU_IFUNC}};
982
983static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
984  { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL },
985  { "AMDGPU_HSA_INDIRECT_FUNCTION", ELF::STT_AMDGPU_HSA_INDIRECT_FUNCTION },
986  { "AMDGPU_HSA_METADATA",          ELF::STT_AMDGPU_HSA_METADATA }
987};
988
989static const char *getElfSectionType(unsigned Arch, unsigned Type) {
990  switch (Arch) {
991  case ELF::EM_ARM:
992    switch (Type) {
993    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX);
994    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
995    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
996    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
997    LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
998    }
999  case ELF::EM_HEXAGON:
1000    switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
1001  case ELF::EM_X86_64:
1002    switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
1003  case ELF::EM_MIPS:
1004  case ELF::EM_MIPS_RS3_LE:
1005    switch (Type) {
1006    LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
1007    LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
1008    LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
1009    }
1010  }
1011
1012  switch (Type) {
1013  LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL              );
1014  LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS          );
1015  LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB            );
1016  LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB            );
1017  LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA              );
1018  LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH              );
1019  LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC           );
1020  LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE              );
1021  LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS            );
1022  LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL               );
1023  LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB             );
1024  LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM            );
1025  LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY        );
1026  LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY        );
1027  LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY     );
1028  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP             );
1029  LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX      );
1030  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES    );
1031  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH          );
1032  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef        );
1033  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed       );
1034  LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym        );
1035  default: return "";
1036  }
1037}
1038
1039static const char *getGroupType(uint32_t Flag) {
1040  if (Flag & ELF::GRP_COMDAT)
1041    return "COMDAT";
1042  else
1043    return "(unknown)";
1044}
1045
1046static const EnumEntry<unsigned> ElfSectionFlags[] = {
1047  ENUM_ENT(SHF_WRITE,            "W"),
1048  ENUM_ENT(SHF_ALLOC,            "A"),
1049  ENUM_ENT(SHF_EXCLUDE,          "E"),
1050  ENUM_ENT(SHF_EXECINSTR,        "X"),
1051  ENUM_ENT(SHF_MERGE,            "M"),
1052  ENUM_ENT(SHF_STRINGS,          "S"),
1053  ENUM_ENT(SHF_INFO_LINK,        "I"),
1054  ENUM_ENT(SHF_LINK_ORDER,       "L"),
1055  ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
1056  ENUM_ENT(SHF_GROUP,            "G"),
1057  ENUM_ENT(SHF_TLS,              "T"),
1058  ENUM_ENT(SHF_MASKOS,           "o"),
1059  ENUM_ENT(SHF_MASKPROC,         "p"),
1060  ENUM_ENT_1(SHF_COMPRESSED),
1061};
1062
1063static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1064  LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
1065  LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
1066};
1067
1068static const EnumEntry<unsigned> ElfAMDGPUSectionFlags[] = {
1069  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_GLOBAL),
1070  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_READONLY),
1071  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_CODE),
1072  LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_AGENT)
1073};
1074
1075static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1076  LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
1077};
1078
1079static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1080  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
1081  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES  ),
1082  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL  ),
1083  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
1084  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL  ),
1085  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE  ),
1086  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR   ),
1087  LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
1088};
1089
1090static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1091  LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
1092};
1093
1094static std::string getGNUFlags(uint64_t Flags) {
1095  std::string Str;
1096  for (auto Entry : ElfSectionFlags) {
1097    uint64_t Flag = Entry.Value & Flags;
1098    Flags &= ~Entry.Value;
1099    switch (Flag) {
1100    case ELF::SHF_WRITE:
1101    case ELF::SHF_ALLOC:
1102    case ELF::SHF_EXECINSTR:
1103    case ELF::SHF_MERGE:
1104    case ELF::SHF_STRINGS:
1105    case ELF::SHF_INFO_LINK:
1106    case ELF::SHF_LINK_ORDER:
1107    case ELF::SHF_OS_NONCONFORMING:
1108    case ELF::SHF_GROUP:
1109    case ELF::SHF_TLS:
1110    case ELF::SHF_EXCLUDE:
1111      Str += Entry.AltName;
1112      break;
1113    default:
1114      if (Flag & ELF::SHF_MASKOS)
1115        Str += "o";
1116      else if (Flag & ELF::SHF_MASKPROC)
1117        Str += "p";
1118      else if (Flag)
1119        Str += "x";
1120    }
1121  }
1122  return Str;
1123}
1124
1125static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1126  // Check potentially overlapped processor-specific
1127  // program header type.
1128  switch (Arch) {
1129  case ELF::EM_AMDGPU:
1130    switch (Type) {
1131    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM);
1132    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT);
1133    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT);
1134    LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT);
1135    }
1136  case ELF::EM_ARM:
1137    switch (Type) {
1138    LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
1139    }
1140  case ELF::EM_MIPS:
1141  case ELF::EM_MIPS_RS3_LE:
1142    switch (Type) {
1143    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1144    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1145    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1146    LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1147    }
1148  }
1149
1150  switch (Type) {
1151  LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL   );
1152  LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD   );
1153  LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1154  LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1155  LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE   );
1156  LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB  );
1157  LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR   );
1158  LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS    );
1159
1160  LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1161  LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1162
1163  LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1164  LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1165  default: return "";
1166  }
1167}
1168
1169static std::string getElfPtType(unsigned Arch, unsigned Type) {
1170  switch (Type) {
1171    LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1172    LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1173    LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1174    LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1175    LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1176    LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1177    LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1178    LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1179    LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1180    LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1181    LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1182    LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1183  default:
1184    // All machine specific PT_* types
1185    switch (Arch) {
1186    case ELF::EM_AMDGPU:
1187      switch (Type) {
1188        LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM);
1189        LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT);
1190        LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT);
1191        LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT);
1192      }
1193      return "";
1194    case ELF::EM_ARM:
1195      if (Type == ELF::PT_ARM_EXIDX)
1196        return "EXIDX";
1197      return "";
1198    case ELF::EM_MIPS:
1199    case ELF::EM_MIPS_RS3_LE:
1200      switch (Type) {
1201      case PT_MIPS_REGINFO:
1202        return "REGINFO";
1203      case PT_MIPS_RTPROC:
1204        return "RTPROC";
1205      case PT_MIPS_OPTIONS:
1206        return "OPTIONS";
1207      case PT_MIPS_ABIFLAGS:
1208        return "ABIFLAGS";
1209      }
1210      return "";
1211    }
1212  }
1213  return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1214}
1215
1216static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1217  LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1218  LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1219  LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1220};
1221
1222static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1223  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
1224  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
1225  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
1226  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
1227  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
1228  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64),
1229  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
1230  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
1231  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64),
1232  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32),
1233  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64),
1234  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900),
1235  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010),
1236  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100),
1237  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650),
1238  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120),
1239  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111),
1240  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1),
1241  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON),
1242  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR),
1243  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2),
1244  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3),
1245  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400),
1246  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900),
1247  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500),
1248  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000),
1249  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E),
1250  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F),
1251  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A),
1252  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
1253  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
1254  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX),
1255  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
1256  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
1257  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
1258  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
1259  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
1260  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
1261  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
1262  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
1263  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
1264  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
1265  LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
1266};
1267
1268static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1269  LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1270  LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1271  LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1272};
1273
1274static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1275  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1276  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1277  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1278  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1279};
1280
1281static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1282  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1283  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1284  LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1285};
1286
1287static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1288  switch (Odk) {
1289  LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1290  LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1291  LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1292  LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1293  LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1294  LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1295  LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1296  LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1297  LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1298  LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1299  LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1300  LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1301  default:
1302    return "Unknown";
1303  }
1304}
1305
1306template <typename ELFT>
1307ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer)
1308    : ObjDumper(Writer), Obj(Obj) {
1309
1310  SmallVector<const Elf_Phdr *, 4> LoadSegments;
1311  for (const Elf_Phdr &Phdr : Obj->program_headers()) {
1312    if (Phdr.p_type == ELF::PT_DYNAMIC) {
1313      DynamicTable = createDRIFrom(&Phdr, sizeof(Elf_Dyn));
1314      continue;
1315    }
1316    if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
1317      continue;
1318    LoadSegments.push_back(&Phdr);
1319  }
1320
1321  for (const Elf_Shdr &Sec : Obj->sections()) {
1322    switch (Sec.sh_type) {
1323    case ELF::SHT_SYMTAB:
1324      if (DotSymtabSec != nullptr)
1325        reportError("Multilpe SHT_SYMTAB");
1326      DotSymtabSec = &Sec;
1327      break;
1328    case ELF::SHT_DYNSYM:
1329      if (DynSymRegion.Size)
1330        reportError("Multilpe SHT_DYNSYM");
1331      DynSymRegion = createDRIFrom(&Sec);
1332      // This is only used (if Elf_Shdr present)for naming section in GNU style
1333      DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec));
1334      break;
1335    case ELF::SHT_SYMTAB_SHNDX:
1336      ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec));
1337      break;
1338    case ELF::SHT_GNU_versym:
1339      if (dot_gnu_version_sec != nullptr)
1340        reportError("Multiple SHT_GNU_versym");
1341      dot_gnu_version_sec = &Sec;
1342      break;
1343    case ELF::SHT_GNU_verdef:
1344      if (dot_gnu_version_d_sec != nullptr)
1345        reportError("Multiple SHT_GNU_verdef");
1346      dot_gnu_version_d_sec = &Sec;
1347      break;
1348    case ELF::SHT_GNU_verneed:
1349      if (dot_gnu_version_r_sec != nullptr)
1350        reportError("Multilpe SHT_GNU_verneed");
1351      dot_gnu_version_r_sec = &Sec;
1352      break;
1353    }
1354  }
1355
1356  parseDynamicTable(LoadSegments);
1357
1358  if (opts::Output == opts::GNU)
1359    ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1360  else
1361    ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1362}
1363
1364template <typename ELFT>
1365void ELFDumper<ELFT>::parseDynamicTable(
1366    ArrayRef<const Elf_Phdr *> LoadSegments) {
1367  auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
1368    const Elf_Phdr *const *I = std::upper_bound(
1369        LoadSegments.begin(), LoadSegments.end(), VAddr, compareAddr<ELFT>);
1370    if (I == LoadSegments.begin())
1371      report_fatal_error("Virtual address is not in any segment");
1372    --I;
1373    const Elf_Phdr &Phdr = **I;
1374    uint64_t Delta = VAddr - Phdr.p_vaddr;
1375    if (Delta >= Phdr.p_filesz)
1376      report_fatal_error("Virtual address is not in any segment");
1377    return Obj->base() + Phdr.p_offset + Delta;
1378  };
1379
1380  uint64_t SONameOffset = 0;
1381  const char *StringTableBegin = nullptr;
1382  uint64_t StringTableSize = 0;
1383  for (const Elf_Dyn &Dyn : dynamic_table()) {
1384    switch (Dyn.d_tag) {
1385    case ELF::DT_HASH:
1386      HashTable =
1387          reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
1388      break;
1389    case ELF::DT_GNU_HASH:
1390      GnuHashTable =
1391          reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
1392      break;
1393    case ELF::DT_STRTAB:
1394      StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
1395      break;
1396    case ELF::DT_STRSZ:
1397      StringTableSize = Dyn.getVal();
1398      break;
1399    case ELF::DT_SYMTAB:
1400      DynSymRegion.Addr = toMappedAddr(Dyn.getPtr());
1401      DynSymRegion.EntSize = sizeof(Elf_Sym);
1402      break;
1403    case ELF::DT_RELA:
1404      DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
1405      break;
1406    case ELF::DT_RELASZ:
1407      DynRelaRegion.Size = Dyn.getVal();
1408      break;
1409    case ELF::DT_RELAENT:
1410      DynRelaRegion.EntSize = Dyn.getVal();
1411      break;
1412    case ELF::DT_SONAME:
1413      SONameOffset = Dyn.getVal();
1414      break;
1415    case ELF::DT_REL:
1416      DynRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1417      break;
1418    case ELF::DT_RELSZ:
1419      DynRelRegion.Size = Dyn.getVal();
1420      break;
1421    case ELF::DT_RELENT:
1422      DynRelRegion.EntSize = Dyn.getVal();
1423      break;
1424    case ELF::DT_PLTREL:
1425      if (Dyn.getVal() == DT_REL)
1426        DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1427      else if (Dyn.getVal() == DT_RELA)
1428        DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1429      else
1430        reportError(Twine("unknown DT_PLTREL value of ") +
1431                    Twine((uint64_t)Dyn.getVal()));
1432      break;
1433    case ELF::DT_JMPREL:
1434      DynPLTRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1435      break;
1436    case ELF::DT_PLTRELSZ:
1437      DynPLTRelRegion.Size = Dyn.getVal();
1438      break;
1439    }
1440  }
1441  if (StringTableBegin)
1442    DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1443  if (SONameOffset)
1444    SOName = getDynamicString(SONameOffset);
1445}
1446
1447template <typename ELFT>
1448typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
1449  return DynRelRegion.getAsArrayRef<Elf_Rel>();
1450}
1451
1452template <typename ELFT>
1453typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1454  return DynRelaRegion.getAsArrayRef<Elf_Rela>();
1455}
1456
1457template<class ELFT>
1458void ELFDumper<ELFT>::printFileHeaders() {
1459  ELFDumperStyle->printFileHeaders(Obj);
1460}
1461
1462template<class ELFT>
1463void ELFDumper<ELFT>::printSections() {
1464  ELFDumperStyle->printSections(Obj);
1465}
1466
1467template<class ELFT>
1468void ELFDumper<ELFT>::printRelocations() {
1469  ELFDumperStyle->printRelocations(Obj);
1470}
1471
1472template <class ELFT> void ELFDumper<ELFT>::printProgramHeaders() {
1473  ELFDumperStyle->printProgramHeaders(Obj);
1474}
1475
1476template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
1477  ELFDumperStyle->printDynamicRelocations(Obj);
1478}
1479
1480template<class ELFT>
1481void ELFDumper<ELFT>::printSymbols() {
1482  ELFDumperStyle->printSymbols(Obj);
1483}
1484
1485template<class ELFT>
1486void ELFDumper<ELFT>::printDynamicSymbols() {
1487  ELFDumperStyle->printDynamicSymbols(Obj);
1488}
1489
1490template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
1491  ELFDumperStyle->printHashHistogram(Obj);
1492}
1493#define LLVM_READOBJ_TYPE_CASE(name) \
1494  case DT_##name: return #name
1495
1496static const char *getTypeString(uint64_t Type) {
1497  switch (Type) {
1498  LLVM_READOBJ_TYPE_CASE(BIND_NOW);
1499  LLVM_READOBJ_TYPE_CASE(DEBUG);
1500  LLVM_READOBJ_TYPE_CASE(FINI);
1501  LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
1502  LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
1503  LLVM_READOBJ_TYPE_CASE(FLAGS);
1504  LLVM_READOBJ_TYPE_CASE(FLAGS_1);
1505  LLVM_READOBJ_TYPE_CASE(HASH);
1506  LLVM_READOBJ_TYPE_CASE(INIT);
1507  LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
1508  LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
1509  LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
1510  LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
1511  LLVM_READOBJ_TYPE_CASE(JMPREL);
1512  LLVM_READOBJ_TYPE_CASE(NEEDED);
1513  LLVM_READOBJ_TYPE_CASE(NULL);
1514  LLVM_READOBJ_TYPE_CASE(PLTGOT);
1515  LLVM_READOBJ_TYPE_CASE(PLTREL);
1516  LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
1517  LLVM_READOBJ_TYPE_CASE(REL);
1518  LLVM_READOBJ_TYPE_CASE(RELA);
1519  LLVM_READOBJ_TYPE_CASE(RELENT);
1520  LLVM_READOBJ_TYPE_CASE(RELSZ);
1521  LLVM_READOBJ_TYPE_CASE(RELAENT);
1522  LLVM_READOBJ_TYPE_CASE(RELASZ);
1523  LLVM_READOBJ_TYPE_CASE(RPATH);
1524  LLVM_READOBJ_TYPE_CASE(RUNPATH);
1525  LLVM_READOBJ_TYPE_CASE(SONAME);
1526  LLVM_READOBJ_TYPE_CASE(STRSZ);
1527  LLVM_READOBJ_TYPE_CASE(STRTAB);
1528  LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
1529  LLVM_READOBJ_TYPE_CASE(SYMENT);
1530  LLVM_READOBJ_TYPE_CASE(SYMTAB);
1531  LLVM_READOBJ_TYPE_CASE(TEXTREL);
1532  LLVM_READOBJ_TYPE_CASE(VERDEF);
1533  LLVM_READOBJ_TYPE_CASE(VERDEFNUM);
1534  LLVM_READOBJ_TYPE_CASE(VERNEED);
1535  LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
1536  LLVM_READOBJ_TYPE_CASE(VERSYM);
1537  LLVM_READOBJ_TYPE_CASE(RELACOUNT);
1538  LLVM_READOBJ_TYPE_CASE(RELCOUNT);
1539  LLVM_READOBJ_TYPE_CASE(GNU_HASH);
1540  LLVM_READOBJ_TYPE_CASE(TLSDESC_PLT);
1541  LLVM_READOBJ_TYPE_CASE(TLSDESC_GOT);
1542  LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
1543  LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL);
1544  LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
1545  LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
1546  LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
1547  LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
1548  LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
1549  LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
1550  LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
1551  LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
1552  LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
1553  default: return "unknown";
1554  }
1555}
1556
1557#undef LLVM_READOBJ_TYPE_CASE
1558
1559#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1560  { #enum, prefix##_##enum }
1561
1562static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1563  LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1564  LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1565  LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1566  LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1567  LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1568};
1569
1570static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1571  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1572  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1573  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1574  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1575  LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1576  LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1577  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1578  LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1579  LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1580  LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1581  LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1582  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1583  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1584  LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1585  LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1586  LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1587  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1588  LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1589  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1590  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1591  LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1592  LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1593  LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1594  LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1595  LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1596};
1597
1598static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1599  LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1600  LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1601  LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1602  LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1603  LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1604  LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1605  LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1606  LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1607  LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1608  LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1609  LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1610  LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1611  LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1612  LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1613  LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1614  LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1615};
1616
1617#undef LLVM_READOBJ_DT_FLAG_ENT
1618
1619template <typename T, typename TFlag>
1620void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1621  typedef EnumEntry<TFlag> FlagEntry;
1622  typedef SmallVector<FlagEntry, 10> FlagVector;
1623  FlagVector SetFlags;
1624
1625  for (const auto &Flag : Flags) {
1626    if (Flag.Value == 0)
1627      continue;
1628
1629    if ((Value & Flag.Value) == Flag.Value)
1630      SetFlags.push_back(Flag);
1631  }
1632
1633  for (const auto &Flag : SetFlags) {
1634    OS << Flag.Name << " ";
1635  }
1636}
1637
1638template <class ELFT>
1639StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
1640  if (Value >= DynamicStringTable.size())
1641    reportError("Invalid dynamic string table reference");
1642  return StringRef(DynamicStringTable.data() + Value);
1643}
1644
1645template <class ELFT>
1646void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
1647  raw_ostream &OS = W.getOStream();
1648  const char* ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
1649  switch (Type) {
1650  case DT_PLTREL:
1651    if (Value == DT_REL) {
1652      OS << "REL";
1653      break;
1654    } else if (Value == DT_RELA) {
1655      OS << "RELA";
1656      break;
1657    }
1658  // Fallthrough.
1659  case DT_PLTGOT:
1660  case DT_HASH:
1661  case DT_STRTAB:
1662  case DT_SYMTAB:
1663  case DT_RELA:
1664  case DT_INIT:
1665  case DT_FINI:
1666  case DT_REL:
1667  case DT_JMPREL:
1668  case DT_INIT_ARRAY:
1669  case DT_FINI_ARRAY:
1670  case DT_PREINIT_ARRAY:
1671  case DT_DEBUG:
1672  case DT_VERDEF:
1673  case DT_VERNEED:
1674  case DT_VERSYM:
1675  case DT_GNU_HASH:
1676  case DT_NULL:
1677  case DT_MIPS_BASE_ADDRESS:
1678  case DT_MIPS_GOTSYM:
1679  case DT_MIPS_RLD_MAP:
1680  case DT_MIPS_RLD_MAP_REL:
1681  case DT_MIPS_PLTGOT:
1682  case DT_MIPS_OPTIONS:
1683    OS << format(ConvChar, Value);
1684    break;
1685  case DT_RELACOUNT:
1686  case DT_RELCOUNT:
1687  case DT_VERDEFNUM:
1688  case DT_VERNEEDNUM:
1689  case DT_MIPS_RLD_VERSION:
1690  case DT_MIPS_LOCAL_GOTNO:
1691  case DT_MIPS_SYMTABNO:
1692  case DT_MIPS_UNREFEXTNO:
1693    OS << Value;
1694    break;
1695  case DT_PLTRELSZ:
1696  case DT_RELASZ:
1697  case DT_RELAENT:
1698  case DT_STRSZ:
1699  case DT_SYMENT:
1700  case DT_RELSZ:
1701  case DT_RELENT:
1702  case DT_INIT_ARRAYSZ:
1703  case DT_FINI_ARRAYSZ:
1704  case DT_PREINIT_ARRAYSZ:
1705    OS << Value << " (bytes)";
1706    break;
1707  case DT_NEEDED:
1708    OS << "SharedLibrary (" << getDynamicString(Value) << ")";
1709    break;
1710  case DT_SONAME:
1711    OS << "LibrarySoname (" << getDynamicString(Value) << ")";
1712    break;
1713  case DT_RPATH:
1714  case DT_RUNPATH:
1715    OS << getDynamicString(Value);
1716    break;
1717  case DT_MIPS_FLAGS:
1718    printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1719    break;
1720  case DT_FLAGS:
1721    printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1722    break;
1723  case DT_FLAGS_1:
1724    printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1725    break;
1726  default:
1727    OS << format(ConvChar, Value);
1728    break;
1729  }
1730}
1731
1732template<class ELFT>
1733void ELFDumper<ELFT>::printUnwindInfo() {
1734  W.startLine() << "UnwindInfo not implemented.\n";
1735}
1736
1737namespace {
1738template <> void ELFDumper<ELFType<support::little, false>>::printUnwindInfo() {
1739  const unsigned Machine = Obj->getHeader()->e_machine;
1740  if (Machine == EM_ARM) {
1741    ARM::EHABI::PrinterContext<ELFType<support::little, false>> Ctx(
1742        W, Obj, DotSymtabSec);
1743    return Ctx.PrintUnwindInformation();
1744  }
1745  W.startLine() << "UnwindInfo not implemented.\n";
1746}
1747}
1748
1749template<class ELFT>
1750void ELFDumper<ELFT>::printDynamicTable() {
1751  auto I = dynamic_table().begin();
1752  auto E = dynamic_table().end();
1753
1754  if (I == E)
1755    return;
1756
1757  --E;
1758  while (I != E && E->getTag() == ELF::DT_NULL)
1759    --E;
1760  if (E->getTag() != ELF::DT_NULL)
1761    ++E;
1762  ++E;
1763
1764  ptrdiff_t Total = std::distance(I, E);
1765  if (Total == 0)
1766    return;
1767
1768  raw_ostream &OS = W.getOStream();
1769  W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
1770
1771  bool Is64 = ELFT::Is64Bits;
1772
1773  W.startLine()
1774     << "  Tag" << (Is64 ? "                " : "        ") << "Type"
1775     << "                 " << "Name/Value\n";
1776  while (I != E) {
1777    const Elf_Dyn &Entry = *I;
1778    uintX_t Tag = Entry.getTag();
1779    ++I;
1780    W.startLine() << "  " << format_hex(Tag, Is64 ? 18 : 10, opts::Output != opts::GNU) << " "
1781                  << format("%-21s", getTypeString(Tag));
1782    printValue(Tag, Entry.getVal());
1783    OS << "\n";
1784  }
1785
1786  W.startLine() << "]\n";
1787}
1788
1789template<class ELFT>
1790void ELFDumper<ELFT>::printNeededLibraries() {
1791  ListScope D(W, "NeededLibraries");
1792
1793  typedef std::vector<StringRef> LibsTy;
1794  LibsTy Libs;
1795
1796  for (const auto &Entry : dynamic_table())
1797    if (Entry.d_tag == ELF::DT_NEEDED)
1798      Libs.push_back(getDynamicString(Entry.d_un.d_val));
1799
1800  std::stable_sort(Libs.begin(), Libs.end());
1801
1802  for (const auto &L : Libs) {
1803    outs() << "  " << L << "\n";
1804  }
1805}
1806
1807
1808template <typename ELFT>
1809void ELFDumper<ELFT>::printHashTable() {
1810  DictScope D(W, "HashTable");
1811  if (!HashTable)
1812    return;
1813  W.printNumber("Num Buckets", HashTable->nbucket);
1814  W.printNumber("Num Chains", HashTable->nchain);
1815  W.printList("Buckets", HashTable->buckets());
1816  W.printList("Chains", HashTable->chains());
1817}
1818
1819template <typename ELFT>
1820void ELFDumper<ELFT>::printGnuHashTable() {
1821  DictScope D(W, "GnuHashTable");
1822  if (!GnuHashTable)
1823    return;
1824  W.printNumber("Num Buckets", GnuHashTable->nbuckets);
1825  W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
1826  W.printNumber("Num Mask Words", GnuHashTable->maskwords);
1827  W.printNumber("Shift Count", GnuHashTable->shift2);
1828  W.printHexList("Bloom Filter", GnuHashTable->filter());
1829  W.printList("Buckets", GnuHashTable->buckets());
1830  Elf_Sym_Range Syms = dynamic_symbols();
1831  unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
1832  if (!NumSyms)
1833    reportError("No dynamic symbol section");
1834  W.printHexList("Values", GnuHashTable->values(NumSyms));
1835}
1836
1837template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
1838  outs() << "LoadName: " << SOName << '\n';
1839}
1840
1841template <class ELFT>
1842void ELFDumper<ELFT>::printAttributes() {
1843  W.startLine() << "Attributes not implemented.\n";
1844}
1845
1846namespace {
1847template <> void ELFDumper<ELFType<support::little, false>>::printAttributes() {
1848  if (Obj->getHeader()->e_machine != EM_ARM) {
1849    W.startLine() << "Attributes not implemented.\n";
1850    return;
1851  }
1852
1853  DictScope BA(W, "BuildAttributes");
1854  for (const ELFO::Elf_Shdr &Sec : Obj->sections()) {
1855    if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
1856      continue;
1857
1858    ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Sec));
1859    if (Contents[0] != ARMBuildAttrs::Format_Version) {
1860      errs() << "unrecognised FormatVersion: 0x" << utohexstr(Contents[0])
1861             << '\n';
1862      continue;
1863    }
1864
1865    W.printHex("FormatVersion", Contents[0]);
1866    if (Contents.size() == 1)
1867      continue;
1868
1869    ARMAttributeParser(W).Parse(Contents);
1870  }
1871}
1872}
1873
1874namespace {
1875template <class ELFT> class MipsGOTParser {
1876public:
1877  typedef object::ELFFile<ELFT> ELFO;
1878  typedef typename ELFO::Elf_Shdr Elf_Shdr;
1879  typedef typename ELFO::Elf_Sym Elf_Sym;
1880  typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
1881  typedef typename ELFO::Elf_Addr GOTEntry;
1882  typedef typename ELFO::Elf_Rel Elf_Rel;
1883  typedef typename ELFO::Elf_Rela Elf_Rela;
1884
1885  MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1886                Elf_Dyn_Range DynTable, ScopedPrinter &W);
1887
1888  void parseGOT();
1889  void parsePLT();
1890
1891private:
1892  ELFDumper<ELFT> *Dumper;
1893  const ELFO *Obj;
1894  ScopedPrinter &W;
1895  llvm::Optional<uint64_t> DtPltGot;
1896  llvm::Optional<uint64_t> DtLocalGotNum;
1897  llvm::Optional<uint64_t> DtGotSym;
1898  llvm::Optional<uint64_t> DtMipsPltGot;
1899  llvm::Optional<uint64_t> DtJmpRel;
1900
1901  std::size_t getGOTTotal(ArrayRef<uint8_t> GOT) const;
1902  const GOTEntry *makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum);
1903
1904  void printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1905                     const GOTEntry *It);
1906  void printGlobalGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1907                           const GOTEntry *It, const Elf_Sym *Sym,
1908                           StringRef StrTable, bool IsDynamic);
1909  void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1910                     const GOTEntry *It, StringRef Purpose);
1911  void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1912                     const GOTEntry *It, StringRef StrTable,
1913                     const Elf_Sym *Sym);
1914};
1915}
1916
1917template <class ELFT>
1918MipsGOTParser<ELFT>::MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1919                                   Elf_Dyn_Range DynTable, ScopedPrinter &W)
1920    : Dumper(Dumper), Obj(Obj), W(W) {
1921  for (const auto &Entry : DynTable) {
1922    switch (Entry.getTag()) {
1923    case ELF::DT_PLTGOT:
1924      DtPltGot = Entry.getVal();
1925      break;
1926    case ELF::DT_MIPS_LOCAL_GOTNO:
1927      DtLocalGotNum = Entry.getVal();
1928      break;
1929    case ELF::DT_MIPS_GOTSYM:
1930      DtGotSym = Entry.getVal();
1931      break;
1932    case ELF::DT_MIPS_PLTGOT:
1933      DtMipsPltGot = Entry.getVal();
1934      break;
1935    case ELF::DT_JMPREL:
1936      DtJmpRel = Entry.getVal();
1937      break;
1938    }
1939  }
1940}
1941
1942template <class ELFT> void MipsGOTParser<ELFT>::parseGOT() {
1943  // See "Global Offset Table" in Chapter 5 in the following document
1944  // for detailed GOT description.
1945  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1946  if (!DtPltGot) {
1947    W.startLine() << "Cannot find PLTGOT dynamic table tag.\n";
1948    return;
1949  }
1950  if (!DtLocalGotNum) {
1951    W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n";
1952    return;
1953  }
1954  if (!DtGotSym) {
1955    W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n";
1956    return;
1957  }
1958
1959  StringRef StrTable = Dumper->getDynamicStringTable();
1960  const Elf_Sym *DynSymBegin = Dumper->dynamic_symbols().begin();
1961  const Elf_Sym *DynSymEnd = Dumper->dynamic_symbols().end();
1962  std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd));
1963
1964  if (*DtGotSym > DynSymTotal)
1965    report_fatal_error("MIPS_GOTSYM exceeds a number of dynamic symbols");
1966
1967  std::size_t GlobalGotNum = DynSymTotal - *DtGotSym;
1968
1969  if (*DtLocalGotNum + GlobalGotNum == 0) {
1970    W.startLine() << "GOT is empty.\n";
1971    return;
1972  }
1973
1974  const Elf_Shdr *GOTShdr = findNotEmptySectionByAddress(Obj, *DtPltGot);
1975  if (!GOTShdr)
1976    report_fatal_error("There is no not empty GOT section at 0x" +
1977                       Twine::utohexstr(*DtPltGot));
1978
1979  ArrayRef<uint8_t> GOT = unwrapOrError(Obj->getSectionContents(GOTShdr));
1980
1981  if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(GOT))
1982    report_fatal_error("Number of GOT entries exceeds the size of GOT section");
1983
1984  const GOTEntry *GotBegin = makeGOTIter(GOT, 0);
1985  const GOTEntry *GotLocalEnd = makeGOTIter(GOT, *DtLocalGotNum);
1986  const GOTEntry *It = GotBegin;
1987
1988  DictScope GS(W, "Primary GOT");
1989
1990  W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0);
1991  {
1992    ListScope RS(W, "Reserved entries");
1993
1994    {
1995      DictScope D(W, "Entry");
1996      printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
1997      W.printString("Purpose", StringRef("Lazy resolver"));
1998    }
1999
2000    if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) {
2001      DictScope D(W, "Entry");
2002      printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
2003      W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
2004    }
2005  }
2006  {
2007    ListScope LS(W, "Local entries");
2008    for (; It != GotLocalEnd; ++It) {
2009      DictScope D(W, "Entry");
2010      printGotEntry(GOTShdr->sh_addr, GotBegin, It);
2011    }
2012  }
2013  {
2014    ListScope GS(W, "Global entries");
2015
2016    const GOTEntry *GotGlobalEnd =
2017        makeGOTIter(GOT, *DtLocalGotNum + GlobalGotNum);
2018    const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym;
2019    for (; It != GotGlobalEnd; ++It) {
2020      DictScope D(W, "Entry");
2021      printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++, StrTable,
2022                          true);
2023    }
2024  }
2025
2026  std::size_t SpecGotNum = getGOTTotal(GOT) - *DtLocalGotNum - GlobalGotNum;
2027  W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum));
2028}
2029
2030template <class ELFT> void MipsGOTParser<ELFT>::parsePLT() {
2031  if (!DtMipsPltGot) {
2032    W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n";
2033    return;
2034  }
2035  if (!DtJmpRel) {
2036    W.startLine() << "Cannot find JMPREL dynamic table tag.\n";
2037    return;
2038  }
2039
2040  const Elf_Shdr *PLTShdr = findNotEmptySectionByAddress(Obj, *DtMipsPltGot);
2041  if (!PLTShdr)
2042    report_fatal_error("There is no not empty PLTGOT section at 0x " +
2043                       Twine::utohexstr(*DtMipsPltGot));
2044  ArrayRef<uint8_t> PLT = unwrapOrError(Obj->getSectionContents(PLTShdr));
2045
2046  const Elf_Shdr *PLTRelShdr = findNotEmptySectionByAddress(Obj, *DtJmpRel);
2047  if (!PLTRelShdr)
2048    report_fatal_error("There is no not empty RELPLT section at 0x" +
2049                       Twine::utohexstr(*DtJmpRel));
2050  const Elf_Shdr *SymTable =
2051      unwrapOrError(Obj->getSection(PLTRelShdr->sh_link));
2052  StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTable));
2053
2054  const GOTEntry *PLTBegin = makeGOTIter(PLT, 0);
2055  const GOTEntry *PLTEnd = makeGOTIter(PLT, getGOTTotal(PLT));
2056  const GOTEntry *It = PLTBegin;
2057
2058  DictScope GS(W, "PLT GOT");
2059  {
2060    ListScope RS(W, "Reserved entries");
2061    printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver");
2062    if (It != PLTEnd)
2063      printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer");
2064  }
2065  {
2066    ListScope GS(W, "Entries");
2067
2068    switch (PLTRelShdr->sh_type) {
2069    case ELF::SHT_REL:
2070      for (const Elf_Rel *RI = Obj->rel_begin(PLTRelShdr),
2071                         *RE = Obj->rel_end(PLTRelShdr);
2072           RI != RE && It != PLTEnd; ++RI, ++It) {
2073        const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
2074        printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, StrTable, Sym);
2075      }
2076      break;
2077    case ELF::SHT_RELA:
2078      for (const Elf_Rela *RI = Obj->rela_begin(PLTRelShdr),
2079                          *RE = Obj->rela_end(PLTRelShdr);
2080           RI != RE && It != PLTEnd; ++RI, ++It) {
2081        const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
2082        printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, StrTable, Sym);
2083      }
2084      break;
2085    }
2086  }
2087}
2088
2089template <class ELFT>
2090std::size_t MipsGOTParser<ELFT>::getGOTTotal(ArrayRef<uint8_t> GOT) const {
2091  return GOT.size() / sizeof(GOTEntry);
2092}
2093
2094template <class ELFT>
2095const typename MipsGOTParser<ELFT>::GOTEntry *
2096MipsGOTParser<ELFT>::makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum) {
2097  const char *Data = reinterpret_cast<const char *>(GOT.data());
2098  return reinterpret_cast<const GOTEntry *>(Data + EntryNum * sizeof(GOTEntry));
2099}
2100
2101template <class ELFT>
2102void MipsGOTParser<ELFT>::printGotEntry(uint64_t GotAddr,
2103                                        const GOTEntry *BeginIt,
2104                                        const GOTEntry *It) {
2105  int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
2106  W.printHex("Address", GotAddr + Offset);
2107  W.printNumber("Access", Offset - 0x7ff0);
2108  W.printHex("Initial", *It);
2109}
2110
2111template <class ELFT>
2112void MipsGOTParser<ELFT>::printGlobalGotEntry(
2113    uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It,
2114    const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic) {
2115  printGotEntry(GotAddr, BeginIt, It);
2116
2117  W.printHex("Value", Sym->st_value);
2118  W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
2119
2120  unsigned SectionIndex = 0;
2121  StringRef SectionName;
2122  getSectionNameIndex(*Obj, Sym, Dumper->dynamic_symbols().begin(),
2123                      Dumper->getShndxTable(), SectionName, SectionIndex);
2124  W.printHex("Section", SectionName, SectionIndex);
2125
2126  std::string FullSymbolName =
2127      Dumper->getFullSymbolName(Sym, StrTable, IsDynamic);
2128  W.printNumber("Name", FullSymbolName, Sym->st_name);
2129}
2130
2131template <class ELFT>
2132void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
2133                                        const GOTEntry *BeginIt,
2134                                        const GOTEntry *It, StringRef Purpose) {
2135  DictScope D(W, "Entry");
2136  int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
2137  W.printHex("Address", PLTAddr + Offset);
2138  W.printHex("Initial", *It);
2139  W.printString("Purpose", Purpose);
2140}
2141
2142template <class ELFT>
2143void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
2144                                        const GOTEntry *BeginIt,
2145                                        const GOTEntry *It, StringRef StrTable,
2146                                        const Elf_Sym *Sym) {
2147  DictScope D(W, "Entry");
2148  int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
2149  W.printHex("Address", PLTAddr + Offset);
2150  W.printHex("Initial", *It);
2151  W.printHex("Value", Sym->st_value);
2152  W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
2153
2154  unsigned SectionIndex = 0;
2155  StringRef SectionName;
2156  getSectionNameIndex(*Obj, Sym, Dumper->dynamic_symbols().begin(),
2157                      Dumper->getShndxTable(), SectionName, SectionIndex);
2158  W.printHex("Section", SectionName, SectionIndex);
2159
2160  std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, true);
2161  W.printNumber("Name", FullSymbolName, Sym->st_name);
2162}
2163
2164template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
2165  if (Obj->getHeader()->e_machine != EM_MIPS) {
2166    W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n";
2167    return;
2168  }
2169
2170  MipsGOTParser<ELFT> GOTParser(this, Obj, dynamic_table(), W);
2171  GOTParser.parseGOT();
2172  GOTParser.parsePLT();
2173}
2174
2175static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2176  {"None",                    Mips::AFL_EXT_NONE},
2177  {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
2178  {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
2179  {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2180  {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2181  {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2182  {"LSI R4010",               Mips::AFL_EXT_4010},
2183  {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
2184  {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
2185  {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
2186  {"MIPS R4650",              Mips::AFL_EXT_4650},
2187  {"MIPS R5900",              Mips::AFL_EXT_5900},
2188  {"MIPS R10000",             Mips::AFL_EXT_10000},
2189  {"NEC VR4100",              Mips::AFL_EXT_4100},
2190  {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
2191  {"NEC VR4120",              Mips::AFL_EXT_4120},
2192  {"NEC VR5400",              Mips::AFL_EXT_5400},
2193  {"NEC VR5500",              Mips::AFL_EXT_5500},
2194  {"RMI Xlr",                 Mips::AFL_EXT_XLR},
2195  {"Toshiba R3900",           Mips::AFL_EXT_3900}
2196};
2197
2198static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2199  {"DSP",                Mips::AFL_ASE_DSP},
2200  {"DSPR2",              Mips::AFL_ASE_DSPR2},
2201  {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2202  {"MCU",                Mips::AFL_ASE_MCU},
2203  {"MDMX",               Mips::AFL_ASE_MDMX},
2204  {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
2205  {"MT",                 Mips::AFL_ASE_MT},
2206  {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
2207  {"VZ",                 Mips::AFL_ASE_VIRT},
2208  {"MSA",                Mips::AFL_ASE_MSA},
2209  {"MIPS16",             Mips::AFL_ASE_MIPS16},
2210  {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
2211  {"XPA",                Mips::AFL_ASE_XPA}
2212};
2213
2214static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2215  {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
2216  {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2217  {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2218  {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2219  {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2220   Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2221  {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
2222  {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2223  {"Hard float compat (32-bit CPU, 64-bit FPU)",
2224   Mips::Val_GNU_MIPS_ABI_FP_64A}
2225};
2226
2227static const EnumEntry<unsigned> ElfMipsFlags1[] {
2228  {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2229};
2230
2231static int getMipsRegisterSize(uint8_t Flag) {
2232  switch (Flag) {
2233  case Mips::AFL_REG_NONE:
2234    return 0;
2235  case Mips::AFL_REG_32:
2236    return 32;
2237  case Mips::AFL_REG_64:
2238    return 64;
2239  case Mips::AFL_REG_128:
2240    return 128;
2241  default:
2242    return -1;
2243  }
2244}
2245
2246template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
2247  const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
2248  if (!Shdr) {
2249    W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2250    return;
2251  }
2252  ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2253  if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
2254    W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2255    return;
2256  }
2257
2258  auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
2259
2260  raw_ostream &OS = W.getOStream();
2261  DictScope GS(W, "MIPS ABI Flags");
2262
2263  W.printNumber("Version", Flags->version);
2264  W.startLine() << "ISA: ";
2265  if (Flags->isa_rev <= 1)
2266    OS << format("MIPS%u", Flags->isa_level);
2267  else
2268    OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
2269  OS << "\n";
2270  W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
2271  W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
2272  W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
2273  W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
2274  W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2275  W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2276  W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2277  W.printHex("Flags 2", Flags->flags2);
2278}
2279
2280template <class ELFT>
2281static void printMipsReginfoData(ScopedPrinter &W,
2282                                 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2283  W.printHex("GP", Reginfo.ri_gp_value);
2284  W.printHex("General Mask", Reginfo.ri_gprmask);
2285  W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2286  W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2287  W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2288  W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2289}
2290
2291template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2292  const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2293  if (!Shdr) {
2294    W.startLine() << "There is no .reginfo section in the file.\n";
2295    return;
2296  }
2297  ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2298  if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2299    W.startLine() << "The .reginfo section has a wrong size.\n";
2300    return;
2301  }
2302
2303  DictScope GS(W, "MIPS RegInfo");
2304  auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2305  printMipsReginfoData(W, *Reginfo);
2306}
2307
2308template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2309  const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options");
2310  if (!Shdr) {
2311    W.startLine() << "There is no .MIPS.options section in the file.\n";
2312    return;
2313  }
2314
2315  DictScope GS(W, "MIPS Options");
2316
2317  ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2318  while (!Sec.empty()) {
2319    if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2320      W.startLine() << "The .MIPS.options section has a wrong size.\n";
2321      return;
2322    }
2323    auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2324    DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2325    switch (O->kind) {
2326    case ODK_REGINFO:
2327      printMipsReginfoData(W, O->getRegInfo());
2328      break;
2329    default:
2330      W.startLine() << "Unsupported MIPS options tag.\n";
2331      break;
2332    }
2333    Sec = Sec.slice(O->size);
2334  }
2335}
2336
2337template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2338  const Elf_Shdr *StackMapSection = nullptr;
2339  for (const auto &Sec : Obj->sections()) {
2340    StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2341    if (Name == ".llvm_stackmaps") {
2342      StackMapSection = &Sec;
2343      break;
2344    }
2345  }
2346
2347  if (!StackMapSection)
2348    return;
2349
2350  StringRef StackMapContents;
2351  ArrayRef<uint8_t> StackMapContentsArray =
2352      unwrapOrError(Obj->getSectionContents(StackMapSection));
2353
2354  prettyPrintStackMap(llvm::outs(), StackMapV1Parser<ELFT::TargetEndianness>(
2355                                        StackMapContentsArray));
2356}
2357
2358template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
2359  ELFDumperStyle->printGroupSections(Obj);
2360}
2361
2362static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
2363                               StringRef Str2) {
2364  OS.PadToColumn(2u);
2365  OS << Str1;
2366  OS.PadToColumn(37u);
2367  OS << Str2 << "\n";
2368  OS.flush();
2369}
2370
2371template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
2372  const Elf_Ehdr *e = Obj->getHeader();
2373  OS << "ELF Header:\n";
2374  OS << "  Magic:  ";
2375  std::string Str;
2376  for (int i = 0; i < ELF::EI_NIDENT; i++)
2377    OS << format(" %02x", static_cast<int>(e->e_ident[i]));
2378  OS << "\n";
2379  Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
2380  printFields(OS, "Class:", Str);
2381  Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
2382  printFields(OS, "Data:", Str);
2383  OS.PadToColumn(2u);
2384  OS << "Version:";
2385  OS.PadToColumn(37u);
2386  OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
2387  if (e->e_version == ELF::EV_CURRENT)
2388    OS << " (current)";
2389  OS << "\n";
2390  Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
2391  printFields(OS, "OS/ABI:", Str);
2392  Str = "0x" + to_hexString(e->e_version);
2393  Str = to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
2394  printFields(OS, "ABI Version:", Str);
2395  Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
2396  printFields(OS, "Type:", Str);
2397  Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
2398  printFields(OS, "Machine:", Str);
2399  Str = "0x" + to_hexString(e->e_version);
2400  printFields(OS, "Version:", Str);
2401  Str = "0x" + to_hexString(e->e_entry);
2402  printFields(OS, "Entry point address:", Str);
2403  Str = to_string(e->e_phoff) + " (bytes into file)";
2404  printFields(OS, "Start of program headers:", Str);
2405  Str = to_string(e->e_shoff) + " (bytes into file)";
2406  printFields(OS, "Start of section headers:", Str);
2407  Str = "0x" + to_hexString(e->e_flags);
2408  printFields(OS, "Flags:", Str);
2409  Str = to_string(e->e_ehsize) + " (bytes)";
2410  printFields(OS, "Size of this header:", Str);
2411  Str = to_string(e->e_phentsize) + " (bytes)";
2412  printFields(OS, "Size of program headers:", Str);
2413  Str = to_string(e->e_phnum);
2414  printFields(OS, "Number of program headers:", Str);
2415  Str = to_string(e->e_shentsize) + " (bytes)";
2416  printFields(OS, "Size of section headers:", Str);
2417  Str = to_string(e->e_shnum);
2418  printFields(OS, "Number of section headers:", Str);
2419  Str = to_string(e->e_shstrndx);
2420  printFields(OS, "Section header string table index:", Str);
2421}
2422
2423template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
2424  uint32_t SectionIndex = 0;
2425  bool HasGroups = false;
2426  for (const Elf_Shdr &Sec : Obj->sections()) {
2427    if (Sec.sh_type == ELF::SHT_GROUP) {
2428      HasGroups = true;
2429      const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
2430      StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
2431      const Elf_Sym *Signature =
2432          Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info);
2433      ArrayRef<Elf_Word> Data = unwrapOrError(
2434          Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
2435      StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2436      OS << "\n" << getGroupType(Data[0]) << " group section ["
2437         << format_decimal(SectionIndex, 5) << "] `" << Name << "' ["
2438         << StrTable.data() + Signature->st_name << "] contains "
2439         << (Data.size() - 1) << " sections:\n"
2440         << "   [Index]    Name\n";
2441      for (auto &Ndx : Data.slice(1)) {
2442        auto Sec = unwrapOrError(Obj->getSection(Ndx));
2443        const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
2444        OS << "   [" << format_decimal(Ndx, 5) << "]   " << Name
2445           << "\n";
2446      }
2447    }
2448    ++SectionIndex;
2449  }
2450  if (!HasGroups)
2451    OS << "There are no section groups in this file.\n";
2452}
2453
2454template <class ELFT>
2455void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
2456                                     const Elf_Rela &R, bool IsRela) {
2457  std::string Offset, Info, Addend = "", Value;
2458  SmallString<32> RelocName;
2459  StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
2460  StringRef TargetName;
2461  const Elf_Sym *Sym = nullptr;
2462  unsigned Width = ELFT::Is64Bits ? 16 : 8;
2463  unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2464
2465  // First two fields are bit width dependent. The rest of them are after are
2466  // fixed width.
2467  Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2468  Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2469  Sym = Obj->getRelocationSymbol(&R, SymTab);
2470  if (Sym && Sym->getType() == ELF::STT_SECTION) {
2471    const Elf_Shdr *Sec = unwrapOrError(
2472        Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
2473    TargetName = unwrapOrError(Obj->getSectionName(Sec));
2474  } else if (Sym) {
2475    TargetName = unwrapOrError(Sym->getName(StrTable));
2476  }
2477
2478  if (Sym && IsRela) {
2479    if (R.r_addend < 0)
2480      Addend = " - ";
2481    else
2482      Addend = " + ";
2483  }
2484
2485  Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
2486  Info = to_string(format_hex_no_prefix(R.r_info, Width));
2487
2488  int64_t RelAddend = R.r_addend;
2489  if (IsRela)
2490    Addend += to_hexString(std::abs(RelAddend), false);
2491
2492  if (Sym)
2493    Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2494
2495  Fields[0].Str = Offset;
2496  Fields[1].Str = Info;
2497  Fields[2].Str = RelocName;
2498  Fields[3].Str = Value;
2499  Fields[4].Str = TargetName;
2500  for (auto &field : Fields)
2501    printField(field);
2502  OS << Addend;
2503  OS << "\n";
2504}
2505
2506static inline void printRelocHeader(raw_ostream &OS, bool Is64, bool IsRela) {
2507  if (Is64)
2508    OS << "    Offset             Info             Type"
2509       << "               Symbol's Value  Symbol's Name";
2510  else
2511    OS << " Offset     Info    Type                Sym. Value  "
2512       << "Symbol's Name";
2513  if (IsRela)
2514    OS << (IsRela ? " + Addend" : "");
2515  OS << "\n";
2516}
2517
2518template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
2519  bool HasRelocSections = false;
2520  for (const Elf_Shdr &Sec : Obj->sections()) {
2521    if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
2522      continue;
2523    HasRelocSections = true;
2524    StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2525    unsigned Entries = Sec.getEntityCount();
2526    uintX_t Offset = Sec.sh_offset;
2527    OS << "\nRelocation section '" << Name << "' at offset 0x"
2528       << to_hexString(Offset, false) << " contains " << Entries
2529       << " entries:\n";
2530    printRelocHeader(OS,  ELFT::Is64Bits, (Sec.sh_type == ELF::SHT_RELA));
2531    const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link));
2532    if (Sec.sh_type == ELF::SHT_REL) {
2533      for (const auto &R : Obj->rels(&Sec)) {
2534        Elf_Rela Rela;
2535        Rela.r_offset = R.r_offset;
2536        Rela.r_info = R.r_info;
2537        Rela.r_addend = 0;
2538        printRelocation(Obj, SymTab, Rela, false);
2539      }
2540    } else {
2541      for (const auto &R : Obj->relas(&Sec))
2542        printRelocation(Obj, SymTab, R, true);
2543    }
2544  }
2545  if (!HasRelocSections)
2546    OS << "\nThere are no relocations in this file.\n";
2547}
2548
2549std::string getSectionTypeString(unsigned Arch, unsigned Type) {
2550  using namespace ELF;
2551  switch (Arch) {
2552  case EM_ARM:
2553    switch (Type) {
2554    case SHT_ARM_EXIDX:
2555      return "ARM_EXIDX";
2556    case SHT_ARM_PREEMPTMAP:
2557      return "ARM_PREEMPTMAP";
2558    case SHT_ARM_ATTRIBUTES:
2559      return "ARM_ATTRIBUTES";
2560    case SHT_ARM_DEBUGOVERLAY:
2561      return "ARM_DEBUGOVERLAY";
2562    case SHT_ARM_OVERLAYSECTION:
2563      return "ARM_OVERLAYSECTION";
2564    }
2565  case EM_X86_64:
2566    switch (Type) {
2567    case SHT_X86_64_UNWIND:
2568      return "X86_64_UNWIND";
2569    }
2570  case EM_MIPS:
2571  case EM_MIPS_RS3_LE:
2572    switch (Type) {
2573    case SHT_MIPS_REGINFO:
2574      return "MIPS_REGINFO";
2575    case SHT_MIPS_OPTIONS:
2576      return "MIPS_OPTIONS";
2577    case SHT_MIPS_ABIFLAGS:
2578      return "MIPS_ABIFLAGS";
2579    }
2580  }
2581  switch (Type) {
2582  case SHT_NULL:
2583    return "NULL";
2584  case SHT_PROGBITS:
2585    return "PROGBITS";
2586  case SHT_SYMTAB:
2587    return "SYMTAB";
2588  case SHT_STRTAB:
2589    return "STRTAB";
2590  case SHT_RELA:
2591    return "RELA";
2592  case SHT_HASH:
2593    return "HASH";
2594  case SHT_DYNAMIC:
2595    return "DYNAMIC";
2596  case SHT_NOTE:
2597    return "NOTE";
2598  case SHT_NOBITS:
2599    return "NOBITS";
2600  case SHT_REL:
2601    return "REL";
2602  case SHT_SHLIB:
2603    return "SHLIB";
2604  case SHT_DYNSYM:
2605    return "DYNSYM";
2606  case SHT_INIT_ARRAY:
2607    return "INIT_ARRAY";
2608  case SHT_FINI_ARRAY:
2609    return "FINI_ARRAY";
2610  case SHT_PREINIT_ARRAY:
2611    return "PREINIT_ARRAY";
2612  case SHT_GROUP:
2613    return "GROUP";
2614  case SHT_SYMTAB_SHNDX:
2615    return "SYMTAB SECTION INDICES";
2616  // FIXME: Parse processor specific GNU attributes
2617  case SHT_GNU_ATTRIBUTES:
2618    return "ATTRIBUTES";
2619  case SHT_GNU_HASH:
2620    return "GNU_HASH";
2621  case SHT_GNU_verdef:
2622    return "VERDEF";
2623  case SHT_GNU_verneed:
2624    return "VERNEED";
2625  case SHT_GNU_versym:
2626    return "VERSYM";
2627  default:
2628    return "";
2629  }
2630  return "";
2631}
2632
2633template <class ELFT> void GNUStyle<ELFT>::printSections(const ELFO *Obj) {
2634  size_t SectionIndex = 0;
2635  std::string Number, Type, Size, Address, Offset, Flags, Link, Info, EntrySize,
2636      Alignment;
2637  unsigned Bias;
2638  unsigned Width;
2639
2640  if (ELFT::Is64Bits) {
2641    Bias = 0;
2642    Width = 16;
2643  } else {
2644    Bias = 8;
2645    Width = 8;
2646  }
2647  OS << "There are " << to_string(Obj->getHeader()->e_shnum)
2648     << " section headers, starting at offset "
2649     << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
2650  OS << "Section Headers:\n";
2651  Field Fields[11] = {{"[Nr]", 2},
2652                      {"Name", 7},
2653                      {"Type", 25},
2654                      {"Address", 41},
2655                      {"Off", 58 - Bias},
2656                      {"Size", 65 - Bias},
2657                      {"ES", 72 - Bias},
2658                      {"Flg", 75 - Bias},
2659                      {"Lk", 79 - Bias},
2660                      {"Inf", 82 - Bias},
2661                      {"Al", 86 - Bias}};
2662  for (auto &f : Fields)
2663    printField(f);
2664  OS << "\n";
2665
2666  for (const Elf_Shdr &Sec : Obj->sections()) {
2667    Number = to_string(SectionIndex);
2668    Fields[0].Str = Number;
2669    Fields[1].Str = unwrapOrError(Obj->getSectionName(&Sec));
2670    Type = getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
2671    Fields[2].Str = Type;
2672    Address = to_string(format_hex_no_prefix(Sec.sh_addr, Width));
2673    Fields[3].Str = Address;
2674    Offset = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
2675    Fields[4].Str = Offset;
2676    Size = to_string(format_hex_no_prefix(Sec.sh_size, 6));
2677    Fields[5].Str = Size;
2678    EntrySize = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
2679    Fields[6].Str = EntrySize;
2680    Flags = getGNUFlags(Sec.sh_flags);
2681    Fields[7].Str = Flags;
2682    Link = to_string(Sec.sh_link);
2683    Fields[8].Str = Link;
2684    Info = to_string(Sec.sh_info);
2685    Fields[9].Str = Info;
2686    Alignment = to_string(Sec.sh_addralign);
2687    Fields[10].Str = Alignment;
2688    OS.PadToColumn(Fields[0].Column);
2689    OS << "[" << right_justify(Fields[0].Str, 2) << "]";
2690    for (int i = 1; i < 7; i++)
2691      printField(Fields[i]);
2692    OS.PadToColumn(Fields[7].Column);
2693    OS << right_justify(Fields[7].Str, 3);
2694    OS.PadToColumn(Fields[8].Column);
2695    OS << right_justify(Fields[8].Str, 2);
2696    OS.PadToColumn(Fields[9].Column);
2697    OS << right_justify(Fields[9].Str, 3);
2698    OS.PadToColumn(Fields[10].Column);
2699    OS << right_justify(Fields[10].Str, 2);
2700    OS << "\n";
2701    ++SectionIndex;
2702  }
2703  OS << "Key to Flags:\n"
2704     << "  W (write), A (alloc), X (execute), M (merge), S (strings), l "
2705        "(large)\n"
2706     << "  I (info), L (link order), G (group), T (TLS), E (exclude),\
2707 x (unknown)\n"
2708     << "  O (extra OS processing required) o (OS specific),\
2709 p (processor specific)\n";
2710}
2711
2712template <class ELFT>
2713void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
2714                                        size_t Entries) {
2715  if (Name.size())
2716    OS << "\nSymbol table '" << Name << "' contains " << Entries
2717       << " entries:\n";
2718  else
2719    OS << "\n Symbol table for image:\n";
2720
2721  if (ELFT::Is64Bits)
2722    OS << "   Num:    Value          Size Type    Bind   Vis      Ndx Name\n";
2723  else
2724    OS << "   Num:    Value  Size Type    Bind   Vis      Ndx Name\n";
2725}
2726
2727template <class ELFT>
2728std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
2729                                                const Elf_Sym *Symbol,
2730                                                const Elf_Sym *FirstSym) {
2731  unsigned SectionIndex = Symbol->st_shndx;
2732  switch (SectionIndex) {
2733  case ELF::SHN_UNDEF:
2734    return "UND";
2735  case ELF::SHN_ABS:
2736    return "ABS";
2737  case ELF::SHN_COMMON:
2738    return "COM";
2739  case ELF::SHN_XINDEX:
2740    SectionIndex = Obj->getExtendedSymbolTableIndex(
2741        Symbol, FirstSym, this->dumper()->getShndxTable());
2742  default:
2743    // Find if:
2744    // Processor specific
2745    if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
2746      return std::string("PRC[0x") +
2747             to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2748    // OS specific
2749    if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
2750      return std::string("OS[0x") +
2751             to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2752    // Architecture reserved:
2753    if (SectionIndex >= ELF::SHN_LORESERVE &&
2754        SectionIndex <= ELF::SHN_HIRESERVE)
2755      return std::string("RSV[0x") +
2756             to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2757    // A normal section with an index
2758    return to_string(format_decimal(SectionIndex, 3));
2759  }
2760}
2761
2762template <class ELFT>
2763void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
2764                                 const Elf_Sym *FirstSym, StringRef StrTable,
2765                                 bool IsDynamic) {
2766  static int Idx = 0;
2767  static bool Dynamic = true;
2768  size_t Width;
2769
2770  // If this function was called with a different value from IsDynamic
2771  // from last call, happens when we move from dynamic to static symbol
2772  // table, "Num" field should be reset.
2773  if (!Dynamic != !IsDynamic) {
2774    Idx = 0;
2775    Dynamic = false;
2776  }
2777  std::string Num, Name, Value, Size, Binding, Type, Visibility, Section;
2778  unsigned Bias = 0;
2779  if (ELFT::Is64Bits) {
2780    Bias = 8;
2781    Width = 16;
2782  } else {
2783    Bias = 0;
2784    Width = 8;
2785  }
2786  Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
2787                     31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias};
2788  Num = to_string(format_decimal(Idx++, 6)) + ":";
2789  Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
2790  Size = to_string(format_decimal(Symbol->st_size, 5));
2791  unsigned char SymbolType = Symbol->getType();
2792  if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
2793      SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
2794    Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
2795  else
2796    Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
2797  unsigned Vis = Symbol->getVisibility();
2798  Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
2799  Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
2800  Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
2801  Name = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
2802  Fields[0].Str = Num;
2803  Fields[1].Str = Value;
2804  Fields[2].Str = Size;
2805  Fields[3].Str = Type;
2806  Fields[4].Str = Binding;
2807  Fields[5].Str = Visibility;
2808  Fields[6].Str = Section;
2809  Fields[7].Str = Name;
2810  for (auto &Entry : Fields)
2811    printField(Entry);
2812  OS << "\n";
2813}
2814
2815template <class ELFT> void GNUStyle<ELFT>::printSymbols(const ELFO *Obj) {
2816  this->dumper()->printSymbolsHelper(true);
2817  this->dumper()->printSymbolsHelper(false);
2818}
2819
2820template <class ELFT>
2821void GNUStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
2822  this->dumper()->printSymbolsHelper(true);
2823}
2824
2825static inline std::string printPhdrFlags(unsigned Flag) {
2826  std::string Str;
2827  Str = (Flag & PF_R) ? "R" : " ";
2828  Str += (Flag & PF_W) ? "W" : " ";
2829  Str += (Flag & PF_X) ? "E" : " ";
2830  return Str;
2831}
2832
2833// SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
2834// PT_TLS must only have SHF_TLS sections
2835template <class ELFT>
2836bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
2837                                      const Elf_Shdr &Sec) {
2838  return (((Sec.sh_flags & ELF::SHF_TLS) &&
2839           ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
2840            (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
2841          (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
2842}
2843
2844// Non-SHT_NOBITS must have its offset inside the segment
2845// Only non-zero section can be at end of segment
2846template <class ELFT>
2847bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
2848  if (Sec.sh_type == ELF::SHT_NOBITS)
2849    return true;
2850  bool IsSpecial =
2851      (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
2852  // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
2853  auto SectionSize =
2854      (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
2855  if (Sec.sh_offset >= Phdr.p_offset)
2856    return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
2857            /*only non-zero sized sections at end*/ &&
2858            (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
2859  return false;
2860}
2861
2862// SHF_ALLOC must have VMA inside segment
2863// Only non-zero section can be at end of segment
2864template <class ELFT>
2865bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
2866  if (!(Sec.sh_flags & ELF::SHF_ALLOC))
2867    return true;
2868  bool IsSpecial =
2869      (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
2870  // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
2871  auto SectionSize =
2872      (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
2873  if (Sec.sh_addr >= Phdr.p_vaddr)
2874    return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
2875            (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
2876  return false;
2877}
2878
2879// No section with zero size must be at start or end of PT_DYNAMIC
2880template <class ELFT>
2881bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
2882  if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
2883    return true;
2884  // Is section within the phdr both based on offset and VMA ?
2885  return ((Sec.sh_type == ELF::SHT_NOBITS) ||
2886          (Sec.sh_offset > Phdr.p_offset &&
2887           Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
2888         (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
2889          (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
2890}
2891
2892template <class ELFT>
2893void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
2894  unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2895  unsigned Width = ELFT::Is64Bits ? 18 : 10;
2896  unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
2897  std::string Type, Offset, VMA, LMA, FileSz, MemSz, Flag, Align;
2898
2899  const Elf_Ehdr *Header = Obj->getHeader();
2900  Field Fields[8] = {2,         17,        26,        37 + Bias,
2901                     48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
2902  OS << "\nElf file type is "
2903     << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
2904     << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
2905     << "There are " << Header->e_phnum << " program headers,"
2906     << " starting at offset " << Header->e_phoff << "\n\n"
2907     << "Program Headers:\n";
2908  if (ELFT::Is64Bits)
2909    OS << "  Type           Offset   VirtAddr           PhysAddr         "
2910       << "  FileSiz  MemSiz   Flg Align\n";
2911  else
2912    OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
2913       << "MemSiz  Flg Align\n";
2914  for (const auto &Phdr : Obj->program_headers()) {
2915    Type = getElfPtType(Header->e_machine, Phdr.p_type);
2916    Offset = to_string(format_hex(Phdr.p_offset, 8));
2917    VMA = to_string(format_hex(Phdr.p_vaddr, Width));
2918    LMA = to_string(format_hex(Phdr.p_paddr, Width));
2919    FileSz = to_string(format_hex(Phdr.p_filesz, SizeWidth));
2920    MemSz = to_string(format_hex(Phdr.p_memsz, SizeWidth));
2921    Flag = printPhdrFlags(Phdr.p_flags);
2922    Align = to_string(format_hex(Phdr.p_align, 1));
2923    Fields[0].Str = Type;
2924    Fields[1].Str = Offset;
2925    Fields[2].Str = VMA;
2926    Fields[3].Str = LMA;
2927    Fields[4].Str = FileSz;
2928    Fields[5].Str = MemSz;
2929    Fields[6].Str = Flag;
2930    Fields[7].Str = Align;
2931    for (auto Field : Fields)
2932      printField(Field);
2933    if (Phdr.p_type == ELF::PT_INTERP) {
2934      OS << "\n      [Requesting program interpreter: ";
2935      OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
2936    }
2937    OS << "\n";
2938  }
2939  OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
2940  int Phnum = 0;
2941  for (const Elf_Phdr &Phdr : Obj->program_headers()) {
2942    std::string Sections;
2943    OS << format("   %2.2d     ", Phnum++);
2944    for (const Elf_Shdr &Sec : Obj->sections()) {
2945      // Check if each section is in a segment and then print mapping.
2946      // readelf additionally makes sure it does not print zero sized sections
2947      // at end of segments and for PT_DYNAMIC both start and end of section
2948      // .tbss must only be shown in PT_TLS section.
2949      bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
2950                          ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
2951                          Phdr.p_type != ELF::PT_TLS;
2952      if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
2953          checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
2954          checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL))
2955        Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " ";
2956    }
2957    OS << Sections << "\n";
2958    OS.flush();
2959  }
2960}
2961
2962template <class ELFT>
2963void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
2964                                            bool IsRela) {
2965  SmallString<32> RelocName;
2966  StringRef SymbolName;
2967  unsigned Width = ELFT::Is64Bits ? 16 : 8;
2968  unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2969  // First two fields are bit width dependent. The rest of them are after are
2970  // fixed width.
2971  Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2972
2973  uint32_t SymIndex = R.getSymbol(Obj->isMips64EL());
2974  const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
2975  Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2976  SymbolName =
2977      unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
2978  std::string Addend = "", Info, Offset, Value;
2979  Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
2980  Info = to_string(format_hex_no_prefix(R.r_info, Width));
2981  Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2982  int64_t RelAddend = R.r_addend;
2983  if (SymbolName.size() && IsRela) {
2984    if (R.r_addend < 0)
2985      Addend = " - ";
2986    else
2987      Addend = " + ";
2988  }
2989
2990  if (!SymbolName.size() && Sym->getValue() == 0)
2991    Value = "";
2992
2993  if (IsRela)
2994    Addend += to_string(format_hex_no_prefix(std::abs(RelAddend), 1));
2995
2996
2997  Fields[0].Str = Offset;
2998  Fields[1].Str = Info;
2999  Fields[2].Str = RelocName.c_str();
3000  Fields[3].Str = Value;
3001  Fields[4].Str = SymbolName;
3002  for (auto &Field : Fields)
3003    printField(Field);
3004  OS << Addend;
3005  OS << "\n";
3006}
3007
3008template <class ELFT>
3009void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3010  const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3011  const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3012  const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3013  if (DynRelaRegion.Size > 0) {
3014    OS << "\n'RELA' relocation section at offset "
3015       << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
3016                         Obj->base(),
3017                     1) << " contains " << DynRelaRegion.Size << " bytes:\n";
3018    printRelocHeader(OS, ELFT::Is64Bits, true);
3019    for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3020      printDynamicRelocation(Obj, Rela, true);
3021  }
3022  if (DynRelRegion.Size > 0) {
3023    OS << "\n'REL' relocation section at offset "
3024       << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
3025                         Obj->base(),
3026                     1) << " contains " << DynRelRegion.Size << " bytes:\n";
3027    printRelocHeader(OS, ELFT::Is64Bits, false);
3028    for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3029      Elf_Rela Rela;
3030      Rela.r_offset = Rel.r_offset;
3031      Rela.r_info = Rel.r_info;
3032      Rela.r_addend = 0;
3033      printDynamicRelocation(Obj, Rela, false);
3034    }
3035  }
3036  if (DynPLTRelRegion.Size) {
3037    OS << "\n'PLT' relocation section at offset "
3038       << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
3039                         Obj->base(),
3040                     1) << " contains " << DynPLTRelRegion.Size << " bytes:\n";
3041  }
3042  if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
3043    printRelocHeader(OS, ELFT::Is64Bits, true);
3044    for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3045      printDynamicRelocation(Obj, Rela, true);
3046  } else {
3047    printRelocHeader(OS, ELFT::Is64Bits, false);
3048    for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3049      Elf_Rela Rela;
3050      Rela.r_offset = Rel.r_offset;
3051      Rela.r_info = Rel.r_info;
3052      Rela.r_addend = 0;
3053      printDynamicRelocation(Obj, Rela, false);
3054    }
3055  }
3056}
3057
3058// Hash histogram shows  statistics of how efficient the hash was for the
3059// dynamic symbol table. The table shows number of hash buckets for different
3060// lengths of chains as absolute number and percentage of the total buckets.
3061// Additionally cumulative coverage of symbols for each set of buckets.
3062template <class ELFT>
3063void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3064
3065  const Elf_Hash *HashTable = this->dumper()->getHashTable();
3066  const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable();
3067
3068  // Print histogram for .hash section
3069  if (HashTable) {
3070    size_t NBucket = HashTable->nbucket;
3071    size_t NChain = HashTable->nchain;
3072    ArrayRef<Elf_Word> Buckets = HashTable->buckets();
3073    ArrayRef<Elf_Word> Chains = HashTable->chains();
3074    size_t TotalSyms = 0;
3075    // If hash table is correct, we have at least chains with 0 length
3076    size_t MaxChain = 1;
3077    size_t CumulativeNonZero = 0;
3078
3079    if (NChain == 0 || NBucket == 0)
3080      return;
3081
3082    std::vector<size_t> ChainLen(NBucket, 0);
3083    // Go over all buckets and and note chain lengths of each bucket (total
3084    // unique chain lengths).
3085    for (size_t B = 0; B < NBucket; B++) {
3086      for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C])
3087        if (MaxChain <= ++ChainLen[B])
3088          MaxChain++;
3089      TotalSyms += ChainLen[B];
3090    }
3091
3092    if (!TotalSyms)
3093      return;
3094
3095    std::vector<size_t> Count(MaxChain, 0) ;
3096    // Count how long is the chain for each bucket
3097    for (size_t B = 0; B < NBucket; B++)
3098      ++Count[ChainLen[B]];
3099    // Print Number of buckets with each chain lengths and their cumulative
3100    // coverage of the symbols
3101    OS << "Histogram for bucket list length (total of " << NBucket
3102       << " buckets)\n"
3103       << " Length  Number     % of total  Coverage\n";
3104    for (size_t I = 0; I < MaxChain; I++) {
3105      CumulativeNonZero += Count[I] * I;
3106      OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
3107                   (Count[I] * 100.0) / NBucket,
3108                   (CumulativeNonZero * 100.0) / TotalSyms);
3109    }
3110  }
3111
3112  // Print histogram for .gnu.hash section
3113  if (GnuHashTable) {
3114    size_t NBucket = GnuHashTable->nbuckets;
3115    ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
3116    unsigned NumSyms = this->dumper()->dynamic_symbols().size();
3117    if (!NumSyms)
3118      return;
3119    ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
3120    size_t Symndx = GnuHashTable->symndx;
3121    size_t TotalSyms = 0;
3122    size_t MaxChain = 1;
3123    size_t CumulativeNonZero = 0;
3124
3125    if (Chains.size() == 0 || NBucket == 0)
3126      return;
3127
3128    std::vector<size_t> ChainLen(NBucket, 0);
3129
3130    for (size_t B = 0; B < NBucket; B++) {
3131      if (!Buckets[B])
3132        continue;
3133      size_t Len = 1;
3134      for (size_t C = Buckets[B] - Symndx;
3135           C < Chains.size() && (Chains[C] & 1) == 0; C++)
3136        if (MaxChain < ++Len)
3137          MaxChain++;
3138      ChainLen[B] = Len;
3139      TotalSyms += Len;
3140    }
3141    MaxChain++;
3142
3143    if (!TotalSyms)
3144      return;
3145
3146    std::vector<size_t> Count(MaxChain, 0) ;
3147    for (size_t B = 0; B < NBucket; B++)
3148      ++Count[ChainLen[B]];
3149    // Print Number of buckets with each chain lengths and their cumulative
3150    // coverage of the symbols
3151    OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3152       << " buckets)\n"
3153       << " Length  Number     % of total  Coverage\n";
3154    for (size_t I = 0; I <MaxChain; I++) {
3155      CumulativeNonZero += Count[I] * I;
3156      OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
3157                   (Count[I] * 100.0) / NBucket,
3158                   (CumulativeNonZero * 100.0) / TotalSyms);
3159    }
3160  }
3161}
3162
3163template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3164  const Elf_Ehdr *e = Obj->getHeader();
3165  {
3166    DictScope D(W, "ElfHeader");
3167    {
3168      DictScope D(W, "Ident");
3169      W.printBinary("Magic", makeArrayRef(e->e_ident).slice(ELF::EI_MAG0, 4));
3170      W.printEnum("Class", e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3171      W.printEnum("DataEncoding", e->e_ident[ELF::EI_DATA],
3172                  makeArrayRef(ElfDataEncoding));
3173      W.printNumber("FileVersion", e->e_ident[ELF::EI_VERSION]);
3174
3175      // Handle architecture specific OS/ABI values.
3176      if (e->e_machine == ELF::EM_AMDGPU &&
3177          e->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA)
3178        W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA);
3179      else
3180        W.printEnum("OS/ABI", e->e_ident[ELF::EI_OSABI],
3181                    makeArrayRef(ElfOSABI));
3182      W.printNumber("ABIVersion", e->e_ident[ELF::EI_ABIVERSION]);
3183      W.printBinary("Unused", makeArrayRef(e->e_ident).slice(ELF::EI_PAD));
3184    }
3185
3186    W.printEnum("Type", e->e_type, makeArrayRef(ElfObjectFileType));
3187    W.printEnum("Machine", e->e_machine, makeArrayRef(ElfMachineType));
3188    W.printNumber("Version", e->e_version);
3189    W.printHex("Entry", e->e_entry);
3190    W.printHex("ProgramHeaderOffset", e->e_phoff);
3191    W.printHex("SectionHeaderOffset", e->e_shoff);
3192    if (e->e_machine == EM_MIPS)
3193      W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
3194                   unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3195                   unsigned(ELF::EF_MIPS_MACH));
3196    else
3197      W.printFlags("Flags", e->e_flags);
3198    W.printNumber("HeaderSize", e->e_ehsize);
3199    W.printNumber("ProgramHeaderEntrySize", e->e_phentsize);
3200    W.printNumber("ProgramHeaderCount", e->e_phnum);
3201    W.printNumber("SectionHeaderEntrySize", e->e_shentsize);
3202    W.printNumber("SectionHeaderCount", e->e_shnum);
3203    W.printNumber("StringTableSectionIndex", e->e_shstrndx);
3204  }
3205}
3206
3207template <class ELFT>
3208void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
3209  DictScope Lists(W, "Groups");
3210  uint32_t SectionIndex = 0;
3211  bool HasGroups = false;
3212  for (const Elf_Shdr &Sec : Obj->sections()) {
3213    if (Sec.sh_type == ELF::SHT_GROUP) {
3214      HasGroups = true;
3215      const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
3216      StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
3217      const Elf_Sym *Sym = Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info);
3218      auto Data = unwrapOrError(
3219          Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
3220      DictScope D(W, "Group");
3221      StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3222      W.printNumber("Name", Name, Sec.sh_name);
3223      W.printNumber("Index", SectionIndex);
3224      W.printHex("Type", getGroupType(Data[0]), Data[0]);
3225      W.startLine() << "Signature: " << StrTable.data() + Sym->st_name << "\n";
3226      {
3227        ListScope L(W, "Section(s) in group");
3228        size_t Member = 1;
3229        while (Member < Data.size()) {
3230          auto Sec = unwrapOrError(Obj->getSection(Data[Member]));
3231          const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
3232          W.startLine() << Name << " (" << Data[Member++] << ")\n";
3233        }
3234      }
3235    }
3236    ++SectionIndex;
3237  }
3238  if (!HasGroups)
3239    W.startLine() << "There are no group sections in the file.\n";
3240}
3241
3242template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
3243  ListScope D(W, "Relocations");
3244
3245  int SectionNumber = -1;
3246  for (const Elf_Shdr &Sec : Obj->sections()) {
3247    ++SectionNumber;
3248
3249    if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
3250      continue;
3251
3252    StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3253
3254    W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
3255    W.indent();
3256
3257    printRelocations(&Sec, Obj);
3258
3259    W.unindent();
3260    W.startLine() << "}\n";
3261  }
3262}
3263
3264template <class ELFT>
3265void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
3266  const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link));
3267
3268  switch (Sec->sh_type) {
3269  case ELF::SHT_REL:
3270    for (const Elf_Rel &R : Obj->rels(Sec)) {
3271      Elf_Rela Rela;
3272      Rela.r_offset = R.r_offset;
3273      Rela.r_info = R.r_info;
3274      Rela.r_addend = 0;
3275      printRelocation(Obj, Rela, SymTab);
3276    }
3277    break;
3278  case ELF::SHT_RELA:
3279    for (const Elf_Rela &R : Obj->relas(Sec))
3280      printRelocation(Obj, R, SymTab);
3281    break;
3282  }
3283}
3284
3285template <class ELFT>
3286void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
3287                                      const Elf_Shdr *SymTab) {
3288  SmallString<32> RelocName;
3289  Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
3290  StringRef TargetName;
3291  const Elf_Sym *Sym = Obj->getRelocationSymbol(&Rel, SymTab);
3292  if (Sym && Sym->getType() == ELF::STT_SECTION) {
3293    const Elf_Shdr *Sec = unwrapOrError(
3294        Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
3295    TargetName = unwrapOrError(Obj->getSectionName(Sec));
3296  } else if (Sym) {
3297    StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
3298    TargetName = unwrapOrError(Sym->getName(StrTable));
3299  }
3300
3301  if (opts::ExpandRelocs) {
3302    DictScope Group(W, "Relocation");
3303    W.printHex("Offset", Rel.r_offset);
3304    W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
3305    W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-",
3306                  Rel.getSymbol(Obj->isMips64EL()));
3307    W.printHex("Addend", Rel.r_addend);
3308  } else {
3309    raw_ostream &OS = W.startLine();
3310    OS << W.hex(Rel.r_offset) << " " << RelocName << " "
3311       << (TargetName.size() > 0 ? TargetName : "-") << " "
3312       << W.hex(Rel.r_addend) << "\n";
3313  }
3314}
3315
3316template <class ELFT> void LLVMStyle<ELFT>::printSections(const ELFO *Obj) {
3317  ListScope SectionsD(W, "Sections");
3318
3319  int SectionIndex = -1;
3320  for (const Elf_Shdr &Sec : Obj->sections()) {
3321    ++SectionIndex;
3322
3323    StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3324
3325    DictScope SectionD(W, "Section");
3326    W.printNumber("Index", SectionIndex);
3327    W.printNumber("Name", Name, Sec.sh_name);
3328    W.printHex("Type",
3329               getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type),
3330               Sec.sh_type);
3331    std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
3332                                                  std::end(ElfSectionFlags));
3333    switch (Obj->getHeader()->e_machine) {
3334    case EM_AMDGPU:
3335      SectionFlags.insert(SectionFlags.end(), std::begin(ElfAMDGPUSectionFlags),
3336                          std::end(ElfAMDGPUSectionFlags));
3337      break;
3338    case EM_HEXAGON:
3339      SectionFlags.insert(SectionFlags.end(),
3340                          std::begin(ElfHexagonSectionFlags),
3341                          std::end(ElfHexagonSectionFlags));
3342      break;
3343    case EM_MIPS:
3344      SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
3345                          std::end(ElfMipsSectionFlags));
3346      break;
3347    case EM_X86_64:
3348      SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
3349                          std::end(ElfX86_64SectionFlags));
3350      break;
3351    case EM_XCORE:
3352      SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
3353                          std::end(ElfXCoreSectionFlags));
3354      break;
3355    default:
3356      // Nothing to do.
3357      break;
3358    }
3359    W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
3360    W.printHex("Address", Sec.sh_addr);
3361    W.printHex("Offset", Sec.sh_offset);
3362    W.printNumber("Size", Sec.sh_size);
3363    W.printNumber("Link", Sec.sh_link);
3364    W.printNumber("Info", Sec.sh_info);
3365    W.printNumber("AddressAlignment", Sec.sh_addralign);
3366    W.printNumber("EntrySize", Sec.sh_entsize);
3367
3368    if (opts::SectionRelocations) {
3369      ListScope D(W, "Relocations");
3370      printRelocations(&Sec, Obj);
3371    }
3372
3373    if (opts::SectionSymbols) {
3374      ListScope D(W, "Symbols");
3375      const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
3376      StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
3377
3378      for (const Elf_Sym &Sym : Obj->symbols(Symtab)) {
3379        const Elf_Shdr *SymSec = unwrapOrError(
3380            Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
3381        if (SymSec == &Sec)
3382          printSymbol(Obj, &Sym, Obj->symbol_begin(Symtab), StrTable, false);
3383      }
3384    }
3385
3386    if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
3387      ArrayRef<uint8_t> Data = unwrapOrError(Obj->getSectionContents(&Sec));
3388      W.printBinaryBlock("SectionData",
3389                         StringRef((const char *)Data.data(), Data.size()));
3390    }
3391  }
3392}
3393
3394template <class ELFT>
3395void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3396                                  const Elf_Sym *First, StringRef StrTable,
3397                                  bool IsDynamic) {
3398  unsigned SectionIndex = 0;
3399  StringRef SectionName;
3400  getSectionNameIndex(*Obj, Symbol, First, this->dumper()->getShndxTable(),
3401                      SectionName, SectionIndex);
3402  std::string FullSymbolName =
3403      this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3404  unsigned char SymbolType = Symbol->getType();
3405
3406  DictScope D(W, "Symbol");
3407  W.printNumber("Name", FullSymbolName, Symbol->st_name);
3408  W.printHex("Value", Symbol->st_value);
3409  W.printNumber("Size", Symbol->st_size);
3410  W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3411  if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3412      SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3413    W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3414  else
3415    W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
3416  if (Symbol->st_other == 0)
3417    // Usually st_other flag is zero. Do not pollute the output
3418    // by flags enumeration in that case.
3419    W.printNumber("Other", 0);
3420  else {
3421    std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3422                                                   std::end(ElfSymOtherFlags));
3423    if (Obj->getHeader()->e_machine == EM_MIPS) {
3424      // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
3425      // flag overlapped with other ST_MIPS_xxx flags. So consider both
3426      // cases separately.
3427      if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3428        SymOtherFlags.insert(SymOtherFlags.end(),
3429                             std::begin(ElfMips16SymOtherFlags),
3430                             std::end(ElfMips16SymOtherFlags));
3431      else
3432        SymOtherFlags.insert(SymOtherFlags.end(),
3433                             std::begin(ElfMipsSymOtherFlags),
3434                             std::end(ElfMipsSymOtherFlags));
3435    }
3436    W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
3437  }
3438  W.printHex("Section", SectionName, SectionIndex);
3439}
3440
3441template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
3442  ListScope Group(W, "Symbols");
3443  this->dumper()->printSymbolsHelper(false);
3444}
3445
3446template <class ELFT>
3447void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
3448  ListScope Group(W, "DynamicSymbols");
3449  this->dumper()->printSymbolsHelper(true);
3450}
3451
3452template <class ELFT>
3453void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3454  const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3455  const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3456  const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3457  if (DynRelRegion.Size && DynRelaRegion.Size)
3458    report_fatal_error("There are both REL and RELA dynamic relocations");
3459  W.startLine() << "Dynamic Relocations {\n";
3460  W.indent();
3461  if (DynRelaRegion.Size > 0)
3462    for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3463      printDynamicRelocation(Obj, Rela);
3464  else
3465    for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3466      Elf_Rela Rela;
3467      Rela.r_offset = Rel.r_offset;
3468      Rela.r_info = Rel.r_info;
3469      Rela.r_addend = 0;
3470      printDynamicRelocation(Obj, Rela);
3471    }
3472  if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
3473    for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3474      printDynamicRelocation(Obj, Rela);
3475  else
3476    for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3477      Elf_Rela Rela;
3478      Rela.r_offset = Rel.r_offset;
3479      Rela.r_info = Rel.r_info;
3480      Rela.r_addend = 0;
3481      printDynamicRelocation(Obj, Rela);
3482    }
3483  W.unindent();
3484  W.startLine() << "}\n";
3485}
3486
3487template <class ELFT>
3488void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
3489  SmallString<32> RelocName;
3490  Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
3491  StringRef SymbolName;
3492  uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
3493  const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
3494  SymbolName =
3495      unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
3496  if (opts::ExpandRelocs) {
3497    DictScope Group(W, "Relocation");
3498    W.printHex("Offset", Rel.r_offset);
3499    W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
3500    W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
3501    W.printHex("Addend", Rel.r_addend);
3502  } else {
3503    raw_ostream &OS = W.startLine();
3504    OS << W.hex(Rel.r_offset) << " " << RelocName << " "
3505       << (SymbolName.size() > 0 ? SymbolName : "-") << " "
3506       << W.hex(Rel.r_addend) << "\n";
3507  }
3508}
3509
3510template <class ELFT>
3511void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3512  ListScope L(W, "ProgramHeaders");
3513
3514  for (const Elf_Phdr &Phdr : Obj->program_headers()) {
3515    DictScope P(W, "ProgramHeader");
3516    W.printHex("Type",
3517               getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
3518               Phdr.p_type);
3519    W.printHex("Offset", Phdr.p_offset);
3520    W.printHex("VirtualAddress", Phdr.p_vaddr);
3521    W.printHex("PhysicalAddress", Phdr.p_paddr);
3522    W.printNumber("FileSize", Phdr.p_filesz);
3523    W.printNumber("MemSize", Phdr.p_memsz);
3524    W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
3525    W.printNumber("Alignment", Phdr.p_align);
3526  }
3527}
3528template <class ELFT>
3529void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3530  W.startLine() << "Hash Histogram not implemented!\n";
3531}
3532