1//===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This tablegen backend emits code for use by the "fast" instruction 11// selection algorithm. See the comments at the top of 12// lib/CodeGen/SelectionDAG/FastISel.cpp for background. 13// 14// This file scans through the target's tablegen instruction-info files 15// and extracts instructions with obvious-looking patterns, and it emits 16// code to look up these instructions by type and operator. 17// 18//===----------------------------------------------------------------------===// 19 20#include "CodeGenDAGPatterns.h" 21#include "llvm/ADT/StringSwitch.h" 22#include "llvm/Support/Debug.h" 23#include "llvm/Support/ErrorHandling.h" 24#include "llvm/TableGen/Error.h" 25#include "llvm/TableGen/Record.h" 26#include "llvm/TableGen/TableGenBackend.h" 27#include <utility> 28using namespace llvm; 29 30 31/// InstructionMemo - This class holds additional information about an 32/// instruction needed to emit code for it. 33/// 34namespace { 35struct InstructionMemo { 36 std::string Name; 37 const CodeGenRegisterClass *RC; 38 std::string SubRegNo; 39 std::vector<std::string>* PhysRegs; 40 std::string PredicateCheck; 41}; 42} // End anonymous namespace 43 44/// ImmPredicateSet - This uniques predicates (represented as a string) and 45/// gives them unique (small) integer ID's that start at 0. 46namespace { 47class ImmPredicateSet { 48 DenseMap<TreePattern *, unsigned> ImmIDs; 49 std::vector<TreePredicateFn> PredsByName; 50public: 51 52 unsigned getIDFor(TreePredicateFn Pred) { 53 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 54 if (Entry == 0) { 55 PredsByName.push_back(Pred); 56 Entry = PredsByName.size(); 57 } 58 return Entry-1; 59 } 60 61 const TreePredicateFn &getPredicate(unsigned i) { 62 assert(i < PredsByName.size()); 63 return PredsByName[i]; 64 } 65 66 typedef std::vector<TreePredicateFn>::const_iterator iterator; 67 iterator begin() const { return PredsByName.begin(); } 68 iterator end() const { return PredsByName.end(); } 69 70}; 71} // End anonymous namespace 72 73/// OperandsSignature - This class holds a description of a list of operand 74/// types. It has utility methods for emitting text based on the operands. 75/// 76namespace { 77struct OperandsSignature { 78 class OpKind { 79 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 80 char Repr; 81 public: 82 83 OpKind() : Repr(OK_Invalid) {} 84 85 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 86 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 87 88 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 89 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 90 static OpKind getImm(unsigned V) { 91 assert((unsigned)OK_Imm+V < 128 && 92 "Too many integer predicates for the 'Repr' char"); 93 OpKind K; K.Repr = OK_Imm+V; return K; 94 } 95 96 bool isReg() const { return Repr == OK_Reg; } 97 bool isFP() const { return Repr == OK_FP; } 98 bool isImm() const { return Repr >= OK_Imm; } 99 100 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 101 102 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 103 bool StripImmCodes) const { 104 if (isReg()) 105 OS << 'r'; 106 else if (isFP()) 107 OS << 'f'; 108 else { 109 OS << 'i'; 110 if (!StripImmCodes) 111 if (unsigned Code = getImmCode()) 112 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 113 } 114 } 115 }; 116 117 118 SmallVector<OpKind, 3> Operands; 119 120 bool operator<(const OperandsSignature &O) const { 121 return Operands < O.Operands; 122 } 123 bool operator==(const OperandsSignature &O) const { 124 return Operands == O.Operands; 125 } 126 127 bool empty() const { return Operands.empty(); } 128 129 bool hasAnyImmediateCodes() const { 130 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 131 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 132 return true; 133 return false; 134 } 135 136 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 137 /// to zero. 138 OperandsSignature getWithoutImmCodes() const { 139 OperandsSignature Result; 140 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 141 if (!Operands[i].isImm()) 142 Result.Operands.push_back(Operands[i]); 143 else 144 Result.Operands.push_back(OpKind::getImm(0)); 145 return Result; 146 } 147 148 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 149 bool EmittedAnything = false; 150 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 151 if (!Operands[i].isImm()) continue; 152 153 unsigned Code = Operands[i].getImmCode(); 154 if (Code == 0) continue; 155 156 if (EmittedAnything) 157 OS << " &&\n "; 158 159 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 160 161 // Emit the type check. 162 OS << "VT == " 163 << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0)) 164 << " && "; 165 166 167 OS << PredFn.getFnName() << "(imm" << i <<')'; 168 EmittedAnything = true; 169 } 170 } 171 172 /// initialize - Examine the given pattern and initialize the contents 173 /// of the Operands array accordingly. Return true if all the operands 174 /// are supported, false otherwise. 175 /// 176 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 177 MVT::SimpleValueType VT, 178 ImmPredicateSet &ImmediatePredicates, 179 const CodeGenRegisterClass *OrigDstRC) { 180 if (InstPatNode->isLeaf()) 181 return false; 182 183 if (InstPatNode->getOperator()->getName() == "imm") { 184 Operands.push_back(OpKind::getImm(0)); 185 return true; 186 } 187 188 if (InstPatNode->getOperator()->getName() == "fpimm") { 189 Operands.push_back(OpKind::getFP()); 190 return true; 191 } 192 193 const CodeGenRegisterClass *DstRC = nullptr; 194 195 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 196 TreePatternNode *Op = InstPatNode->getChild(i); 197 198 // Handle imm operands specially. 199 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 200 unsigned PredNo = 0; 201 if (!Op->getPredicateFns().empty()) { 202 TreePredicateFn PredFn = Op->getPredicateFns()[0]; 203 // If there is more than one predicate weighing in on this operand 204 // then we don't handle it. This doesn't typically happen for 205 // immediates anyway. 206 if (Op->getPredicateFns().size() > 1 || 207 !PredFn.isImmediatePattern()) 208 return false; 209 // Ignore any instruction with 'FastIselShouldIgnore', these are 210 // not needed and just bloat the fast instruction selector. For 211 // example, X86 doesn't need to generate code to match ADD16ri8 since 212 // ADD16ri will do just fine. 213 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 214 if (Rec->getValueAsBit("FastIselShouldIgnore")) 215 return false; 216 217 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 218 } 219 220 // Handle unmatched immediate sizes here. 221 //if (Op->getType(0) != VT) 222 // return false; 223 224 Operands.push_back(OpKind::getImm(PredNo)); 225 continue; 226 } 227 228 229 // For now, filter out any operand with a predicate. 230 // For now, filter out any operand with multiple values. 231 if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) 232 return false; 233 234 if (!Op->isLeaf()) { 235 if (Op->getOperator()->getName() == "fpimm") { 236 Operands.push_back(OpKind::getFP()); 237 continue; 238 } 239 // For now, ignore other non-leaf nodes. 240 return false; 241 } 242 243 assert(Op->hasTypeSet(0) && "Type infererence not done?"); 244 245 // For now, all the operands must have the same type (if they aren't 246 // immediates). Note that this causes us to reject variable sized shifts 247 // on X86. 248 if (Op->getType(0) != VT) 249 return false; 250 251 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 252 if (!OpDI) 253 return false; 254 Record *OpLeafRec = OpDI->getDef(); 255 256 // For now, the only other thing we accept is register operands. 257 const CodeGenRegisterClass *RC = nullptr; 258 if (OpLeafRec->isSubClassOf("RegisterOperand")) 259 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 260 if (OpLeafRec->isSubClassOf("RegisterClass")) 261 RC = &Target.getRegisterClass(OpLeafRec); 262 else if (OpLeafRec->isSubClassOf("Register")) 263 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 264 else if (OpLeafRec->isSubClassOf("ValueType")) { 265 RC = OrigDstRC; 266 } else 267 return false; 268 269 // For now, this needs to be a register class of some sort. 270 if (!RC) 271 return false; 272 273 // For now, all the operands must have the same register class or be 274 // a strict subclass of the destination. 275 if (DstRC) { 276 if (DstRC != RC && !DstRC->hasSubClass(RC)) 277 return false; 278 } else 279 DstRC = RC; 280 Operands.push_back(OpKind::getReg()); 281 } 282 return true; 283 } 284 285 void PrintParameters(raw_ostream &OS) const { 286 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 287 if (Operands[i].isReg()) { 288 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; 289 } else if (Operands[i].isImm()) { 290 OS << "uint64_t imm" << i; 291 } else if (Operands[i].isFP()) { 292 OS << "const ConstantFP *f" << i; 293 } else { 294 llvm_unreachable("Unknown operand kind!"); 295 } 296 if (i + 1 != e) 297 OS << ", "; 298 } 299 } 300 301 void PrintArguments(raw_ostream &OS, 302 const std::vector<std::string> &PR) const { 303 assert(PR.size() == Operands.size()); 304 bool PrintedArg = false; 305 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 306 if (PR[i] != "") 307 // Implicit physical register operand. 308 continue; 309 310 if (PrintedArg) 311 OS << ", "; 312 if (Operands[i].isReg()) { 313 OS << "Op" << i << ", Op" << i << "IsKill"; 314 PrintedArg = true; 315 } else if (Operands[i].isImm()) { 316 OS << "imm" << i; 317 PrintedArg = true; 318 } else if (Operands[i].isFP()) { 319 OS << "f" << i; 320 PrintedArg = true; 321 } else { 322 llvm_unreachable("Unknown operand kind!"); 323 } 324 } 325 } 326 327 void PrintArguments(raw_ostream &OS) const { 328 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 329 if (Operands[i].isReg()) { 330 OS << "Op" << i << ", Op" << i << "IsKill"; 331 } else if (Operands[i].isImm()) { 332 OS << "imm" << i; 333 } else if (Operands[i].isFP()) { 334 OS << "f" << i; 335 } else { 336 llvm_unreachable("Unknown operand kind!"); 337 } 338 if (i + 1 != e) 339 OS << ", "; 340 } 341 } 342 343 344 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 345 ImmPredicateSet &ImmPredicates, 346 bool StripImmCodes = false) const { 347 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 348 if (PR[i] != "") 349 // Implicit physical register operand. e.g. Instruction::Mul expect to 350 // select to a binary op. On x86, mul may take a single operand with 351 // the other operand being implicit. We must emit something that looks 352 // like a binary instruction except for the very inner fastEmitInst_* 353 // call. 354 continue; 355 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 356 } 357 } 358 359 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 360 bool StripImmCodes = false) const { 361 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 363 } 364}; 365} // End anonymous namespace 366 367namespace { 368class FastISelMap { 369 // A multimap is needed instead of a "plain" map because the key is 370 // the instruction's complexity (an int) and they are not unique. 371 typedef std::multimap<int, InstructionMemo> PredMap; 372 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 373 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 374 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 375 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 376 OperandsOpcodeTypeRetPredMap; 377 378 OperandsOpcodeTypeRetPredMap SimplePatterns; 379 380 // This is used to check that there are no duplicate predicates 381 typedef std::multimap<std::string, bool> PredCheckMap; 382 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap; 383 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap; 384 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap; 385 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap> 386 OperandsOpcodeTypeRetPredCheckMap; 387 388 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck; 389 390 std::map<OperandsSignature, std::vector<OperandsSignature> > 391 SignaturesWithConstantForms; 392 393 std::string InstNS; 394 ImmPredicateSet ImmediatePredicates; 395public: 396 explicit FastISelMap(std::string InstNS); 397 398 void collectPatterns(CodeGenDAGPatterns &CGP); 399 void printImmediatePredicates(raw_ostream &OS); 400 void printFunctionDefinitions(raw_ostream &OS); 401private: 402 void emitInstructionCode(raw_ostream &OS, 403 const OperandsSignature &Operands, 404 const PredMap &PM, 405 const std::string &RetVTName); 406}; 407} // End anonymous namespace 408 409static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 410 return CGP.getSDNodeInfo(Op).getEnumName(); 411} 412 413static std::string getLegalCName(std::string OpName) { 414 std::string::size_type pos = OpName.find("::"); 415 if (pos != std::string::npos) 416 OpName.replace(pos, 2, "_"); 417 return OpName; 418} 419 420FastISelMap::FastISelMap(std::string instns) : InstNS(std::move(instns)) {} 421 422static std::string PhyRegForNode(TreePatternNode *Op, 423 const CodeGenTarget &Target) { 424 std::string PhysReg; 425 426 if (!Op->isLeaf()) 427 return PhysReg; 428 429 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 430 if (!OpLeafRec->isSubClassOf("Register")) 431 return PhysReg; 432 433 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 434 ->getValue(); 435 PhysReg += "::"; 436 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 437 return PhysReg; 438} 439 440void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 441 const CodeGenTarget &Target = CGP.getTargetInfo(); 442 443 // Determine the target's namespace name. 444 InstNS = Target.getInstNamespace() + "::"; 445 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 446 447 // Scan through all the patterns and record the simple ones. 448 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 449 E = CGP.ptm_end(); I != E; ++I) { 450 const PatternToMatch &Pattern = *I; 451 452 // For now, just look at Instructions, so that we don't have to worry 453 // about emitting multiple instructions for a pattern. 454 TreePatternNode *Dst = Pattern.getDstPattern(); 455 if (Dst->isLeaf()) continue; 456 Record *Op = Dst->getOperator(); 457 if (!Op->isSubClassOf("Instruction")) 458 continue; 459 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 460 if (II.Operands.empty()) 461 continue; 462 463 // For now, ignore multi-instruction patterns. 464 bool MultiInsts = false; 465 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 466 TreePatternNode *ChildOp = Dst->getChild(i); 467 if (ChildOp->isLeaf()) 468 continue; 469 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 470 MultiInsts = true; 471 break; 472 } 473 } 474 if (MultiInsts) 475 continue; 476 477 // For now, ignore instructions where the first operand is not an 478 // output register. 479 const CodeGenRegisterClass *DstRC = nullptr; 480 std::string SubRegNo; 481 if (Op->getName() != "EXTRACT_SUBREG") { 482 Record *Op0Rec = II.Operands[0].Rec; 483 if (Op0Rec->isSubClassOf("RegisterOperand")) 484 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 485 if (!Op0Rec->isSubClassOf("RegisterClass")) 486 continue; 487 DstRC = &Target.getRegisterClass(Op0Rec); 488 if (!DstRC) 489 continue; 490 } else { 491 // If this isn't a leaf, then continue since the register classes are 492 // a bit too complicated for now. 493 if (!Dst->getChild(1)->isLeaf()) continue; 494 495 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 496 if (SR) 497 SubRegNo = getQualifiedName(SR->getDef()); 498 else 499 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 500 } 501 502 // Inspect the pattern. 503 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 504 if (!InstPatNode) continue; 505 if (InstPatNode->isLeaf()) continue; 506 507 // Ignore multiple result nodes for now. 508 if (InstPatNode->getNumTypes() > 1) continue; 509 510 Record *InstPatOp = InstPatNode->getOperator(); 511 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 512 MVT::SimpleValueType RetVT = MVT::isVoid; 513 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0); 514 MVT::SimpleValueType VT = RetVT; 515 if (InstPatNode->getNumChildren()) { 516 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 517 VT = InstPatNode->getChild(0)->getType(0); 518 } 519 520 // For now, filter out any instructions with predicates. 521 if (!InstPatNode->getPredicateFns().empty()) 522 continue; 523 524 // Check all the operands. 525 OperandsSignature Operands; 526 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 527 DstRC)) 528 continue; 529 530 std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); 531 if (InstPatNode->getOperator()->getName() == "imm" || 532 InstPatNode->getOperator()->getName() == "fpimm") 533 PhysRegInputs->push_back(""); 534 else { 535 // Compute the PhysRegs used by the given pattern, and check that 536 // the mapping from the src to dst patterns is simple. 537 bool FoundNonSimplePattern = false; 538 unsigned DstIndex = 0; 539 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 540 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 541 if (PhysReg.empty()) { 542 if (DstIndex >= Dst->getNumChildren() || 543 Dst->getChild(DstIndex)->getName() != 544 InstPatNode->getChild(i)->getName()) { 545 FoundNonSimplePattern = true; 546 break; 547 } 548 ++DstIndex; 549 } 550 551 PhysRegInputs->push_back(PhysReg); 552 } 553 554 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 555 FoundNonSimplePattern = true; 556 557 if (FoundNonSimplePattern) 558 continue; 559 } 560 561 // Check if the operands match one of the patterns handled by FastISel. 562 std::string ManglingSuffix; 563 raw_string_ostream SuffixOS(ManglingSuffix); 564 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); 565 SuffixOS.flush(); 566 if (!StringSwitch<bool>(ManglingSuffix) 567 .Cases("", "r", "rr", "ri", "rf", true) 568 .Cases("rri", "i", "f", true) 569 .Default(false)) 570 continue; 571 572 // Get the predicate that guards this pattern. 573 std::string PredicateCheck = Pattern.getPredicateCheck(); 574 575 // Ok, we found a pattern that we can handle. Remember it. 576 InstructionMemo Memo = { 577 Pattern.getDstPattern()->getOperator()->getName(), 578 DstRC, 579 SubRegNo, 580 PhysRegInputs, 581 PredicateCheck 582 }; 583 584 int complexity = Pattern.getPatternComplexity(CGP); 585 586 if (SimplePatternsCheck[Operands][OpcodeName][VT] 587 [RetVT].count(PredicateCheck)) { 588 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 589 "Duplicate predicate in FastISel table!"); 590 } 591 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert( 592 std::make_pair(PredicateCheck, true)); 593 594 // Note: Instructions with the same complexity will appear in the order 595 // that they are encountered. 596 SimplePatterns[Operands][OpcodeName][VT][RetVT].insert( 597 std::make_pair(complexity, Memo)); 598 599 // If any of the operands were immediates with predicates on them, strip 600 // them down to a signature that doesn't have predicates so that we can 601 // associate them with the stripped predicate version. 602 if (Operands.hasAnyImmediateCodes()) { 603 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 604 .push_back(Operands); 605 } 606 } 607} 608 609void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 610 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 611 return; 612 613 OS << "\n// FastEmit Immediate Predicate functions.\n"; 614 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), 615 E = ImmediatePredicates.end(); I != E; ++I) { 616 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; 617 OS << I->getImmediatePredicateCode() << "\n}\n"; 618 } 619 620 OS << "\n\n"; 621} 622 623void FastISelMap::emitInstructionCode(raw_ostream &OS, 624 const OperandsSignature &Operands, 625 const PredMap &PM, 626 const std::string &RetVTName) { 627 // Emit code for each possible instruction. There may be 628 // multiple if there are subtarget concerns. A reverse iterator 629 // is used to produce the ones with highest complexity first. 630 631 bool OneHadNoPredicate = false; 632 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); 633 PI != PE; ++PI) { 634 const InstructionMemo &Memo = PI->second; 635 std::string PredicateCheck = Memo.PredicateCheck; 636 637 if (PredicateCheck.empty()) { 638 assert(!OneHadNoPredicate && 639 "Multiple instructions match and more than one had " 640 "no predicate!"); 641 OneHadNoPredicate = true; 642 } else { 643 if (OneHadNoPredicate) { 644 // FIXME: This should be a PrintError once the x86 target 645 // fixes PR21575. 646 PrintWarning("Multiple instructions match and one with no " 647 "predicate came before one with a predicate! " 648 "name:" + Memo.Name + " predicate: " + 649 PredicateCheck); 650 } 651 OS << " if (" + PredicateCheck + ") {\n"; 652 OS << " "; 653 } 654 655 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { 656 if ((*Memo.PhysRegs)[i] != "") 657 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, " 658 << "TII.get(TargetOpcode::COPY), " 659 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; 660 } 661 662 OS << " return fastEmitInst_"; 663 if (Memo.SubRegNo.empty()) { 664 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, 665 ImmediatePredicates, true); 666 OS << "(" << InstNS << Memo.Name << ", "; 667 OS << "&" << InstNS << Memo.RC->getName() << "RegClass"; 668 if (!Operands.empty()) 669 OS << ", "; 670 Operands.PrintArguments(OS, *Memo.PhysRegs); 671 OS << ");\n"; 672 } else { 673 OS << "extractsubreg(" << RetVTName 674 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; 675 } 676 677 if (!PredicateCheck.empty()) { 678 OS << " }\n"; 679 } 680 } 681 // Return 0 if all of the possibilities had predicates but none 682 // were satisfied. 683 if (!OneHadNoPredicate) 684 OS << " return 0;\n"; 685 OS << "}\n"; 686 OS << "\n"; 687} 688 689 690void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 691 // Now emit code for all the patterns that we collected. 692 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), 693 OE = SimplePatterns.end(); OI != OE; ++OI) { 694 const OperandsSignature &Operands = OI->first; 695 const OpcodeTypeRetPredMap &OTM = OI->second; 696 697 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 698 I != E; ++I) { 699 const std::string &Opcode = I->first; 700 const TypeRetPredMap &TM = I->second; 701 702 OS << "// FastEmit functions for " << Opcode << ".\n"; 703 OS << "\n"; 704 705 // Emit one function for each opcode,type pair. 706 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 707 TI != TE; ++TI) { 708 MVT::SimpleValueType VT = TI->first; 709 const RetPredMap &RM = TI->second; 710 if (RM.size() != 1) { 711 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 712 RI != RE; ++RI) { 713 MVT::SimpleValueType RetVT = RI->first; 714 const PredMap &PM = RI->second; 715 716 OS << "unsigned fastEmit_" 717 << getLegalCName(Opcode) 718 << "_" << getLegalCName(getName(VT)) 719 << "_" << getLegalCName(getName(RetVT)) << "_"; 720 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 721 OS << "("; 722 Operands.PrintParameters(OS); 723 OS << ") {\n"; 724 725 emitInstructionCode(OS, Operands, PM, getName(RetVT)); 726 } 727 728 // Emit one function for the type that demultiplexes on return type. 729 OS << "unsigned fastEmit_" 730 << getLegalCName(Opcode) << "_" 731 << getLegalCName(getName(VT)) << "_"; 732 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 733 OS << "(MVT RetVT"; 734 if (!Operands.empty()) 735 OS << ", "; 736 Operands.PrintParameters(OS); 737 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 738 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 739 RI != RE; ++RI) { 740 MVT::SimpleValueType RetVT = RI->first; 741 OS << " case " << getName(RetVT) << ": return fastEmit_" 742 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) 743 << "_" << getLegalCName(getName(RetVT)) << "_"; 744 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 745 OS << "("; 746 Operands.PrintArguments(OS); 747 OS << ");\n"; 748 } 749 OS << " default: return 0;\n}\n}\n\n"; 750 751 } else { 752 // Non-variadic return type. 753 OS << "unsigned fastEmit_" 754 << getLegalCName(Opcode) << "_" 755 << getLegalCName(getName(VT)) << "_"; 756 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 757 OS << "(MVT RetVT"; 758 if (!Operands.empty()) 759 OS << ", "; 760 Operands.PrintParameters(OS); 761 OS << ") {\n"; 762 763 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 764 << ")\n return 0;\n"; 765 766 const PredMap &PM = RM.begin()->second; 767 768 emitInstructionCode(OS, Operands, PM, "RetVT"); 769 } 770 } 771 772 // Emit one function for the opcode that demultiplexes based on the type. 773 OS << "unsigned fastEmit_" 774 << getLegalCName(Opcode) << "_"; 775 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 776 OS << "(MVT VT, MVT RetVT"; 777 if (!Operands.empty()) 778 OS << ", "; 779 Operands.PrintParameters(OS); 780 OS << ") {\n"; 781 OS << " switch (VT.SimpleTy) {\n"; 782 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 783 TI != TE; ++TI) { 784 MVT::SimpleValueType VT = TI->first; 785 std::string TypeName = getName(VT); 786 OS << " case " << TypeName << ": return fastEmit_" 787 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 788 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 789 OS << "(RetVT"; 790 if (!Operands.empty()) 791 OS << ", "; 792 Operands.PrintArguments(OS); 793 OS << ");\n"; 794 } 795 OS << " default: return 0;\n"; 796 OS << " }\n"; 797 OS << "}\n"; 798 OS << "\n"; 799 } 800 801 OS << "// Top-level FastEmit function.\n"; 802 OS << "\n"; 803 804 // Emit one function for the operand signature that demultiplexes based 805 // on opcode and type. 806 OS << "unsigned fastEmit_"; 807 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 808 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 809 if (!Operands.empty()) 810 OS << ", "; 811 Operands.PrintParameters(OS); 812 OS << ") "; 813 if (!Operands.hasAnyImmediateCodes()) 814 OS << "override "; 815 OS << "{\n"; 816 817 // If there are any forms of this signature available that operate on 818 // constrained forms of the immediate (e.g., 32-bit sext immediate in a 819 // 64-bit operand), check them first. 820 821 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 822 = SignaturesWithConstantForms.find(Operands); 823 if (MI != SignaturesWithConstantForms.end()) { 824 // Unique any duplicates out of the list. 825 std::sort(MI->second.begin(), MI->second.end()); 826 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 827 MI->second.end()); 828 829 // Check each in order it was seen. It would be nice to have a good 830 // relative ordering between them, but we're not going for optimality 831 // here. 832 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 833 OS << " if ("; 834 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 835 OS << ")\n if (unsigned Reg = fastEmit_"; 836 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 837 OS << "(VT, RetVT, Opcode"; 838 if (!MI->second[i].empty()) 839 OS << ", "; 840 MI->second[i].PrintArguments(OS); 841 OS << "))\n return Reg;\n\n"; 842 } 843 844 // Done with this, remove it. 845 SignaturesWithConstantForms.erase(MI); 846 } 847 848 OS << " switch (Opcode) {\n"; 849 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 850 I != E; ++I) { 851 const std::string &Opcode = I->first; 852 853 OS << " case " << Opcode << ": return fastEmit_" 854 << getLegalCName(Opcode) << "_"; 855 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 856 OS << "(VT, RetVT"; 857 if (!Operands.empty()) 858 OS << ", "; 859 Operands.PrintArguments(OS); 860 OS << ");\n"; 861 } 862 OS << " default: return 0;\n"; 863 OS << " }\n"; 864 OS << "}\n"; 865 OS << "\n"; 866 } 867 868 // TODO: SignaturesWithConstantForms should be empty here. 869} 870 871namespace llvm { 872 873void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 874 CodeGenDAGPatterns CGP(RK); 875 const CodeGenTarget &Target = CGP.getTargetInfo(); 876 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 877 Target.getName() + " target", OS); 878 879 // Determine the target's namespace name. 880 std::string InstNS = Target.getInstNamespace() + "::"; 881 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 882 883 FastISelMap F(InstNS); 884 F.collectPatterns(CGP); 885 F.printImmediatePredicates(OS); 886 F.printFunctionDefinitions(OS); 887} 888 889} // End llvm namespace 890