1/*
2 * Copyright © 2010 Luca Barbieri
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file lower_jumps.cpp
26 *
27 * This pass lowers jumps (break, continue, and return) to if/else structures.
28 *
29 * It can be asked to:
30 * 1. Pull jumps out of ifs where possible
31 * 2. Remove all "continue"s, replacing them with an "execute flag"
32 * 3. Replace all "break" with a single conditional one at the end of the loop
33 * 4. Replace all "return"s with a single return at the end of the function,
34 *    for the main function and/or other functions
35 *
36 * Applying this pass gives several benefits:
37 * 1. All functions can be inlined.
38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40 *    supported
41 *
42 * Continues are lowered by adding a per-loop "execute flag", initialized to
43 * true, that when cleared inhibits all execution until the end of the loop.
44 *
45 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46 * at the end of the loop, and trigger the unique "break".
47 *
48 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49 * causes loops to break again out of their enclosing loops until all the
50 * loops are exited: then the "execute flag" logic will ignore everything
51 * until the end of the function.
52 *
53 * Note that "continue" and "return" can also be implemented by adding
54 * a dummy loop and using break.
55 * However, this is bad for hardware with limited nesting depth, and
56 * prevents further optimization, and thus is not currently performed.
57 */
58
59#include "compiler/glsl_types.h"
60#include <string.h>
61#include "ir.h"
62
63/**
64 * Enum recording the result of analyzing how control flow might exit
65 * an IR node.
66 *
67 * Each possible value of jump_strength indicates a strictly stronger
68 * guarantee on control flow than the previous value.
69 *
70 * The ordering of strengths roughly reflects the way jumps are
71 * lowered: jumps with higher strength tend to be lowered to jumps of
72 * lower strength.  Accordingly, strength is used as a heuristic to
73 * determine which lowering to perform first.
74 *
75 * This enum is also used by get_jump_strength() to categorize
76 * instructions as either break, continue, return, or other.  When
77 * used in this fashion, strength_always_clears_execute_flag is not
78 * used.
79 *
80 * The control flow analysis made by this optimization pass makes two
81 * simplifying assumptions:
82 *
83 * - It ignores discard instructions, since they are lowered by a
84 *   separate pass (lower_discard.cpp).
85 *
86 * - It assumes it is always possible for control to flow from a loop
87 *   to the instruction immediately following it.  Technically, this
88 *   is not true (since all execution paths through the loop might
89 *   jump back to the top, or return from the function).
90 *
91 * Both of these simplifying assumtions are safe, since they can never
92 * cause reachable code to be incorrectly classified as unreachable;
93 * they can only do the opposite.
94 */
95enum jump_strength
96{
97   /**
98    * Analysis has produced no guarantee on how control flow might
99    * exit this IR node.  It might fall out the bottom (with or
100    * without clearing the execute flag, if present), or it might
101    * continue to the top of the innermost enclosing loop, break out
102    * of it, or return from the function.
103    */
104   strength_none,
105
106   /**
107    * The only way control can fall out the bottom of this node is
108    * through a code path that clears the execute flag.  It might also
109    * continue to the top of the innermost enclosing loop, break out
110    * of it, or return from the function.
111    */
112   strength_always_clears_execute_flag,
113
114   /**
115    * Control cannot fall out the bottom of this node.  It might
116    * continue to the top of the innermost enclosing loop, break out
117    * of it, or return from the function.
118    */
119   strength_continue,
120
121   /**
122    * Control cannot fall out the bottom of this node, or continue the
123    * top of the innermost enclosing loop.  It can only break out of
124    * it or return from the function.
125    */
126   strength_break,
127
128   /**
129    * Control cannot fall out the bottom of this node, continue to the
130    * top of the innermost enclosing loop, or break out of it.  It can
131    * only return from the function.
132    */
133   strength_return
134};
135
136namespace {
137
138struct block_record
139{
140   /* minimum jump strength (of lowered IR, not pre-lowering IR)
141    *
142    * If the block ends with a jump, must be the strength of the jump.
143    * Otherwise, the jump would be dead and have been deleted before)
144    *
145    * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
146    * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
147    * Note that identical jumps are usually unified though.
148    */
149   jump_strength min_strength;
150
151   /* can anything clear the execute flag? */
152   bool may_clear_execute_flag;
153
154   block_record()
155   {
156      this->min_strength = strength_none;
157      this->may_clear_execute_flag = false;
158   }
159};
160
161struct loop_record
162{
163   ir_function_signature* signature;
164   ir_loop* loop;
165
166   /* used to avoid lowering the break used to represent lowered breaks */
167   unsigned nesting_depth;
168   bool in_if_at_the_end_of_the_loop;
169
170   bool may_set_return_flag;
171
172   ir_variable* break_flag;
173   ir_variable* execute_flag; /* cleared to emulate continue */
174
175   loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
176   {
177      this->signature = p_signature;
178      this->loop = p_loop;
179      this->nesting_depth = 0;
180      this->in_if_at_the_end_of_the_loop = false;
181      this->may_set_return_flag = false;
182      this->break_flag = 0;
183      this->execute_flag = 0;
184   }
185
186   ir_variable* get_execute_flag()
187   {
188      /* also supported for the "function loop" */
189      if(!this->execute_flag) {
190         exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
191         this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
192         list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true), 0));
193         list.push_head(this->execute_flag);
194      }
195      return this->execute_flag;
196   }
197
198   ir_variable* get_break_flag()
199   {
200      assert(this->loop);
201      if(!this->break_flag) {
202         this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
203         this->loop->insert_before(this->break_flag);
204         this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false), 0));
205      }
206      return this->break_flag;
207   }
208};
209
210struct function_record
211{
212   ir_function_signature* signature;
213   ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
214   ir_variable* return_value;
215   bool lower_return;
216   unsigned nesting_depth;
217
218   function_record(ir_function_signature* p_signature = 0,
219                   bool lower_return = false)
220   {
221      this->signature = p_signature;
222      this->return_flag = 0;
223      this->return_value = 0;
224      this->nesting_depth = 0;
225      this->lower_return = lower_return;
226   }
227
228   ir_variable* get_return_flag()
229   {
230      if(!this->return_flag) {
231         this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
232         this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false), 0));
233         this->signature->body.push_head(this->return_flag);
234      }
235      return this->return_flag;
236   }
237
238   ir_variable* get_return_value()
239   {
240      if(!this->return_value) {
241         assert(!this->signature->return_type->is_void());
242         return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
243         this->signature->body.push_head(this->return_value);
244      }
245      return this->return_value;
246   }
247};
248
249struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
250   /* Postconditions: on exit of any visit() function:
251    *
252    * ANALYSIS: this->block.min_strength,
253    * this->block.may_clear_execute_flag, and
254    * this->loop.may_set_return_flag are updated to reflect the
255    * characteristics of the visited statement.
256    *
257    * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
258    * strength_none, the visited node is at the end of its exec_list.
259    * In other words, any unreachable statements that follow the
260    * visited statement in its exec_list have been removed.
261    *
262    * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
263    * statements, then should_lower_jump() is false for all of the
264    * return, break, or continue statements it contains.
265    *
266    * Note that visiting a jump does not lower it.  That is the
267    * responsibility of the statement (or function signature) that
268    * contains the jump.
269    */
270
271   bool progress;
272
273   struct function_record function;
274   struct loop_record loop;
275   struct block_record block;
276
277   bool pull_out_jumps;
278   bool lower_continue;
279   bool lower_break;
280   bool lower_sub_return;
281   bool lower_main_return;
282
283   ir_lower_jumps_visitor()
284      : progress(false),
285        pull_out_jumps(false),
286        lower_continue(false),
287        lower_break(false),
288        lower_sub_return(false),
289        lower_main_return(false)
290   {
291   }
292
293   void truncate_after_instruction(exec_node *ir)
294   {
295      if (!ir)
296         return;
297
298      while (!ir->get_next()->is_tail_sentinel()) {
299         ((ir_instruction *)ir->get_next())->remove();
300         this->progress = true;
301      }
302   }
303
304   void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
305   {
306      while (!ir->get_next()->is_tail_sentinel()) {
307         ir_instruction *move_ir = (ir_instruction *)ir->get_next();
308
309         move_ir->remove();
310         inner_block->push_tail(move_ir);
311      }
312   }
313
314   /**
315    * Insert the instructions necessary to lower a return statement,
316    * before the given return instruction.
317    */
318   void insert_lowered_return(ir_return *ir)
319   {
320      ir_variable* return_flag = this->function.get_return_flag();
321      if(!this->function.signature->return_type->is_void()) {
322         ir_variable* return_value = this->function.get_return_value();
323         ir->insert_before(
324            new(ir) ir_assignment(
325               new (ir) ir_dereference_variable(return_value),
326               ir->value));
327      }
328      ir->insert_before(
329         new(ir) ir_assignment(
330            new (ir) ir_dereference_variable(return_flag),
331            new (ir) ir_constant(true)));
332      this->loop.may_set_return_flag = true;
333   }
334
335   /**
336    * If the given instruction is a return, lower it to instructions
337    * that store the return value (if there is one), set the return
338    * flag, and then break.
339    *
340    * It is safe to pass NULL to this function.
341    */
342   void lower_return_unconditionally(ir_instruction *ir)
343   {
344      if (get_jump_strength(ir) != strength_return) {
345         return;
346      }
347      insert_lowered_return((ir_return*)ir);
348      ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
349   }
350
351   /**
352    * Create the necessary instruction to replace a break instruction.
353    */
354   ir_instruction *create_lowered_break()
355   {
356      void *ctx = this->function.signature;
357      return new(ctx) ir_assignment(
358          new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
359          new(ctx) ir_constant(true),
360          0);
361   }
362
363   /**
364    * If the given instruction is a break, lower it to an instruction
365    * that sets the break flag, without consulting
366    * should_lower_jump().
367    *
368    * It is safe to pass NULL to this function.
369    */
370   void lower_break_unconditionally(ir_instruction *ir)
371   {
372      if (get_jump_strength(ir) != strength_break) {
373         return;
374      }
375      ir->replace_with(create_lowered_break());
376   }
377
378   /**
379    * If the block ends in a conditional or unconditional break, lower
380    * it, even though should_lower_jump() says it needn't be lowered.
381    */
382   void lower_final_breaks(exec_list *block)
383   {
384      ir_instruction *ir = (ir_instruction *) block->get_tail();
385      lower_break_unconditionally(ir);
386      ir_if *ir_if = ir->as_if();
387      if (ir_if) {
388          lower_break_unconditionally(
389              (ir_instruction *) ir_if->then_instructions.get_tail());
390          lower_break_unconditionally(
391              (ir_instruction *) ir_if->else_instructions.get_tail());
392      }
393   }
394
395   virtual void visit(class ir_loop_jump * ir)
396   {
397      /* Eliminate all instructions after each one, since they are
398       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
399       * postcondition.
400       */
401      truncate_after_instruction(ir);
402
403      /* Set this->block.min_strength based on this instruction.  This
404       * satisfies the ANALYSIS postcondition.  It is not necessary to
405       * update this->block.may_clear_execute_flag or
406       * this->loop.may_set_return_flag, because an unlowered jump
407       * instruction can't change any flags.
408       */
409      this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
410
411      /* The CONTAINED_JUMPS_LOWERED postcondition is already
412       * satisfied, because jump statements can't contain other
413       * statements.
414       */
415   }
416
417   virtual void visit(class ir_return * ir)
418   {
419      /* Eliminate all instructions after each one, since they are
420       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
421       * postcondition.
422       */
423      truncate_after_instruction(ir);
424
425      /* Set this->block.min_strength based on this instruction.  This
426       * satisfies the ANALYSIS postcondition.  It is not necessary to
427       * update this->block.may_clear_execute_flag or
428       * this->loop.may_set_return_flag, because an unlowered return
429       * instruction can't change any flags.
430       */
431      this->block.min_strength = strength_return;
432
433      /* The CONTAINED_JUMPS_LOWERED postcondition is already
434       * satisfied, because jump statements can't contain other
435       * statements.
436       */
437   }
438
439   virtual void visit(class ir_discard * ir)
440   {
441      /* Nothing needs to be done.  The ANALYSIS and
442       * DEAD_CODE_ELIMINATION postconditions are already satisfied,
443       * because discard statements are ignored by this optimization
444       * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
445       * satisfied, because discard statements can't contain other
446       * statements.
447       */
448      (void) ir;
449   }
450
451   enum jump_strength get_jump_strength(ir_instruction* ir)
452   {
453      if(!ir)
454         return strength_none;
455      else if(ir->ir_type == ir_type_loop_jump) {
456         if(((ir_loop_jump*)ir)->is_break())
457            return strength_break;
458         else
459            return strength_continue;
460      } else if(ir->ir_type == ir_type_return)
461         return strength_return;
462      else
463         return strength_none;
464   }
465
466   bool should_lower_jump(ir_jump* ir)
467   {
468      unsigned strength = get_jump_strength(ir);
469      bool lower;
470      switch(strength)
471      {
472      case strength_none:
473         lower = false; /* don't change this, code relies on it */
474         break;
475      case strength_continue:
476         lower = lower_continue;
477         break;
478      case strength_break:
479         assert(this->loop.loop);
480         /* never lower "canonical break" */
481         if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
482               || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
483            lower = false;
484         else
485            lower = lower_break;
486         break;
487      case strength_return:
488         /* never lower return at the end of a this->function */
489         if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
490            lower = false;
491         else
492            lower = this->function.lower_return;
493         break;
494      }
495      return lower;
496   }
497
498   block_record visit_block(exec_list* list)
499   {
500      /* Note: since visiting a node may change that node's next
501       * pointer, we can't use visit_exec_list(), because
502       * visit_exec_list() caches the node's next pointer before
503       * visiting it.  So we use foreach_in_list() instead.
504       *
505       * foreach_in_list() isn't safe if the node being visited gets
506       * removed, but fortunately this visitor doesn't do that.
507       */
508
509      block_record saved_block = this->block;
510      this->block = block_record();
511      foreach_in_list(ir_instruction, node, list) {
512         node->accept(this);
513      }
514      block_record ret = this->block;
515      this->block = saved_block;
516      return ret;
517   }
518
519   virtual void visit(ir_if *ir)
520   {
521      if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
522         this->loop.in_if_at_the_end_of_the_loop = true;
523
524      ++this->function.nesting_depth;
525      ++this->loop.nesting_depth;
526
527      block_record block_records[2];
528      ir_jump* jumps[2];
529
530      /* Recursively lower nested jumps.  This satisfies the
531       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
532       * unconditional jumps at the end of ir->then_instructions and
533       * ir->else_instructions, which are handled below.
534       */
535      block_records[0] = visit_block(&ir->then_instructions);
536      block_records[1] = visit_block(&ir->else_instructions);
537
538retry: /* we get here if we put code after the if inside a branch */
539
540      /* Determine which of ir->then_instructions and
541       * ir->else_instructions end with an unconditional jump.
542       */
543      for(unsigned i = 0; i < 2; ++i) {
544         exec_list& list = i ? ir->else_instructions : ir->then_instructions;
545         jumps[i] = 0;
546         if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
547            jumps[i] = (ir_jump*)list.get_tail();
548      }
549
550      /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
551       * postcondition by lowering jumps in both then_instructions and
552       * else_instructions.
553       */
554      for(;;) {
555         /* Determine the types of the jumps that terminate
556          * ir->then_instructions and ir->else_instructions.
557          */
558         jump_strength jump_strengths[2];
559
560         for(unsigned i = 0; i < 2; ++i) {
561            if(jumps[i]) {
562               jump_strengths[i] = block_records[i].min_strength;
563               assert(jump_strengths[i] == get_jump_strength(jumps[i]));
564            } else
565               jump_strengths[i] = strength_none;
566         }
567
568         /* If both code paths end in a jump, and the jumps are the
569          * same, and we are pulling out jumps, replace them with a
570          * single jump that comes after the if instruction.  The new
571          * jump will be visited next, and it will be lowered if
572          * necessary by the loop or conditional that encloses it.
573          */
574         if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
575            bool unify = true;
576            if(jump_strengths[0] == strength_continue)
577               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
578            else if(jump_strengths[0] == strength_break)
579               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
580            /* FINISHME: unify returns with identical expressions */
581            else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
582               ir->insert_after(new(ir) ir_return(NULL));
583	    else
584	       unify = false;
585
586            if(unify) {
587               jumps[0]->remove();
588               jumps[1]->remove();
589               this->progress = true;
590
591               /* Update jumps[] to reflect the fact that the jumps
592                * are gone, and update block_records[] to reflect the
593                * fact that control can now flow to the next
594                * instruction.
595                */
596               jumps[0] = 0;
597               jumps[1] = 0;
598               block_records[0].min_strength = strength_none;
599               block_records[1].min_strength = strength_none;
600
601               /* The CONTAINED_JUMPS_LOWERED postcondition is now
602                * satisfied, so we can break out of the loop.
603                */
604               break;
605            }
606         }
607
608         /* lower a jump: if both need to lowered, start with the strongest one, so that
609          * we might later unify the lowered version with the other one
610          */
611         bool should_lower[2];
612         for(unsigned i = 0; i < 2; ++i)
613            should_lower[i] = should_lower_jump(jumps[i]);
614
615         int lower;
616         if(should_lower[1] && should_lower[0])
617            lower = jump_strengths[1] > jump_strengths[0];
618         else if(should_lower[0])
619            lower = 0;
620         else if(should_lower[1])
621            lower = 1;
622         else
623            /* Neither code path ends in a jump that needs to be
624             * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
625             * is satisfied and we can break out of the loop.
626             */
627            break;
628
629         if(jump_strengths[lower] == strength_return) {
630            /* To lower a return, we create a return flag (if the
631             * function doesn't have one already) and add instructions
632             * that: 1. store the return value (if this function has a
633             * non-void return) and 2. set the return flag
634             */
635            insert_lowered_return((ir_return*)jumps[lower]);
636            if(this->loop.loop) {
637               /* If we are in a loop, replace the return instruction
638                * with a break instruction, and then loop so that the
639                * break instruction can be lowered if necessary.
640                */
641               ir_loop_jump* lowered = 0;
642               lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
643               /* Note: we must update block_records and jumps to
644                * reflect the fact that the control path has been
645                * altered from a return to a break.
646                */
647               block_records[lower].min_strength = strength_break;
648               jumps[lower]->replace_with(lowered);
649               jumps[lower] = lowered;
650            } else {
651               /* If we are not in a loop, we then proceed as we would
652                * for a continue statement (set the execute flag to
653                * false to prevent the rest of the function from
654                * executing).
655                */
656               goto lower_continue;
657            }
658            this->progress = true;
659         } else if(jump_strengths[lower] == strength_break) {
660            /* To lower a break, we create a break flag (if the loop
661             * doesn't have one already) and add an instruction that
662             * sets it.
663             *
664             * Then we proceed as we would for a continue statement
665             * (set the execute flag to false to prevent the rest of
666             * the loop body from executing).
667             *
668             * The visit() function for the loop will ensure that the
669             * break flag is checked after executing the loop body.
670             */
671            jumps[lower]->insert_before(create_lowered_break());
672            goto lower_continue;
673         } else if(jump_strengths[lower] == strength_continue) {
674lower_continue:
675            /* To lower a continue, we create an execute flag (if the
676             * loop doesn't have one already) and replace the continue
677             * with an instruction that clears it.
678             *
679             * Note that this code path gets exercised when lowering
680             * return statements that are not inside a loop, so
681             * this->loop must be initialized even outside of loops.
682             */
683            ir_variable* execute_flag = this->loop.get_execute_flag();
684            jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false), 0));
685            /* Note: we must update block_records and jumps to reflect
686             * the fact that the control path has been altered to an
687             * instruction that clears the execute flag.
688             */
689            jumps[lower] = 0;
690            block_records[lower].min_strength = strength_always_clears_execute_flag;
691            block_records[lower].may_clear_execute_flag = true;
692            this->progress = true;
693
694            /* Let the loop run again, in case the other branch of the
695             * if needs to be lowered too.
696             */
697         }
698      }
699
700      /* move out a jump out if possible */
701      if(pull_out_jumps) {
702         /* If one of the branches ends in a jump, and control cannot
703          * fall out the bottom of the other branch, then we can move
704          * the jump after the if.
705          *
706          * Set move_out to the branch we are moving a jump out of.
707          */
708         int move_out = -1;
709         if(jumps[0] && block_records[1].min_strength >= strength_continue)
710            move_out = 0;
711         else if(jumps[1] && block_records[0].min_strength >= strength_continue)
712            move_out = 1;
713
714         if(move_out >= 0)
715         {
716            jumps[move_out]->remove();
717            ir->insert_after(jumps[move_out]);
718            /* Note: we must update block_records and jumps to reflect
719             * the fact that the jump has been moved out of the if.
720             */
721            jumps[move_out] = 0;
722            block_records[move_out].min_strength = strength_none;
723            this->progress = true;
724         }
725      }
726
727      /* Now satisfy the ANALYSIS postcondition by setting
728       * this->block.min_strength and
729       * this->block.may_clear_execute_flag based on the
730       * characteristics of the two branches.
731       */
732      if(block_records[0].min_strength < block_records[1].min_strength)
733         this->block.min_strength = block_records[0].min_strength;
734      else
735         this->block.min_strength = block_records[1].min_strength;
736      this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
737
738      /* Now we need to clean up the instructions that follow the
739       * if.
740       *
741       * If those instructions are unreachable, then satisfy the
742       * DEAD_CODE_ELIMINATION postcondition by eliminating them.
743       * Otherwise that postcondition is already satisfied.
744       */
745      if(this->block.min_strength)
746         truncate_after_instruction(ir);
747      else if(this->block.may_clear_execute_flag)
748      {
749         /* If the "if" instruction might clear the execute flag, then
750          * we need to guard any instructions that follow so that they
751          * are only executed if the execute flag is set.
752          *
753          * If one of the branches of the "if" always clears the
754          * execute flag, and the other branch never clears it, then
755          * this is easy: just move all the instructions following the
756          * "if" into the branch that never clears it.
757          */
758         int move_into = -1;
759         if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
760            move_into = 1;
761         else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
762            move_into = 0;
763
764         if(move_into >= 0) {
765            assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
766
767            exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
768            exec_node* next = ir->get_next();
769            if(!next->is_tail_sentinel()) {
770               move_outer_block_inside(ir, list);
771
772               /* If any instructions moved, then we need to visit
773                * them (since they are now inside the "if").  Since
774                * block_records[move_into] is in its default state
775                * (see assertion above), we can safely replace
776                * block_records[move_into] with the result of this
777                * analysis.
778                */
779               exec_list list;
780               list.head_sentinel.next = next;
781               block_records[move_into] = visit_block(&list);
782
783               /*
784                * Then we need to re-start our jump lowering, since one
785                * of the instructions we moved might be a jump that
786                * needs to be lowered.
787                */
788               this->progress = true;
789               goto retry;
790            }
791         } else {
792            /* If we get here, then the simple case didn't apply; we
793             * need to actually guard the instructions that follow.
794             *
795             * To avoid creating unnecessarily-deep nesting, first
796             * look through the instructions that follow and unwrap
797             * any instructions that that are already wrapped in the
798             * appropriate guard.
799             */
800            ir_instruction* ir_after;
801            for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
802            {
803               ir_if* ir_if = ir_after->as_if();
804               if(ir_if && ir_if->else_instructions.is_empty()) {
805                  ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
806                  if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
807                     ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
808                     ir_after->insert_before(&ir_if->then_instructions);
809                     ir_after->remove();
810                     ir_after = ir_next;
811                     continue;
812                  }
813               }
814               ir_after = (ir_instruction*)ir_after->get_next();
815
816               /* only set this if we find any unprotected instruction */
817               this->progress = true;
818            }
819
820            /* Then, wrap all the instructions that follow in a single
821             * guard.
822             */
823            if(!ir->get_next()->is_tail_sentinel()) {
824               assert(this->loop.execute_flag);
825               ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
826               move_outer_block_inside(ir, &if_execute->then_instructions);
827               ir->insert_after(if_execute);
828            }
829         }
830      }
831      --this->loop.nesting_depth;
832      --this->function.nesting_depth;
833   }
834
835   virtual void visit(ir_loop *ir)
836   {
837      /* Visit the body of the loop, with a fresh data structure in
838       * this->loop so that the analysis we do here won't bleed into
839       * enclosing loops.
840       *
841       * We assume that all code after a loop is reachable from the
842       * loop (see comments on enum jump_strength), so the
843       * DEAD_CODE_ELIMINATION postcondition is automatically
844       * satisfied, as is the block.min_strength portion of the
845       * ANALYSIS postcondition.
846       *
847       * The block.may_clear_execute_flag portion of the ANALYSIS
848       * postcondition is automatically satisfied because execute
849       * flags do not propagate outside of loops.
850       *
851       * The loop.may_set_return_flag portion of the ANALYSIS
852       * postcondition is handled below.
853       */
854      ++this->function.nesting_depth;
855      loop_record saved_loop = this->loop;
856      this->loop = loop_record(this->function.signature, ir);
857
858      /* Recursively lower nested jumps.  This satisfies the
859       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
860       * an unconditional continue or return at the bottom of the
861       * loop, which are handled below.
862       */
863      block_record body = visit_block(&ir->body_instructions);
864
865      /* If the loop ends in an unconditional continue, eliminate it
866       * because it is redundant.
867       */
868      ir_instruction *ir_last
869         = (ir_instruction *) ir->body_instructions.get_tail();
870      if (get_jump_strength(ir_last) == strength_continue) {
871         ir_last->remove();
872      }
873
874      /* If the loop ends in an unconditional return, and we are
875       * lowering returns, lower it.
876       */
877      if (this->function.lower_return)
878         lower_return_unconditionally(ir_last);
879
880      if(body.min_strength >= strength_break) {
881         /* FINISHME: If the min_strength of the loop body is
882          * strength_break or strength_return, that means that it
883          * isn't a loop at all, since control flow always leaves the
884          * body of the loop via break or return.  In principle the
885          * loop could be eliminated in this case.  This optimization
886          * is not implemented yet.
887          */
888      }
889
890      if(this->loop.break_flag) {
891         /* We only get here if we are lowering breaks */
892         assert (lower_break);
893
894         /* If a break flag was generated while visiting the body of
895          * the loop, then at least one break was lowered, so we need
896          * to generate an if statement at the end of the loop that
897          * does a "break" if the break flag is set.  The break we
898          * generate won't violate the CONTAINED_JUMPS_LOWERED
899          * postcondition, because should_lower_jump() always returns
900          * false for a break that happens at the end of a loop.
901          *
902          * However, if the loop already ends in a conditional or
903          * unconditional break, then we need to lower that break,
904          * because it won't be at the end of the loop anymore.
905          */
906         lower_final_breaks(&ir->body_instructions);
907
908         ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
909         break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
910         ir->body_instructions.push_tail(break_if);
911      }
912
913      /* If the body of the loop may set the return flag, then at
914       * least one return was lowered to a break, so we need to ensure
915       * that the return flag is checked after the body of the loop is
916       * executed.
917       */
918      if(this->loop.may_set_return_flag) {
919         assert(this->function.return_flag);
920         /* Generate the if statement to check the return flag */
921         ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
922         /* Note: we also need to propagate the knowledge that the
923          * return flag may get set to the outer context.  This
924          * satisfies the loop.may_set_return_flag part of the
925          * ANALYSIS postcondition.
926          */
927         saved_loop.may_set_return_flag = true;
928         if(saved_loop.loop)
929            /* If this loop is nested inside another one, then the if
930             * statement that we generated should break out of that
931             * loop if the return flag is set.  Caller will lower that
932             * break statement if necessary.
933             */
934            return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
935         else {
936            /* Otherwise, ensure that the instructions that follow are only
937             * executed if the return flag is clear.  We can do that by moving
938             * those instructions into the else clause of the generated if
939             * statement.
940             */
941            move_outer_block_inside(ir, &return_if->else_instructions);
942
943            /* In case the loop is embeded inside an if add a new return to
944             * the return flag then branch and let a future pass tidy it up.
945             */
946            if (this->function.signature->return_type->is_void())
947               return_if->then_instructions.push_tail(new(ir) ir_return(NULL));
948         }
949
950         ir->insert_after(return_if);
951      }
952
953      this->loop = saved_loop;
954      --this->function.nesting_depth;
955   }
956
957   virtual void visit(ir_function_signature *ir)
958   {
959      /* these are not strictly necessary */
960      assert(!this->function.signature);
961      assert(!this->loop.loop);
962
963      bool lower_return;
964      if (strcmp(ir->function_name(), "main") == 0)
965         lower_return = lower_main_return;
966      else
967         lower_return = lower_sub_return;
968
969      function_record saved_function = this->function;
970      loop_record saved_loop = this->loop;
971      this->function = function_record(ir, lower_return);
972      this->loop = loop_record(ir);
973
974      assert(!this->loop.loop);
975
976      /* Visit the body of the function to lower any jumps that occur
977       * in it, except possibly an unconditional return statement at
978       * the end of it.
979       */
980      visit_block(&ir->body);
981
982      /* If the body ended in an unconditional return of non-void,
983       * then we don't need to lower it because it's the one canonical
984       * return.
985       *
986       * If the body ended in a return of void, eliminate it because
987       * it is redundant.
988       */
989      if (ir->return_type->is_void() &&
990          get_jump_strength((ir_instruction *) ir->body.get_tail())) {
991         ir_jump *jump = (ir_jump *) ir->body.get_tail();
992         assert (jump->ir_type == ir_type_return);
993         jump->remove();
994      }
995
996      if(this->function.return_value)
997         ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
998
999      this->loop = saved_loop;
1000      this->function = saved_function;
1001   }
1002
1003   virtual void visit(class ir_function * ir)
1004   {
1005      visit_block(&ir->signatures);
1006   }
1007};
1008
1009} /* anonymous namespace */
1010
1011bool
1012do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
1013{
1014   ir_lower_jumps_visitor v;
1015   v.pull_out_jumps = pull_out_jumps;
1016   v.lower_continue = lower_continue;
1017   v.lower_break = lower_break;
1018   v.lower_sub_return = lower_sub_return;
1019   v.lower_main_return = lower_main_return;
1020
1021   bool progress_ever = false;
1022   do {
1023      v.progress = false;
1024      visit_exec_list(instructions, &v);
1025      progress_ever = v.progress || progress_ever;
1026   } while (v.progress);
1027
1028   return progress_ever;
1029}
1030