1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * @file
30 * Helper functions for swizzling/shuffling.
31 *
32 * @author Jose Fonseca <jfonseca@vmware.com>
33 */
34
35#include <inttypes.h>  /* for PRIx64 macro */
36#include "util/u_debug.h"
37
38#include "lp_bld_type.h"
39#include "lp_bld_const.h"
40#include "lp_bld_init.h"
41#include "lp_bld_logic.h"
42#include "lp_bld_swizzle.h"
43#include "lp_bld_pack.h"
44
45
46LLVMValueRef
47lp_build_broadcast(struct gallivm_state *gallivm,
48                   LLVMTypeRef vec_type,
49                   LLVMValueRef scalar)
50{
51   LLVMValueRef res;
52
53   if (LLVMGetTypeKind(vec_type) != LLVMVectorTypeKind) {
54      /* scalar */
55      assert(vec_type == LLVMTypeOf(scalar));
56      res = scalar;
57   } else {
58      LLVMBuilderRef builder = gallivm->builder;
59      const unsigned length = LLVMGetVectorSize(vec_type);
60      LLVMValueRef undef = LLVMGetUndef(vec_type);
61      /* The shuffle vector is always made of int32 elements */
62      LLVMTypeRef i32_type = LLVMInt32TypeInContext(gallivm->context);
63      LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);
64
65      assert(LLVMGetElementType(vec_type) == LLVMTypeOf(scalar));
66
67      res = LLVMBuildInsertElement(builder, undef, scalar, LLVMConstNull(i32_type), "");
68      res = LLVMBuildShuffleVector(builder, res, undef, LLVMConstNull(i32_vec_type), "");
69   }
70
71   return res;
72}
73
74
75/**
76 * Broadcast
77 */
78LLVMValueRef
79lp_build_broadcast_scalar(struct lp_build_context *bld,
80                          LLVMValueRef scalar)
81{
82   assert(lp_check_elem_type(bld->type, LLVMTypeOf(scalar)));
83
84   return lp_build_broadcast(bld->gallivm, bld->vec_type, scalar);
85}
86
87
88/**
89 * Combined extract and broadcast (mere shuffle in most cases)
90 */
91LLVMValueRef
92lp_build_extract_broadcast(struct gallivm_state *gallivm,
93                           struct lp_type src_type,
94                           struct lp_type dst_type,
95                           LLVMValueRef vector,
96                           LLVMValueRef index)
97{
98   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
99   LLVMValueRef res;
100
101   assert(src_type.floating == dst_type.floating);
102   assert(src_type.width    == dst_type.width);
103
104   assert(lp_check_value(src_type, vector));
105   assert(LLVMTypeOf(index) == i32t);
106
107   if (src_type.length == 1) {
108      if (dst_type.length == 1) {
109         /*
110          * Trivial scalar -> scalar.
111          */
112
113         res = vector;
114      }
115      else {
116         /*
117          * Broadcast scalar -> vector.
118          */
119
120         res = lp_build_broadcast(gallivm,
121                                  lp_build_vec_type(gallivm, dst_type),
122                                  vector);
123      }
124   }
125   else {
126      if (dst_type.length > 1) {
127         /*
128          * shuffle - result can be of different length.
129          */
130
131         LLVMValueRef shuffle;
132         shuffle = lp_build_broadcast(gallivm,
133                                      LLVMVectorType(i32t, dst_type.length),
134                                      index);
135         res = LLVMBuildShuffleVector(gallivm->builder, vector,
136                                      LLVMGetUndef(lp_build_vec_type(gallivm, src_type)),
137                                      shuffle, "");
138      }
139      else {
140         /*
141          * Trivial extract scalar from vector.
142          */
143          res = LLVMBuildExtractElement(gallivm->builder, vector, index, "");
144      }
145   }
146
147   return res;
148}
149
150
151/**
152 * Swizzle one channel into other channels.
153 */
154LLVMValueRef
155lp_build_swizzle_scalar_aos(struct lp_build_context *bld,
156                            LLVMValueRef a,
157                            unsigned channel,
158                            unsigned num_channels)
159{
160   LLVMBuilderRef builder = bld->gallivm->builder;
161   const struct lp_type type = bld->type;
162   const unsigned n = type.length;
163   unsigned i, j;
164
165   if(a == bld->undef || a == bld->zero || a == bld->one || num_channels == 1)
166      return a;
167
168   assert(num_channels == 2 || num_channels == 4);
169
170   /* XXX: SSE3 has PSHUFB which should be better than bitmasks, but forcing
171    * using shuffles here actually causes worst results. More investigation is
172    * needed. */
173   if (LLVMIsConstant(a) ||
174       type.width >= 16) {
175      /*
176       * Shuffle.
177       */
178      LLVMTypeRef elem_type = LLVMInt32TypeInContext(bld->gallivm->context);
179      LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
180
181      for(j = 0; j < n; j += num_channels)
182         for(i = 0; i < num_channels; ++i)
183            shuffles[j + i] = LLVMConstInt(elem_type, j + channel, 0);
184
185      return LLVMBuildShuffleVector(builder, a, bld->undef, LLVMConstVector(shuffles, n), "");
186   }
187   else if (num_channels == 2) {
188      /*
189       * Bit mask and shifts
190       *
191       *   XY XY .... XY  <= input
192       *   0Y 0Y .... 0Y
193       *   YY YY .... YY
194       *   YY YY .... YY  <= output
195       */
196      struct lp_type type2;
197      LLVMValueRef tmp = NULL;
198      int shift;
199
200      a = LLVMBuildAnd(builder, a,
201                       lp_build_const_mask_aos(bld->gallivm,
202                                               type, 1 << channel, num_channels), "");
203
204      type2 = type;
205      type2.floating = FALSE;
206      type2.width *= 2;
207      type2.length /= 2;
208
209      a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type2), "");
210
211      /*
212       * Vector element 0 is always channel X.
213       *
214       *                        76 54 32 10 (array numbering)
215       * Little endian reg in:  YX YX YX YX
216       * Little endian reg out: YY YY YY YY if shift right (shift == -1)
217       *                        XX XX XX XX if shift left (shift == 1)
218       *
219       *                        01 23 45 67 (array numbering)
220       * Big endian reg in:     XY XY XY XY
221       * Big endian reg out:    YY YY YY YY if shift left (shift == 1)
222       *                        XX XX XX XX if shift right (shift == -1)
223       *
224       */
225#ifdef PIPE_ARCH_LITTLE_ENDIAN
226      shift = channel == 0 ? 1 : -1;
227#else
228      shift = channel == 0 ? -1 : 1;
229#endif
230
231      if (shift > 0) {
232         tmp = LLVMBuildShl(builder, a, lp_build_const_int_vec(bld->gallivm, type2, shift * type.width), "");
233      } else if (shift < 0) {
234         tmp = LLVMBuildLShr(builder, a, lp_build_const_int_vec(bld->gallivm, type2, -shift * type.width), "");
235      }
236
237      assert(tmp);
238      if (tmp) {
239         a = LLVMBuildOr(builder, a, tmp, "");
240      }
241
242      return LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type), "");
243   }
244   else {
245      /*
246       * Bit mask and recursive shifts
247       *
248       * Little-endian registers:
249       *
250       *   7654 3210
251       *   WZYX WZYX .... WZYX  <= input
252       *   00Y0 00Y0 .... 00Y0  <= mask
253       *   00YY 00YY .... 00YY  <= shift right 1 (shift amount -1)
254       *   YYYY YYYY .... YYYY  <= shift left 2 (shift amount 2)
255       *
256       * Big-endian registers:
257       *
258       *   0123 4567
259       *   XYZW XYZW .... XYZW  <= input
260       *   0Y00 0Y00 .... 0Y00  <= mask
261       *   YY00 YY00 .... YY00  <= shift left 1 (shift amount 1)
262       *   YYYY YYYY .... YYYY  <= shift right 2 (shift amount -2)
263       *
264       * shifts[] gives little-endian shift amounts; we need to negate for big-endian.
265       */
266      struct lp_type type4;
267      const int shifts[4][2] = {
268         { 1,  2},
269         {-1,  2},
270         { 1, -2},
271         {-1, -2}
272      };
273      unsigned i;
274
275      a = LLVMBuildAnd(builder, a,
276                       lp_build_const_mask_aos(bld->gallivm,
277                                               type, 1 << channel, 4), "");
278
279      /*
280       * Build a type where each element is an integer that cover the four
281       * channels.
282       */
283
284      type4 = type;
285      type4.floating = FALSE;
286      type4.width *= 4;
287      type4.length /= 4;
288
289      a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type4), "");
290
291      for(i = 0; i < 2; ++i) {
292         LLVMValueRef tmp = NULL;
293         int shift = shifts[channel][i];
294
295         /* See endianness diagram above */
296#ifdef PIPE_ARCH_BIG_ENDIAN
297         shift = -shift;
298#endif
299
300         if(shift > 0)
301            tmp = LLVMBuildShl(builder, a, lp_build_const_int_vec(bld->gallivm, type4, shift*type.width), "");
302         if(shift < 0)
303            tmp = LLVMBuildLShr(builder, a, lp_build_const_int_vec(bld->gallivm, type4, -shift*type.width), "");
304
305         assert(tmp);
306         if(tmp)
307            a = LLVMBuildOr(builder, a, tmp, "");
308      }
309
310      return LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type), "");
311   }
312}
313
314
315/**
316 * Swizzle a vector consisting of an array of XYZW structs.
317 *
318 * This fills a vector of dst_len length with the swizzled channels from src.
319 *
320 * e.g. with swizzles = { 2, 1, 0 } and swizzle_count = 6 results in
321 *      RGBA RGBA = BGR BGR BG
322 *
323 * @param swizzles        the swizzle array
324 * @param num_swizzles    the number of elements in swizzles
325 * @param dst_len         the length of the result
326 */
327LLVMValueRef
328lp_build_swizzle_aos_n(struct gallivm_state* gallivm,
329                       LLVMValueRef src,
330                       const unsigned char* swizzles,
331                       unsigned num_swizzles,
332                       unsigned dst_len)
333{
334   LLVMBuilderRef builder = gallivm->builder;
335   LLVMValueRef shuffles[LP_MAX_VECTOR_WIDTH];
336   unsigned i;
337
338   assert(dst_len < LP_MAX_VECTOR_WIDTH);
339
340   for (i = 0; i < dst_len; ++i) {
341      int swizzle = swizzles[i % num_swizzles];
342
343      if (swizzle == LP_BLD_SWIZZLE_DONTCARE) {
344         shuffles[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
345      } else {
346         shuffles[i] = lp_build_const_int32(gallivm, swizzle);
347      }
348   }
349
350   return LLVMBuildShuffleVector(builder, src, LLVMGetUndef(LLVMTypeOf(src)), LLVMConstVector(shuffles, dst_len), "");
351}
352
353
354LLVMValueRef
355lp_build_swizzle_aos(struct lp_build_context *bld,
356                     LLVMValueRef a,
357                     const unsigned char swizzles[4])
358{
359   LLVMBuilderRef builder = bld->gallivm->builder;
360   const struct lp_type type = bld->type;
361   const unsigned n = type.length;
362   unsigned i, j;
363
364   if (swizzles[0] == PIPE_SWIZZLE_X &&
365       swizzles[1] == PIPE_SWIZZLE_Y &&
366       swizzles[2] == PIPE_SWIZZLE_Z &&
367       swizzles[3] == PIPE_SWIZZLE_W) {
368      return a;
369   }
370
371   if (swizzles[0] == swizzles[1] &&
372       swizzles[1] == swizzles[2] &&
373       swizzles[2] == swizzles[3]) {
374      switch (swizzles[0]) {
375      case PIPE_SWIZZLE_X:
376      case PIPE_SWIZZLE_Y:
377      case PIPE_SWIZZLE_Z:
378      case PIPE_SWIZZLE_W:
379         return lp_build_swizzle_scalar_aos(bld, a, swizzles[0], 4);
380      case PIPE_SWIZZLE_0:
381         return bld->zero;
382      case PIPE_SWIZZLE_1:
383         return bld->one;
384      case LP_BLD_SWIZZLE_DONTCARE:
385         return bld->undef;
386      default:
387         assert(0);
388         return bld->undef;
389      }
390   }
391
392   if (LLVMIsConstant(a) ||
393       type.width >= 16) {
394      /*
395       * Shuffle.
396       */
397      LLVMValueRef undef = LLVMGetUndef(lp_build_elem_type(bld->gallivm, type));
398      LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
399      LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
400      LLVMValueRef aux[LP_MAX_VECTOR_LENGTH];
401
402      memset(aux, 0, sizeof aux);
403
404      for(j = 0; j < n; j += 4) {
405         for(i = 0; i < 4; ++i) {
406            unsigned shuffle;
407            switch (swizzles[i]) {
408            default:
409               assert(0);
410               /* fall through */
411            case PIPE_SWIZZLE_X:
412            case PIPE_SWIZZLE_Y:
413            case PIPE_SWIZZLE_Z:
414            case PIPE_SWIZZLE_W:
415               shuffle = j + swizzles[i];
416               shuffles[j + i] = LLVMConstInt(i32t, shuffle, 0);
417               break;
418            case PIPE_SWIZZLE_0:
419               shuffle = type.length + 0;
420               shuffles[j + i] = LLVMConstInt(i32t, shuffle, 0);
421               if (!aux[0]) {
422                  aux[0] = lp_build_const_elem(bld->gallivm, type, 0.0);
423               }
424               break;
425            case PIPE_SWIZZLE_1:
426               shuffle = type.length + 1;
427               shuffles[j + i] = LLVMConstInt(i32t, shuffle, 0);
428               if (!aux[1]) {
429                  aux[1] = lp_build_const_elem(bld->gallivm, type, 1.0);
430               }
431               break;
432            case LP_BLD_SWIZZLE_DONTCARE:
433               shuffles[j + i] = LLVMGetUndef(i32t);
434               break;
435            }
436         }
437      }
438
439      for (i = 0; i < n; ++i) {
440         if (!aux[i]) {
441            aux[i] = undef;
442         }
443      }
444
445      return LLVMBuildShuffleVector(builder, a,
446                                    LLVMConstVector(aux, n),
447                                    LLVMConstVector(shuffles, n), "");
448   } else {
449      /*
450       * Bit mask and shifts.
451       *
452       * For example, this will convert BGRA to RGBA by doing
453       *
454       * Little endian:
455       *   rgba = (bgra & 0x00ff0000) >> 16
456       *        | (bgra & 0xff00ff00)
457       *        | (bgra & 0x000000ff) << 16
458       *
459       * Big endian:A
460       *   rgba = (bgra & 0x0000ff00) << 16
461       *        | (bgra & 0x00ff00ff)
462       *        | (bgra & 0xff000000) >> 16
463       *
464       * This is necessary not only for faster cause, but because X86 backend
465       * will refuse shuffles of <4 x i8> vectors
466       */
467      LLVMValueRef res;
468      struct lp_type type4;
469      unsigned cond = 0;
470      int chan;
471      int shift;
472
473      /*
474       * Start with a mixture of 1 and 0.
475       */
476      for (chan = 0; chan < 4; ++chan) {
477         if (swizzles[chan] == PIPE_SWIZZLE_1) {
478            cond |= 1 << chan;
479         }
480      }
481      res = lp_build_select_aos(bld, cond, bld->one, bld->zero, 4);
482
483      /*
484       * Build a type where each element is an integer that cover the four
485       * channels.
486       */
487      type4 = type;
488      type4.floating = FALSE;
489      type4.width *= 4;
490      type4.length /= 4;
491
492      a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type4), "");
493      res = LLVMBuildBitCast(builder, res, lp_build_vec_type(bld->gallivm, type4), "");
494
495      /*
496       * Mask and shift the channels, trying to group as many channels in the
497       * same shift as possible.  The shift amount is positive for shifts left
498       * and negative for shifts right.
499       */
500      for (shift = -3; shift <= 3; ++shift) {
501         uint64_t mask = 0;
502
503         assert(type4.width <= sizeof(mask)*8);
504
505         /*
506          * Vector element numbers follow the XYZW order, so 0 is always X, etc.
507          * After widening 4 times we have:
508          *
509          *                                3210
510          * Little-endian register layout: WZYX
511          *
512          *                                0123
513          * Big-endian register layout:    XYZW
514          *
515          * For little-endian, higher-numbered channels are obtained by a shift right
516          * (negative shift amount) and lower-numbered channels by a shift left
517          * (positive shift amount).  The opposite is true for big-endian.
518          */
519         for (chan = 0; chan < 4; ++chan) {
520            if (swizzles[chan] < 4) {
521               /* We need to move channel swizzles[chan] into channel chan */
522#ifdef PIPE_ARCH_LITTLE_ENDIAN
523               if (swizzles[chan] - chan == -shift) {
524                  mask |= ((1ULL << type.width) - 1) << (swizzles[chan] * type.width);
525               }
526#else
527               if (swizzles[chan] - chan == shift) {
528                  mask |= ((1ULL << type.width) - 1) << (type4.width - type.width) >> (swizzles[chan] * type.width);
529               }
530#endif
531            }
532         }
533
534         if (mask) {
535            LLVMValueRef masked;
536            LLVMValueRef shifted;
537            if (0)
538               debug_printf("shift = %i, mask = %" PRIx64 "\n", shift, mask);
539
540            masked = LLVMBuildAnd(builder, a,
541                                  lp_build_const_int_vec(bld->gallivm, type4, mask), "");
542            if (shift > 0) {
543               shifted = LLVMBuildShl(builder, masked,
544                                      lp_build_const_int_vec(bld->gallivm, type4, shift*type.width), "");
545            } else if (shift < 0) {
546               shifted = LLVMBuildLShr(builder, masked,
547                                       lp_build_const_int_vec(bld->gallivm, type4, -shift*type.width), "");
548            } else {
549               shifted = masked;
550            }
551
552            res = LLVMBuildOr(builder, res, shifted, "");
553         }
554      }
555
556      return LLVMBuildBitCast(builder, res,
557                              lp_build_vec_type(bld->gallivm, type), "");
558   }
559}
560
561
562/**
563 * Extended swizzle of a single channel of a SoA vector.
564 *
565 * @param bld         building context
566 * @param unswizzled  array with the 4 unswizzled values
567 * @param swizzle     one of the PIPE_SWIZZLE_*
568 *
569 * @return  the swizzled value.
570 */
571LLVMValueRef
572lp_build_swizzle_soa_channel(struct lp_build_context *bld,
573                             const LLVMValueRef *unswizzled,
574                             unsigned swizzle)
575{
576   switch (swizzle) {
577   case PIPE_SWIZZLE_X:
578   case PIPE_SWIZZLE_Y:
579   case PIPE_SWIZZLE_Z:
580   case PIPE_SWIZZLE_W:
581      return unswizzled[swizzle];
582   case PIPE_SWIZZLE_0:
583      return bld->zero;
584   case PIPE_SWIZZLE_1:
585      return bld->one;
586   default:
587      assert(0);
588      return bld->undef;
589   }
590}
591
592
593/**
594 * Extended swizzle of a SoA vector.
595 *
596 * @param bld         building context
597 * @param unswizzled  array with the 4 unswizzled values
598 * @param swizzles    array of PIPE_SWIZZLE_*
599 * @param swizzled    output swizzled values
600 */
601void
602lp_build_swizzle_soa(struct lp_build_context *bld,
603                     const LLVMValueRef *unswizzled,
604                     const unsigned char swizzles[4],
605                     LLVMValueRef *swizzled)
606{
607   unsigned chan;
608
609   for (chan = 0; chan < 4; ++chan) {
610      swizzled[chan] = lp_build_swizzle_soa_channel(bld, unswizzled,
611                                                    swizzles[chan]);
612   }
613}
614
615
616/**
617 * Do an extended swizzle of a SoA vector inplace.
618 *
619 * @param bld         building context
620 * @param values      intput/output array with the 4 values
621 * @param swizzles    array of PIPE_SWIZZLE_*
622 */
623void
624lp_build_swizzle_soa_inplace(struct lp_build_context *bld,
625                             LLVMValueRef *values,
626                             const unsigned char swizzles[4])
627{
628   LLVMValueRef unswizzled[4];
629   unsigned chan;
630
631   for (chan = 0; chan < 4; ++chan) {
632      unswizzled[chan] = values[chan];
633   }
634
635   lp_build_swizzle_soa(bld, unswizzled, swizzles, values);
636}
637
638
639/**
640 * Transpose from AOS <-> SOA
641 *
642 * @param single_type_lp   type of pixels
643 * @param src              the 4 * n pixel input
644 * @param dst              the 4 * n pixel output
645 */
646void
647lp_build_transpose_aos(struct gallivm_state *gallivm,
648                       struct lp_type single_type_lp,
649                       const LLVMValueRef src[4],
650                       LLVMValueRef dst[4])
651{
652   struct lp_type double_type_lp = single_type_lp;
653   LLVMTypeRef single_type;
654   LLVMTypeRef double_type;
655   LLVMValueRef t0, t1, t2, t3;
656
657   double_type_lp.length >>= 1;
658   double_type_lp.width  <<= 1;
659
660   double_type = lp_build_vec_type(gallivm, double_type_lp);
661   single_type = lp_build_vec_type(gallivm, single_type_lp);
662
663   /* Interleave x, y, z, w -> xy and zw */
664   t0 = lp_build_interleave2_half(gallivm, single_type_lp, src[0], src[1], 0);
665   t1 = lp_build_interleave2_half(gallivm, single_type_lp, src[2], src[3], 0);
666   t2 = lp_build_interleave2_half(gallivm, single_type_lp, src[0], src[1], 1);
667   t3 = lp_build_interleave2_half(gallivm, single_type_lp, src[2], src[3], 1);
668
669   /* Cast to double width type for second interleave */
670   t0 = LLVMBuildBitCast(gallivm->builder, t0, double_type, "t0");
671   t1 = LLVMBuildBitCast(gallivm->builder, t1, double_type, "t1");
672   t2 = LLVMBuildBitCast(gallivm->builder, t2, double_type, "t2");
673   t3 = LLVMBuildBitCast(gallivm->builder, t3, double_type, "t3");
674
675   /* Interleave xy, zw -> xyzw */
676   dst[0] = lp_build_interleave2_half(gallivm, double_type_lp, t0, t1, 0);
677   dst[1] = lp_build_interleave2_half(gallivm, double_type_lp, t0, t1, 1);
678   dst[2] = lp_build_interleave2_half(gallivm, double_type_lp, t2, t3, 0);
679   dst[3] = lp_build_interleave2_half(gallivm, double_type_lp, t2, t3, 1);
680
681   /* Cast back to original single width type */
682   dst[0] = LLVMBuildBitCast(gallivm->builder, dst[0], single_type, "dst0");
683   dst[1] = LLVMBuildBitCast(gallivm->builder, dst[1], single_type, "dst1");
684   dst[2] = LLVMBuildBitCast(gallivm->builder, dst[2], single_type, "dst2");
685   dst[3] = LLVMBuildBitCast(gallivm->builder, dst[3], single_type, "dst3");
686}
687
688
689/**
690 * Transpose from AOS <-> SOA for num_srcs
691 */
692void
693lp_build_transpose_aos_n(struct gallivm_state *gallivm,
694                         struct lp_type type,
695                         const LLVMValueRef* src,
696                         unsigned num_srcs,
697                         LLVMValueRef* dst)
698{
699   switch (num_srcs) {
700      case 1:
701         dst[0] = src[0];
702         break;
703
704      case 2:
705      {
706         /* Note: we must use a temporary incase src == dst */
707         LLVMValueRef lo, hi;
708
709         lo = lp_build_interleave2_half(gallivm, type, src[0], src[1], 0);
710         hi = lp_build_interleave2_half(gallivm, type, src[0], src[1], 1);
711
712         dst[0] = lo;
713         dst[1] = hi;
714         break;
715      }
716
717      case 4:
718         lp_build_transpose_aos(gallivm, type, src, dst);
719         break;
720
721      default:
722         assert(0);
723   }
724}
725
726
727/**
728 * Pack n-th element of aos values,
729 * pad out to destination size.
730 * i.e. x1 y1 _ _ x2 y2 _ _ will become x1 x2 _ _
731 */
732LLVMValueRef
733lp_build_pack_aos_scalars(struct gallivm_state *gallivm,
734                          struct lp_type src_type,
735                          struct lp_type dst_type,
736                          const LLVMValueRef src,
737                          unsigned channel)
738{
739   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
740   LLVMValueRef undef = LLVMGetUndef(i32t);
741   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
742   unsigned num_src = src_type.length / 4;
743   unsigned num_dst = dst_type.length;
744   unsigned i;
745
746   assert(num_src <= num_dst);
747
748   for (i = 0; i < num_src; i++) {
749      shuffles[i] = LLVMConstInt(i32t, i * 4 + channel, 0);
750   }
751   for (i = num_src; i < num_dst; i++) {
752      shuffles[i] = undef;
753   }
754
755   if (num_dst == 1) {
756      return LLVMBuildExtractElement(gallivm->builder, src, shuffles[0], "");
757   }
758   else {
759      return LLVMBuildShuffleVector(gallivm->builder, src, src,
760                                    LLVMConstVector(shuffles, num_dst), "");
761   }
762}
763
764
765/**
766 * Unpack and broadcast packed aos values consisting of only the
767 * first value, i.e. x1 x2 _ _ will become x1 x1 x1 x1 x2 x2 x2 x2
768 */
769LLVMValueRef
770lp_build_unpack_broadcast_aos_scalars(struct gallivm_state *gallivm,
771                                      struct lp_type src_type,
772                                      struct lp_type dst_type,
773                                      const LLVMValueRef src)
774{
775   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
776   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
777   unsigned num_dst = dst_type.length;
778   unsigned num_src = dst_type.length / 4;
779   unsigned i;
780
781   assert(num_dst / 4 <= src_type.length);
782
783   for (i = 0; i < num_src; i++) {
784      shuffles[i*4] = LLVMConstInt(i32t, i, 0);
785      shuffles[i*4+1] = LLVMConstInt(i32t, i, 0);
786      shuffles[i*4+2] = LLVMConstInt(i32t, i, 0);
787      shuffles[i*4+3] = LLVMConstInt(i32t, i, 0);
788   }
789
790   if (num_src == 1) {
791      return lp_build_extract_broadcast(gallivm, src_type, dst_type,
792                                        src, shuffles[0]);
793   }
794   else {
795      return LLVMBuildShuffleVector(gallivm->builder, src, src,
796                                    LLVMConstVector(shuffles, num_dst), "");
797   }
798}
799
800