1/*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors: Marek Olšák <maraeo@gmail.com>
24 *
25 */
26
27#include "r600_pipe_common.h"
28#include "r600_cs.h"
29#include "tgsi/tgsi_parse.h"
30#include "util/list.h"
31#include "util/u_draw_quad.h"
32#include "util/u_memory.h"
33#include "util/u_format_s3tc.h"
34#include "util/u_upload_mgr.h"
35#include "os/os_time.h"
36#include "vl/vl_decoder.h"
37#include "vl/vl_video_buffer.h"
38#include "radeon/radeon_video.h"
39#include <inttypes.h>
40#include <sys/utsname.h>
41
42#ifndef HAVE_LLVM
43#define HAVE_LLVM 0
44#endif
45
46#ifndef MESA_LLVM_VERSION_PATCH
47#define MESA_LLVM_VERSION_PATCH 0
48#endif
49
50struct r600_multi_fence {
51	struct pipe_reference reference;
52	struct pipe_fence_handle *gfx;
53	struct pipe_fence_handle *sdma;
54
55	/* If the context wasn't flushed at fence creation, this is non-NULL. */
56	struct {
57		struct r600_common_context *ctx;
58		unsigned ib_index;
59	} gfx_unflushed;
60};
61
62/*
63 * shader binary helpers.
64 */
65void radeon_shader_binary_init(struct radeon_shader_binary *b)
66{
67	memset(b, 0, sizeof(*b));
68}
69
70void radeon_shader_binary_clean(struct radeon_shader_binary *b)
71{
72	if (!b)
73		return;
74	FREE(b->code);
75	FREE(b->config);
76	FREE(b->rodata);
77	FREE(b->global_symbol_offsets);
78	FREE(b->relocs);
79	FREE(b->disasm_string);
80	FREE(b->llvm_ir_string);
81}
82
83/*
84 * pipe_context
85 */
86
87/**
88 * Write an EOP event.
89 *
90 * \param event		EVENT_TYPE_*
91 * \param event_flags	Optional cache flush flags (TC)
92 * \param data_sel	1 = fence, 3 = timestamp
93 * \param buf		Buffer
94 * \param va		GPU address
95 * \param old_value	Previous fence value (for a bug workaround)
96 * \param new_value	Fence value to write for this event.
97 */
98void r600_gfx_write_event_eop(struct r600_common_context *ctx,
99			      unsigned event, unsigned event_flags,
100			      unsigned data_sel,
101			      struct r600_resource *buf, uint64_t va,
102			      uint32_t old_fence, uint32_t new_fence)
103{
104	struct radeon_winsys_cs *cs = ctx->gfx.cs;
105	unsigned op = EVENT_TYPE(event) |
106		      EVENT_INDEX(5) |
107		      event_flags;
108
109	if (ctx->chip_class == CIK ||
110	    ctx->chip_class == VI) {
111		/* Two EOP events are required to make all engines go idle
112		 * (and optional cache flushes executed) before the timestamp
113		 * is written.
114		 */
115		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
116		radeon_emit(cs, op);
117		radeon_emit(cs, va);
118		radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
119		radeon_emit(cs, old_fence); /* immediate data */
120		radeon_emit(cs, 0); /* unused */
121	}
122
123	radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
124	radeon_emit(cs, op);
125	radeon_emit(cs, va);
126	radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
127	radeon_emit(cs, new_fence); /* immediate data */
128	radeon_emit(cs, 0); /* unused */
129
130	if (buf)
131		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
132				RADEON_PRIO_QUERY);
133}
134
135unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
136{
137	unsigned dwords = 6;
138
139	if (screen->chip_class == CIK ||
140	    screen->chip_class == VI)
141		dwords *= 2;
142
143	if (!screen->info.has_virtual_memory)
144		dwords += 2;
145
146	return dwords;
147}
148
149void r600_gfx_wait_fence(struct r600_common_context *ctx,
150			 uint64_t va, uint32_t ref, uint32_t mask)
151{
152	struct radeon_winsys_cs *cs = ctx->gfx.cs;
153
154	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
155	radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
156	radeon_emit(cs, va);
157	radeon_emit(cs, va >> 32);
158	radeon_emit(cs, ref); /* reference value */
159	radeon_emit(cs, mask); /* mask */
160	radeon_emit(cs, 4); /* poll interval */
161}
162
163void r600_draw_rectangle(struct blitter_context *blitter,
164			 int x1, int y1, int x2, int y2, float depth,
165			 enum blitter_attrib_type type,
166			 const union pipe_color_union *attrib)
167{
168	struct r600_common_context *rctx =
169		(struct r600_common_context*)util_blitter_get_pipe(blitter);
170	struct pipe_viewport_state viewport;
171	struct pipe_resource *buf = NULL;
172	unsigned offset = 0;
173	float *vb;
174
175	if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
176		util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
177		return;
178	}
179
180	/* Some operations (like color resolve on r6xx) don't work
181	 * with the conventional primitive types.
182	 * One that works is PT_RECTLIST, which we use here. */
183
184	/* setup viewport */
185	viewport.scale[0] = 1.0f;
186	viewport.scale[1] = 1.0f;
187	viewport.scale[2] = 1.0f;
188	viewport.translate[0] = 0.0f;
189	viewport.translate[1] = 0.0f;
190	viewport.translate[2] = 0.0f;
191	rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
192
193	/* Upload vertices. The hw rectangle has only 3 vertices,
194	 * I guess the 4th one is derived from the first 3.
195	 * The vertex specification should match u_blitter's vertex element state. */
196	u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
197	if (!buf)
198		return;
199
200	vb[0] = x1;
201	vb[1] = y1;
202	vb[2] = depth;
203	vb[3] = 1;
204
205	vb[8] = x1;
206	vb[9] = y2;
207	vb[10] = depth;
208	vb[11] = 1;
209
210	vb[16] = x2;
211	vb[17] = y1;
212	vb[18] = depth;
213	vb[19] = 1;
214
215	if (attrib) {
216		memcpy(vb+4, attrib->f, sizeof(float)*4);
217		memcpy(vb+12, attrib->f, sizeof(float)*4);
218		memcpy(vb+20, attrib->f, sizeof(float)*4);
219	}
220
221	/* draw */
222	util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
223				R600_PRIM_RECTANGLE_LIST, 3, 2);
224	pipe_resource_reference(&buf, NULL);
225}
226
227static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
228{
229	struct radeon_winsys_cs *cs = rctx->dma.cs;
230
231	/* NOP waits for idle on Evergreen and later. */
232	if (rctx->chip_class >= CIK)
233		radeon_emit(cs, 0x00000000); /* NOP */
234	else if (rctx->chip_class >= EVERGREEN)
235		radeon_emit(cs, 0xf0000000); /* NOP */
236	else {
237		/* TODO: R600-R700 should use the FENCE packet.
238		 * CS checker support is required. */
239	}
240}
241
242void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
243                         struct r600_resource *dst, struct r600_resource *src)
244{
245	uint64_t vram = ctx->dma.cs->used_vram;
246	uint64_t gtt = ctx->dma.cs->used_gart;
247
248	if (dst) {
249		vram += dst->vram_usage;
250		gtt += dst->gart_usage;
251	}
252	if (src) {
253		vram += src->vram_usage;
254		gtt += src->gart_usage;
255	}
256
257	/* Flush the GFX IB if DMA depends on it. */
258	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
259	    ((dst &&
260	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
261					       RADEON_USAGE_READWRITE)) ||
262	     (src &&
263	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
264					       RADEON_USAGE_WRITE))))
265		ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
266
267	/* Flush if there's not enough space, or if the memory usage per IB
268	 * is too large.
269	 *
270	 * IBs using too little memory are limited by the IB submission overhead.
271	 * IBs using too much memory are limited by the kernel/TTM overhead.
272	 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
273	 *
274	 * This heuristic makes sure that DMA requests are executed
275	 * very soon after the call is made and lowers memory usage.
276	 * It improves texture upload performance by keeping the DMA
277	 * engine busy while uploads are being submitted.
278	 */
279	num_dw++; /* for emit_wait_idle below */
280	if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
281	    ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 ||
282	    !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
283		ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
284		assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
285	}
286
287	/* Wait for idle if either buffer has been used in the IB before to
288	 * prevent read-after-write hazards.
289	 */
290	if ((dst &&
291	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf,
292					      RADEON_USAGE_READWRITE)) ||
293	    (src &&
294	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf,
295					      RADEON_USAGE_WRITE)))
296		r600_dma_emit_wait_idle(ctx);
297
298	/* If GPUVM is not supported, the CS checker needs 2 entries
299	 * in the buffer list per packet, which has to be done manually.
300	 */
301	if (ctx->screen->info.has_virtual_memory) {
302		if (dst)
303			radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
304						  RADEON_USAGE_WRITE,
305						  RADEON_PRIO_SDMA_BUFFER);
306		if (src)
307			radeon_add_to_buffer_list(ctx, &ctx->dma, src,
308						  RADEON_USAGE_READ,
309						  RADEON_PRIO_SDMA_BUFFER);
310	}
311
312	/* this function is called before all DMA calls, so increment this. */
313	ctx->num_dma_calls++;
314}
315
316static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
317{
318}
319
320void r600_preflush_suspend_features(struct r600_common_context *ctx)
321{
322	/* suspend queries */
323	if (!LIST_IS_EMPTY(&ctx->active_queries))
324		r600_suspend_queries(ctx);
325
326	ctx->streamout.suspended = false;
327	if (ctx->streamout.begin_emitted) {
328		r600_emit_streamout_end(ctx);
329		ctx->streamout.suspended = true;
330	}
331}
332
333void r600_postflush_resume_features(struct r600_common_context *ctx)
334{
335	if (ctx->streamout.suspended) {
336		ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
337		r600_streamout_buffers_dirty(ctx);
338	}
339
340	/* resume queries */
341	if (!LIST_IS_EMPTY(&ctx->active_queries))
342		r600_resume_queries(ctx);
343}
344
345static void r600_flush_from_st(struct pipe_context *ctx,
346			       struct pipe_fence_handle **fence,
347			       unsigned flags)
348{
349	struct pipe_screen *screen = ctx->screen;
350	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
351	struct radeon_winsys *ws = rctx->ws;
352	unsigned rflags = 0;
353	struct pipe_fence_handle *gfx_fence = NULL;
354	struct pipe_fence_handle *sdma_fence = NULL;
355	bool deferred_fence = false;
356
357	if (flags & PIPE_FLUSH_END_OF_FRAME)
358		rflags |= RADEON_FLUSH_END_OF_FRAME;
359	if (flags & PIPE_FLUSH_DEFERRED)
360		rflags |= RADEON_FLUSH_ASYNC;
361
362	/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
363	if (rctx->dma.cs)
364		rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
365
366	if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
367		if (fence)
368			ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
369		if (!(rflags & RADEON_FLUSH_ASYNC))
370			ws->cs_sync_flush(rctx->gfx.cs);
371	} else {
372		/* Instead of flushing, create a deferred fence. Constraints:
373		 * - The state tracker must allow a deferred flush.
374		 * - The state tracker must request a fence.
375		 * Thread safety in fence_finish must be ensured by the state tracker.
376		 */
377		if (flags & PIPE_FLUSH_DEFERRED && fence) {
378			gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
379			deferred_fence = true;
380		} else {
381			rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
382		}
383	}
384
385	/* Both engines can signal out of order, so we need to keep both fences. */
386	if (fence) {
387		struct r600_multi_fence *multi_fence =
388			CALLOC_STRUCT(r600_multi_fence);
389		if (!multi_fence)
390			return;
391
392		multi_fence->reference.count = 1;
393		/* If both fences are NULL, fence_finish will always return true. */
394		multi_fence->gfx = gfx_fence;
395		multi_fence->sdma = sdma_fence;
396
397		if (deferred_fence) {
398			multi_fence->gfx_unflushed.ctx = rctx;
399			multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
400		}
401
402		screen->fence_reference(screen, fence, NULL);
403		*fence = (struct pipe_fence_handle*)multi_fence;
404	}
405}
406
407static void r600_flush_dma_ring(void *ctx, unsigned flags,
408				struct pipe_fence_handle **fence)
409{
410	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
411	struct radeon_winsys_cs *cs = rctx->dma.cs;
412	struct radeon_saved_cs saved;
413	bool check_vm =
414		(rctx->screen->debug_flags & DBG_CHECK_VM) &&
415		rctx->check_vm_faults;
416
417	if (!radeon_emitted(cs, 0)) {
418		if (fence)
419			rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
420		return;
421	}
422
423	if (check_vm)
424		radeon_save_cs(rctx->ws, cs, &saved);
425
426	rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
427	if (fence)
428		rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
429
430	if (check_vm) {
431		/* Use conservative timeout 800ms, after which we won't wait any
432		 * longer and assume the GPU is hung.
433		 */
434		rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
435
436		rctx->check_vm_faults(rctx, &saved, RING_DMA);
437		radeon_clear_saved_cs(&saved);
438	}
439}
440
441/**
442 * Store a linearized copy of all chunks of \p cs together with the buffer
443 * list in \p saved.
444 */
445void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
446		    struct radeon_saved_cs *saved)
447{
448	void *buf;
449	unsigned i;
450
451	/* Save the IB chunks. */
452	saved->num_dw = cs->prev_dw + cs->current.cdw;
453	saved->ib = MALLOC(4 * saved->num_dw);
454	if (!saved->ib)
455		goto oom;
456
457	buf = saved->ib;
458	for (i = 0; i < cs->num_prev; ++i) {
459		memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
460		buf += cs->prev[i].cdw;
461	}
462	memcpy(buf, cs->current.buf, cs->current.cdw * 4);
463
464	/* Save the buffer list. */
465	saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
466	saved->bo_list = CALLOC(saved->bo_count,
467				sizeof(saved->bo_list[0]));
468	if (!saved->bo_list) {
469		FREE(saved->ib);
470		goto oom;
471	}
472	ws->cs_get_buffer_list(cs, saved->bo_list);
473
474	return;
475
476oom:
477	fprintf(stderr, "%s: out of memory\n", __func__);
478	memset(saved, 0, sizeof(*saved));
479}
480
481void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
482{
483	FREE(saved->ib);
484	FREE(saved->bo_list);
485
486	memset(saved, 0, sizeof(*saved));
487}
488
489static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
490{
491	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
492	unsigned latest = rctx->ws->query_value(rctx->ws,
493						RADEON_GPU_RESET_COUNTER);
494
495	if (rctx->gpu_reset_counter == latest)
496		return PIPE_NO_RESET;
497
498	rctx->gpu_reset_counter = latest;
499	return PIPE_UNKNOWN_CONTEXT_RESET;
500}
501
502static void r600_set_debug_callback(struct pipe_context *ctx,
503				    const struct pipe_debug_callback *cb)
504{
505	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
506
507	if (cb)
508		rctx->debug = *cb;
509	else
510		memset(&rctx->debug, 0, sizeof(rctx->debug));
511}
512
513static void r600_set_device_reset_callback(struct pipe_context *ctx,
514					   const struct pipe_device_reset_callback *cb)
515{
516	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
517
518	if (cb)
519		rctx->device_reset_callback = *cb;
520	else
521		memset(&rctx->device_reset_callback, 0,
522		       sizeof(rctx->device_reset_callback));
523}
524
525bool r600_check_device_reset(struct r600_common_context *rctx)
526{
527	enum pipe_reset_status status;
528
529	if (!rctx->device_reset_callback.reset)
530		return false;
531
532	if (!rctx->b.get_device_reset_status)
533		return false;
534
535	status = rctx->b.get_device_reset_status(&rctx->b);
536	if (status == PIPE_NO_RESET)
537		return false;
538
539	rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
540	return true;
541}
542
543static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
544					   struct pipe_resource *dst,
545					   uint64_t offset, uint64_t size,
546					   unsigned value)
547{
548	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
549
550	rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
551}
552
553bool r600_common_context_init(struct r600_common_context *rctx,
554			      struct r600_common_screen *rscreen,
555			      unsigned context_flags)
556{
557	slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
558
559	rctx->screen = rscreen;
560	rctx->ws = rscreen->ws;
561	rctx->family = rscreen->family;
562	rctx->chip_class = rscreen->chip_class;
563
564	if (rscreen->chip_class >= CIK)
565		rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
566	else if (rscreen->chip_class >= EVERGREEN)
567		rctx->max_db = 8;
568	else
569		rctx->max_db = 4;
570
571	rctx->b.invalidate_resource = r600_invalidate_resource;
572	rctx->b.transfer_map = u_transfer_map_vtbl;
573	rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
574	rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
575	rctx->b.texture_subdata = u_default_texture_subdata;
576	rctx->b.memory_barrier = r600_memory_barrier;
577	rctx->b.flush = r600_flush_from_st;
578	rctx->b.set_debug_callback = r600_set_debug_callback;
579	rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
580
581	/* evergreen_compute.c has a special codepath for global buffers.
582	 * Everything else can use the direct path.
583	 */
584	if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
585	    (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
586		rctx->b.buffer_subdata = u_default_buffer_subdata;
587	else
588		rctx->b.buffer_subdata = r600_buffer_subdata;
589
590	if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
591		rctx->b.get_device_reset_status = r600_get_reset_status;
592		rctx->gpu_reset_counter =
593			rctx->ws->query_value(rctx->ws,
594					      RADEON_GPU_RESET_COUNTER);
595	}
596
597	rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
598
599	r600_init_context_texture_functions(rctx);
600	r600_init_viewport_functions(rctx);
601	r600_streamout_init(rctx);
602	r600_query_init(rctx);
603	cayman_init_msaa(&rctx->b);
604
605	rctx->allocator_zeroed_memory =
606		u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
607				      0, PIPE_USAGE_DEFAULT, true);
608	if (!rctx->allocator_zeroed_memory)
609		return false;
610
611	rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
612					PIPE_BIND_INDEX_BUFFER |
613					PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
614	if (!rctx->uploader)
615		return false;
616
617	rctx->ctx = rctx->ws->ctx_create(rctx->ws);
618	if (!rctx->ctx)
619		return false;
620
621	if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
622		rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
623						   r600_flush_dma_ring,
624						   rctx);
625		rctx->dma.flush = r600_flush_dma_ring;
626	}
627
628	return true;
629}
630
631void r600_common_context_cleanup(struct r600_common_context *rctx)
632{
633	unsigned i,j;
634
635	/* Release DCC stats. */
636	for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
637		assert(!rctx->dcc_stats[i].query_active);
638
639		for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++)
640			if (rctx->dcc_stats[i].ps_stats[j])
641				rctx->b.destroy_query(&rctx->b,
642						      rctx->dcc_stats[i].ps_stats[j]);
643
644		r600_texture_reference(&rctx->dcc_stats[i].tex, NULL);
645	}
646
647	if (rctx->query_result_shader)
648		rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
649
650	if (rctx->gfx.cs)
651		rctx->ws->cs_destroy(rctx->gfx.cs);
652	if (rctx->dma.cs)
653		rctx->ws->cs_destroy(rctx->dma.cs);
654	if (rctx->ctx)
655		rctx->ws->ctx_destroy(rctx->ctx);
656
657	if (rctx->uploader) {
658		u_upload_destroy(rctx->uploader);
659	}
660
661	slab_destroy_child(&rctx->pool_transfers);
662
663	if (rctx->allocator_zeroed_memory) {
664		u_suballocator_destroy(rctx->allocator_zeroed_memory);
665	}
666	rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
667	rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
668}
669
670/*
671 * pipe_screen
672 */
673
674static const struct debug_named_value common_debug_options[] = {
675	/* logging */
676	{ "tex", DBG_TEX, "Print texture info" },
677	{ "compute", DBG_COMPUTE, "Print compute info" },
678	{ "vm", DBG_VM, "Print virtual addresses when creating resources" },
679	{ "info", DBG_INFO, "Print driver information" },
680
681	/* shaders */
682	{ "fs", DBG_FS, "Print fetch shaders" },
683	{ "vs", DBG_VS, "Print vertex shaders" },
684	{ "gs", DBG_GS, "Print geometry shaders" },
685	{ "ps", DBG_PS, "Print pixel shaders" },
686	{ "cs", DBG_CS, "Print compute shaders" },
687	{ "tcs", DBG_TCS, "Print tessellation control shaders" },
688	{ "tes", DBG_TES, "Print tessellation evaluation shaders" },
689	{ "noir", DBG_NO_IR, "Don't print the LLVM IR"},
690	{ "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
691	{ "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
692	{ "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
693	{ "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
694	{ "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." },
695
696	{ "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
697
698	/* features */
699	{ "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
700	{ "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
701	/* GL uses the word INVALIDATE, gallium uses the word DISCARD */
702	{ "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
703	{ "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
704	{ "notiling", DBG_NO_TILING, "Disable tiling" },
705	{ "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
706	{ "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
707	{ "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
708	{ "nowc", DBG_NO_WC, "Disable GTT write combining" },
709	{ "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
710	{ "nodcc", DBG_NO_DCC, "Disable DCC." },
711	{ "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
712	{ "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
713	{ "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
714	{ "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
715	{ "noce", DBG_NO_CE, "Disable the constant engine"},
716	{ "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
717	{ "nodccfb", DBG_NO_DCC_FB, "Disable separate DCC on the main framebuffer" },
718
719	DEBUG_NAMED_VALUE_END /* must be last */
720};
721
722static const char* r600_get_vendor(struct pipe_screen* pscreen)
723{
724	return "X.Org";
725}
726
727static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
728{
729	return "AMD";
730}
731
732static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
733{
734	switch (rscreen->info.family) {
735	case CHIP_R600: return "AMD R600";
736	case CHIP_RV610: return "AMD RV610";
737	case CHIP_RV630: return "AMD RV630";
738	case CHIP_RV670: return "AMD RV670";
739	case CHIP_RV620: return "AMD RV620";
740	case CHIP_RV635: return "AMD RV635";
741	case CHIP_RS780: return "AMD RS780";
742	case CHIP_RS880: return "AMD RS880";
743	case CHIP_RV770: return "AMD RV770";
744	case CHIP_RV730: return "AMD RV730";
745	case CHIP_RV710: return "AMD RV710";
746	case CHIP_RV740: return "AMD RV740";
747	case CHIP_CEDAR: return "AMD CEDAR";
748	case CHIP_REDWOOD: return "AMD REDWOOD";
749	case CHIP_JUNIPER: return "AMD JUNIPER";
750	case CHIP_CYPRESS: return "AMD CYPRESS";
751	case CHIP_HEMLOCK: return "AMD HEMLOCK";
752	case CHIP_PALM: return "AMD PALM";
753	case CHIP_SUMO: return "AMD SUMO";
754	case CHIP_SUMO2: return "AMD SUMO2";
755	case CHIP_BARTS: return "AMD BARTS";
756	case CHIP_TURKS: return "AMD TURKS";
757	case CHIP_CAICOS: return "AMD CAICOS";
758	case CHIP_CAYMAN: return "AMD CAYMAN";
759	case CHIP_ARUBA: return "AMD ARUBA";
760	case CHIP_TAHITI: return "AMD TAHITI";
761	case CHIP_PITCAIRN: return "AMD PITCAIRN";
762	case CHIP_VERDE: return "AMD CAPE VERDE";
763	case CHIP_OLAND: return "AMD OLAND";
764	case CHIP_HAINAN: return "AMD HAINAN";
765	case CHIP_BONAIRE: return "AMD BONAIRE";
766	case CHIP_KAVERI: return "AMD KAVERI";
767	case CHIP_KABINI: return "AMD KABINI";
768	case CHIP_HAWAII: return "AMD HAWAII";
769	case CHIP_MULLINS: return "AMD MULLINS";
770	case CHIP_TONGA: return "AMD TONGA";
771	case CHIP_ICELAND: return "AMD ICELAND";
772	case CHIP_CARRIZO: return "AMD CARRIZO";
773	case CHIP_FIJI: return "AMD FIJI";
774	case CHIP_POLARIS10: return "AMD POLARIS10";
775	case CHIP_POLARIS11: return "AMD POLARIS11";
776	case CHIP_POLARIS12: return "AMD POLARIS12";
777	case CHIP_STONEY: return "AMD STONEY";
778	default: return "AMD unknown";
779	}
780}
781
782static const char* r600_get_name(struct pipe_screen* pscreen)
783{
784	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
785
786	return rscreen->renderer_string;
787}
788
789static float r600_get_paramf(struct pipe_screen* pscreen,
790			     enum pipe_capf param)
791{
792	struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
793
794	switch (param) {
795	case PIPE_CAPF_MAX_LINE_WIDTH:
796	case PIPE_CAPF_MAX_LINE_WIDTH_AA:
797	case PIPE_CAPF_MAX_POINT_WIDTH:
798	case PIPE_CAPF_MAX_POINT_WIDTH_AA:
799		if (rscreen->family >= CHIP_CEDAR)
800			return 16384.0f;
801		else
802			return 8192.0f;
803	case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
804		return 16.0f;
805	case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
806		return 16.0f;
807	case PIPE_CAPF_GUARD_BAND_LEFT:
808	case PIPE_CAPF_GUARD_BAND_TOP:
809	case PIPE_CAPF_GUARD_BAND_RIGHT:
810	case PIPE_CAPF_GUARD_BAND_BOTTOM:
811		return 0.0f;
812	}
813	return 0.0f;
814}
815
816static int r600_get_video_param(struct pipe_screen *screen,
817				enum pipe_video_profile profile,
818				enum pipe_video_entrypoint entrypoint,
819				enum pipe_video_cap param)
820{
821	switch (param) {
822	case PIPE_VIDEO_CAP_SUPPORTED:
823		return vl_profile_supported(screen, profile, entrypoint);
824	case PIPE_VIDEO_CAP_NPOT_TEXTURES:
825		return 1;
826	case PIPE_VIDEO_CAP_MAX_WIDTH:
827	case PIPE_VIDEO_CAP_MAX_HEIGHT:
828		return vl_video_buffer_max_size(screen);
829	case PIPE_VIDEO_CAP_PREFERED_FORMAT:
830		return PIPE_FORMAT_NV12;
831	case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
832		return false;
833	case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
834		return false;
835	case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
836		return true;
837	case PIPE_VIDEO_CAP_MAX_LEVEL:
838		return vl_level_supported(screen, profile);
839	default:
840		return 0;
841	}
842}
843
844const char *r600_get_llvm_processor_name(enum radeon_family family)
845{
846	switch (family) {
847	case CHIP_R600:
848	case CHIP_RV630:
849	case CHIP_RV635:
850	case CHIP_RV670:
851		return "r600";
852	case CHIP_RV610:
853	case CHIP_RV620:
854	case CHIP_RS780:
855	case CHIP_RS880:
856		return "rs880";
857	case CHIP_RV710:
858		return "rv710";
859	case CHIP_RV730:
860		return "rv730";
861	case CHIP_RV740:
862	case CHIP_RV770:
863		return "rv770";
864	case CHIP_PALM:
865	case CHIP_CEDAR:
866		return "cedar";
867	case CHIP_SUMO:
868	case CHIP_SUMO2:
869		return "sumo";
870	case CHIP_REDWOOD:
871		return "redwood";
872	case CHIP_JUNIPER:
873		return "juniper";
874	case CHIP_HEMLOCK:
875	case CHIP_CYPRESS:
876		return "cypress";
877	case CHIP_BARTS:
878		return "barts";
879	case CHIP_TURKS:
880		return "turks";
881	case CHIP_CAICOS:
882		return "caicos";
883	case CHIP_CAYMAN:
884        case CHIP_ARUBA:
885		return "cayman";
886
887	case CHIP_TAHITI: return "tahiti";
888	case CHIP_PITCAIRN: return "pitcairn";
889	case CHIP_VERDE: return "verde";
890	case CHIP_OLAND: return "oland";
891	case CHIP_HAINAN: return "hainan";
892	case CHIP_BONAIRE: return "bonaire";
893	case CHIP_KABINI: return "kabini";
894	case CHIP_KAVERI: return "kaveri";
895	case CHIP_HAWAII: return "hawaii";
896	case CHIP_MULLINS:
897		return "mullins";
898	case CHIP_TONGA: return "tonga";
899	case CHIP_ICELAND: return "iceland";
900	case CHIP_CARRIZO: return "carrizo";
901	case CHIP_FIJI:
902		return HAVE_LLVM >= 0x0308 ? "fiji" : "carrizo";
903	case CHIP_STONEY:
904		return HAVE_LLVM >= 0x0308 ? "stoney" : "carrizo";
905	case CHIP_POLARIS10:
906		return HAVE_LLVM >= 0x0309 ? "polaris10" : "carrizo";
907	case CHIP_POLARIS11:
908	case CHIP_POLARIS12: /* same as polaris11 */
909		return HAVE_LLVM >= 0x0309 ? "polaris11" : "carrizo";
910	default:
911		return "";
912	}
913}
914
915static int r600_get_compute_param(struct pipe_screen *screen,
916        enum pipe_shader_ir ir_type,
917        enum pipe_compute_cap param,
918        void *ret)
919{
920	struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
921
922	//TODO: select these params by asic
923	switch (param) {
924	case PIPE_COMPUTE_CAP_IR_TARGET: {
925		const char *gpu;
926		const char *triple;
927		if (rscreen->family <= CHIP_ARUBA) {
928			triple = "r600--";
929		} else {
930			if (HAVE_LLVM < 0x0400) {
931				triple = "amdgcn--";
932			} else {
933				triple = "amdgcn-mesa-mesa3d";
934			}
935		}
936		switch(rscreen->family) {
937		/* Clang < 3.6 is missing Hainan in its list of
938		 * GPUs, so we need to use the name of a similar GPU.
939		 */
940		default:
941			gpu = r600_get_llvm_processor_name(rscreen->family);
942			break;
943		}
944		if (ret) {
945			sprintf(ret, "%s-%s", gpu, triple);
946		}
947		/* +2 for dash and terminating NIL byte */
948		return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
949	}
950	case PIPE_COMPUTE_CAP_GRID_DIMENSION:
951		if (ret) {
952			uint64_t *grid_dimension = ret;
953			grid_dimension[0] = 3;
954		}
955		return 1 * sizeof(uint64_t);
956
957	case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
958		if (ret) {
959			uint64_t *grid_size = ret;
960			grid_size[0] = 65535;
961			grid_size[1] = 65535;
962			grid_size[2] = 65535;
963		}
964		return 3 * sizeof(uint64_t) ;
965
966	case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
967		if (ret) {
968			uint64_t *block_size = ret;
969			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
970			    ir_type == PIPE_SHADER_IR_TGSI) {
971				block_size[0] = 2048;
972				block_size[1] = 2048;
973				block_size[2] = 2048;
974			} else {
975				block_size[0] = 256;
976				block_size[1] = 256;
977				block_size[2] = 256;
978			}
979		}
980		return 3 * sizeof(uint64_t);
981
982	case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
983		if (ret) {
984			uint64_t *max_threads_per_block = ret;
985			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
986			    ir_type == PIPE_SHADER_IR_TGSI)
987				*max_threads_per_block = 2048;
988			else
989				*max_threads_per_block = 256;
990		}
991		return sizeof(uint64_t);
992	case PIPE_COMPUTE_CAP_ADDRESS_BITS:
993		if (ret) {
994			uint32_t *address_bits = ret;
995			address_bits[0] = 32;
996			if (rscreen->chip_class >= SI)
997				address_bits[0] = 64;
998		}
999		return 1 * sizeof(uint32_t);
1000
1001	case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
1002		if (ret) {
1003			uint64_t *max_global_size = ret;
1004			uint64_t max_mem_alloc_size;
1005
1006			r600_get_compute_param(screen, ir_type,
1007				PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
1008				&max_mem_alloc_size);
1009
1010			/* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
1011			 * 1/4 of the MAX_GLOBAL_SIZE.  Since the
1012			 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
1013			 * make sure we never report more than
1014			 * 4 * MAX_MEM_ALLOC_SIZE.
1015			 */
1016			*max_global_size = MIN2(4 * max_mem_alloc_size,
1017						MAX2(rscreen->info.gart_size,
1018						     rscreen->info.vram_size));
1019		}
1020		return sizeof(uint64_t);
1021
1022	case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
1023		if (ret) {
1024			uint64_t *max_local_size = ret;
1025			/* Value reported by the closed source driver. */
1026			*max_local_size = 32768;
1027		}
1028		return sizeof(uint64_t);
1029
1030	case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1031		if (ret) {
1032			uint64_t *max_input_size = ret;
1033			/* Value reported by the closed source driver. */
1034			*max_input_size = 1024;
1035		}
1036		return sizeof(uint64_t);
1037
1038	case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1039		if (ret) {
1040			uint64_t *max_mem_alloc_size = ret;
1041
1042			*max_mem_alloc_size = rscreen->info.max_alloc_size;
1043		}
1044		return sizeof(uint64_t);
1045
1046	case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1047		if (ret) {
1048			uint32_t *max_clock_frequency = ret;
1049			*max_clock_frequency = rscreen->info.max_shader_clock;
1050		}
1051		return sizeof(uint32_t);
1052
1053	case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1054		if (ret) {
1055			uint32_t *max_compute_units = ret;
1056			*max_compute_units = rscreen->info.num_good_compute_units;
1057		}
1058		return sizeof(uint32_t);
1059
1060	case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1061		if (ret) {
1062			uint32_t *images_supported = ret;
1063			*images_supported = 0;
1064		}
1065		return sizeof(uint32_t);
1066	case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1067		break; /* unused */
1068	case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
1069		if (ret) {
1070			uint32_t *subgroup_size = ret;
1071			*subgroup_size = r600_wavefront_size(rscreen->family);
1072		}
1073		return sizeof(uint32_t);
1074	case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1075		if (ret) {
1076			uint64_t *max_variable_threads_per_block = ret;
1077			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
1078			    ir_type == PIPE_SHADER_IR_TGSI)
1079				*max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
1080			else
1081				*max_variable_threads_per_block = 0;
1082		}
1083		return sizeof(uint64_t);
1084	}
1085
1086        fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1087        return 0;
1088}
1089
1090static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1091{
1092	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1093
1094	return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1095			rscreen->info.clock_crystal_freq;
1096}
1097
1098static void r600_fence_reference(struct pipe_screen *screen,
1099				 struct pipe_fence_handle **dst,
1100				 struct pipe_fence_handle *src)
1101{
1102	struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1103	struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1104	struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1105
1106	if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1107		ws->fence_reference(&(*rdst)->gfx, NULL);
1108		ws->fence_reference(&(*rdst)->sdma, NULL);
1109		FREE(*rdst);
1110	}
1111        *rdst = rsrc;
1112}
1113
1114static boolean r600_fence_finish(struct pipe_screen *screen,
1115				 struct pipe_context *ctx,
1116				 struct pipe_fence_handle *fence,
1117				 uint64_t timeout)
1118{
1119	struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1120	struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1121	struct r600_common_context *rctx =
1122		ctx ? (struct r600_common_context*)ctx : NULL;
1123	int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1124
1125	if (rfence->sdma) {
1126		if (!rws->fence_wait(rws, rfence->sdma, timeout))
1127			return false;
1128
1129		/* Recompute the timeout after waiting. */
1130		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1131			int64_t time = os_time_get_nano();
1132			timeout = abs_timeout > time ? abs_timeout - time : 0;
1133		}
1134	}
1135
1136	if (!rfence->gfx)
1137		return true;
1138
1139	/* Flush the gfx IB if it hasn't been flushed yet. */
1140	if (rctx &&
1141	    rfence->gfx_unflushed.ctx == rctx &&
1142	    rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1143		rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
1144		rfence->gfx_unflushed.ctx = NULL;
1145
1146		if (!timeout)
1147			return false;
1148
1149		/* Recompute the timeout after all that. */
1150		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1151			int64_t time = os_time_get_nano();
1152			timeout = abs_timeout > time ? abs_timeout - time : 0;
1153		}
1154	}
1155
1156	return rws->fence_wait(rws, rfence->gfx, timeout);
1157}
1158
1159static void r600_query_memory_info(struct pipe_screen *screen,
1160				   struct pipe_memory_info *info)
1161{
1162	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1163	struct radeon_winsys *ws = rscreen->ws;
1164	unsigned vram_usage, gtt_usage;
1165
1166	info->total_device_memory = rscreen->info.vram_size / 1024;
1167	info->total_staging_memory = rscreen->info.gart_size / 1024;
1168
1169	/* The real TTM memory usage is somewhat random, because:
1170	 *
1171	 * 1) TTM delays freeing memory, because it can only free it after
1172	 *    fences expire.
1173	 *
1174	 * 2) The memory usage can be really low if big VRAM evictions are
1175	 *    taking place, but the real usage is well above the size of VRAM.
1176	 *
1177	 * Instead, return statistics of this process.
1178	 */
1179	vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1180	gtt_usage =  ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1181
1182	info->avail_device_memory =
1183		vram_usage <= info->total_device_memory ?
1184				info->total_device_memory - vram_usage : 0;
1185	info->avail_staging_memory =
1186		gtt_usage <= info->total_staging_memory ?
1187				info->total_staging_memory - gtt_usage : 0;
1188
1189	info->device_memory_evicted =
1190		ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1191
1192	if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4)
1193		info->nr_device_memory_evictions =
1194			ws->query_value(ws, RADEON_NUM_EVICTIONS);
1195	else
1196		/* Just return the number of evicted 64KB pages. */
1197		info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1198}
1199
1200struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1201						  const struct pipe_resource *templ)
1202{
1203	if (templ->target == PIPE_BUFFER) {
1204		return r600_buffer_create(screen, templ, 256);
1205	} else {
1206		return r600_texture_create(screen, templ);
1207	}
1208}
1209
1210bool r600_common_screen_init(struct r600_common_screen *rscreen,
1211			     struct radeon_winsys *ws)
1212{
1213	char llvm_string[32] = {}, kernel_version[128] = {};
1214	struct utsname uname_data;
1215
1216	ws->query_info(ws, &rscreen->info);
1217
1218	if (uname(&uname_data) == 0)
1219		snprintf(kernel_version, sizeof(kernel_version),
1220			 " / %s", uname_data.release);
1221
1222	if (HAVE_LLVM > 0) {
1223		snprintf(llvm_string, sizeof(llvm_string),
1224			 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
1225			 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
1226	}
1227
1228	snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1229		 "%s (DRM %i.%i.%i%s%s)",
1230		 r600_get_chip_name(rscreen), rscreen->info.drm_major,
1231		 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1232		 kernel_version, llvm_string);
1233
1234	rscreen->b.get_name = r600_get_name;
1235	rscreen->b.get_vendor = r600_get_vendor;
1236	rscreen->b.get_device_vendor = r600_get_device_vendor;
1237	rscreen->b.get_compute_param = r600_get_compute_param;
1238	rscreen->b.get_paramf = r600_get_paramf;
1239	rscreen->b.get_timestamp = r600_get_timestamp;
1240	rscreen->b.fence_finish = r600_fence_finish;
1241	rscreen->b.fence_reference = r600_fence_reference;
1242	rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1243	rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1244	rscreen->b.query_memory_info = r600_query_memory_info;
1245
1246	if (rscreen->info.has_uvd) {
1247		rscreen->b.get_video_param = rvid_get_video_param;
1248		rscreen->b.is_video_format_supported = rvid_is_format_supported;
1249	} else {
1250		rscreen->b.get_video_param = r600_get_video_param;
1251		rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1252	}
1253
1254	r600_init_screen_texture_functions(rscreen);
1255	r600_init_screen_query_functions(rscreen);
1256
1257	rscreen->ws = ws;
1258	rscreen->family = rscreen->info.family;
1259	rscreen->chip_class = rscreen->info.chip_class;
1260	rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1261
1262	slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1263
1264	rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1265	if (rscreen->force_aniso >= 0) {
1266		printf("radeon: Forcing anisotropy filter to %ix\n",
1267		       /* round down to a power of two */
1268		       1 << util_logbase2(rscreen->force_aniso));
1269	}
1270
1271	util_format_s3tc_init();
1272	pipe_mutex_init(rscreen->aux_context_lock);
1273	pipe_mutex_init(rscreen->gpu_load_mutex);
1274
1275	if (rscreen->debug_flags & DBG_INFO) {
1276		printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1277		printf("family = %i (%s)\n", rscreen->info.family,
1278		       r600_get_chip_name(rscreen));
1279		printf("chip_class = %i\n", rscreen->info.chip_class);
1280		printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1281		printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1282		printf("max_alloc_size = %i MB\n",
1283		       (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1284		printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1285		printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1286		printf("has_sdma = %i\n", rscreen->info.has_sdma);
1287		printf("has_uvd = %i\n", rscreen->info.has_uvd);
1288		printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1289		printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1290		printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1291		printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
1292		printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1293		printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1294		printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1295		       rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1296		printf("has_userptr = %i\n", rscreen->info.has_userptr);
1297
1298		printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1299		printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1300		printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1301		printf("max_se = %i\n", rscreen->info.max_se);
1302		printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1303
1304		printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1305		printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1306		printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1307		printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1308		printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1309		printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1310	}
1311	return true;
1312}
1313
1314void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1315{
1316	r600_perfcounters_destroy(rscreen);
1317	r600_gpu_load_kill_thread(rscreen);
1318
1319	pipe_mutex_destroy(rscreen->gpu_load_mutex);
1320	pipe_mutex_destroy(rscreen->aux_context_lock);
1321	rscreen->aux_context->destroy(rscreen->aux_context);
1322
1323	slab_destroy_parent(&rscreen->pool_transfers);
1324
1325	rscreen->ws->destroy(rscreen->ws);
1326	FREE(rscreen);
1327}
1328
1329bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1330			  unsigned processor)
1331{
1332	switch (processor) {
1333	case PIPE_SHADER_VERTEX:
1334		return (rscreen->debug_flags & DBG_VS) != 0;
1335	case PIPE_SHADER_TESS_CTRL:
1336		return (rscreen->debug_flags & DBG_TCS) != 0;
1337	case PIPE_SHADER_TESS_EVAL:
1338		return (rscreen->debug_flags & DBG_TES) != 0;
1339	case PIPE_SHADER_GEOMETRY:
1340		return (rscreen->debug_flags & DBG_GS) != 0;
1341	case PIPE_SHADER_FRAGMENT:
1342		return (rscreen->debug_flags & DBG_PS) != 0;
1343	case PIPE_SHADER_COMPUTE:
1344		return (rscreen->debug_flags & DBG_CS) != 0;
1345	default:
1346		return false;
1347	}
1348}
1349
1350bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1351{
1352	return (rscreen->debug_flags & DBG_CHECK_IR) ||
1353	       r600_can_dump_shader(rscreen, processor);
1354}
1355
1356void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1357			      uint64_t offset, uint64_t size, unsigned value)
1358{
1359	struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1360
1361	pipe_mutex_lock(rscreen->aux_context_lock);
1362	rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
1363	rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1364	pipe_mutex_unlock(rscreen->aux_context_lock);
1365}
1366